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This thesis presents an in-depth study into the application of three MATLAB models for 

real-time Chemical Oxygen Demand (COD) measurement in wastewater treatment 

processes. Primarily, it serves as an investigative platform for the potential of UV-Vis 

spectrophotometry in determining COD and nitrate levels in wastewater samples and its 

possible utilization as a real-time monitoring tool in wastewater treatment operations. 

Three regression models - Linear Regression, Polynomial Regression, and Ridge 

Regression - were developed and evaluated using MATLAB. Among these, the Ridge 

Regression model showed the highest prediction accuracy, accounting for a significant 

portion of the variability in COD values. Nevertheless, it was found that further 

refinement and validation with larger datasets are necessary to enhance the models' 

precision and reliability. 

The study also examined the correlation between UV-Vis and laboratory COD 

measurements in different stages of the wastewater treatment process. A strong positive 

correlation was found for samples after the Membrane Bioreactor (MBR) process. 

However, the accuracy was found to vary at different treatment stages, necessitating 

further investigation. 

The research revealed the benefits of real-time COD measurement for process 

optimization, regulatory compliance, energy consumption reduction, and early detection 

of potential problems. Although not yet a solid measurement method, the developed 

MATLAB models provide a promising foundation for Valmet's future product 

development toward real-time COD monitoring in wastewater treatment. 



 

The future implications of this research, while still in the developmental phase, carry the 

potential to instigate meaningful advancements in the manner Valmet manages and 

monitors wastewater treatment processes. With continued refinement and development, 

the outcome of this research may strengthen Valmet's positioning within the industry by 

contributing towards the availability of more technologically refined, real-time, and 

accurate COD measurement systems, and possibly extending to other wastewater 

parameters. The realization of this potential signifies not only an enhancement in 

operational efficiency but also a positive stride toward environmental sustainability. 
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1 INTRODUCTION 

The wastewater treatment industry is facing a challenge in real-time monitoring of 

wastewater quality. Plant operators and instrument manufacturers have stated a need for 

new standards as well as better comparability and reliability of current procedures to 

comply with ever-stricter environmental rules (Wilfrid Bourgeois, 2002).  

Global awareness in monitoring wastewater quality criteria is currently rising. Several 

European regulatory measures and suggestions, such as the 91-271 EEC rule, have put 

pressure on the water and wastewater treatment sectors about discharge restrictions. The 

quality of treated wastewater is often evaluated by measuring global parameters 

including Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total 

Suspended Solids (TSS), and nutrients like nitrogen and phosphorus. These techniques 

not only demonstrate that a wastewater treatment plant complies with the law but also 

offer vital details regarding the caliber of treated wastewater and the efficacy of 

treatment (Wilfrid Bourgeois, 2002). 

Online monitoring of the aforementioned metrics is unquestionably required in order to 

permanently comply with these standards because wastewater properties vary 

depending on both space and time. However, most treatment plants currently test 

wastewater quality infrequently. Wastewater system automation has not progressed as 

much as in different process industries, mostly because sensors must be installed in 

harsh conditions (AndersLynggaard-Jensen, 1999). Online real-time monitoring and 

control applications for sensors are typically required since laboratory-based procedures 

that are more sensitive and standardized take longer and need the gathering of samples 

and analysis in retrospect. Simple extrapolation of laboratory data is inadequate since a 

grab sample (collected, at most, every day) is unlikely to offer a meaningful and high-

resolution picture of the nature of, and change in, wastewater quality (Wilfrid 

Bourgeois, 2002). 

The development of new, quick-response technologies, the improvement of the 

comparability, dependability, and quality of present techniques, and the creation of new 

standards are all urgently needed, according to owners and operators of treatment 

facilities in Europe. Given this viewpoint and the growing need for online, real-time 

monitoring of wastewater quality, it was imperative to present and discuss the most 



 

cutting-edge wastewater tracking methods for universal parameters (Wilfrid Bourgeois, 

2002). 

The prevailing inclination in modern aquatic environmental surveillance leans towards 

the adoption of optical methodology in water quality monitoring technology. 

Spectroscopy, in particular, confers a multitude of significant benefits superior to 

traditional monitoring methodologies. These advantages encompass simplicity, 

diminished reliance on reagents, high reproducibility, exceptional accuracy, and swift 

detection capabilities. Consequently, it is optimally suited for instantaneous, expedient 

monitoring of environmental water samples (Fei Liu, 2016). 

With the existing state of affairs and growing demands in the wastewater treatment 

industry as the backdrop, this thesis aims to investigate the use of MATLAB models for 

real-time Chemical Oxygen Demand (COD) measurement in wastewater treatment 

processes. It is motivated by the intent to bring us a step closer to meeting the pressing 

need for accurate, reliable, and real-time wastewater monitoring systems, while 

potentially overcoming the limitations of the existing methodologies. The study 

explores three MATLAB models, with an emphasis on their application, the data 

requirements for their optimal performance, and the potential accuracy and reliability 

they offer. The method of UV-Vis spectroscopy, a rapidly evolving optical method, is 

incorporated into the model testing, further bridging the gap between traditional 

monitoring and the need for rapid, online measurements. 

While acknowledging that the results of this research are not a final solution, but rather 

an initial, significant stride towards achieving real-time COD measurement, the study's 

outcomes could provide meaningful insights and lay the groundwork for future 

advances in this critical industry domain. 

 



 

2 LITERATURE REVIEW 

2.1 Wastewater Treatment 

2.1.1 Wastewater Treatment Importance 

The intricate network of rivers, lakes, groundwater, and other naturally occurring 

aquatic systems, along with the living organisms and materials they house, collectively 

constitute a water body. Water is not just a crucial resource for human survival, but also 

an indispensable prerequisite for the sustenance of human existence. As the socio-

economic landscape expands and human exploitation of natural resources persists, water 

quality has been gravely compromised due to pollution. This predicament poses a 

serious threat to the security of the water supply, and the resultant resource squandering 

has precipitated a scarcity of freshwater (A.Nathanson, 2023). The worldwide water 

supply is profoundly contaminated, rendering it incapable of adhering to potable water 

standards. This exacerbates the already alarming water shortage situation (Fei Liu, 

2016). 

A water parameter that fails to align with the established water quality standards is 

deemed to be polluted. Substantial contributors to water contamination encompass 

domestic and industrial wastewater. Acute water pollution not only poses detrimental 

impacts on human health via the food chain but also proves to be toxic to aquatic flora 

and fauna, potentially culminating in fatalities. Hence, monitoring water quality has 

assumed paramount importance in ensuring water purity, safety, and effective 

environmental protection (Fei Liu, 2016). The imperative of wastewater treatment 

cannot be overstated in safeguarding public health and the environment. The selection 

of an appropriate treatment process is contingent upon the nature and concentration of 

contaminants present in the wastewater. 

