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Abstract 

The video game industry has grown quickly from its humble beginnings to one of the 

largest entertainment industries in the world. Fuelled by the continuous advancements in 

technology, the quality and quantity of content in AAA video games continues to rise 

along with customer expectations. But with the ever-higher ambitions, the development 

budgets and durations rise with them, making the cycle unsustainable on the long run. 

Procedural content generation is a technique that has the potential of helping break the 

cycle. The automatic generation of game content, such as levels, could help game 

developers reach the desired quantity of content with a fraction of the time and money 

required. However, commercial applications of procedural content generation so far have 

been largely limited in scope and lacking in quality, with the more successful cases being 

found in smaller budget indie games. 

In this study, the possibility to use the idea of rhythm in guiding procedural level 

generation towards better quality was studied. Using a design science research approach, 

the gameplay rhythm of original Super Mario Bros. levels was extracted and used to build 

a rhythm-based procedural 2D platformer level generator. The nature of the generated 

levels was investigated by computational metrics, and the quality of them was evaluated 

by a series of playtests. 

It was found that the existing platformer levels included an extractable rhythm. The 

rhythm-based level generator that was built upon the found rhythm data produced levels 

that were closely on par with the original levels, indicating that rhythm has potential 

applications in informing how a procedural content generator could create more 

meaningful and higher quality content. Finally, this experimental approach in 

incorporating music theory to procedural content generation opens up many interesting 

new avenues for future research. 
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Abbreviations 
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1. Introduction 

Video games have risen over the years from their humble beginnings to become a massive 

industry worth almost $180 billion by 2020. It has even surpassed the movie industry’s 

2019 revenue of $100 billion, earning video games their place among the big 

entertainment industries. The constant growth has been fuelled by, for example, the 

multitude of ways to play games. From PCs and consoles to mobile devices and further 

to streaming, gaming has never been as accessible as it is now. (Witkowski, 2020). With 

advancements in technology, game developers continuously aim to reach new heights 

with bigger and better experiences and higher fidelity graphics, while players’ 

expectations grow at the same pace. But this evolution does not come free as video games’ 

budgets continue to rise and development times become longer and longer. As an 

example, Grand Theft Auto V, a highly anticipated and successful game by Rockstar 

Games, was developed by over 1000 people as a joint effort across multiple game studios 

with an estimated budget of $265 million (MCV Editors, 2013; Villapaz, 2013). Another 

highly anticipated game, Cyberpunk 2077 by CD Projekt Red, had its development team 

grow to over 500 people with its initial budget estimated to be around $330 million. The 

game was at least in partial development for eight years and even with all the effort put 

into it, it had a disastrous launch with the game being so broken that Sony, in a highly 

unusual move for an AAA game, had to remove it from the PlayStation store. (Andreadis, 

2019; Lyons, 2021; MacDonald, 2020). Although the aforementioned games are some of 

the bigger examples that there are, it does highlight the huge amount of money and effort 

required to bring the biggest video game experiences to life. But just growing the 

development team and the budget is not enough to create a successful game, and spending 

many years on a game’s development with no certainty of success is understandably not 

sustainable for a game studio. 

Empowering game developers with better methods and tools could enable their vision to 

be reached quicker and cheaper, and is thus a more and more important avenue of 

research. This is where procedural content generation (PCG) comes in. Simply put, 

procedural content generation refers to the method of generating game content by 

algorithms as opposed to manual creation. The exact nature of the generated game content 

can be basically anything from the game’s levels and non-player characters’ artificial 

intelligence to entire game systems. (Togelius, Yannakakis, Stanley, & Browne, 2011). 

How much PCG is utilized, and how successfully, varies highly but at least a small 

amount of procedural content can likely be found from a majority of modern games. A 

highly successful application of PCG is the critically acclaimed game Minecraft by 

Mojang. The game is highly centred around procedural content generation with its whole 

world being created pseudorandomly on the fly, making each new world feel fresh to 

play. By 2020, the game had surpassed 200 million sales. (Minecraft, 2011; Warren, 

2020). Although procedural content generation may sound lucrative, it is not without its 

challenges. For example, the game No Man’s Sky by Hello Games also revolves around 

procedural world generation, but it released to generally negative response with a lot of 

negative feedback being directed towards the repetitive nature of the procedural worlds 

(No Man’s Sky, 2016). PCG may not be a silver bullet to completely solve the issue of 

ever-increasing development time and cost, but it is potentially a powerful tool in 

alleviating the situation. Its efficient application in commercial projects warrants further 

studies, however. As there are risks associated, PCG hasn’t been too widely used in AAA 

games. The aforementioned Minecraft and No Man’s Sky both come from indie studios, 

which usually have more freedom and desire to experiment with new technologies. For 
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larger budget games, more robust studies could help in the adoption and understanding 

of how PCG can be used consistently and effectively in game development. 

This study is implemented using a design science research process as defined by Peffers 

et al. (2007). The objective is to investigate if and how the idea of rhythm could be used 

to guide the automatic generation of 2D platformer levels. A technique based on music 

theory is used to analyse the rhythm of an existing game’s levels, and the results of that 

are used to implement a procedural platformer level generator. The target game for the 

analysis and generation of levels is the classic platformer Super Mario Bros. (1985) by 

Nintendo due to its simplicity. The ways to interact with the game are limited to only 

some core gameplay mechanics of the genre, namely: walking, running, jumping, and 

crouching. The following research questions are used to guide the research: 

RQ1. How can the rhythm of player input in 2D platformer levels be 

analysed? 

RQ2. What kind of results can be achieved by creating new 2D platformer 

levels based on the rhythm of existing levels? 

Existing literature is used to answer the first research question. Different aspects relating 

to platformer gameplay are associated with elements of music and rhythm. The resulting 

connections are then analysed with methods based in music analysis to produce coherent 

patterns of rhythm from the original Super Mario Bros. levels. 

For the second research question, a rhythm-based procedural platformer level generator 

is built by feeding it the extracted rhythm information of the original Super Mario Bros. 

levels. The level generator’s output is investigated through a combination of 

computational evaluation and user evaluation. Evaluation based on computational metrics 

is used to gain insight into the nature of the rhythm-based level generator and what kind 

of levels it produces. Playtest sessions are arranged to investigate the quality of the 

generated levels by comparing the original Super Mario Bros. levels to the generated 

levels. A handful of levels are played in each session, with each played level rated 

according to multiple aspects. 

The rest of this thesis is structured as follows. Chapter 2 introduces platform games, the 

related core concepts, and the Super Mario Bros. game used in the study. Chapter 3 

examines how rhythm can be found and used in the context of digital interaction, and 

especially in games. Chapter 4 details procedural content generation in general and in 2D 

platformers. Chapter 5 provides an overview of the study’s research methods, and Chapter 

6 explains the implementation of the study in more detail while also presenting the 

findings. Chapter 7 discusses the implications of the findings in the context of existing 

research, and the concluding Chapter 8 provides a summary of the results, the limitations 

of the study, and recommendations for future research. 
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2. Platform Games 

Platform games, which are also referred to as platformers, is a genre of video games that 

can be defined simply as games where a player controls a character on screen by running, 

jumping, and climbing between platforms with the goal of reaching a specific destination. 

Due to the genre’s age, platform games started as two-dimensional (2D) games, but three-

dimensional (3D) platform games have become at least as popular nowadays. (Hosch, 

n.d.; “Platform Game,” n.d.). Platformer gameplay mechanics are also highly prevalent 

in games where the main genre is something else (Helgeson, 2011). 

2.1 History  

The platformer genre is one of the oldest, and one of the most popular, video game genres 

with the first platform games being released in the early 1980s. The game that started the 

platform genre is a debated topic among historians and gamers alike, but the top 

contenders are the 1980 video game Space Panic and the 1981 Nintendo game Donkey 

Kong. The reason for the contention is that the former does not include the ability to jump 

as opposed to the latter, and jumping is considered a defining feature of the genre by 

many. (Hosch, n.d.; Klappenbach, 2021). 

Regardless of which game came first, the first platformers were games played on a single 

static screen, meaning that the camera does not move. What was displayed on the screen 

was the whole play area. In these early games, the player jumps and climbs towards their 

objective, and when they reach that objective, the controlled character is transported to 

another screen with a possibly new area and objective. The natural evolution from these 

single screen platformers were the later scrolling platformers where the screen would 

show only a portion of the whole playable area. The camera would move horizontally or 

vertically around the area to reveal more of it in response to player character movement. 

The basic idea still remained the same: reach the objective while collecting items and 

avoiding enemies, and move through different areas to harder challenges. (Klappenbach, 

2021). As an example: the genre classics, Super Mario Bros. and Sonic the Hedgehog, 

both fall into this scrolling platformer category (Sonic the Hedgehog, 1991; Super Mario 

Bros., 1985). 

With hardware growing more powerful, 3D games were made a reality during the 1990s. 

And so did platformers, too, make the jump to the third dimension with games like Super 

Mario Bros 64, Banjo-Kazooie, and Crash Bandicoot being some of the highly successful 

pioneers in translating the classically 2D genre into 3D. At the same time, more mature 

game genres, such as first-person shooters (FPS) and real-time strategy games started to 

rise and eclipse the platformer genre. With a wider variety of genres and more complex 

themes, the popularity of platform games started to decline over the years. (Braun, 2018). 

Nowadays, platformers have largely been relegated to an inspiration or a piece of a bigger 

whole for games of other genres, as is the case in many blockbuster games like Uncharted 

and Assassin’s Creed. Games with platforming as the main focus have become quite rare. 

(Helgeson, 2011). Though they never regained the same kind of dominating popularity 

they once had, highly successful pure platform games do still keep getting developed and 

released from time to time. One of the largest AAA companies still producing platformers 

on the regular is Nintendo. Through their games like Super Mario Galaxy and Super 

Mario Odyssey, they show their mastery over the genre time and time again. The genre 

is more popular, though, with indie companies. Games such as Celeste, Shovel Knight, 
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and Super Meat Boy are proof that there is still a wide demand and also room for evolution 

in the 2D platformer genre. (Braun, 2018). 

2.2 Gameplay 

Platformer is a genre of games where movement in different manners is the main focus. 

The basic shared gameplay mechanic of platformers revolves around jumping and 

running across platforms to complete an objective. (Klappenbach, 2021). The vast 

majority of the time, the gameplay happens from the third-person perspective, meaning 

the player exists outside the game world and is looking at the player character. Contrasted 

to this, there are also first-person platformers like Mirror’s Edge where the game world 

is viewed through the eyes of the player character. (Easton, 2019). 

Platform games are usually divided into levels, which is a term referring to the area where 

the gameplay happens. Levels can have their own goals and themes, though often 

different levels share characteristics with each other. (Schell, 2014). Completing the 

level’s main objective, which usually revolves around reaching a specific place in the 

level, transports the player to the next level with new challenges. Sub-objectives also 

often exist, either implicit or explicit. It is, for example, customary to have collectable 

items like coins scattered around the levels to entice the players to explore outside the 

main path, too. The reward for collecting such items may simply be an accumulation to 

the score meter that describes how well the player fared through the level, but it can also 

be something more. Another common type of collectable item, the power-up, is also 

commonplace in all kinds of platform games. When collected, the power-ups can grant 

the player character new gameplay abilities either temporarily or permanently. (Easton, 

2019; Klappenbach, 2021; Schell, 2014). 

In addition to collectable things, platformer levels also include things the player will want 

to avoid. Some of these include enemy characters, and environmental obstacles like 

spikes and fatal pitfalls. Enemies can usually be avoided completely, and sometimes they 

can be wiped out with specific gameplay moves or by using power-ups. (Klappenbach, 

2021; Schell, 2014). Coming into contact with enemies or environmental obstacles will 

ultimately cause the player to lose a life. When the player dies, they will come back to 

life and be teleported to an earlier place in the level. This concept of dying and rebirthing, 

which is also called respawning in the context of video games, is central in platform 

games, and the exact nature of it varies from game to game. Some games or obstacles 

may cause the player character to die instantly, while others may only reduce the player’s 

health. The usage of health points in video games enables the player to be able to make 

some mistakes, making the game more forgiving. If the health points end up reaching 

zero, the player character will die. Upon death, the player character is then usually 

teleported to an earlier checkpoint, the beginning of the level, or even the beginning of 

the game in some cases. (Melcer & Cuerdo, 2020). 

Platformer games have seen a large variety of different movement related mechanics 

throughout the years. Some of these are widely used in the games of the genre, for 

example: rolling, dashing, double jumping, and wall jumping. There are also unique 

game-specific movement mechanics that can fundamentally change how the platforming 

is approached. The Super Mario game series is especially known for having unique 

mechanics in various releases. These include the planets and gravity changes in Super 

Mario Galaxy, and the ability to use Mario’s hat as a throwable, temporary platform from 

which to jump further in Super Mario Odyssey. (Stewart, 2013). 
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There are also various subgenres to the platformer genre. Cinematic platformers like 

Limbo tend to be more grounded in reality and have a more realistic and slower 

movement. In puzzle-platformers, too, the movement mechanics often take a backseat in 

favour of various unique puzzle-based mechanics. (Vole, 2014). For example, in the indie 

puzzle-platformer Braid, the player has the ability to rewind time in various ways (Braid, 

2008), and in Fez the player moves in a two-dimensional space, but the world is actually 

three-dimensional and can be rotated to unveil and play on the other sides of that 3D 

world (Fez, 2012). 

2.3 2D platformer levels 

Platformer games are often divided into multiple different spaces, called levels, where the 

player controls their character. Each level has its own objective that usually involves 

reaching a specific place. (Schell, 2014). After the completion of a level, the player is 

usually presented with another one. The levels may be connected to each other, for 

example, thematically as is the case in the 1991 game Sonic the Hedgehog. In Sonic, the 

levels are divided into what the game calls “zones”, and each zone is further divided into 

acts like in a play. Each act corresponds to one level, and each act within a zone employs 

the same visual theme. (Schell, 2014; Sonic the Hedgehog, 1991). 

The design of platformer levels is dependent on various different factors. For platform 

games, things like its subgenre, whether the game utilizes side-scrolling or static single 

screen levels, and how the level geometry is implemented technologically can all 

fundamentally change how the levels are designed. Figure 1 demonstrates the different 

look and feel that platformers can have due to differences in the aforementioned choices. 

 

Figure 1. Left: Celeste, a pure platformer with tile-based single screen levels (Celeste, 2018). 
Right: Braid, a puzzle-platformer with smooth side-scrolling levels (Braid, 2008). 