2.1.2 Wastewater Treatment Processes 

Wastewater treatment refers to the procedure of purifying water tainted by domestic, 

industrial, agricultural, and commercial activities. Given the critical implications for the 

environment and public health, wastewater treatment is of utmost importance. This 

process employs a diverse array of technologies and methodologies, encompassing 

physical, chemical, and biological modalities. This literature review aims to explore 



 

some of the commonly utilized methods for wastewater treatment, alongside 

highlighting recent advancements in the field (Ifeanyi Michael Smarte Anekwe, 2022). 

 

2.1.2.1 Biological Treatment 

Biological treatment is a commonly adopted process for wastewater remediation. This 

strategy leverages microorganisms, such as bacteria and fungi, to decompose organic 

contaminants present in wastewater. These microbes metabolize the organic matter into 

benign substances such as water and carbon dioxide. Techniques under the umbrella of 

biological treatment include but are not limited to, anaerobic digestion, sequencing batch 

reactors (SBR), trickling filters, and activated sludge. Activated sludge, a popular approach 

for the treatment of municipal wastewater, involves the aeration of wastewater to stimulate 

the growth of beneficial microorganisms. Industrial wastewater, on the other hand, is 

commonly addressed through trickling filters. This technique involves passing the 

wastewater over a bed of rocks or similar media, thereby providing a conducive surface for 

microorganism proliferation. In the batch process identified as sequencing batch reactors 

(SBR), diverse stages are sequentially implemented within a single reactor. Sludge 

generated during wastewater treatment undergoes treatment via anaerobic digestion, a 

process that concurrently produces biogas as a valuable byproduct (George 

Tchobanoglous, 2003). 

Recent innovations in biological treatment include the introduction of Membrane 

Bioreactors (MBRs) and biofilms. MBRs synergize biological treatment with membrane 

filtration to yield high-quality effluent that meets the standards for reuse. Biofilms, which 

are communities of microorganisms that form on surfaces, present another viable avenue 

for wastewater remediation. Biofilm reactors are currently under development for the 

treatment of organic contaminants, heavy metals, and nutrients (George Tchobanoglous, 

2003). 

2.1.2.2 Chemical Treatment 

Chemical treatment of wastewater facilitates the removal of heavy metals, nutrients, and 

suspended sediments. This process involves the utilization of chemicals such as 

coagulants, flocculants, and oxidants to precipitate or neutralize contaminants. Wastewater 



 

is blended with coagulants, including aluminum sulfate, ferric sulfate, and ferric chloride, 

which engender flocs that can be efficiently eliminated through settling or filtration. 

Flocculants, such as polyacrylamide, are introduced to expedite the settling of flocs. 

Oxidants, such as hydrogen peroxide and ozone, are employed to eradicate organic 

contaminants and pathogens from wastewater (George Tchobanoglous, 2003). 

The utilization of advanced oxidation processes (AOPs) and electrochemical procedures 

are recent developments in chemical treatment. AOPs employ potent oxidants, such as 

hydroxyl radicals, to transform organic contaminants into harmless molecules. Conversely, 

electrochemical procedures leverage an electric current to extract contaminants from 

wastewater. Among the electrochemical techniques currently under investigation for 

wastewater treatment are electrocoagulation and electro-oxidation (George Tchobanoglous, 

2003). 

2.1.2.3 Physical Treatment 

Physical treatment encompasses the extraction of pollutants from wastewater via physical 

processes such as adsorption, filtration, and sedimentation. Filtration requires channeling 

the wastewater through a filter medium to separate contaminants. Sedimentation, on the 

other hand, involves allowing suspended solids to descend to the bottom of a tank. 

Adsorption represents a technique wherein contaminants are removed from wastewater 

using adsorbents, such as activated carbon and zeolites (George Tchobanoglous Eds., 

2003). 

Reverse osmosis (RO) and nanofiltration (NF) are two recent developments in physical 

treatment that use membranes to clean wastewater. Semi-permeable membranes are used in 

the RO and NF processes to filter contaminants out of wastewater. Seawater, brackish 

water, and industrial effluent are all treated using membrane technologies (Shaofu Du, 

2023). 

2.2 Wastewater Pollutants  

Pollutants in wastewater provide serious risks to the environment and public health, 

necessitating efficient management and treatment techniques. These pollutants can be 

broadly divided into four groups: metals, nutrients, organic chemicals, and infections. 



 

Each group needs a different strategy for treatment in order to be successfully removed 

some examples of different strategies are shown in Figure 1 in a wastewater treatment 

plant as an example. This emphasizes the necessity of ongoing research and 

development of novel treatment techniques to handle the constantly changing problems 

posed by wastewater contaminants. This section seeks to give an overview of the 

numerous types of wastewater contaminants, their effects on the environment and 

human health, and the most recent advancements in treatment techniques, while also 

highlighting the necessity of more research on this crucial subject (Metcalf & Eddy Inc., 

2014). 

 

Figure 1 - Example of WW treatment plant measurements (Valmet, 2022) 

2.2.1 Organic material 

Organic compounds represent one of the primary contaminants in wastewater. This 

category encompasses a wide spectrum of chemicals, including but not limited to 

insecticides, herbicides, and solvents. Residential wastewater, in particular, is laden 

with a plethora of organic constituents such as proteins, carbohydrates, fatty acids, and 

urea, in addition to the aforementioned compounds. These substances significantly 

contribute to the overall organic load in the wastewater, emanating from sources such as 

food waste, human waste, and domestic cleaning products (Metcalf & Eddy, 2014). It is 

well established that organic chemicals are harmful to the environment and human 

health. They can result in cancer, birth abnormalities, and other grave medical issues. 



 

They may also be detrimental to other fauna, including aquatic life (Javier Mateo-

Sagasta, 2017). Wastewater frequently contains organic substances like benzene, 

toluene, and xylene (Metcalf & Eddy, 2014). 

Organic compounds can be removed from wastewater using various treatment methods, 

such as activated sludge, advanced oxidation, and membrane filtration. However, the 

removal efficiency of these methods varies depending on the specific organic compound 

and the wastewater composition (Alfredo Cassano Eds., 2023). 

In order to determine the concentration and load of organic material acting as 

contaminants in wastewater, measurement parameters are essential. The Biochemical 

Oxygen Demand (BOD) and Chemical Oxygen Demand (COD) are the most significant 

and frequently employed parameters though they differ fundamentally in their 

measurements (Geological Survey (U.S.), 1991). 

BOD measures the quantity of oxygen required by bacteria to decompose organic 

material in the water over a specific period (usually five days at 20°C), thereby 

indicating the biodegradable organic content. Conversely, COD quantifies the total 

quantity of the oxygen needed to oxidize all organic material including biodegradable 

and non-biodegradable through chemical reactions. As a result, COD values are often 

higher than BOD values. Given its quicker turnaround, COD is often preferred for 

operational decisions despite it not distinguishing between biologically available and 

inert organic matter (Metcalf & Eddy, 2014). As the focus of this thesis is the COD 

parameter of wastewater samples, it is discussed in more detail.  

The quantity of oxygen needed, under particular circumstances, to chemically oxidize 

the chemicals contained in a water sample is known as "Chemical Oxygen Demand" 

(COD). It gauges the presence of substances such as nitrites, ferrous salts, sulfides, and 

most importantly organic compounds in water, with measurements represented in 

milligrams of oxygen per liter (mg/L). Consequently, COD serves as a critical indicator 

for determining the overall concentration of organic contaminants in water (APHA, 

2017). 

The microbial oxidation of organic contaminants necessitates substantial levels of 

dissolved oxygen, leading to compromised water quality. High levels of organic 

contaminants can result in dark, foul-smelling aquatic environments, disrupt the 



 

ecological balance, and cause considerable detriment to aquaculture (J. Jeffrey Peirce, 

1998). In order to regulate pollutant discharges and monitor water quality, it is crucial to 

timely and accurate water COD concentration monitoring (Fei Liu, 2016). 

Approximately 150 years ago, the earliest techniques for detecting COD were 

developed, and they consisted of monitoring how the color of a permanganate reagent 

changed as it mixed with different types of water. However, there was a lot of variation 

among samples that contained this chemical. In 1949, the dichromate method was 

invented and made excellent for wastewater treatment (Anon., n.d.).  

In various countries and regions, different standards are followed for detecting 

Chemical Oxygen Demand (COD) in wastewater. In the United States, the "Standard 

Methods for the Examination of Water and Wastewater" (23rd edition, 2017) provides 

guidelines, with Method 5220 outlining the Closed Reflux, Titrimetric Method (APHA, 

2017). The European Union follows the ISO 6060:2004 standard, titled "Water quality - 

Determination of the chemical oxygen demand." (ISO, 1989). In the United Kingdom, 

the BS EN 1899-1:1998 standard, titled "Water quality. Determination of biochemical 

oxygen demand after n days (BODn). Method for undiluted samples," is used (iTeh, 

n.d.).  

In Finland, the SFS 5504:2020 standard (replacing SFS 5504:2011) is applied, titled 

"Water analysis – Chemical oxygen demand (COD) – Small-scale sealed-tube method." 

(SFS, n.d.). Despite variations in particulars, these standards provide guidelines on what 

is considered appropriate COD measurement procedures in their respective 

jurisdictions. COD is determined in a laboratory assay by subjecting a sample to a 

strong chemical oxidant for a fixed duration at the same temperature, typically 2 hours 

at 150°C. Potassium dichromate, the most used oxidant, is mixed with heated sulphuric 

acid. A COD test evaluates both sources of oxygen demand since the substance used as 

an oxidant is not unique to organic or inorganic molecules (Liptak, 2003).  



 

Table 1 - Typical COD levels found in natural water and sewage\effluent (Anon., 

n.d.) 

 

As shown in Table 1, both sewage and industrial wastewater have very high levels of 

COD and must undergo treatment to align with COD values stipulated by 

environmental emission standards prior to their discharge (OECD, 2017). In the 

contemporary context where environmental protection is increasingly prioritized, the 

assessment of the COD index becomes paramount. Moreover, COD is recognized as 

one of the crucial indices in total amount control engineering for pollutant discharge in 

wastewater management (Von Sperling, 2002). 

2.2.2 Nutrients 

Another significant pollutant in wastewater comprises nutrients such as nitrogen and 

phosphorus. These are primarily found in wastewater sourced from agriculture, food 

processing, and human and animal waste disposal. An excessive influx of these 

fertilizers can instigate eutrophication, leading to a drop in the water's dissolved oxygen 

concentrations and consequently resulting in the death of aquatic life ((WHO), 2017). 

Nutrients can be eradicated from wastewater using an array of treatment methodologies, 

including both biological and chemical strategies. Biological techniques such as 

activated sludge and trickling filters are commonly used for the removal of nitrogen and 

phosphorus. Chemical-based nutrient removal techniques encompass methods such as 

adsorption and precipitation (The Cadmus Group, 2010). 



 

2.2.3 Pathogens 

Pathogens, inclusive of bacteria, viruses, and protozoa, pose a substantial concern in 

wastewater due to the potential damage they can inflict on human health. Numerous 

pathogens, such as Salmonella, E. coli, and Cryptosporidium, can be prevalent in 

wastewater. These pathogens can cause a range of health complications, including 

respiratory infections, gastrointestinal disorders, and other medical conditions ((WHO), 

2017). 

Treatment methodologies such as disinfection, ultraviolet (UV) light treatment, and 

membrane filtration can be deployed to eliminate pathogens from wastewater. However, 

the efficacy of these methods is contingent upon the specific pathogen and the overall 

composition of the wastewater (The Cadmus Group, 2010). 

2.2.4 Metals 

Lead, mercury, and cadmium are only a few examples of metals that are a substantial 

problem in wastewater. They are present in wastewater produced by several industrial 

processes, such as mining, smelting, and electroplating. Metals can be harmful to human 

health and aquatic life, leading to major health issues such as neurological illnesses and 

renal damage (Javier Mateo-Sagasta, 2017). 

Ion exchange, membrane filtration, and chemical precipitation are techniques for 

removing metals from wastewater (The Cadmus Group, 2010). The choice of procedure 

is influenced by the specific metal present and the overall composition of the 

wastewater. 

2.2.5 Total solids 

Total Solids, which is correlated with both conductivity and turbidity, is a measurement 

of the solids that are both suspended and dissolved in a water reservoir. The European 

Standard EN 872 (2005) provides guidelines for determining suspended solids in water 

samples using the method of filtration through glass fiber filters (Standardization, 

2005). A water sample is put in a chamber for drying, which dries the water and leaves 

behind the particles, in order to quantify the total amount of suspended and dissolved 

solids. To determine the precise concentration of dissolved solids, the sample is then 

passed through filters, dried out, and weighted (Tom Murdoch, 1996). The weight of the 



 

suspended solids is then calculated by subtracting the weight of the dissolved particles 

from the weight of the total solids. Laboratories, such as Eurofins, adhere to the EN 872 

standard for the quantification of total suspended solids (TSS) in water samples, a 

standard that has been approved by members of the European Committee for 

Standardization (CEN), including Finland (Standardization, 2005). 