Single screen levels, like the name implies, are played with a static camera. The player 

sees the whole of the level at all times. Scrolling levels, on the other hand, show only a 

portion of the game level at a time. As the player moves, the camera follows. The camera 

may move in the horizontal direction, which is referred to as side-scrolling, or in more 

rare cases it can be vertical. (Klappenbach, 2021). In Figure 1, examples of both static 

and side-scrolling levels are shown. In Celeste, levels are usually presented with a static 

camera, whereas Braid utilizes side-scrolling levels where the camera can move in both 

horizontal and vertical directions (Braid, 2008; Celeste, 2018). 

Two-dimensional platform games have utilized many different approaches for the 

technical implementation of the level geometry like the ground where the player can walk. 

One approach is the tile-based one. In this approach, a texture atlas which is also 

commonly referred to as the tileset, is created to contain the levels’ building blocks. This 

tileset is a collection of images laid out in a grid of same sized cells. These images, called 
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tiles, can then be used to build the levels. (Monteiro, 2012; Wolf, 2012). An example of 

a tileset can be seen in Figure 2. 

 

Figure 2. The tileset distributed with the Mario AI Framework that it uses to visualize the Super 
Mario Bros. levels (Khalifa, 2019). 

Each tile in a tileset is the same size in pixels. In Figure 2, each tile is 16 pixels in both 

width and height. Those tiles are laid out on the screen next to each other to form a tile 

map, the graphical representation of the level. Each tile can, and usually does, appear in 

the level multiple times. For example, in order to create a fence, a tile image of a small 

section of the fence is repeated in a row for the desired length. While the tile-based 

approach may be easier to implement compared to other methods, it also imposes some 

restrictions to the design of the levels. Tile maps don’t work very well with curves since 

the collision information, which defines where the player character can move, is often 

directly defined by the used tiles. For example: in Figure 2 the first tile represents the sky, 

through which the player character is able to move. The second tile in the first row on the 

other hand is the ground with which the player character would collide. The player can 

move on top of the ground tile, but they cannot pass through it. (Wolf, 2012). It is possible 

to implement curve-based collision on tile-based levels, too, but it requires more work 

and as such, it is an approach that’s much less common. (Monteiro, 2012). A modern 

example of tile-based levels can be seen in Figure 1 with Celeste. 

For a smoother look and movement, mask images or a vectorial approach can be 

considered. For the mask image approach, an image containing the graphical 

representation of the whole level is first created. Then another version of that image with 

simpler colours, the mask image, is used for collisions information. The mask image can 

be, for example, simply black-and-white where each black pixel in the image is 

considered to be impassable. In the vectorial approach lines or polygons determine the 

boundary for the collisions. This is something used in Braid, resulting in the smooth level 

geometry as shown in Figure 1. These kinds of approaches offer much more artistic 

freedom to represent unique shapes that are not always possible in the tile-based 

approach. (Monteiro, 2012). 

In addition to the ground geometry, platform games, as the genre name implies, also have 

platforms on top of which the player can jump. There are many different types of 

platforms and other building blocks that can be seen frequently in different games. Some 

examples of platforms can be seen in the leftmost screenshot in Figure 3 where the player 

character is able to jump on top the platform comprised of the brick and question mark 

blocks. Platforms can have special behaviour or rules. For example, some platforms allow 

the player jump through them from below, but are impassable when the player is on top 

of them. Moving platforms, like the orange beam in the rightmost screenshot of Figure 3, 

are constantly on the move, and in the gridlike tile-based levels they are implemented 

outside the tile system for more smooth movement. Some other platforms have the ability 

to modify player movement; for example, a conveyor belt platform that is constantly 

moving player in one direction when making contact with it. Even more types of 

commonly used platforms are: platforms that are visible and able to be jumped on only 
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periodically, and platforms that disappear when standing on them for too long. (iD Tech, 

2012). Stairs, ladders, and other climbable objects like the fence in the Braid screenshot 

of Figure 1, are other widely present building blocks used in platformer levels (Monteiro, 

2012). While platforms and many other level components help the player traverse the 

level, obstacles on the other hand are there to hinder player movement and provide 

challenge. Obstacles can be environmental, like gaps in the ground or spikes that must be 

jumped over, or they can also be hostile non-player characters. These hostile entities, 

usually referred to as enemies, have their own specific behaviours and rules that 

determine how they move and how they can be defeated. (Bright, 2014). 

2.4 Super Mario Bros. for NES 

Super Mario Bros. is a 2D side-scrolling platform game developed and released by 

Nintendo in 1985 for the Nintendo Entertainment System (NES). The game revolves 

around two Italian plumber brothers Mario and Luigi who are on a mission to rescue 

Princess Toadstool who was kidnapped by the game’s main antagonist King Bowser. The 

game is widely considered as one of the gaming classics with over 40 million copies sold. 

On top of that, it was largely responsible in reviving the North American gaming industry 

following its crash in 1983. Even nowadays, Mario is one of Nintendo’s most valuable 

characters and intellectual properties. New entries in the game series continue to be 

released every now and then with the focus having switched mostly from two-

dimensional to three-dimensional platforming. (Goh, 2016; “Super Mario Bros,” n.d.).  

The levels in the NES game are divided into eight sets of four levels each. Each set of 

four levels is referred to as a “world”, meaning for example World 2-1 refers to the first 

level in the second world; or the fifth level of the game overall. The levels are played with 

a side-scrolling view where the camera follows the player character. The main objective 

of most levels is to simply reach the end that is indicated by a flagpole the player jumps 

on. The last level of each world culminates in a short single-screen boss battle against 

King Bowser as demonstrated in the rightmost screenshot of Figure 3. The secondary 

optional objective for the player is to accumulate as many points as they can. Most 

actions, like defeating an enemy and acquiring the optional collectables like coins, reward 

the player with more points. A major point boost can be achieved by jumping higher on 

the end-of-level flagpole; a feat that can be achieved by utilizing the blocks and platforms 

that are placed before said flagpole. (Super Mario Bros., 1985). 

There is a small variety of different themes in the available levels. The vast majority of 

the levels are similar to the leftmost level in Figure 3. A couple of the game’s levels are 

underwater levels where the movement is temporarily fundamentally changed from 

simple running and jumping to freely swimming across the screen. Some levels are 

completely or partially underground. The boss battle levels are similar to the regular 

levels for the most part with some unique environmental obstacles and the end-of-level 

boss battle section added in. The levels are tile-based with no curves in collision detection, 

meaning each block is either completely passable or it completely blocks movement 

through it. A lot of different types of platforms make up the levels, and often they are 

arranged in a way to provide branching paths for the player to take as demonstrated in 

Figure 3. Additional elements in the levels include moving platforms, trampolines, and 

more. (Super Mario Bros., 1985). 
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Figure 3. Screen captures of the different types of Super Mario Bros. level types. From left to 
right: a traditional platformer level, an underwater level, and a boss battle section. 
(Super Mario Bros., 1985). 

The NES Super Mario Bros. is a pure platformer in that its main focus is on movement. 

The movement mechanics are relatively simple: the main things the player can do are 

walk, run, crouch, and jump. In the underwater level the behaviour of the mechanics 

changes quite a bit, but the player is still in essence just moving left and right (walking 

and running), and moving up and down (jumping). Jumps have a variable height 

depending on how long the jump button is held down. In other words: tapping the jump 

button will perform a small jump, and holding the button down will cause the jump go 

higher, up to a predetermined maximum height. Jumping while running enables the player 

character to cross larger distances. (Goh, 2016; Super Mario Bros., 1985). 

A wide variety of different enemies and environmental obstacles exist in the game to 

challenge the player. Enemies have different movement patterns and different rules for 

defeating them. For example: the first enemy seen in the leftmost screenshot of Figure 3 

can be defeated by simply jumping on top of it. Coming into contact with enemies or 

environmental hazards, like pitfalls or spinning bars of fire, will cause the player character 

to die. The player has a set number of lives, one of which is spent upon each death. If the 

player still had lives left on death, they will respawn to the beginning of the current level. 

But should the player run out of lives, they will have to start again all the way back from 

the beginning of the game. Additional lives can be acquired by finding specific power-

ups, or by gathering one hundred of the collectable coins. Another power-up, the 

mushroom, on first pickup grows the Mario character from small to big state. The big 

state acts as a buffer against hazards: while it is active, the player can come into contact 

with some hazards and enemies once, and instead of death they’ll only be returned back 

to the small state. Some hazards like pitfalls will cause death no matter the power-up state. 

While in the big state, mushroom power-ups are transformed into fire flowers. The fire 

flowers give the player the ability to shoot fireballs for a short while, which in turns allows 

the player to defeat enemies from a distance with more safety. (Goh, 2016; Super Mario 

Bros., 1985). 
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3. Rhythm and Games 

From living beings’ biological rhythm to various types of human expression like music, 

poetry, and play, rhythm is something that is felt and experienced all the time whether 

consciously or not. There’s even rhythm in this text. Some sentences are short. Others are 

long, causing a different rhythmic feeling that can be adjusted with punctuation; all of 

which can carry its own implicit message to the reader. (Costello, 2018a). 

Rhythm is in essence a pattern of some specific event’s occurrences in relation to time. 

In music, rhythm happens in the context of a song’s tempo. Tempo is the speed of the 

song that is measured in beats per minute. The regularly occurring beats are the pulse of 

the song, and it’s that repeating beat which listeners often feel and replicate by, for 

example, tapping their foot. The events that form the rhythm are the actual notes that ring 

out from an instrument, and they may happen on the beat or outside it. (Costello, 2018a; 

Rhythm, n.d.). 

While the notes’ placements in relation to each other in the context of the song’s tempo 

are what form the rhythm, notes also have a pitch associated with them. Pitch refers to 

the frequency of the played note that defines how high or low the listener experiences the 

sound to be. Playing the same note on a piano two times a second, and alternating between 

two different notes at the same speed of two notes per second, both produce the same 

rhythm but a different experience to the listener. Continuing the same example, the pianist 

could also alternate between a quick tap and holding down the piano key at the same 

tempo. The duration between each note stays the same, meaning the rhythm stays the 

same, but the experienced sound is different as every other note is heard for only a brief 

moment, and the others are heard for a longer time. (Costello, 2018a; Rhythm, n.d.) 

Rhythm has powerful expressive capabilities as different rhythms can induce various 

types of emotional responses. Some rhythms may be perceived as soothing, while others 

may cause joy, anxiety, or even sadness. It can also keep the person who experiences the 

rhythm engaged, or cause a loss of interest depending on how it’s used. In the context of 

performing a rhythm, it can be an invaluable tool in enabling creativity. (Costello, 2018a). 

3.1 Rhythm in games 

Costello (2018a) in her book examines rhythm in the context of digital interactions with 

the main focus being playful applications like video games. The author interviews 

eighteen experts of varying fields like dance, film, art, and interaction design. For each 

interviewee, rhythm plays an important role in their work, and it is their unique 

perspectives the author strived to understand and apply to digital interactions. The result 

is a book full of insight and guidelines that could potentially help improve human-

computer interaction, be it video games or more traditional applications. (Costello, 

2018a). 

Rhythm is something that is experienced, but also something that is produced. It is ever-

present in human-computer interaction, and perhaps even more so in games than in 

regular software. In games, depending on the interaction device, the players may click, 

hold, and gesture to control their avatar in the virtual world. Specific events happen as a 

response, and the chain of these interactions and their responses results in a rhythm. This 

all happens in the context of the game world and its rules, meaning different games could 

allow different rhythms to be performed. On the other hand, there is an implicit rhythm 
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in the gameplay itself to which the player can attune themself. As an example of this in 

another context, think of an audience clapping. Each individual person produces their 

own rhythm when they start. However, as they listen to others clapping, they usually 

attune to the rhythm they feel from other people clapping, ultimately causing the audience 

to synchronize their rhythm. (Costello, 2018a). 

Games have music, and the rhythm of that music can be an important tool for improving 

player experience and game feel. It can create the feeling of tension and difficulty, or on 

the other hand soothe the player in calmer gameplay situations. It can even unconsciously 

direct the player how they need to interact with the game as players may find themselves, 

for example, jumping synchronized to the beats in the music. Achieving such an 

experience requires an intentional design, however. The player can keep jumping 

synchronized to the music only if the gameplay rules and the level design allow them to 

do so. A mismatch between the experienced inherent rhythm of the game and the rhythm 

required to interact with the game to proceed can cause a highly distracting negative 

dissonance. A fast and frantic background music may not be suitable to a simple, visually 

peaceful, platformer level with little obstacles as there is no need to interact with the game 

in any way close to the inherent rhythm caused by the music. (Costello, 2018a, 2018b). 

Games as interactive experiences are also full of rhythmic experiences outside the music 

in both active and passive sense. When the player is navigating through the menus, there 

is an implicit rhythm since the menu item selection can be changed only in specific 

minimum intervals. When the player is controlling their avatar and constantly jumping, 

there is an implicit rhythm they may end up following in the key presses because the rules 

of the game, specifically gravity, control how long the player stays in air and thus how 

often they come back to ground to be able to jump again. The cycle of death and respawn 

also provides an abstract kind of rhythm, and its intensity rises as the player feels more 

pressure the closer they are to losing their last life. When the player is exploring the world, 

there is rhythm in how often they come across different points of interest. A possible day 

and night cycle may also provide a steady overarching rhythm like it does in Minecraft 

where the enemies are more active during the nights. There is a designed rhythm in how 

often the player unlocks new skills and abilities. There is even rhythm in the story, in how 

its events play out and how the intensity of each story event varies. Some of these 

examples happen at a very low level where the player is directly interacting and causing 

the rhythm, while others are more abstract, high-level rhythms. Viewing the different 

kinds of game systems and components through the lens of rhythm can help design with 

more intent, and to reach planned results in a more consistent manner. (Costello, 2018a, 

2018b). 

While macrolevel rhythms like the pacing of the story’s plot points may be more 

straightforward, the rhythm at the microlevel is more heavily affect by both the interaction 

and the response. The story simply happens, it can seldom be affected directly. The 

rhythm of controlling the player character, however, is the result of both the player input 

and the game’s response to that input. Costello (2018b) explores this by comparing the 

player interaction when chopping trees in the games Minecraft and Don’t Starve. The key 

finding by Costello (2018b) is that the game’s response in Minecraft is more closely tied 

to the player’s interaction. In Minecraft, the player has to hold down the mouse button for 

longer periods of time when chopping the tree. If the player lets go of the mouse button, 

the character immediately stops their action. In Don’t Starve, on the other hand, instead 

of holding down the mouse button, the player just clicks it and waits for the action to end. 