Phosphorus, nitrogen, and organic matter constitute significant components of the 

overall solid load in treatment plants. The potency of wastewater is typically gauged by 

the quantity of solids present. Consequently, specific wastewater will exhibit higher 

potency with an increase in its solid content. If the majority of the solids in wastewater 

are organic as opposed to inorganic, the impact on a treatment facility is more 

pronounced. Gravimetry is advised for calculating total solids, total dissolved solids, 

total suspended solids, and stable and unstable solids, and volumetric measurement is 

recommended for calculating settleable solids (American Public Health Association, 

1915). 

2.3 Measurement Methods 

2.3.1 Laboratory Measurements 

Wastewater is a major environmental concern due to its potential to cause severe harm 

to human health and the environment. Pollutants such as heavy metals, nutrients, and 

organic compounds can have adverse effects on aquatic life and humans. The 

measurement and analysis of wastewater pollutants are essential to ensure the proper 

management and treatment of wastewater. Traditional manual laboratory measurement 

methods are commonly used to measure wastewater pollutants (APHA, 2017). This 

section of the literature review aims to provide an overview of these methods, including 

their advantages, limitations, and various techniques used. 

Laboratory measurement methods for wastewater pollutants vary depending on the 

specific pollutants of interest. However, some common methods include titration, 

spectrophotometry, chromatography, and gravimetry. In this part of the literature 

review, the focus is on the most common laboratory measurement methods for organic 

and inorganic pollutants in wastewater, along with their advantages and disadvantages. 



 

Colorimetry involves measuring the intensity of color produced by a chemical reaction 

between a pollutant and a reagent. This technique is useful for measuring the 

concentration of pollutants such as total suspended solids (TSS), chemical oxygen 

demand (COD), ammonia, nitrate, and phosphate. Colorimetry is easy to use and can 

provide rapid results. However, it has limitations in terms of accuracy, as the intensity 

of color produced can be affected by various factors, such as light and temperature 

(Eliasson, 2017).  

 

Figure 2 - The light employed in colorimetry (Basha, 2020) 

Colorimetry relies on the principle of light absorption, using a specific wavelength of 

light, often within the visible range (400-700 nanometers), to measure the concentration 

of a colored compound in a solution (Figure 2) (Critchley, 2017). The process of 

colorimetry involves several steps, including sample preparation, calibration, 

measurement, and data analysis. Each stage is essential to the exactness and precision of 

the outcomes attained (Foster Dee Snell, 1921). 

Sample preparation is the first and most important step in colorimetry. The sample must 

be carefully collected and prepared to ensure that it is representative of the parameter 

being measured. This may involve filtration or centrifugation to remove suspended 

solids, dilution to bring the concentration of the parameter within the range of the 

instrument's detection limit, or acidification to prevent the loss of the parameter during 

storage (APHA, 2017, Method 2540D). 



 

The second step involves performing a chemical reaction between the analyte and a 

reagent to produce a color change. The choice of reagent depends on the analyte being 

measured, and different reagents can produce different colors (Foster Dee Snell, 1921). 

Calibration is the process of establishing a relationship between the absorbance or 

transmittance of light and the concentration of the parameter being measured. In order 

to achieve this, an array of standard solutions must be prepared with known 

concentrations of the parameter, and their absorbance or transmittance must be 

measured with the same equipment and under the same circumstances as the sample 

(APHA, 2017, Method 4500-H+B). 

Measurement is the process of measuring the absorbance or transmittance of light by the 

sample or standard solutions. This is typically done using a colorimeter or 

spectrophotometer. Finally, the original wastewater sample's analyte concentration may 

be estimated using the calibration curve and the intensity of the color produced in the 

sample (EPA, 2012). 

Colorimetry can be used to measure TSS indirectly by measuring the turbidity of the 

sample. It, also, can be used to measure COD indirectly by measuring the color change 

of the sample after it has been oxidized. Ammonia can be measured directly by 

colorimetry by determining the sample's absorbance at a certain wavelength (Cole-

Parmer, 2019). 

 

Figure 3-An Example Colorimetry method used for orthophosphate (Olga 

Korostynska, 2012) 



 

The molybdenum blue method, shown in Figure 3, is commonly used to measure Total 

phosphorus (TP), which involves the reaction of TP with ammonium molybdate and 

ascorbic acid to form a blue-colored complex. Then, an 880 nm wavelength is used to 

measure the complex's absorbance (APHA, 2017) (Rice, 2012).  

The cadmium reduction method is commonly used to measure NO3-N, which involves 

the reduction of NO3-N to nitrite (NO2-N) by cadmium, followed by the reaction of 

NO2-N with sulfanilamide and N-(1-naphthyl) ethylenediamine to form a pink-colored 

complex. Next, the compound's absorbance at a wavelength of 540 nm is calculated. 

This method is widely used in the environmental and wastewater fields due to its 

simplicity, sensitivity, and low cost (Nirate.com, n.d.) (Wendt, 2000 ). 

The dichromate reflux method is commonly used to measure COD, which involves the 

reaction of the organic matter with dichromate and sulfuric acid to form a green-colored 

complex. The complex's absorbance is then assessed at a wavelength of 630 nm. Using 

the dichromate reflux method is popular in the wastewater field due to its simplicity and 

low cost (APHA, 2017) (O'Dell, 1993). 

These are some of the most commonly measured wastewater parameters with 

colorimetry. Many other parameters can be measured with this method, such as total 

nitrogen, total organic carbon, and total iron. However, the selection of parameters to be 

measured depends on the specific wastewater treatment application (Foster Dee Snell, 

1921). 

Colorimetry has several advantages over other analytical techniques. It is simple, fast, 

and relatively inexpensive, making it ideal for routine monitoring of environmental and 

wastewater samples. That is why it is used to measure a wide range of compounds, 

including nutrients, metals, and organic compounds (Eliasson, 2017). 

However, colorimetry also has some limitations. The technique is relatively insensitive, 

and the concentration of the analyte must be relatively high to produce a measurable 

color change. Interfering substances can also affect the accuracy of the measurement, 

and the calibration curve must be prepared for each analyte and reagent combination 

(whatishplc.com, 2022). 



 

Titration involves the addition of a reagent to a sample until a chemical reaction is 

complete. This technique is useful for measuring the concentration of acids, bases, and 

other pollutants. Titration is relatively simple to use, and it provides accurate results. 

However, it can be time-consuming, and it requires skilled personnel to perform the 

analysis (Miroslav Radojevic, 2015).  

As shown in Figure 4, there are three common titrimetric methods for determining 

Chemical Oxygen Demand (COD) in water samples: the Dichromate method, the 

Hydroxyl radical (OH) method, and the Permanganate method. Both methods involve 

titration as part of the analysis process (Frank N. Kemmer, 1988).  

 

Figure 4 - Development of COD determination methods (René Bernard Geerdink, 

24 January 2017)  

 

Dichromate Method: 

This method involves refluxing a water sample with potassium dichromate (K2Cr2O7) 

when a strong acid is present, usually sulfuric acid (H2SO4). The dichromate oxidizes 

the organic matter in the sample, and the excess dichromate is then back-titrated using 

ferrous ammonium sulfate (FAS) or another suitable titrant. A ferroin indicator is used 

to signal the endpoint of the titration (Clesceri, 1998). And as illustrated in Figure 5, 

this method is also done by using ready accessible COD reagent vials and the use of 

spectrophotometer. 



 

 

Figure 5 - COD dichromate method lab procedure (Ma, 2017) 

Permanganate Method: 

In this method, shown in Figure 6, a water sample is refluxed with potassium 

permanganate (KMnO4) when a strong acid, such as phosphoric acid (H3PO4) or 

sulfuric acid (H2SO4), is present. The permanganate oxidizes the organic matter in the 

sample, and the excess permanganate is back-titrated with a standard solution of sodium 

oxalate (Na2C2O4) or another suitable reducing agent. An alteration in hue from purple 

to colorless or faintly pink marks the titration's endpoint (Vogel, 2012). 

 

Figure 6 - Permanganate Method (Zijun Pang a b, March 2021) 

hydroxyl radical (OH) method: 

This method is based on the highly reactive nature of hydroxyl radicals, which can be 

generated in situ through various chemical and photochemical reactions (White, 2006). 



 

The hydroxyl radical (OH) method of titration works by generating highly reactive 

hydroxyl radicals in the presence of the target analyte. These radicals react with the 

analyte, leading to the formation of a new product. The amount of this product or the 

remaining hydroxyl radicals can be measured and used to determine the concentration 

of the analyte. The method can be adapted for various chemical species by tailoring the 

reagents and conditions that generate the hydroxyl radicals (Sawyer, 1995). 

The process of titration involves several steps, including sample preparation, titrant 

preparation, titration, and data analysis. Each stage is essential to the precision and 

accuracy of the outcomes attained (Miroslav Radojevic, 2015). 

In the first step, the sample should be collected in a clean, sterile container that has been 

properly labeled with information such as the date, time, location, and type of 

wastewater being tested. The sample should then be brought to the laboratory and 

prepared for analysis by filtering and adjusting the pH (APHA, 2017). 

Once the titration is complete, the results are calculated and reported. This involves 

using the volume of titrant added to the sample and the concentration of the titrant to 

calculate the concentration of the target analyte in the sample. It is important to ensure 

that all the necessary measurements are recorded accurately and that any sources of 

error are taken into account in the calculations (Skoog, 2013). The results are typically 

reported in terms of concentration, and they may be compared to regulatory standards or 

guidelines to determine if the wastewater is within acceptable limits (APHA, 2017).  

The final step in the titration process is to perform quality control checks to ensure that 

the results obtained are accurate and reliable. This involves analyzing a collection of 

established quantities of the target analyte in standard solutions and comparing the 

results obtained with those expected. Any discrepancies between the expected and 

actual results should be investigated and any necessary adjustments made to the titration 

method or equipment used (Vogel, 2012). 

Furthermore, titration is a powerful analytical technique that can be used to measure 

various parameters in wastewater treatment and analysis, including alkalinity, acidity, 

hardness, chloride, and sulfate. Accurate and reliable results depend on proper sample 

preparation, careful attention to detail during the titration process, and quality control 

checks (APHA, 1923). 



 

Titration is a versatile method for measuring several parameters in wastewater. 

Alkalinity can be determined via titration using a strong acid, such as hydrochloric acid 

(HCl), while acidity can be gauged using a strong base, such as sodium hydroxide 

(NaOH), both employing suitable pH indicators (Miroslav Radojevic, 2015). Water 

hardness can be evaluated through titration using ethylenediaminetetraacetic acid 

(EDTA), a chelating agent that reacts with calcium and magnesium ions (D. A. Skoog, 

2013). Similarly, sulfate ions can be assessed by employing barium chloride (BaCl2) in 

a titration process, resulting in a precipitate that signals the endpoint (D. C. Harris, 

2010). Thus, titration provides a flexible approach to measuring diverse parameters in 

wastewater. 

Gravimetry involves measuring the mass of a pollutant in a sample. This technique is 

useful for measuring the concentration of pollutants such as suspended solids and metals 

(APHA, 2017). Gravimetry provides accurate results, and it can be used to determine 

the mass of pollutants in a sample. However, it can be time-consuming and requires 

specialized equipment (Metcalf & Eddy Inc., 2014). 

In the first step of collecting a representative sample of the wastewater, the sample must 

be properly preserved and stored in a clean and labeled container until analysis, and 

then be filtered to remove any particulate matter and other impurities that could 

interfere with the gravimetric analysis (APHA, 2017). 

After filtration, the sample is treated with a reagent that causes the parameter of interest 

to precipitate out of the solution. For example, sulfate can be precipitated as barium 

sulfate by adding a solution of barium chloride to the wastewater sample. The 

precipitation reaction must be carefully controlled to ensure that all the parameter of 

interest has been precipitated out (G. D. Christian, 2004). 

After the precipitation reaction, the solid precipitate is collected on filter paper, shown 

in Figure 7, and washed several times with distilled water to remove any residual 

impurities. The filter paper with the precipitate is then dried to a constant weight at a 

controlled temperature (D. C. Harris, 2010). 



 

 

Figure 7 - Gravimetry analysis (Ready, n.d.) 

The filter paper with the dried precipitate is then weighed on a balance to determine the 

mass of the precipitate. The mass is used to calculate the concentration of the parameter 

of interest in the original wastewater sample (D. A. Skoog, 2013). 

As mentioned, gravimetry is a common analytical technique used in wastewater analysis 

to measure various parameters. Gravimetry can be used to measure the total amount of 

suspended solids in a wastewater sample. This is done by filtering the sample through a 

pre-weighed filter paper, then drying and weighing the filter paper with the suspended 

solids. The increase in weight represents the amount of TSS in the sample (APHA, 

2017). 

Nitrate in wastewater can be measured by gravimetry by precipitating it as silver nitrate. 

The precipitate is then collected on filter paper, dried, and weighed. The weight of the 

precipitate is used to calculate the concentration of nitrate in the original sample (G. D. 