In other words, the game’s response continues for some period of time after the player 

has ended the interaction. (Costello, 2018b). 
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The movement in Don’t Starve also has a longer response to interaction. When the player 

clicks somewhere in the game world, the player character starts automatically navigating 

to that point. During this, the player simply waits for the character to reach its destination. 

In Minecraft, the player character is controlled more directly with keyboard keys: when 

the correct key is pressed down, the character starts moving in the corresponding 

direction, and continues to do so only while the key is pressed down. The prolonged 

response in Don’t Starve causes the player to feel like they were only triggering rhythms 

instead of performing them. In Minecraft the player feels they have more control due to 

the faster interaction-response cycle, and thus it can result in a more rhythmically 

expressive gameplay. It is to be noted, however, that having rhythmically expressive 

gameplay is not necessary in every game, but it can be useful in enhancing specific type 

of gameplay. Different behaviours suit different games, and it’s important for the game 

designer to understand the consequences of their decisions. (Costello, 2018b). 

3.2 Rhythm intensity 

When aware of the different types of rhythm that exist, a designer needs to then 

understand what are the events that happen in the rhythm, and how to evaluate their 

intensity. In the rhythm of a movie’s storytelling, the events are the scenes which are 

constructed from many components like the acting, writing, and camerawork. Each scene 

has a different intended emotional impact that each of the components work towards. The 

scenes alter in intensity from minor to major events at varying frequencies. It is then the 

filmmaker’s job to chart out a suitable rhythmic structure of these varyingly impactful 

scenes. Having an entertainment experience consist of only high intensity events, the 

audience will quickly tire from sensory overload. On the other hand, constant low 

intensity events can have the same effect of tiring out the audience, but in this case, it 

would be due to boredom. As such, it is important to have the intensity and the frequency 

of the events be more dynamic. (Costello, 2018a). One way to chart the intensities of an 

experience’s events is with interest curves (Schell, 2014), an example of which can be 

seen in Figure 4. 

 

Figure 4. An example of a good interest curve based on the description by Schell (2014). 

Schell (2014), in his widely referenced book about game design, likens all entertainment 

experiences to a sequence of moments. Each moment has a level of impact on the person 

who experiences it. Designing the experience around these moments and arranging the 

moments in a suitable order is the key to an enjoyable and engaging experience. Schell 
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(2014) suggests an example of a good sequence of moments, an example visualization of 

which is charted in Figure 4. At the start of an entertainment experience, the audience 

already has some level of interest due to their initial expectations. Very early in the 

beginning a moment with high level of interest happens. This is referred to as the “hook”, 

and it’s used to grab the attention of the audience by having something highly exciting 

happen. The resulting boost in interest helps keep the audience engaged through the 

middle that is filled with moments of varying levels of interest. During this time in the 

example, the interest gradually builds up to the climax, a highly impactful moment. In the 

end it all comes to a close by winding down and wrapping up the experience. (Schell, 

2014). 

The interest curve shown in Figure 4 is just one example, though it is useful in conveying 

the main points of a good experience. The experience should be dynamic in its intensity, 

and it should gradually build up interest before finishing up in a climactic event. Other 

types of curves can be effective, too, but this particular example can be observed to be 

widely used in all kind of entertainment whether on purpose or not. Similar curves can be 

seen, for example, in the widely used three-act structure of Hollywood movies, and in the 

structure of popular songs. It is to be noted, however, that there can be multiple layered 

levels of interest curves in entertainment experiences. In the context of games, the top-

level could be the overall story of the game. Going one level deeper, each level could 

have its own interest curve comprising where different types of challenges, for example 

puzzles or platforming sections, could cause different levels of interest. Finally, each 

challenge in itself could be designed around an interest curve with the challenge being 

presented interestingly, and continuing with gradual and dynamic build up to a big finish. 

This kind of perspective into the design of entertainment experiences can be helpful not 

only when charting the expected interest in the beginning, but also in confirming later in 

the development process that the implemented moments actually have the designed 

impact at correct points in time. (Schell, 2014). 

When it comes to designing the interest curves, the hard part can be to define what interest 

is exactly. What interests different people is inherently a subjective thing, meaning we 

cannot really measure it or objectively design it. Instead, we can define the interest levels 

in a relative manner; using the designer’s experiences, empathy, and imagination to 

compare different events. Three example factors of interest that can be used as a guideline 

are inherent interest, poetry of presentation, and projection. (Schell, 2014). 

Inherent interest refers to the fact that some things are inherently more interesting than 

others. For example, it’s easy to see that a person juggling chainsaws is inherently more 

interesting to see than a person juggling couple of regular juggling balls. From this 

example we can understand that risk is usually seen as more interesting than safety. Other 

examples could be: something being fancy can be seen as more interesting than plain 

things, and unusual things are usually inherently more interesting than ordinary things. 

An important thing to note is that the events may build upon others. This is especially 

true in story arcs where the more boring events, like in the fairy tale Goldilocks eating 

the three bears’ porridge etc., are required in the build up to the more interesting events 

that happen when the bears notice someone has been to their home. (Schell, 2014). 

The poetry of presentation factor on the other hand refers to the aesthetics, which could 

be anything from writing and drawings to acting and music. For example, in movies the 

scenes rarely rely only on the inherent interest of the story being told through acting; 

instead, the beautiful scenery, camerawork, and music all together form the total interest 

of the scene. (Schell, 2014). 
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Lastly, the projection factor of interest is something more abstract that deals with things 

like whether the experience causes the person to get lost in it, to imagine things, or to 

empathize with a character of a story. For example, when watching a person juggling 

chainsaws, there is some level of projection as the watcher may imagine what would 

happen should the juggler catch the wrong end of the chainsaw. In the game of Tetris, 

projection can be very high as the player is free to make all the decisions, and the success 

depends wholly on those decisions. (Schell, 2014). 

Interest curve and the idea of controlling the level of interest throughout the experience 

is highly related to pacing, which is a much more widely known concept when it comes 

to games. Pacing, too, can be used to refer to multiple different aspects of a game, like 

the story, the amount of action, and the difficulty. In FPS games, one aspect of difficulty 

pacing could be how many and how often enemies appear. (Bleszinski, 2000; Schell, 

2014). In platformer levels, the notion of rhythm is often used to guide the level design 

(Lindley, 2002) which is apparent in the pacing of the obstacles that need to be avoided, 

meaning how they are placed in rhythmically varying densities (Bleszinski, 2000). 

Difficulty can also be measured by the number of deaths players on average have on each 

level, which in turn is directly tied to many things like the aforementioned enemy count, 

pacing, and number of obstacles. Schell (2014) brings up the average death count from 

the critically acclaimed game Half-Life 2 Episode 1. In each difficulty level, the average 

number of deaths follows a curve relatively similar in shape to Figure 4. Notably, the 

same type of gradual and dynamic build up towards the end is present. The main 

difference is in the beginning of the curve. Whereas the interest curve in Figure 4 has a 

peak at the beginning, the death count curves do not include such a peak. Reason for it is 

that an early peak in difficulty could actively discourage the player from playing. (Schell, 

2014). Keeping the difficulty at a suitably challenging level is a major positive contributor 

to the desirable flow experience (Nakamura & Csikszentmihalyi, 2002) which helps the 

player stay engaged through a sense of accomplishment after overcoming a challenging 

level (Nicollet, 2004). 

3.3 Gestalt Music Analysis 

Pagnutti (2016) a way of utilizing music analysis in platformer level design by adapting 

the idea of beats and rhythm into platformer gameplay. In this context, beat would 

correspond to, for example, a singular player interaction like jumping or moving. As the 

musical analysis of rhythm focuses on investigating what effects different variations have 

on the listener, so can different patterns of gameplay interactions elicit various reactions 

and feelings from the player. (Pagnutti, 2016). 

A crucial mismatch between beat-based music theory and beats in platformer levels, 

however, is the fact that gameplay is not directly connected to time. Music has a tempo 

that grounds the beat occurrences into specific speed. For most games, the player can 

choose to interact with the game at any speed they desire, and they can usually even pause 

the game. To solve this, instead of analysing a continuous section like music with its 

specific tempo, Pagnutti (2016) suggests that platformer levels can be divided into smaller 

discrete sections where the player has to perform a specific set of interactions, a specific 

gameplay gestalt, to advance. (Pagnutti, 2016). Gestalt refers to a pattern of interaction 

where the single interactions are “so unified as a whole that it cannot be described merely 

as a sum of its parts”. In games, this pattern of interaction is something that the player 

performs in order to progress forward. (Lindley, 2002). In the case of platform games, a 

single gameplay gestalt could be a set of very specific consecutive jumps the player has 
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to make in order to progress through a certain type of a section in the level. (Pagnutti, 

2016). A gameplay gestalt consists of perceptual, cognitive, and motor operations, and 

those specific parts may be able to be measured, helping analysis of different gameplays 

through the lens of gameplay gestalts (Lindley, 2002). Gestalt analysis is an established 

field, having been introduced in the 1930s. The novel approach Pagnutti (2016) presents 

for platformer level design analysis and design is based on Gestalt Music Analysis 

(GMA). (Pagnutti, 2016). 

In GMA, the music is divided into smaller sections, internally consistent patterns called 

the gestalts. A song consists of multiple layers of gestalts, with the song itself being one 

gestalt that can be divided into smaller gestalts, which in turn can be subdivided multiple 

times. At the boundary of two sequential gestalts there is some type of change that causes 

the two sections to be separated into their own gestalts. It is, however, not an exact science 

how to define these gestalt patterns. The example given by Pagnutti (2016) for applying 

GMA in music is to calculate for each note a distance value from the previous note. 

(Pagnutti, 2016). A sample visualization of this can be seen in Figure 5. 

 

Figure 5. Example of GMA applied to the beginning of Beethoven’s 5th symphony using the 
approach defined by Pagnutti (2016). 

Pagnutti (2016) calculates the note’s distance to the previous by the difference in delay 

and pitch. In Figure 5 the delay value of a note is in practice the length of the previous 

note measured in eighth notes. For example, in the figure the delay from the fourth to fifth 

note is five, meaning the duration of five eighth notes. The pitch value is the difference 

in the specific note played with zero meaning the same note is repeated. The delay and 

pitch values are simply added together to form the full distance value to the previous note. 

A new gestalt is considered to begin when a distance value is higher than both the previous 

and next distances. (Pagnutti, 2016). In Figure 5 the beginning of new gestalt is denoted 

by the numbered distance value, meaning this example can be divided into five separate 

gestalts.  

Each note’s duration and pitch interval can be thought to be the state of that note. Pagnutti 

(2016) points out that a game’s player character, too, has a specific state at all times. In 

the case of platformers, the player character may be standing still, jumping, moving, or 

even jumping while moving. Each of these options can be considered a distinct state. 

Based on the player’s input, the state lasts for a certain period of time before changing to 

another. Pagnutti (2016) utilizes this viewpoint to analyse previously recorded gameplay 

traces from an existing dataset called Platformer Experience dataset. The dataset contains 

real players’ gameplay data from Infinite Mario Bros, a slightly modified clone of Super 

Mario Bros, that shows the player character’s states and their durations. For the purpose 

of GMA distance calculation, five parameters were chosen to act as the state of the player 

character. (Pagnutti, 2016). The parameters can be seen in the following list. 
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• Movement direction (left, right, none): changing state from moving to not moving, 

or vice versa, was assigned distance value of 1. Changing direction from left 

directly to right, or vice versa, results in distance of 2. 

• Power-up state: there are multiple different power-ups. Some power-up state 

changes have a distance of 1, and some have a distance of 2. 

• Ground state (crouching, running, none): changing state between running or 

crouching, and none state has a distance of 1, and changing state directly between 

running and crouching has distance of 2 

• Airborne state (jumping, none): moving between jumping and being grounded has 

a distance score of 1 

• Time: difference of the time when the compared states started 

Using all of the five parameters, the total distances are calculated with Euclidean distance. 

Time was discovered to have a much larger effect on the result than the other parameters. 

This resulted in awkward gestalt boundaries, so weighting was applied to the parameters 

with time being adjusted the most by a factor of 0.01. Direction, ground, airborne, and 

power-up states were given weighting values of 0.75, 0.25, 0.5, and 1.0, respectively. The 

weighting improved the results, though it was noted there were still some imperfect 

gestalt groupings remaining. Additional issue found in the Platformer Experience Dataset 

was that it lacks the context between the player input and the resulting state change. The 

model doesn’t know, for example, why the player jumped, only that they did. Without the 

level geometry data, the resulting gestalts do not differentiate between changes in the 

level and changes in player’s goals. This in turn may make gestalt analysis less effective, 

though it can still be useful for revealing interaction patterns. (Pagnutti, 2016). 

It is to be noted that the gestalts may evolve or change as the player makes progress 

through the game. By playing the game, the player learns the rules set by the game. 

Through new understanding and interpretation of those rules, the performed gestalts may 

change even if the context where the gestalt is performed is the same as previously. In 

addition, if the gameplay rules change, for example, due to the game introducing new 

gameplay elements like movement abilities or enemy behaviours, so then will the gestalts 

change. (Pagnutti, 2016). 
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4. Procedural Content Generation 

Procedural content generation (PCG) can be defined, in short, as the process of automatic 

content generation with the usage of algorithms. Such algorithms have the responsibility, 

in addition to the actual generation process, to also distinguish and select the results that 

would be entertaining to the players. There is no strict exclusion of what can be 

procedurally generated. It can be, for example, anything from game levels to dialogue 

and music. As such there are a lot of different approaches that can be taken with some 

being more effective for different purposes. (Hendrikx, Meijer, Van Der Velden, & Iosup, 

2013; Togelius et al., 2011). 

As a concrete example of PCG, a technique called displacement mapping can be used to 

create 3D landscapes from simple 2D images. A grayscale image, called heightmap, is 

created manually or programmatically using a noise algorithm, an example of which can 

be seen in Figure 6. The image can then be transformed into a 3D terrain algorithmically 

by treating each pixel of the heightmap image as a point in 3D space. More specifically: 

each pixel’s colour corresponds to the height of the 3D point at that position with black 

being the lowest point and white being the highest point. An example result of the 

application of the aforementioned heightmap is shown on the right side of Figure 6. This 

process from automatic heightmap image creation to its application in 3D is a prime 

example of the potential that procedural content generation can have. (Shaker, Togelius, 

& Nelson, 2016). 

 

Figure 6. Left: heightmap created in GIMP using the Perlin Noise algorithm. 
Right: one possible result of the heightmap visualization in 3D using Blender. 

It is important to note, however, that although the content generation process may be 

automatic, it doesn’t exclude game designer input. Depending on the type of content and 

the situation where it is used, it may be desirable to allow various degrees of 

customization for the user. (Hendrikx et al., 2013). For example, the resulting 3D 

representation of the heightmap in Figure 6 can look different based on potential input 

parameters. A commonly used one in displacement mapping would be the strength of 

displacement, meaning how much different colours actually affect the 3D points’ 

positions. (Shaker, Togelius, et al., 2016). 

4.1 Taxonomy 

The research field of procedural content generation is quite fragmented, and it can be hard 

to compare results between different studies (Togelius, Champandard, et al., 2013). It is 
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also not uncommon for different studies to draw inspiration from a wide variety of 

different disciplines. For example, some of the categories proposed in the taxonomy of 

common PCG methods by Hendrikx et al. (2013) include generative grammar methods, 

which are rooted in linguistics theory, and genetic algorithms, which are inspired by the 

process of natural selection. (Hendrikx et al., 2013). Even quantum mechanics has served 

as an inspiration, for example, in a tile-based image and level generator based on the 

concept of wave function collapse (Gumin, 2016). 

In one of the most widely referenced papers in the field, Togelius et al. (2011) propose a 

different type of taxonomy for procedural content generators. They surveyed a wide 

variety of published studies that dealt with automatic game content generation. Based on 

their findings, their proposed taxonomy is presented as a series of distinctions of various 

aspects of procedural generation. (Togelius et al., 2011). 

The first distinction offered has to do with when the content generation is performed. 

Here, online refers to generation of content during gameplay, and offline refers to content 

generation during game development. These two approaches have highly differing 

requirements. Online generation requires the algorithm to perform fast with predictable 

outcome quality, while offline generation doesn’t strictly have such requirements since a 

designer can confirm the results before they are included in the game. On the other hand, 

offline generation could potentially result in more interesting results due to its lesser focus 

on predictable outcome. (Togelius et al., 2011). 

The second distinction has to do with the necessity of the content. Necessary content is 

required for advancing in the game while optional content is content that can be 

completely avoided or ignored. For necessary content there are additional requirements 

imposed, similar to online generation. For example: necessary content has to be correct 

to ensure the player can complete the game. (Togelius et al., 2011). 

The third distinction deals with the degree of control over the algorithm. On one end, the 

algorithm’s input can be just one number, referred to as the seed value, that is used to 

initialize the random number generator. On the other end, the algorithm’s input may be 

comprised of a vast number of different parameters. For example, a dungeon generator’s 

input might include parameters for room count, degree of branching for corridors, and so 

on. (Togelius et al., 2011). 

The fourth distinction proposed by Togelius et al. (2011) is the level randomness. 

Deterministic algorithms output the same result always given a specific set of inputs. 

Stochastic algorithms’ results, on the other hand, may vary wildly even if using the same 

set of inputs between different executions of the algorithm. Seed values can be used to 

enable creation of deterministic content. (Togelius et al., 2011). This is the case in 

Minecraft, which generates its world based on a single seed value. The benefit of this is 

that the seed values are easy to share between players, allowing different people to 

experience the same game worlds. (Minecraft, 2011). 

The last distinction defines PCG algorithms as either constructive or generate-and-test. A 

constructive algorithm generates its content once but it ensures its quality at the same 

time. A generate-and-test type of algorithm on the other hand would produce candidates 

and test them according some criteria like completability. The failing results are 

discarded, and the algorithm continues until a result that fulfils the criteria is found. 

(Togelius et al., 2011). 
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4.2 Benefits 

Procedural content generation can be a highly lucrative tool for game developers for a 

multitude of reasons. First, it can help keep memory consumption low. (Togelius et al., 

2011). For example, the game Elite by Acornsoft managed to generate a large universe 

for the player to explore as early as 1984 with only tens of kilobytes of runtime memory 

used (Elite, 1984) The displacement mapping technique from Figure 6, on the other hand, 

can be used to reduce required disk storage as the resulting 3D object file would take 

more disk space than the 2D image file used to create it (Shaker, Togelius, et al., 2016). 

Second major motivation for using procedural content generation is cost cutting. 

SpeedTree is an example of a commercial procedural content generation software. It is 

used to create large areas of vegetation algorithmically based on various input parameters. 

It is widely used in different industries from AAA games to Hollywood movie 

productions. While player expectations regarding quantity and quality of content 

continues to rise with the development of more and more powerful hardware, procedural 

content generation techniques have the potential to help in meeting the expectations while 

keeping costs manageable. (Togelius et al., 2011). 

Third motivation for PCG as detailed by Togelius et al. (2011) is innovation. PCG is a 

powerful tool that has allowed the creation of completely new types of games and game 

experiences (Togelius et al., 2011). Minecraft is a prime example of this with its gameplay 

revolving around procedural generation. The whole world is procedurally generated, and 

the world is completely different each time the player decides to create a new one. This 

ability to start a different, fresh, experience is a major helpful factor in making the game 

as highly replayable as it is. (Minecraft, 2011). However, higher or even infinite 

replayability is just one of the more obvious examples of new kind of player experiences 

that PCG methods enable (Smith, 2014). Dynamically adapting the game to the player is 

another promising topic being researched (Shaker, Yannakakis, & Togelius, 2011). There 

have been attempts to automatically adjust the generated content’s difficulty based on the 

player’s skill, and even attempts to tailor the content to individual player preferences 

(Shaker et al., 2011; Yannakakis & Togelius, 2011). Some approaches have also included 

the player themselves in the decision-making process by letting them decide the direction 

the generator takes, shifting the focus from traditionally explicit narrative and goal to a 

more open-ended exploration experience (Smith, Gan, Othenin-Girard, & Whitehead, 

2011). This is just the beginning, however, and as time goes on we can expect more and 

more innovation (Smith, 2014). 

The final important motivation presented by Togelius et al. (2011) for the usage of PCG 

is that it can augment the game designer’s imagination. Designers draw inspiration for 

their work from various sources. Similarly, the algorithmically created content can serve 

as an inspiration for new ideas in all kinds of game content. (Togelius et al., 2011).  

4.3 Challenges  

One of the main challenges in procedural content generation is that it is easy for the result 

to look generic and feel repetitive. It is naturally easier for designers to create, for 

example, levels with interesting details, levels that feel unique from one another, and 

levels that elicit specific emotional reactions. Even if a procedural generator achieves 

such results, there are further requirements like the levels needing to form a cohesive 

world and experience, which again can be easier for a human designer to control. Another 

common requirement is that the style between the generated levels should remain the 
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same. The style of the game can set it apart from others and make it more memorable and 

iconic to the players. Representing this kind of unique style consistently in procedural 

content generation is a challenge that requires extensive research and experimentation. 

(Togelius, Champandard, et al., 2013). Uninteresting and repetitive generated content was 

one of the biggest areas of criticism of the highly anticipated and heavily procedural game 

No Man’s Sky during its launch (No Man’s Sky, 2016). Modelling player experience and 

having that data influence the procedural generator is one promising approach to creating 

more meaningful content that could have the feeling of hand-created content (Shaker et 

al., 2011; Yannakakis & Togelius, 2011). 

Procedural content generators are usually crafted with only a single type of game content 

as the objective. The more specific the generators’ objectives are, the less reusable they 

are. Utilization of PCG methods especially in high budget AAA games has been relatively 

low. SpeedTree is one of the few more successfully used PCG tools but even it only 

focuses on the single, non-essential, content that is vegetation. Creation of more general 

and reusable content generators could help lessen the related risks and increase adoption 

of PCG techniques, and is thus one of the bigger researched challenges related to 

procedural content generation. (Togelius, Champandard, et al., 2013). 

Increasing the influence designers can exert over the generated content is yet another 

challenge that can be important to solve. Togelius et al. (2013) argue that it is seldom 

enough to have a generator that just creates content with little to no input from the 

designer. Instead, it can be important for a level generator, for example, to take into 

account the desired difficulty to enforce good flow and enjoyability. (Togelius, 

Champandard, et al., 2013). On the other hand, there have been suggestions for future 

research to investigate the possibility of generating content with minimal input with the 

generator actually making design decisions similar to how actual game designers would. 

This kind of AI-intensive deep process should be able to rationalize its design decisions, 

and could potentially create completely new types of games and tools. Though this kind 

of approach is still in its early stages, it has the potential to offer interesting results even 

in the early stages. (Smith, 2014). 

4.4 Generation of 2D platformer levels 

In the field of procedural content generation, 2D platform games are one of the more 

researched genres. Especially regarding 2D platformer levels, numerous different 

approaches have been utilized in research. Below, some of these papers’ approaches are 

accounted to demonstrate the diversity in the algorithms that can be used to generated 

platformer levels. So far there hasn’t been, and likely never will be, a one-size-fits-all 

approach as games even within the same genre may vary wildly in many different aspects. 

Thus, it becomes important to acknowledge and ponder the different approaches’ 

strengths and weaknesses to find content generation methods that support the made design 

choices. (Hendrikx et al., 2013; Togelius et al., 2011). 

Compton and Mateas (2006) introduce a level generator for a custom 2D platformer 

engine where the focus is on representation of repetition, rhythm, and connectivity. They 

take a more methodical approach for level generation when compared to some other game 

genres’ generators as they point out that platformer levels require more attention to their 

completability. This means that the more random nature of, for example, rogue-like level 

generation may be out of the question for platformers. Instead, the authors take a pattern-

based approach. The patterns are created by combining components, such as platforms 

and little hills, and the patterns that fit with each other are further combined to form the 



24 

level itself. The authors hypothesize that repeating and shuffling even just a handful 

simpler patterns in the level can produce long and interesting levels, and thus helps reach 

one of the procedural content generation benefits of lessening the workload. However, 

the approach presented in the paper is partly theoretical as only the pattern building is 

implemented. (Compton & Mateas, 2006). 

Smith, Treanor, Whitehead, and Mateas (2009) present a level generator for 2D 

platformers that creates levels based on consecutive rhythm groups. Their generator is a 

two-tier grammar-based approach where first the rhythmic representation is generated. 

The generated rhythm comprises of player actions, such as moving and jumping, and the 

timing of when said actions start and end. Given the generated rhythm, the generator in 

the second tier creates the actual level geometry that fits the rhythm. Multiple different 

geometry interpretations can fit the same rhythm. (Smith, Treanor, Whitehead, & Mateas, 

2009). 

The rhythm groups presented by Smith et al. (2009) roughly correspond to the idea of 

patterns utilized by Compton and Mateas (2006). However, where the first keeps its 

rhythm and level geometry generation separate, the latter paper has the rhythm implicitly 

contained in the geometry patterns themselves. The benefits for the two-tier approach by 

Smith et al. (2009) compared to the approach by Compton and Mateas (2006) include 

added variety in generated levels and also, on the other hand, ability to ensure that the 

intended rhythm exists in the level regardless of the geometric representation. In addition, 

the level generator by Smith et al. (2009) has the benefit of having more control over the 

generated levels as their approach is meant to support human designer’s work instead of 

replacing it. (Compton & Mateas, 2006; Smith et al., 2009). 

Mawhorter and Mateas (2010) share an approach to Super Mario Bros level generator 

using their Occupancy-Regulated Extension algorithm. The algorithm uses premade 

chunks of levels as input. One chunk is selected as the starting point for the generation. 

A random matching chunk is selected with a multi-step filtering logic. Finally, the chunks 

are integrated in the level. The chunks are chained until a level of desired length is created, 

with final post-processing step filling any gaps in level geometry. The algorithm works 

without knowledge of the mechanics of the game, which the authors state to potentially 

improve the generator’s usability in various different games. (Mawhorter & Mateas, 

2010). 

A common issue in procedural content generators is the possibly generic and repetitive 

end result (Togelius, Champandard, et al., 2013). Incorporating player experience into the 

generator is one approach designed to make the results more interesting and varied. 

Pedersen, Togelius, and Yannakakis (2010) present promising results in their study where 

the level generator relatively successfully creates Mario levels that induce certain desired 

player experiences in the players. (Pedersen, Togelius, & Yannakakis, 2010).  Related 

topic to this is dynamic difficulty adjustment based on player skill. As different players 

have different skill levels, dynamic adjustment of the game’s difficulty can help in 

creating similar experiences for all kinds of players. (Jennings-Teats, Smith, & Wardrip-

Fruin, 2010). 

Kerssemakers, Tuxen, Togelius, and Yannakakis (2012), take procedural level generation 

to a new level. In their study, a procedural generator for the level generator itself was 

attempted. (Kerssemakers, Tuxen, Togelius, & Yannakakis, 2012). Their approach 

belongs to the genetic algorithms in the Hendrikx et al. (2013) taxonomy. The genetic 

algorithms, as the name suggests, take inspiration from the process of natural selection. 

First, a selection of candidate content is generated. Then, a so-called fitness function is 
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defined and used to evaluate the candidates’ quality. Those deemed the most fit for the 

content generator’s purpose are then mutated or evolved to produce new generations of 

content candidates until a defined stopping point. (Togelius et al., 2011). The goal for 

Kerssemakers et al. (2012) is to create a level generator for any game that has its level 

represented as a two-dimensional matrix. This goal turned out to be too ambitious, and 

focus was narrowed to only 2D platformer level generators. The resulting levels created 

by the level generators were not really commercial release quality, though the approach 

may have potential. Future research would be necessary to prove the suitability for more 

varied gameplay outside the Mario levels they created as the differences in gameplay, for 

example movement abilities the player character has, fundamentally affect the design of 

the level generator. It is also to be investigated whether this approach has any benefit over 

the traditional more straightforward approaches where the level generator is created 

directly and tailored to the needs of the game’s design. (Kerssemakers et al., 2012). 

4.5 Evaluation of 2D platformer levels 

There exists a plethora of approaches to generating procedural content, with new 

approaches being tested constantly. In a sense, it is easy to generate content procedurally, 

but it is harder to have the generated content be valuable. One of the main challenges for 

procedural generation is to consistently create interesting, creative, and original content 

that has a purpose. (Shaker, Smith, & Yannakakis, 2016; Togelius, Champandard, et al., 

2013). 