Christian, 2004). Also, phosphate can be measured by precipitating it as ammonium 

magnesium phosphate, and sulfate by precipitating it as barium sulfate. (D. C. Harris, 

2010). 

Spectroscopy is a scientific method that measures the interaction between specific 

pollutants and electromagnetic radiation, helping to identify and quantify substances 

such as metals and organic compounds. Spectrophotometry, a subset of spectrometry, is 

particularly adept at quantitatively measuring the relative energy - emitted, transmitted, 

or reflected - in the visible or UV regions as a function of wavelength or wave number 

(Figure 8). Although these methods provide accurate results and can identify pollutants 

in a sample, they necessitate specialized equipment, making them potentially costly 



 

(Jinyi Li, 2020). A more in-depth discussion of these methods can be found in Section 

2.4. 

 

Figure 8- Measurement using a spectrophotometer (Sayeed, 2020) 

2.3.2 Real-time Measurements 

It is obvious that switching from conventional lab-based experiments to on-site (real-

time) monitoring will assist to solve some of the issues mentioned above. It would 

quickly resolve problems and contribute to enhancing the monitoring's spatial-temporal 

resolution, which would be helpful to reservoir managers, water suppliers, and 

lawmakers alike(Anon., n.d.). 

Real-time measurements are a powerful tool in wastewater treatment and management, 

providing continuous and instantaneous data on key water quality parameters (Rolf 

Altenburger, 2019). 

Furthermore, it offers numerous benefits for wastewater management, including 

improved process control, reduced risk of pollution events, and increased efficiency and 

cost-effectiveness. They can also help to ensure compliance with regulatory 

requirements and improve public health and environmental outcomes (Khaled 

Obaideen, 2022). 

Real-time measurements allow for rapid identification of changes in wastewater quality, 

enabling operators to take immediate action to adjust treatment processes as needed. 

They also provide a more comprehensive and accurate picture of wastewater quality 

over time, allowing for more informed decision-making and optimization of treatment 

processes (Zhining Shi, 2022). 



 

Real-time measurements play a crucial role in various stages of the wastewater 

treatment process, ensuring efficient operation, optimization, and control of the 

treatment system. Some of the key stages where real-time measurements are needed 

include Real-time monitoring of influent wastewater parameters, such as flow rate, pH, 

temperature, and concentrations of organic matter (e.g., BOD or COD), which allows 

for the adjustment and optimization of treatment processes to accommodate fluctuations 

in the incoming wastewater composition (Jakub Drewnowski, 2019).  

Furthermore, Real-time measurement of dissolved oxygen (DO) levels in the aeration 

basin enable precise control of aeration systems to maintain optimal conditions for 

biological treatment, ensuring efficient removal of organic matter and reducing energy 

consumption (Metcalf & Eddy, 2014). By monitoring concentrations of ammonia, 

nitrate, and phosphate in real-time, it is possible to optimize biological nutrient removal 

processes such as nitrification and denitrification. This is achieved through adjusting 

process conditions like aeration and carbon source addition, based on current nutrient 

levels (Prangya Ranjan Rout, 2021).  

Moreover, real-time assessments of final effluent parameters, including pH, 

temperature, turbidity, and concentrations of organic matter, nutrients, and pathogens, 

guarantee adherence to regulatory discharge limits while allowing for prompt 

adjustments to the treatment process when necessary (Zbigniew Mucha, 2016). 

There are a variety of real-time monitoring techniques available for wastewater 

pollutants, including online sensors, spectroscopic techniques, and flow cytometry. 

These techniques can provide continuous and instantaneous data on parameters such as 

pH, dissolved oxygen, turbidity, and organic matter (Irina Yaroshenko, 2020). 

While real-time measurements offer many advantages, there are also challenges and 

limitations to their use. These include issues with sensor accuracy and reliability, high 

equipment, and maintenance costs, and difficulties in data interpretation and analysis 

(Angelika Meyer, 2018). That is why research and development are needed to help 

overcome these barriers and improve the effectiveness and applicability of real-time 

monitoring techniques. 

In this thesis, we discuss the challenges associated with the COD laboratory test, which 

is widely used but presents several limitations. The test requires a significant amount of 



 

time for obtaining results due to transportation to the laboratory and the 2-hour test 

duration, meaning that environmental damage may occur before the data becomes 

available (Metcalf & Eddy, 2014). Additionally, even if the test may be carried out 

locally or in-situ, the testing remains pricy and lengthy since it uses hazardous 

chemicals that must be disposed of carefully and could hurt those conducting it 

(Zbigniew Mucha, 2016). In addition, the COD test fails to replicate natural processes, 

as it involves artificial incubation with a strong oxidizing agent (Eaton, 2005). 

Furthermore, since the COD laboratory test is unreliable and has an excessive baseline 

detecting limit, it cannot be used to analyze samples from clean or unpolluted rivers. 

Online analyzers based on dichromate methods also require the use of various other 

chemicals and have their own set of issues when compared to real-time spectrometry 

technology. The measurement frequency of these analyzers may vary, and they typically 

require regular maintenance (Metcalf & Eddy, 2014). Handling hazardous chemicals 

on-site can also pose challenges (Zbigniew Mucha, 2016). 

There are currently several online measurement devices for real-time COD monitoring 

that utilize different technologies, offering a more efficient and environmentally 

friendly alternative to traditional laboratory tests. These devices can provide rapid 

results, allowing for better process control and quicker response to changes in 

wastewater quality (Metcalf & Eddy, 2014). Some of the technologies are UV254 

analyzers (Zhining Shi, 2022), Transducers for biosensors, including optical, 

calorimetric, ion-selective field effect transistors (ISFET), piezoelectric (J.H.T. Luong, 

2011), and UV-Vis spectrophotometers (TOLEDO, n.d.) which is utilized for the 

research in this thesis. 

2.4 Spectroscopic method  

UV-Vis spectrophotometry 

As a kind of spectroscopy, spectrometry measures the quantity of energy absorbed by 

materials as well as the light that is produced as a result. In essence, every substance 

either transmits or absorbs light, and depending on the frequency at which it does so, we 

may determine what kind of substance it is (Services, n.d.). 



 

The spectral analysis serves as a crucial advancement in modern water environment 

monitoring technology. Compared to traditional methods, it offers several benefits 

including sensitivity, speed, and simplicity. These advantages fulfill the stringent 

requirements for water environment monitoring and highlight the method's vast 

potential for broad application. Thus, it is crucial to begin research on spectroscopic 

monitoring water COD (Fei Liu, 2016)  

Measurement of water's purity using optical techniques is quick, very sensitive, and 

requires no reagents. Although on-site, accurate sensing technology is still in the 

research phase (Christopher D. Kelley, 2014), superior water quality monitoring 

equipment will progressively gain popularity as computer technology and contemporary 

scientific instruments evolve (Fei Liu, 2016). 