Procedural content generators need to be evaluated to confirm that they reach the goals 

set for them. However, this is easier said than done. First of all, the generator has 

constraints that require it to tailor its results for different situations. For example, the game 

may have puzzle mechanics that the level generator needs to incorporate. Satisfying these 

constraints already adds value to the generator. However, within these constraints the 

generated content still needs to be of good quality, too. For platformer levels, subjective 

things like player preference and skill, or the unpredictability of player behaviour, are 

hard to translate into data that the algorithm can use to steer its behaviour. Unsurprisingly, 

the creativity of procedural content generators is a subject area that hasn’t received much 

attention. (Shaker, Smith, et al., 2016). 

Generally speaking, there exists two main approaches to evaluating procedural content 

generators: computational evaluation and user evaluation (Shaker, Smith, et al., 2016). 

Computational evaluation is performed by coming up with a way to quantify an aspect of 

the generated content, and performing necessary calculations automatically on the 

content. User studies can be used for evaluation purposes, but they have also been used 

for data collection to inform or teach procedural content generators on how to create 

content of good quality. (Mariño, Reis, & Lelis, 2015). Naturally, incorporating both 

approaches in the evaluation process can provide more comprehensive understanding of 

the procedural generator’s nature and quality (Shaker, Smith, et al., 2016). 

4.5.1 Computational evaluation 

Computational evaluation can be especially useful in procedural content generation as the 

content generators are usually capable of producing thousands, millions, and even more, 

of unique results. To get a proper overview of the generator’s qualities it is necessary to 

have a computational evaluation method that can handle the large amount of content. 

(Shaker, Smith, et al., 2016). 
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Expressive range is the most used computational evaluation method used for procedural 

2D platformer level generators. As the name indicates, the expressive range of a generator 

refers to the style and variety of content it can produce, including any biases towards 

specific type of content. The expressive range is represented by calculated metrics. The 

data for the metrics is collected by running the content generator a large enough number 

of times to produce a representative sample. For each generated level, an algorithm is 

used to calculate that level’s value for each metric. Various different metrics have been 

proposed to represent different aspects of a generator’s expressive range. The original 

two metrics introduced at the same time as the concept of expressive range are linearity 

and leniency. (Smith & Whitehead, 2010). 

Linearity metric can be thought to measure the height profile of the level. Levels with 

little height difference have a high linearity value, and others with more height variance 

have lower linearity. The metric is measured by performing linear regression on the 

generated levels with the positions of each platform as the data points. With the line 

defined, the level is scored by summing up the absolute distance of each platform position 

to the expected value on the line, and finally dividing by the total number of points. The 

result is finally normalized to the range [0, 1]. (Smith & Whitehead, 2010). 

Leniency metric represents the forgiveness of the level to potential player mistakes. 

Different aspects of the level are assigned scores. For example: gaps and enemies have a 

score of +1, while jumps with no gaps have a score of -1. The value of the metric, also 

normalized to the [0, 1] range, provides an intuitive sense of how lenient the level is to 

the player based on the amount and danger of different obstacles. The authors specifically 

mention that the leniency metric doesn’t directly represent the challenge of the level as 

there are other factors, like the relative positioning of the level obstacles, that the metric 

doesn’t take into account. Thus, the authors opted for the term “leniency”. (Smith & 

Whitehead, 2010). 

Horn et al. (2014) implement the linearity and leniency metrics in the Mario AI 

Framework along with four other metrics. The authors compare various different 2D 

platformer level generators by calculating the metrics for each generator. The other 

metrics include the density, pattern density, pattern variation, and compression distance. 

The density metric measures the number of platforms there are in the level on top of 

which the player can stand. The pattern density metric measures the occurrences of 

patterns from the original Super Mario Bros. levels, and the pattern variation metric 

measures the unique occurrences those patterns. The compression distance metric works 

differently in that instead of being a value for a single level, it is calculated on a pair of 

levels to measure how different they are. (Horn, Dahlskog, Shaker, Smith, & Togelius, 

2014). 

The metrics alone provide some insight into the variety of levels generated, but it is 

important to also examine the relationship between different metrics. For example, if a 

generator has high linearity and leniency, the metrics alone do not provide information 

on whether the highly linear levels also have high leniency, or if the levels are usually 

highly linear or highly lenient but never both at the same time. Figure 7 demonstrates a 

2D histogram, which is an effective way to visualize the expressive range and the 

relationship between different metrics. (Horn et al., 2014). 
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Figure 7. An example visualization of expressive range based on the leniency and linearity 
metrics. 

In Figure 7, each dot represents a portion of the results, and the whiter the point, the more 

levels fell into those specific values. In this example by Horn et al. (2014), a total of 1000 

levels’ metrics were calculated. A point is completely white in their 2D histogram when 

40 or more of those levels have the same values for the two compared metrics. The shape 

of the 2D histogram shows off the generative space of the generator, and provides a good 

visual way to compare different generators. Horn et al. (2014) have publicly released a 

package that contains the source code they used for both calculation and visualization of 

these metrics1. The package also contains all the text representations of the levels from 

their evaluations. (Horn et al., 2014). 

The metrics leniency, linearity, density, and compression distance have been empirically 

tested to observe their validity and correlation to player-perceived quality of the visual 

aesthetics, enjoyment, and challenge of generated levels. It is noted that none of the 

metrics correlate with enjoyment as the players evaluated it, although this was expected 

as none of the metrics were specifically designed for measuring enjoyment. The quality 

of the visual aesthetics, distinguishing good results from bad, is also something the 

metrics are not able to capture. What the metrics can measure, however, is the diversity, 

which is also more what the metrics were designed to capture originally. Difficulty is also 

noted to not be measured well with current metrics as it is very hard to measure difficulty 

computationally due to the sheer number of related factors. Regardless of the potentially 

limited applicability, it is still argued that the computational metrics have a place in the 

implementation and evaluation of procedural content generators. The metrics provide a 

cheap and fast way to achieve statistical significance by calculating the metrics for a large 

number of generated levels. In addition, they provide insight that user studies would 

struggle to achieve. For example, verification of the diversity the generator can output 

would be impractical to achieve via user studies due to the large number of levels that 

would be needed to be played by the users. The common metrics can also be used to 

compare the nature of different generators, even though they don’t help compare the 

quality between the generators. As computational evaluation in its current form is 

nowhere near enough to stand alone, at least when evaluating 2D platformer level 

generators, it is important to perform further evaluation with a more suitable method like 

 

1 http://sokath.com/fdg2014_pcg_evaluation/ 
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user studies to gain insight into more important components of quality such as enjoyment, 

visual aesthetics, and challenge. (Mariño et al., 2015). 

4.5.2 User evaluation 

User studies can provide a lot of value for confirming the quality of a content generator. 

The users play through varying numbers of levels and offer their opinion based on specific 

questions designed to shed light on specific aspects of the generated content. With enough 

players, it is also possible to gather enough data to feed into a machine learning algorithm 

to inform it what players consider good or bad, and thus theoretically produce desired 

quality of content. Players can assess the quality of the tested content by answering 

questionnaires that are designed based on the type of content being evaluated. A common 

example in the evaluation of 2D platformer level generators is to assess the levels’ 

novelty, playability, challenge, visual aesthetics, and fun, on a numerical scale. (Shaker, 

Smith, et al., 2016). 

The user studies performed to evaluate procedural 2D platformer level generators have 

largely been ad hoc in nature. The authors are interested in specific aspects of the 

generator, and come up with related questions or aspects of the generator to evaluate, and 

then try and tailor the questionnaire for this intended purpose. For example: Horn et al. 

(2014) focus on enjoyment, visual aesthetics, and difficulty, while Dahlskog and Togelius 

(2013) are interested in fun, difficulty, and the similarity between the played levels. 

Togelius et al. (2013), on the other hand, only ask users to select the level they prefer 

from the ones played. (Dahlskog & Togelius, 2013; Horn et al., 2014; Togelius, Shaker, 

Karakovskiy, & Yannakakis, 2013). One important detail present in multiple papers is 

the usage of a practice level. Before evaluating any levels, the players are asked to play a 

practice level to get familiar with the game and its controls. This helps provide a common 

starting point for the evaluated levels; otherwise the first played level could be 

misevaluated due to time spent learning. (Mariño et al., 2015; Togelius, Shaker, et al., 

2013). 

Attempts at more standardized questionnaires for evaluating user experience in video 

games have also been made, though none of them have been deemed reliable enough to 

be adapted into wide usage. Two of the more commonly referenced ones are the Game 

Experience Questionnaire and The Player Experience of Need Satisfaction. Both include 

many different constructs that are evaluated based on a set number of questions, for 

example flow, immersion, and challenge. A standardized questionnaire would help 

especially when comparing results between different studies, however, attempts at 

empirical validation have found too many issues with them. (Johnson, Gardner, & Perry, 

2018; Law, Brühlmann, & Mekler, 2018). 
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5. Research Method 

The study is implemented using a design science research process as defined by Peffers 

et al. (2007). An artifact, a rhythm-based level generator for 2D platformer levels, is 

developed and evaluated as part of the process. 

5.1 Design science research 

Peffers et al. (2007) introduce a six-step process to guide in the implementation of design 

science research (DSR) studies. The authors base their suggested process on existing 

literature in an effort to arrive at a more generally accepted process of performing design 

science research in the discipline of information systems. The resulting six steps are listed 

below. (Peffers, Tuunanen, Rothenberger, & Chatterjee, 2007). 

1. Problem identification and motivation 

2. Objectives for a solution 

3. Design and development 

4. Demonstration 

5. Evaluation 

6. Communication 

The first step requires to define the problem and demonstrate its importance (Peffers et 

al., 2007). In this study, the identified problem is the rising costs of game development. 

As required by the second step of the process (Peffers et al., 2007), an objective is set to 

target this problem. A possible solution is identified in procedural content generation as 

it could be used to automatically generate game content with little effort from the game 

developers. The scope is narrowed to only include the levels of 2D platformers due to 

their relative simplicity. The narrowed focus is also hoped to result in a potentially more 

meaningful result due to less variables involved. Because of the limitations in the current 

PCG solutions especially regarding the quality of the generated content, the objective is 

set to gain more insight into how the quality could be improved. It is theorized that the 

feeling of rhythm when playing games, especially 2D platformers, can be highly 

influential in the perceived quality of platformer levels, so the study will investigate how 

to use rhythm to influence platformer level generation. 

For step three of the DSR process by Peffers et al. (2007), the current literature is first 

reviewed. Couple studies exist that utilize the idea of rhythm in influencing 2D platformer 

level generators, however, these studies only use rhythm as the basis for the technical 

side. Little consideration is given to what kind of rhythm could be good quality, and 

instead the game designer is given the responsibility to experiment. (Compton & Mateas, 

2006; Smith et al., 2009). The artifact designed for this study takes the original levels of 

the widely acclaimed 2D platform game Super Mario Bros. as the base comparison of 

levels with potentially good rhythm. The levels, and the rhythm of interaction required to 

complete them, are analysed with methods based in music theory in order to extract a 

rhythm representation. This information is then used to develop a procedural level 

generator for Super Mario Bros. that replicates the rhythms of the original levels. 

Since the study objective deals with the quality of platformer levels, the artifact’s ability 

to solve the problem is demonstrated through a series of playtests. In other words, it is 

examined whether the implemented idea of rhythm was successful in generating 

enjoyable levels. The results of these playtests are then used to properly evaluate the 
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quality of the generated content as per step 5 of the DSR process. In addition, 

computational evaluation is performed to examine the generative space of the artifact. 

This gives insight into what kind, and how extensively differing levels the generator can 

produce. Comparisons are also made to other approaches. Finally, for step 6 of the 

process, the results of this study will be published and openly available via Jultika, the 

open access repository by the University of Oulu. 

5.2 Mario AI Framework  

The analysis of the existing Super Mario Bros. levels and implementation of the level 

generator are made with the help of the open-source Mario AI Framework by Ahmed 

Khalifa. The framework is based on the work done by Togelius & Karakovskiy from 

2009, which in turn is based on the open-source Super Mario Bros. clone called Infinite 

Mario Bros by Markus Persson, the creator of Minecraft. The original version of the 

framework by Togelius & Karakovskiy was created for the purpose of benchmarking AI 

agents that complete procedurally generated Super Mario Bros. levels. (Khalifa, 2019). 

After that, the framework has seen a lot of use in studies regarding both AI agents and 

procedural level generation (Togelius, Shaker, et al., 2013). The framework by Ahmed 

Khalifa provides an updated version of the original implemented in Java. It contains the 

original features, such as support for AI agents and level generators, both of which there 

are also multiple examples included. The framework also includes many original Super 

Mario Bros. levels already implemented. (Khalifa, 2019). 

The rhythm of the levels is analysed with an AI agent. The decision to analyse the levels 

using an AI agent was made based on the fact that real player behaviour can be 

inconsistent and suboptimal. Players have the freedom to choose in what way they 

approach the levels. For example, they may decide to sometimes complete the secondary 

objective, which in Super Mario Bros. would be gathering coins and defeating enemies, 

while sometimes deciding not to do it. Artificial intelligence, on the other hand, can be 

much more consistent in its decisions, making it more suitable for the study. All of the AI 

agents available in the framework are tested for their suitability to the task. In order to 

find a baseline rhythm of interactions required to complete the existing levels, the AI 

needs to be able complete the levels consistently and optimally, meaning it uses as little 

input as possible. 

5.3 Rhythm extraction 

The Mario AI Framework is extended to allow data gathering while the AI agent is 

playing through the levels. This includes, but is not limited to, all the input and their 

timing. Each unique input causes a new state for the player character. For example, 

jumping causes a new state that reflects the fact that the character is airborne. All levels 

have an optimal minimum set of states the player character can go through in a specific 

order, and with specific intervals and durations in order to complete the level. In this 

study, methods based on music theory are used to represent and analyse this set of states 

to find a list of rhythm patterns from existing levels. 

The player character states are likened to musical notes in the context of Gestalt Music 

Analysis (GMA). The same way that notes have a state comprising of their duration and 

pitch, player character states are essentially combinations of the input events that have 

taken place to reach the state. (Pagnutti, 2016). The AI agent gathers these input events, 

and the resulting states are then programmatically compiled based on them. Similar to 
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how notes are chained in music to form longer sections, unified musical ideas, so is GMA 

used to extract sections of unified gameplay patterns (Pagnutti, 2016). And similar to how 

rhythm in music is formed from the notes’ intervals and durations, so do these extracted 

patterns have rhythms associated with them. 

The approach used by Pagnutti (2016) with GMA is modified slightly for the purposes of 

this study. The power-up state component is omitted because it is argued that it isn’t 

directly related to the input events. As we are interested in the rhythm of the input, only 

the remaining states of movement direction, ground state, airborne state, and duration are 

considered to be related. Another difference to Pagnutti (2016) is that in this study AI 

agent is used to play the levels instead of analysing real player gameplay. In the original 

application of GMA in platformer levels, it wasn’t possible to determine whether the 

player input was caused by changes in the level or in player goal, making the extracted 

gestalts imperfect at times. (Pagnutti, 2016). A suitable AI agent, on the other hand, would 

keep the same goal throughout, and thus addresses this issue. 

Finally, not all of the levels from Super Mario Bros. are suitable for the purposes of this 

study. Some level archetypes have unique and even completely different gameplay 

mechanics used in them. It is deemed necessary to only include the most commonly found 

type of level in the rhythm extraction because it is out of the scope of this study to examine 

the differences the unique mechanics would cause in relation to the extracted rhythm 

patterns. 

5.4 Level generation 

A procedural level generator is created in Mario AI Framework using the extracted 

rhythm patterns as the first input parameter. The rhythm patterns are in essence a 

collection of slices of the original levels where each of them has a unified rhythm-based 

gameplay idea. In other words, each pattern is a collection of obstacles and enemies that 

requires a specific minimum set of inputs to complete. Enough patterns are chained 

together to form a level with the length of a comparable original Super Mario Bros level. 

The second main input for the level generator is the comparison level, meaning an original 

level from Super Mario Bros. The rhythm patterns represent the lowest level of rhythm. 

The second level of rhythm is then comprised of these patterns. Rhythm patterns of 

differently varying intensities need to be chained together to form a level-wide rhythm. 

For this purpose, the concept of interest curves is incorporated to the level generator. 

Interest curve is a tool that can be used to design and gauge the level of interest in an 

entertainment event, the playthrough of the platformer level in this case. Each section of 

the curve has a level of interest associated with it. (Schell, 2014). It is argued that the 

amount of input required to progress in a platformer game is directly linked to the amount 

of interest, with higher required input count being inherently more interesting. The 

intensity of each extracted pattern, meaning the amount of input required to complete 

them, is calculated. Since each rhythm pattern is a coherent unified idea, it is theorized 

that the exact pattern used doesn’t matter as much as the variation between them, meaning 

the resulting interest curve. The level generator takes the calculated intensities of the 

original level’s patterns and randomly picks new patterns in the same order with intensity 

values close to the original. In other words, the generator uses the original level’s interest 

curve to generate new levels with similar rhythm. 
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5.5 Evaluation  

The nature of the levels the generator creates is investigated by computational metrics-

based evaluation. Two metrics, linearity and leniency, from existing literature are 

computed, and the resulting data is used to construct 2D histograms to visualize the 

generator’s expressive range. The expressive range is compared to the original levels and 

two other example studies’ generators. 

The quality of the level generator is evaluated via playtests. The participants play through 

a practice level to get familiar with the game and the controls, enabling more balanced 

evaluation. Then, the participants play through three pairs of two levels and answer a 

short survey at the end of each pair to numerically evaluate both levels. Each pair of levels 

consists of one original Super Mario Bros. level and a procedurally generated level that 

uses the aforementioned original level as the basis for the interest curve. The order of the 

pairs, and the order within each pair, is randomized.  
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6. Level Generator Implementation and Findings 

In this chapter, the process of the study is detailed. First, the different AI agents of Mario 

AI Framework were evaluated to find the one most suitable for the task. Then, using the 

selected AI agent, the original Super Mario Bros. levels were automatically played while 

gathering information, such as all the input decisions the AI made. Utilizing Gestalt Music 

Analysis (Pagnutti, 2016), the playthroughs were analysed in order to split each level into 

rhythm sections where each section is a logically coherent set of obstacles and enemies 

that requires a specific rhythm pattern of input actions to complete. A rhythm-based level 

generator was built to use the extracted rhythm patterns. Finally, the resulting level 

generator was evaluated using both computational metrics prevalent in existing literature 

(Horn et al., 2014; Smith & Whitehead, 2010), and user evaluation via playtests and 

surveys. 

6.1 AI agent selection 

This study focused on the base rhythm of the platformer level, or in other words: the 

minimum required inputs to complete the level. Since there are endless ways the player 

character could chain inputs together to traverse through the levels, the decision was made 

to use AI instead of real players to gather the input data. AI is highly likely more 

consistent and optimized in decision making than a person would be even if that person 

was told to try and complete the level optimally. Any unnecessary input that is not strictly 

required for level completion could have resulted in the Gestalt Music Analysis being less 

effective (Pagnutti, 2016). 

The Mario AI Framework contains 11 different AI agents. Each of them has a different 

decision-making logic for moving the character through the level geometry while 

avoiding the obstacles and enemies. (Khalifa, 2019). A single AI agent was selected for 

the rhythm analysis as it was out of scope for this study to compare multiple different 

agents’ results. The criteria for the selection were as follows: 

• Completion: The agent reaches the end of the level because failing to complete 

the level would skew the data by omitting the rhythm of a portion of the level 

• Consistency: The agent makes same decisions each test run, and thus also is able 

to complete the level each time it is tested 

• Efficiency: The agent makes very little or no unnecessary inputs at all in order to 

find a valid baseline rhythm 

Each AI agent was tested for the selection criteria. The tested sample level is the very first 

level of the first world of Super Mario Bros. A total of five test runs were completed for 

each agent. The consistency and efficiency of the AI agents was approximated by 

watching them try to complete the levels in real time. The results of this can be seen in 

Table 1. 
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Table 1. Results of the AI Agent suitability tests. 

Name Completion Consistent Efficient Notes 

andySloane NO – – Got stuck in a place where variable 

height jump is required. 

doNothing NO – – Does nothing as indicated by its name. 

glennHartmann YES* YES* YES* Does not seem to account for enemies. 

human – – –  Not an actual AI agent but instead used 

for manual play as indicated by its 

name. 

michal NO – – Does not seem to account for enemies. 

Does not jump over pipes. 

random NO – – Movement is random as indicated by its 

name. 

robinBaumgarten YES YES YES Seems optimal in its inputs. Works well 

with other levels, too. 

sergeyKarakovskiy NO – – Jumps constantly even when not 

needed. 

sergeyPolikarpov YES* NO NO Seemingly the most inconsistent with 

each test run ending differently. 

Completed only once from five 

attempts. 

spencerSchumann YES YES NO A lot of unnecessary jumping. 

trondEllingsen YES* YES* NO Jumps over stair-like constructs with 

multiple small jumps instead of 

utilizing the variable height jump. 

* Only if enemies are removed from the level. 

The results were interesting in that most of the AI agents performed quite poorly even on 

the very first level of the game. As only one agent fulfilled the criteria with no special 

conditions, further evaluation was deemed unnecessary. The robinBaumgarten agent was 

chosen for the rhythm analysis. Enemies or no, this agent performed consistently and 

optimally even when testing multiple other levels. 

The robinBaumgarten AI is based on A* (a-star) path searching algorithm. Whenever it’s 

time for this AI to decide a new plan of action, it will first create list of all possible actions 

the player character is able to do at the given time. As an example, it checks if the player 

can jump currently, which in turn is only possible if the player character is currently on 

the ground and there is no block above them that is blocking the jump. The AI has 

knowledge of the state of the whole level and its enemies, which it uses to evaluate each 

of the possible actions to pick the most efficient one. (Khalifa, 2019). 

6.2 Existing level analysis 

The selected AI agent robinBaumgarten was then used to automatically play through a 

set of levels from the original Super Mario Bros game. Some extensions to the Mario AI 

Framework were required to be made to allow gathering the input decisions made by the 

AI. The gathered data was analysed, resulting in each level being split into logically 

distinct sections, also referred to as rhythm patterns here. In order to help the level 

generator be able to chain different rhythm patterns together in a way that makes sense, 

the second level of rhythm was also analysed with the pattern intensity values. 
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6.2.1 Recording player character state 

Rhythm in music is formed from the relationship between sequential musical notes, or 

more specifically: the intervals between them (Costello, 2018a). Notes being the building 

blocks of music, the comparison was made to player input, which is in a sense the building 

block of platformer gameplay. The next step was to understand how to put together the 

notes, or player input, in order to form the rhythm. An existing approach of using Gestalt 

Music Analysis was found from the literature. In music, gestalt refers to a unified entirety, 

something that makes more sense as a whole. For example, the singular notes are 

meaningless alone but together they can form unified musical ideas, gestalts. In the GMA 

method, the corresponding concept to musical note is the state of the player character. 

The state comprises of player movement direction, whether they’re walking or running, 

whether they’re grounded or airborne, the currently active power-up, and the duration of 

the state. Since this approach was already deemed promising in an earlier study, the same 

approach was taken into use here. (Pagnutti, 2016). The currently active power-up 

component, however, was dropped because focus in this study is the rhythm of the 

gameplay, meaning the inputs required to complete the levels. All components except the 

power-up component are the direct result of player input, making this single component 

unsuitable in this context. With the remaining components, the state is built from direct 

player interaction, and is thus argued to be suitable for analysing the rhythm of the levels 

as discussed here. 

The AI agents in the Mario AI Framework update 30 times a second. Each update is 

referred to as a “tick”, and each tick the AI analyses its situation and makes a new input 

decision, if required. The framework was extended to record the state of the player 

character at the end of each tick. For most of the time, the robinBaumgarten agent held 

the states for naturally long periods of times, meaning it seemed relatively comparable to 

a highly skilled human player. However, from time to time it made state changes that 

lasted only one or couple ticks. These unnaturally short states also made the results 

unnatural, resulting in patterns that were only a couple tiles wide and thus had no 

meaningful rhythm in them. As the goal was to mimic optimal human player decision 

making, the decision was made to remove states where duration was less than 6 ticks. 

This number was reached by experimenting with different values; it was the lowest 

minimum tick duration that resulted in consistently logically coherent patterns. The 

removed states were merged to their subsequent state by moving the latter state’s 

beginning time to the beginning of the removed state in order to not leave any gaps in the 

analysed playthrough data. 

With the AI agent capable of recording state information of its playthrough, it was time 

to let it complete all the Super Mario Bros levels. However, not all of the game’s 32 levels 

were found suitable for the purposes of this study. As seen in Figure 3, there are three 

main archetypes of levels: the traditional, the underwater, and the boss levels. The game’s 

two underwater levels contained fundamentally different gameplay since in those the 

player character swims instead of runs. Thus, these levels were excluded. The eight boss 

levels also contain unique gameplay mechanics, most notably the boss battles at the end 

of each of them. The boss levels were also completely excluded to keep the scope of the 

level generator manageable. Finally, the traditional levels, which form the bulk of the 

game, were all tested. It quickly became apparent that even the robinBaumgarten AI agent 

cannot complete some of these levels. Some levels weren’t originally included in the 

Mario AI Framework at all, and instead it was necessary to create them manually. These 

levels contained some mechanics that were not actually implemented at all in the 

framework, for example, moving platforms and the trampoline, which was a major reason 

they were not completable. Some other levels had to be excluded because they had 
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sections where there was no ground, only platforms, and that also caused the AI to not to 

be able to complete it. In the end, a total of 15 of the game’s 32 levels were included. 

6.2.2 Rhythm patterns 

Next, the AI agent played through all the selected levels and recorded its states 

throughout. Gestalt Music Analysis as detailed by Pagnutti (2016) was used to divide 

each level into sections, or rhythm patterns in this case. Each component’s weighting 

values that were used in GMA had to be adjusted when comparing to the original study’s 

values. This was likely because the referenced study used human player data. Real players 

approach playing the levels in a different manner when compared to an AI. The values 

were adjusted away from the original ones in an experimental manner by examining the 

resulting rhythm patterns, and determining if they made sense as individual units. The 

adjusted weighting values are listed below with the original values used by Pagnutti 

(2016) found in parentheses: 

- Movement direction: 0.25 (original 0.75) 

- Power-up: not included in this study 

- Ground state: 0.25 (original 0.25) 

- Airborne state: 0.5 (original 0.5) 

- Time: 0.1 (original 0.01) 

The biggest difference in the weighting factors was the duration of the state. Pagnutti 

(2016) doesn’t explicitly state the unit of measurement for time, though it is likely seconds 

or milliseconds. In this study, however, the duration was measured in ticks. The reason 

for choosing ticks as the unit was that the Mario AI Framework was prone to small lag 

spikes from time to time due to some AI decision making update cycles taking more time 

than allocated to finish. Since in Mario AI Framework each second consists of 30 ticks, 

it means that each tick, or update cycle, the AI has a maximum 1/30 seconds to make its 

decision2. The real amount of time is even shorter, since a portion of the update cycle 

goes into other things like drawing the graphics. Sometimes, for some reason, the AI 

would take a bit more time than expected to execute, and this would delay everything in 

the game for that amount of time. As the game runs on a single thread, nothing else is 

updated while the AI is making its decision. In other words, it has no major impact on the 

gameplay itself since, for example, enemies wait patiently for their turn to be updated. In 

other words, same decisions are made sequentially but just a little delayed. However, it 

would have had an impact on the extracted rhythm patterns if the duration of the states 

was measured in real-life seconds. So, ticks were used to measure the duration of each 

state due to their consistency. 

Following the method outlined by Pagnutti (2016), Gestalt Music Analysis was applied 

to the recorded states with the aforementioned weighting values, resulting in a total of 

135 extracted rhythm patterns from the 15 levels that were selected. Examples of 

extracted patterns can be seen in Figure 8. 

 

2 If an update cycle completes in shorter time than allocated, the game simply waits until 

the full time of 1/30 of a second has passed before initiating the next update cycle. 
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Figure 8. The first extracted patterns of World 1 levels 1 and 2, respectively. 

However, during the pilot test of the level generator’s user evaluation, it was noticed that 

the Super Mario Bros levels, even the original ones, are quite challenging for the average 

player. In order to keep the playtests at a more suitable difficulty level, the patterns from 

the final two worlds, World 7 and World 8, were dropped. This decision was made 

because it is theorized the difficulty of the levels rises with each level, and because it was 

especially with some patterns from the aforementioned worlds that were causing the 

issues. 