Optical methods have also been employed for measuring water COD. These methods 

include visible spectroscopy (X.-M. Wang, 2016), visible-near infrared spectroscopy (S 

Haiyan, 2006), near-infrared spectroscopy (Xueqin Han, 2022), dual-wavelength 

spectroscopy (JIANG, et al., 2011), UV spectroscopy (Feng Weiwei, 2012), 

photochemical luminescence method (Huijun Zhao, 2003). Optical detection methods 

are fast, easy to operate, and ideal for real-time, online monitoring of water COD (Fei 

Liu, 2016). 

Most of these techniques, however, have been frustrated by their need to have constant 

contact with the wastewater, which results in instrument fouling, requiring frequent 

cleaning and re-calibration of the monitoring system. Other difficulties, particularly 

associated with the use of biosensors, are doubts regarding their reliability and ability to 

deal with high numbers of samples. The need for a reproducible device that is 

completely non-invasive for the monitoring of wastewater would be of great benefit 

(R.M. Stuetz, 1999). 



 

 

Figure 9 - a cuvette-based UV-Vis spectroscopy system's schematic illustration  

(Networks, n.d.). 

In this research, UV-VIS is used to measure the COD of wastewater samples. The UV-

Vis spectrophotometer (UV-VIS) is a powerful analytical tool used in wastewater 

treatment to measure pollutants in water samples. The structure of the UV-VIS consists 

of a light source, a monochromator, a sample holder, a detector, and a data processing 

unit (Figures 9 & 10). The light source emits light of varying wavelengths, which is 

then passed through a monochromator that selects a specific wavelength of light. This 

light is then passed through the sample holder containing the water sample, and light 

transmitted through the sample is detected by the detector. The data processing unit then 

processes this information to determine the concentration of pollutants in the sample 

(X.-M. Wang, 2016). 



 

 

Figure 10 - schematic view of UV-Vis spectrometer’s structure (Xuan, April 29, 

2020) 

The UV-VIS is crucial for measuring various contaminants simultaneously in 

wastewater since it can do it rapidly and correctly. It is a non-destructive method that 

does not call for time-consuming, expensive chemical treatments or chemicals. 

Additionally, being a versatile approach, it may be used to measure a variety of 

pollutants, including organic and inorganic chemicals, heavy metals, and other 

contaminants (Gurpreet Kaur, 2021). 

While valuable, UV-visible spectroscopy has practical restrictions. The equipment, 

including flip mirrors and monochromators, and the light sources utilized can introduce 

errors and stray light, impairing measurement accuracy and it would also be fitting 

Lambert-Beer's law to bad data. Additionally, spectral errors may result from the 

presence of very fluorescent substances. These issues can be reduced with regular 

instrument checks and adjustments (Yuchen Guo, 2020). 

The system's noise, which comes from several components and varies between samples, 

might skew the quantitative spectra. It usually has a Gaussian distribution and is 

difficult to get rid of. Savitzky-Golay, Fourier transform, and Wavelet transform are 

some of the methods suggested for noise reduction. Each has advantages and 



 

disadvantages. When used correctly, these techniques can reduce root mean square error 

and increase the signal-to-noise ratio (Nina Elomaa, 2021). 

Overall, the UV-VIS spectrophotometer is a valuable tool in the field of wastewater 

treatment and COD measurement. Its speed, accuracy, and simplicity make it a 

preferred method for many researchers and practitioners (Zhaofeng Kang, 2022). 

The use of direct UV-Vis spectroscopy for COD and nutrient measurements often 

involves the application of chemometric techniques and modeling. This is because the 

absorbance spectra obtained from the samples typically contain overlapping signals 

from multiple components. 

2.5 Chemometric 

Chemometrics is a multidisciplinary field that involves the application of statistical and 

mathematical methods to chemical data. It is used to extract meaningful information 

from large datasets, as well as to develop models for prediction and classification. 

Chemometric techniques can be used in combination with UV-Vis spectrophotometry 

(UV-VIS) to measure Chemical Oxygen Demand (COD) in wastewater samples 

(Gurpreet Kaur, 2021). Here is a review of how chemometric techniques are used in 

measuring COD with UV-VIS: 

Chemometric techniques can be used to develop calibration models for COD 

measurement using UV-VIS spectrophotometry. These models are based on the 

relationship between the absorbance of light with a certain wavelength and the 

concentration of COD in the sample (Jingwei Li, 2018)These methods make it possible 

to identify important factors that affect the variance in the data and the development of 

predictive models that can be used to estimate COD concentrations in unknown samples 

(Ming Zhu, 2021). 

Overall, the use of chemometric techniques, such as principal component analysis 

(PCA), partial least squares (PLS) regression, and artificial neural networks (ANN), in 

combination with UV-VIS spectrophotometry offers a powerful analytical tool for 

measuring COD in wastewater samples (Jingwei Li, 2018). PCA and PLS regression 

enable the reduction of multidimensional data into a smaller set of variables while 



 

preserving the majority of the information, which helps in identifying underlying 

patterns and trends. PLS regression, on the other hand, is a multivariate calibration 

method that can establish a relationship between the spectral data and COD values, 

making it possible to predict COD levels accurately (Mevlut Albayrak, 2019). A 

computer model known as an ANN may be used to simulate the operation of the human 

brain and to describe intricate, nonlinear interactions between input and output variables 

(John McGonagle, 2023). These techniques provide accurate and reliable results and 

can be used to develop predictive models for a wide range of applications. 

 

 



 

3 RESEARCH PROCESS 

3.1 Experimental Design and Set-Up 

This research aims to investigate the feasibility of using UV-visible spectroscopy for the 

determination of Chemical Oxygen Demand (COD) in wastewater samples, and 

subsequently to develop a predictive model with MATLAB for COD based on UV-

visible spectroscopy data. The research question is two-fold: can UV-visible 

spectroscopy data align with traditional laboratory methods for COD determination, and 

can a MATLAB model accurately calculate COD based on UV-visible spectroscopy 

data? 

To answer these questions, a comprehensive experimental design was implemented. The 

experiment relied on wastewater samples collected from four distinct points of the 

Taskila wastewater treatment plant. These points were strategically chosen to represent 

various stages of the treatment process: after the secondary clarifier, post-secondary 

filtration, following Membrane Bioreactor (MBR) treatment, and the final effluent 

shown in Figure 11 with green dots. 