The final pattern count was then 97, which is ultimately extracted from a total of 11 levels 

as a result of the exclusions. The average pattern count in a level was 8,82 with a standard 

deviation of 0,83. The shortest pattern was 7 tiles in length, while the longest pattern was 

63 tiles. The average pattern length in tiles was 22,18 and the standard deviation from 

average length was 10,1 tiles. A total of 63,92% of the selected patterns were found to be 

within one standard deviation from the average, and 95,88 % were within two standard 

deviations. 

6.2.3 Rhythm intensity 

At this point the final component required for the level generator implementation was the 

ability to meaningfully chain together the rhythm patterns. In other words, the second 

level of rhythm was still necessary for the output levels to be comparable to the original 

Super Mario Bros. level. The concept of interest curve was picked for this purpose due to 

the similarities in its description to rhythm, especially regarding pacing and intensity. 

(Costello, 2018a; Schell, 2014). 

The interest is comprised of three separate components: inherent interest, poetry of 

presentation, and projection. The poetry of presentation component focuses on aesthetics, 

which in this study would be the graphics of the game. (Schell, 2014). The different levels 

in Super Mario Bros. have a couple of different graphical styles, some of which are 

demonstrated in Figure 3. In order to keep the scope more focused, each level in the 

playtests, whether original or generated, was made sure to look thematically the same by 

using the same tileset from Figure 2. Thus, the effect of the poetry of presentation 

component was ruled out. 

The projection component is an abstract one that is related to the person imagining things, 

emphasizing with characters, and so on (Schell, 2014). For the purposes of this study, 

only specific types of levels were selected for the rhythm extraction. Most notably, the 

underwater and boss battle levels were omitted. The underwater and boss battle levels 

would have potentially enabled the players to imagine different kinds of things like being 

in the same situation underwater, holding breath, or dodging the hammers the boss throws 

at the player. However, with their omittance the context of playing the remaining selected 
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levels is relatively the same, meaning the players project themselves similarly regardless 

of the played level in the playtests. As such, the effect of the projection component was 

also ruled out. 

The remaining component, inherent interest, was the only factor left. The focus of this 

study was in the rhythm of gameplay interaction, and it was theorized that the higher the 

amount of required input to progress through a section of level, the more inherently 

interesting it is to the player. As such, inherent interest was measured by the amount of 

interaction required to complete the level. As the last remaining component, it makes up 

the whole of the interest curves here. 

An interest curve was then graphed for each of the original Super Mario Bros levels that 

the AI agent completed. This was done by calculating the running average of unique input 

events. Each plotted point is the average number of input events from the previous 15 

ticks. Then, the different levels’ graphs were compared to one another. Interestingly, the 

very first level of the game, World 1-1, had very similar curve as what Schell (2014) 

proposed as an optimal curve for interest. Some other levels also had similar graphs, while 

others had very differing ones. The choice was made to take three original Super Mario 

Bros. levels to be the reference levels for the playtests in order to keep the playtest 

duration suitable for the players. In other words, these three levels were used by the level 

generator to create new levels that mimic those same levels’ original rhythms. Three 

levels with differing interest curves were chosen: World 1-1, World 3-2, World 5-2. Their 

interest curve graphs can be seen in Figure 9. 

 

Figure 9. Reference levels’ interest curve graphs. From top to bottom: World 1-1, World 3-2, 
World 5-2. 
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As can be seen in Figure 9, the first level World 1-1 is quite similar to the example of a 

good interest curve as seen in Figure 4. The level starts with high interest, continues with 

smaller intensity, and finishes with the two build-ups. The three selected levels’ graphs 

can be seen to be very dissimilar to one another. 

Finally, it was necessary to implement a way to map different rhythm patterns to the 

interest curve of a level for the level generator to be able to simulate the same interest 

curve in the generated levels. For this, each pattern was assigned an intensity value in a 

similar manner to the interest curve in Figure 9 by counting the number of input actions 

needed to complete it. An example breakdown of the first level’s pattern intensities can 

be seen in Figure 10. Each bar represents one pattern’s intensity. The graphs are on the 

x-axis in the order that they appear in the original level. 

 

Figure 10. The input intensities of all extracted World 1-1 rhythm patterns. 

For each new input event that happens the pattern, the intensity of the pattern was raised 

by one. For example: a pattern where the AI agent moved right, left, then right again, and 

finally jumped, would have resulted in an intensity value of 4. In order to make the 

intensity of the patterns comparable to each other across different levels, this resulting 

value was adjusted by dividing it by the tile length of the pattern. In other words, the 

intensity of each pattern was measured with the unit of input actions per tile. 

6.3 Level generator implementation 

Using the categorization of Togelius et al. (2011), the implemented level generator was 

an online, deterministic, constructive generator that creates necessary content with some 

degree of control. The levels were created “online” by default, meaning during gameplay. 

Support for offline generation was also added for later use in playtests by adding the 

ability to save the generated levels to disk. These levels are necessary content as there 

would be no platform game without the level. The generator was also constructive, 

meaning the levels are created once without any evaluation and re-generation mechanic. 

The algorithm was controlled by three inputs: the list of patterns, the reference level, and 

a seed number. The list of patterns were the 97 extracted slices of the original levels as 

described in an earlier section. The reference level parameter refers to one of the original 

Super Mario Bros. levels, and more importantly to the calculated intensities of its patterns 

as demonstrated in Figure 10. The level generator worked by first checking of how many 
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patterns the reference level consisted. The same number of patterns were picked for the 

generated level. For each pattern that needed to be selected, the calculated intensity of the 

pattern in the same position of the reference level was checked. Then, a pattern was picked 

randomly from all the patterns that had an intensity that was within 10% of the intensity 

of the corresponding pattern in the reference level. The variance was allowed in an effort 

to allow for more unique combinations while still closely following the reference level’s 

interest curve. The last input, the seed number, was used to initialize the Java random 

number generator. This resulted in the deterministic nature of level generation: with the 

same list of patterns, same reference level, and the same seed, the result was exactly the 

same at least when the generator was run on the same computer with the same Java 

version. Different Java versions could potentially have differences in the implementation 

of the Random class, meaning the generator may not be deterministic between different 

computers. 

As a final adjustment, some empty space was added to the start of each level. The need 

for this was noticed during the pilot test: some patterns were not initially suitable for being 

the first pattern of the level. For example, when some patterns appeared as the first one, 

the player character would start immediately next to an enemy, and die before having 

time to react. To solve this, the empty space was added to the beginning of each level to 

allow some room for the player to analyse the start of the level. 

6.4 Computational evaluation 

The types of levels the generator can produce was examined with computational metrics. 

The leniency and linearity metrics for the level generator were calculated and visualized 

using the scripts provided by Horn et al. (2014). The metrics were calculated separately 

for each reference level that was to be used for the playtests because varying the 

generator’s reference level, or list of patterns, fundamentally changes the types of levels 

it can generate. It is to be noted, however, that the seed value parameter doesn’t change 

the nature of the generator but instead just allows it to generate different options of the 

same nature. For comparison, metrics were also calculated for when there is no reference 

level used at all. In this case, any and all patterns were allowed by the level generator in 

each position, effectively making the interest curve of the generated level random. When 

using the reference level, same pattern count was used that the reference level had. In the 

case of no reference level, the pattern count was a randomized value from within two 

standard deviations of the average pattern count because most (90,91%) of the levels fell 

within that range. In practice this led to a range from 7,16 to 10,49 with the result being 

rounded to the nearest integer value. 

A total of 1000 levels were generated for each variant of the level generator, which is the 

same number of levels as Horn et al. (2014) used for their metrics calculations. The 

variants refer to the different reference level inputs: World 1-1, 3-2, and 5-2, as well as 

the generator with no reference level as outlined above. Each level was created using the 

same set of extracted patterns as presented in Chapter 6.2.2. All levels for a variant of the 

level generator were created using unique seed values to ensure unique levels within the 

other parameters. A summary of the leniency and linearity metrics when using different 

reference levels can be seen in Table 2.  
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Table 2. Overview of the leniency and linearity metrics when using different reference levels.    
The value is the average of all 1000 levels on a scale from 0 to 1 with the standard 
deviation in parentheses. 

Reference Level Leniency Linearity 

None 0.14 (0.07) 0.06 (0.07) 

World 1-1 0.21 (0.08) 0.09 (0.09) 

World 3-2 0.14 (0.05) 0.06 (0.07) 

World 5-2 0.21 (0.09) 0.07 (0.08) 

Expressive range can be used to visualize the relationship between metrics in an effort to 

gain insight on the type of content the generator produces (Smith & Whitehead, 2010). 

Here it was visualized by mapping the leniency and linearity metrics of all individual 

levels in a 2D heatmap. The expressive range is visualized for all the reference level 

variations in Figure 11. 

 

Figure 11.  Heatmaps visualizing the expressive range based on leniency (x-axis) and linearity 
(y-axis) for four different reference level parameter variants of the generator. 

The whiter the area, the more of the generated 1000 levels’ metrics were included within 

the dot. The dot is fully white when 40 or more levels had the corresponding metrics 

values. (Horn et al., 2014). As seen in Figure 11, the expressive range by leniency versus 

linearity metrics was focused in the same lower-left quadrant in all cases, though some 

variance could be found. Figure 12 contains the same metrics visualized for the original 

Super Mario Bros. levels as well as two other generators from other studies. The original 
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levels are visualized a little differently since there are only a limited number of them. 

Instead of 40 levels, only 5 levels are required for a dot in their heatmap to be fully white. 

(Horn et al., 2014). 

 

Figure 12. Leniency vs. linearity heatmaps for the original levels at the top, Launchpad 
platformer level generator (Smith et al., 2009) at bottom left, and level generator that 
uses occupancy-regulated extension (Mawhorter & Mateas, 2010) at bottom right. 
Recreated using data provided by Horn et al. (2014).  

The linearity metric in Figure 11 was spread relatively evenly in the range from 0 to 0.25 

in each case, with a small emphasis closer to 0 and with some cases going over 0.25. This 

means that the study’s generator produced relatively non-linear levels, meaning there was 

a relatively good number of optional platforms and branching paths. The linearity of the 

original levels in Figure 12 can be seen to be very close to zero. This would mean that 

this study’s generator produced more somewhat more linear levels than what the original 

levels were, even though the original levels were the building blocks of the new levels. 

However, it is to be noted that there is a very limited number of original levels, so the 

comparison may not be too accurate. Comparing to the other two generators, this study’s 

approach is quite similar in linearity to the occupancy-regular extension approach 

(Mawhorter & Mateas, 2010). The Launchpad generator (Smith et al., 2009), however, 

had a much wider range for linearity, though the emphasis was more towards higher 

values meaning Launchpad’s levels were more linear. 

The leniency metric provides an intuitive sense of the amount of danger based on the 

obstacles present in the level. Notably, obstacles and enemies that can result in player 

death tend to cause the levels to be rated less lenient. (Horn et al., 2014; Smith & 
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Whitehead, 2010). In the case of Horn et al. (2014) whose scripts were used to generated 

the above visualizations, the lower the leniency value, the more danger the levels are 

estimated to provide to the players. Looking at Figure 11, the leniency for this study’s 

generator with World 3-2 as the reference level is mostly in the range from around 0 to 

0.25, and for World 1-1 and World 5-2 the leniency is spread from around 0 to around 

0.5. For the case of no reference level, the leniency range is between the other cases. 

These values mean that the generated levels can provide relatively high amounts of danger 

to the player. Most notably, World 3-2 has the smallest leniency range with values that 

are spread around 0.15, meaning World 3-2 could potentially pose more danger than the 

other reference levels. The low leniency for this level likely comes from the fact that the 

start of this level’s interest curve as seen in Figure 9 is very flat. For a long period of the 

level, there is likely low amount of choice in patterns, and those patterns may be some of 

the less lenient ones. 

It is also interesting to contrast the differences in leniency in Figure 11 to Figure 9, in 

which we can see that the AI agent needed much less input actions to complete World 3-

2. Since the levels based on World 3-2 are less lenient and require less input, it could 

mean that failing those required inputs, the player character is much more likely to die 

when compared to the other two levels. 

Comparing this study’s leniency to the original levels’ leniency we can see that this study 

produced less lenient levels. Although, again it is to be noted that due to the low sample 

size of original levels this comparison may be inaccurate. The Launchpad generator 

(Smith et al., 2009) produced quite evenly and tightly distributed levels in terms of 

leniency in the range from 0.6 to 0.8, meaning those levels may be considered much more 

lenient, meaning less dangerous, than this study’s generator’s levels. The occupancy-

regulated extension generator (Mawhorter & Mateas, 2010) produced levels with a wider 

range of leniency values, from around 0.3 to around 0.7. This could mean these levels, 

too, may be considered less dangerous. However, the amount of variance in the possible 

values is closer to this study’s generator. 

6.5 User evaluation 

The quality of the level generator was evaluated with playtests. Before any proper playtest 

sessions were held, however, one pilot playtest session was performed. It was quickly 

noticed that even the original Super Mario Bros. levels are relatively hard for the average 

player. As a result, the patterns from World 7 and World 8 were excluded from the level 

generator in an effort to keep the challenge of the generated levels manageable. This 

restricted the generative space of the generator since the number of patterns was reduced 

as reported in Chapter 6.2.2. 

A total of 6 players participated in the tests with each playtest session taking around 20-

30 minutes to complete. The recruited players were fellow students of Information 

Processing Science from University of Oulu, and were known to have experience playing 

video games. The participants were between ages 25 and 31. 

In the playtest sessions, each player played through a total of six levels. These levels were 

organized in pairs with each pair containing one original Super Mario Bros. level and one 

generated level which used the original level as the reference level. The original, reference 

levels were World 1-1, World 3-2, World 5-2, so, for example, the pair of levels 

containing the original level World 1-1 also contained a generated level that used World 

1-1 as the reference. 
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The playtest sessions started with a practice level. The players were instructed on how to 

control the player character, which was done using a PlayStation 4 controller since the 

original Super Mario Bros. game is a console game, meaning it was also played with a 

controller. The instructions also included insight into the jump button, which could be 

held down to cause the character to jump higher up to a specific point, and the run button 

that could be held down when jumping to be able to cross over longer distances. The 

players were also instructed on the different enemy types, and how to defeat them. Players 

were free to play the practice level for as long as required to become comfortable with 

the controls. The practice level was a generated level, with the same generated level used 

for all players.  

The pairs of levels were always played in a random order. The players were instructed 

that the objective is simply the completion of the level. In addition, the order of the two 

levels in each pair was also randomized. The seed values for the generated levels were 

between 1 and 100 million, and were generated beforehand using an online random 

number generator. At the end of each pair of levels the players were asked to rate the two 

levels’ fun, challenge, novelty and pacing on a scale from 1 (least) to 5 (most). Evaluation 

instructions for novelty were to rate how interesting was the level. Instructions for pacing 

were to rate how interesting was the pacing of the obstacles and enemies. Fun and 

challenge were not separately given evaluation instructions since they are easier to 

interpret. In addition, the players were asked to rate how similar it felt to play the two 

levels on the same scale. Lastly, in order to help with the rating, and in an effort to keep 

levels evaluations comparable to each other, screenshots of both of the played levels were 

also provided as a reminder. An example can be seen in Figure 13. 

 

Figure 13.  Example overview screenshot of a full level the playtester could use as a reminder. 
The players were able to freely zoom in the picture to see it in better detail. 

The average and standard deviation of each level’s user evaluations can be seen in Table 

3. The values are calculated based on each tester’s evaluation of the specific level. The 

“Original” row contains the calculated values of each tester’s evaluation when the original 

Super Mario Bros. level was played. The “Generated” row then contains similar values, 

but for the generated levels that used the original level as a reference for the pattern 

selection. 
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Table 3. Overview of the user evaluation of each variant level generator. The first value is the 
average between the participants, with the standard deviation in parenthesis. 

Reference 

Level 

Variant Fun Challenge Novelty Pacing Similarity 

All three Original 3.444 

(0.784) 

3.222 

(1.003) 

3.333 

(0.84) 

3.167 

(0.786) 2.667 

(0.97) Generated 3.333 

(0.84) 

3.222 

(0.878) 

3.111 

(0.676) 

3.0 

(0.84) 

World 1-1 Original 3.5 

(0.548) 

2.5 

(0.548) 

3.333 

(0.816) 

3.5 

(0.837) 2.5 

(0.837) Generated 3.167 

(0.752) 

3.5 

(0.837) 

3.333 

(0.516) 

2.833 

(0.752) 

World 3-2 Original 3.167 

(1.17) 

3.333 

(1.211) 

3.167 

(0.983) 

2.833 

(0.753) 2.833 

(0.983) Generated 3.333 

(0.816) 

3.333 

(0.816) 

3.0 

(0.632) 

3.0 

(0.632) 

World 5-2 Original 3.667 

(0.516) 

3.833 

(0.752) 

3.5 

(0.837) 

3.167 

(0.753) 2.667 

(1.211) Generated 3.5 

(1.049) 

2.833 

(0.983) 

3.0 

(0.894) 

3.167 

(1.169) 

Looking at the first row that contains the combined evaluations from all three levels, it 

can be seen that the original levels had on average a little bit higher fun, novelty, and 

pacing. The differences are, however, quite small. Challenge was relatively the same with 

the original levels spread a bit more widely. This result gave initial indication that having 

two levels with the same interest curve could in fact produce similar levels when 

comparing the level of fun, challenge, novelty, and pacing. It is also encouraging that the 

similarity that the players felt was on average quite low, with the average being 2.667. 

Even though the two levels that used the same interest curve were played in a row, the 

players felt they were a little dissimilar. In other words, this could mean that the same 

interest curve could be utilized to produce multiple levels that would still feel different to 

play. 

Comparing the individual levels’ results, it can be seen that there are couple cases where 

there is a bit bigger difference in the original versus generated level averages. The biggest 

differences were in the evaluation of challenge in World 1-1 and World 5-2. The pacing 

of World 1-1 and novelty of World 5-2 had the second and third biggest differences. It is 

to be noted, however, that the sample count for the individual levels is smaller, meaning 

individual evaluations have a higher impact on the average than when compared to the 

aggregated results in the first results row of Table 3. This could mean, for example, that 

some players got unlucky with the level generator picking some of the harder patterns. 

Even if two extracted patterns had the same intensity, meaning the amount of input 

required to complete it, they could still have different challenge associated with them. For 

example, one pattern could be void of any enemies or other danger to the player, while 

the other could be full of them. Anecdotally, levels in a game can be assumed to get harder 

the further the player plays. This also seemed to be the case in study’s original Super 

Mario Bros levels. The original World 1-1, the very first level of the game, had the lowest 

challenge on average. The second was World 3-2, the tenth level of the game, and the 

highest challenge average was found in World 5-2, which is the 18th level of the game. 
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The order of the evaluated challenge in the generated levels, however, was reverse. The 

generated level using World 1-1 as a reference was deemed the hardest, while the one 

using World 5-2 was felt to be the easiest of the generated levels. This was likely the 

result of the level generator not considering the challenge of the patterns when picking 

them. As such, the generator wouldn’t likely be suitable for generating a lot levels for a 

platform game in its current state since good pacing of difficulty would be important for 

making the gameplay experience enjoyable and engaging (Bleszinski, 2000; Lindley, 

2002). While the level generator did consider the pacing of a single-level in the form of 

the patterns’ intensity, in a commercial setting it would be required to go one step higher 

to analyse the challenge of all the generated levels. With this higher-level analysis, the 

generated levels could potentially be ordered in a suitably challenging order. 
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7. Discussion 

This study had the goal of investigating the applicability of using rhythm in helping 

procedural level generators create higher quality content. This was approached with two 

research questions that are restated below. 

RQ1. How can the rhythm of player input in 2D platformer levels be 

analysed? 

RQ2. What kind of results can be achieved by creating new 2D platformer 

levels based on the rhythm of existing levels? 

The research questions are answered and discussed further below based on the findings 

of the study. 

7.1 Research question 1 

For the first research question, existing literature was reviewed. Few existing studies that 

use rhythm explicitly in platformer level generation were found. Those studies focused 

more on using the rhythm as a technique and a way for a designer to control the generated 

levels. As such, the rhythms used on the level generators were created based on intuitive 

understanding of what could be good. (Compton & Mateas, 2006; Smith et al., 2009). In 

order to gain some insight into what rhythm could be good, this study focused on 

analysing the rhythm of an existing game. For this purpose, an approach by Pagnutti 

(2016) that uses a method based on music theory, was selected. 

There can be multiple levels of rhythm in digital interactions (Costello, 2018a), and so in 

this study the rhythm of existing platformer levels was also analysed on multiple levels. 

The lowest level of rhythm was found by utilizing a slightly adjusted version of the GMA 

method (Pagnutti, 2016). This produced a representation of the level’s baseline rhythm 

as multiple sets of player character states, also referred to as rhythm patterns in this study. 

As the states are the direct result of player input, it is argued that these states are suitable 

to represent the rhythm closest to the player, the rhythm they feel while playing similar 

to how the rhythm of notes in music can be felt. 

After the pattern extraction, the rhythm analysis was expanded to the next level. With the 

parallels between rhythm and interest curve regarding pacing and intensity (Costello, 

2018a; Schell, 2014), the interest curves were introduced as the tool to analyse and chart 

out this second level of rhythm in the existing levels. Here, the rhythm is formed from the 

rhythm patterns instead of player character states. In order to keep the focus still on the 

player interaction, each pattern was assigned an intensity value based on the amount of 

input needed to progress through that pattern.  

The similarities between the sample of a good interest curve in Figure 4 and the extracted 

interest curve of the Super Mario Bros levels in Figure 9 and Figure 10 imply that the 

taken approach was successful in mapping the rhythm of the existing levels. This, 

combined with the user evaluation finding the original and generated levels closely 

similar in various surveyed aspects, would mean that it is possible to use rhythm with 

intent in designing platformer levels. Further research into this topic could help 

procedural level generators be more informed of what makes a level good, and thus 

achieve output of enough quality for a commercial game. 
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7.2 Research question 2 

The second research question builds upon the results of the first one. The successfully 

extracted rhythm patterns and the interest curves they make up, were used to create a 

procedural platformer level generator. The resulting generator was then inspected via 

computational and user evaluation. The main finding was that the generator was able to 

create levels of similar quality compared to the original levels. The implication of this is 

that the platformer levels do seem to have a rhythm associated with them, which implies 

that the approach taken for the first research question is valid. With more research into 

this, it could be very helpful in increasing the quality of procedurally generated platformer 

levels by purposefully creating levels with specific rhythms. 

Due to the limited correlation to quality aspects like enjoyment (Mariño et al., 2015), the 

computational metrics were only used to inspect the type of levels the generator outputs. 

Three different interest curves were tested with the same list of rhythm patterns, and the 

resulting expressive range visualizations in Figure 11 were highly similar in each case. 

This seems to implicate that the other main input parameter, the list of rhythm patterns, 

is much more influential in controlling the types of levels that are created. 

The generated levels were generally not very lenient, meaning they posed potentially a 

lot of danger to the player. Compared to the original levels and some other approaches to 

procedural platformer levels, this study’s generator produced on average much less 

lenient levels.  This could potentially indicate more unforgiving and thus potentially more 

challenging levels which could be undesirable in a commercial game since unsuitable 

level of challenge could actively hinder player engagement and enjoyment (Nakamura & 

Csikszentmihalyi, 2002; Nicollet, 2004). The results do not seem to give an indication 

into why the original levels have much higher leniency than the levels created from the 

sections of those original levels.  

The level World 3-2, whose interest curve was the most different from the other two as 

seen in Figure 9, had the most difference visible in the expressive range in that its range 

in leniency was more suppressed. But even in this relatively drastic difference in the 

interest curve, the majority of the generated levels focused on the same area of the 

heatmap as seen by the accumulation of the whiter colours of Figure 11. While the used 

rhythm patterns seem to control the nature of generated levels on a higher level, the 

interest curve seems to allow some finetuning. Although this may be a result of the small 

sample size of tested levels, too, or it could also be a result of the used rhythm patterns. 

The World 3-2 curve has a long section of little input, so it could be that the specific 

extracted rhythm patterns that fit the low input count were actually challenging sections 

of the original game. At this point it is hard to determine if there is any meaningful 

connection between the amount of input and leniency of the level. 

The results of the playtests indicate that the generator was creating levels of similar 

quality in different aspects when compared to the original levels. Especially the fun factor 

was very similar on average as seen in Table 3. Fun was, however, on average a little 

lower in the generated levels in all cases. This could implicate that the current approach 

may be lacking the kind of final polish that a human designer can more easily apply. The 

biggest difference in the playtest evaluations between original and generated levels was 

in the level of challenge. The challenge of generated levels was in the reverse order when 

compared to the originals. The implication of this is that the amount of input that was 

used to calculate the intensity of the rhythm patterns cannot be used to determine their 

challenge. Instead, additional analysis would be required to enable the generator consider 

the challenge. 
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8. Conclusion 

In this chapter the results of the study are summarized and the identified limitations are 

presented. Finally, further research topics are suggested to continue and extend on the 

topic. 

8.1 Results 

This study set out to gain more insight into how procedural level generators could be 

improved in terms of the quality of the content. It was theorized that rhythm may be a key 

component in making platformer levels enjoyable, and so the research questions were 

aimed at analysing the existence of rhythm in the gameplay of platformers. It was found 

that music theory can be utilized in finding the rhythm of the platformer levels, and that 

rhythm actually exists on multiple levels. A rhythm-based procedural level generator was 

implemented and evaluated. The generated levels were assessed to be around similar 

quality as corresponding original levels in a couple surveyed aspects. This implies that 

rhythm could indeed be used to guide procedural level generation. 

The findings reinforce the fact that PCG research benefits from the utilization of existing 

literature from other disciplines; music theory in this case. In addition, the existing theory 

found in some PCG studies that rhythm could be useful in procedural platformer level 

generation is also reinforced. The next step would be to gain better understanding of 

exactly what kind of effects different gameplay interaction rhythms have, and how they 

could be used. Following this, both evaluation and generation of platformer levels could 

potentially be approached through rhythm and methods from music theory. The results 

are also helpful for game developers. Good level design is arguably highly important in 

making a commercial game successful. However, it is hard to know what it is that makes 

a level feel good to play. As such, it is recommended for game developers to try and 

approach level design from the point of view of rhythm; better pacing could potentially 

be achieved by considering not only the immediate rhythm of interaction, but also the 

rhythm of adjacent obstacles, and the rhythm of the levels as a whole. 

8.2 Limitations 

The playtests were limited in both the number of participants and demographic focus. As 

such, the results should only be treated as initial findings to build upon, and more playtests 

would be warranted to further validate the results. The computational evaluation is also 

something that could have been expanded to include a wider variety of metrics to analyse 

the nature of the generated content more comprehensively. 

The applicability of the demonstrated approach outside games similar to Super Mario 

Bros is likely to be limited. This is because the scope was kept deliberately narrow due 

to limited resources and the experimental nature of the study. Super Mario Bros includes 

a relatively limited amount of gameplay mechanics, so features like double jump and their 

potential effects on the feeling of rhythm are not included in the analysis of rhythm. The 

rhythm pattern extraction and usage in the level generator worked well within the tile-

based levels of Super Mario Bros, but games with other graphical representation style 

may need a different or adjusted approach. Also, the levels in Super Mario Bros. are linear 

side-scrolling levels, so this level generation approach wouldn’t work in single-screen 

platformers like Celeste. The rhythm extraction focused on the baseline rhythm of the 



50 

levels, meaning the minimum input required to complete them. This likely wouldn’t be 

enough for commercial usage as games have various secondary objectives, like coin 

collection in Super Mario Bros., that can affect the way players approach playing through 

the levels.  

8.3 Future research 

While larger scale studies would be necessary to validate the findings, the results of this 

study already have the potential to inspire interesting avenues for future research. 

Following further validation, the application of more music-based theories and methods 

could be very interesting to investigate as the large amount of existing music theory has 

great potential if applicable. This, combined with studying the effects of different types 

of rhythms by, for example, monitoring the players’ physiological responses, could have 

great potential in helping understand what exactly it is that makes a platformer level good. 

Closer look at the lowest level of rhythm is another topic worth considering. The results 

of this study do not include information on what makes a rhythm good at this lowest level. 

Instead, the extracted rhythm patterns were snippets of the original Super Mario Bros 

levels’ rhythms. It is theorized that these original levels have a good rhythm as the game 

is so widely acclaimed, but it is currently not known what makes a specific input rhythm 

feel good. 

Lastly, the effects of rhythm should also be investigated in a wider context. Any content 

from levels to story pacing, and any genre from platformers to FPS, could potentially 

benefit from a better understanding of how to apply rhythm to help make more informed 

decisions not only within procedural generation but also in handcrafted content. 
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