 

Figure 11 - Sampling points from Taskila wastewater treatment plant (Valmet, 

2022) 

 



 

3.1.1 Methods in Determining COD with UV-vis 

On each sampling day, samples were drawn from each of the four points. Following 

collection, the samples were immediately transported to the Valmet office laboratory 

located in Oulu. There, each sample underwent a two-step filtration process: first, using 

a Whatman paper filter to remove larger particulates, and second, with a Whatman 1.2 

µm filter to ensure the removal of finer particles. The second filtration with a 1.2 µm 

filter was chosen because this is the pore size regularly used for filtration of suspended 

solids in wastewater treatment facilities. After filtration, each sample was diluted at a 

1:20 ratio to prepare it for UV-visible spectroscopy analysis, resulting in a total of 24 

samples. The UV-Vis spectrophotometer in use was from METTLER TOLEDO 

company and would use the LabX laboratory software to show the analysis. 

For ensuring accuracy and reducing the margin of error in the UV-visible spectroscopy 

readings, each of the 24 samples was measured using three different cuvettes. This 

tripartite measurement approach provided a safeguard against any potential inaccuracies 

that could be introduced by an individual cuvette, thereby enhancing the reliability of 

the experiment. 

The measurement setup comprised a total of 13 1cm quartz cuvettes. During the initial 

analysis, a noticeable difference was observed between the spectra derived from the 

three cuvettes used for each sample. To address this variability and achieve a more 

accurate representation of each sample's characteristics, a statistical approach was 

adopted. 

For each sample, the mean of the three spectra was calculated, providing a single 

representative value. The standard deviation, a measure of dispersion or variability, was 

also calculated for each sample's three spectra. These calculations aimed to understand 

the extent of the variability among the readings from the three cuvettes. 

Upon evaluation, it was found that the relative standard deviation was less than 1% for 

all the samples. Given this low level of variability, it was deemed negligible, leading to 

the decision to use the calculated mean value for each sample as the representative 

measure for subsequent analyses. This decision was based on the understanding that a 

low standard deviation indicates that the values are close to the mean, suggesting that 

the mean value is a reliable representation of the data. 



 

Additionally, to provide a visual representation of this variability, the spectra for all the 

cuvettes were plotted (Figure 12). These plots provided a clear illustration of the 

differences between the readings from the three cuvettes for each sample. This 

visualization further supported the decision to use the mean value for each sample in the 

subsequent stages of the experiment. 

 

Figure 12 - The spectra result from UV-Vis for all 12 cuvettes 

Through this detailed and meticulous measurement and error elimination process, a 

robust dataset was generated for further analysis and for the development of the 

MATLAB model for predicting COD based on UV-visible spectroscopy data. 

To obtain a comparative analysis, each day's original samples and the 1.2 µm-filtered 

samples were dispatched to two separate reference laboratories, Eurofins and CRS 

Laboratory. These laboratories performed standard tests to determine the COD and 

nutrient contents of the samples, providing a benchmark against which the UV-visible 

spectroscopy data could be compared. On each sampling day, samples were sent to 

Kajaani to CRS laboratory which they would receive and perform the analysis on the 

same day, and they were sent to Eurofins laboratory in Rovaniemi which would receive 

the samples too late on the sampling day and would perform the analysis on the next 

day. Each laboratory also analyzed other wastewater parameters like Phosphate, Nitrate, 



 

Nitrite, suspended solids, ammonia, and BOD. Parameters other than COD were also 

analyzed but the results are not reported in this thesis as its focus is COD. 

With these processed and tested samples, the experiment was designed to provide a 

thorough evaluation of UV-visible spectroscopy's capability in COD determination. The 

data obtained from this process formed the basis for the development of a MATLAB 

model intended to predict COD levels based on UV-visible spectroscopy data. Through 

this carefully designed and conducted experiment, the research aims to contribute to 

more efficient and accurate methods for COD determination in wastewater treatment 

facilities. 

3.1.2 Reference Laboratory Method and Comparison 

The methodology adopted by the reference laboratories, Eurofins and CRS laboratories, 

for determining the COD and nutrient contents of the samples hinges on the guidelines 

provided by ISO 15705:2002. This internationally recognized standard outlines the 

measurement of the chemical oxygen demand index (ST-COD) using a small-scale 

sealed-tube method (Donata Dubber, 2010). This method provides reliable and accurate 

results, forming a gold standard against which other methods, such as UV-visible 

spectroscopy, can be compared (Standardization, 2005). 

In the subsequent paragraphs of this section, a detailed comparison will be made 

between the COD values obtained from the ISO 15705:2002 standard method and those 

derived from UV-visible spectroscopy. This comparison will form the basis for 

assessing the efficacy of UV-visible spectroscopy as a potential alternative or 

complementary method for COD determination. Moreover, the insights derived from 

this comparison will inform the development of the MATLAB model, aimed at 

predicting COD levels from UV-visible spectroscopy data (Donata Dubber, 2010). 

Here's a general summary of how the process works in ISO 15705:2002 

(Standardization, 2002): 

- A water sample is collected. 

- The water sample is mixed with a strong oxidizing agent, usually potassium 

dichromate in a sulfuric acid solution. The oxidizing agent serves to oxidize both 

organic and inorganic substances in the water. 



 

- The mixture is heated in a sealed tube to speed up the reaction, typically to a 

temperature of 148°C (according to ISO 15705:2002) for a specific period. 

- After the reaction period, the mixture is cooled, and the remaining (unreacted) 

amount of the oxidizing agent is determined. This can be done by titration or by 

using a spectrophotometer. 

- The amount of oxidizing agent that has reacted corresponds to the COD of the 

water sample. 

The duration of the heating step in the sealed-tube method can vary, but it typically 

takes about 2 hours according to ISO 15705:2002. However, the entire process from 

sample collection to final measurement can take longer when considering setup, 

cooling, and analysis time (Standardization, 2002). 

ISO 15705:2002, which outlines the sealed-tube method for determining the Chemical 

Oxygen Demand (COD) of water samples, and UV-Visible Spectroscopy (UV-Vis) for 

determining COD, each has its advantages and potential drawbacks. 

Time and Cost: The ISO 15705:2002 method can be time-consuming and potentially 

costly, as it involves the use of hazardous chemicals (like strong acids and oxidizing 

agents), special equipment, and trained personnel (Standardization, 2002). On the other 

hand, UV-Vis spectroscopy can be faster and less costly, with the ability to rapidly scan 

multiple samples (Yuchen Guo, 2020). 

Accuracy: The ISO method is well-established and can provide highly accurate results, 

but it may not be as effective for samples with certain types of organic matter or in the 

presence of certain chemicals. UV-Vis spectroscopy relies on the correlation between 

absorbance and COD, which must be established for each type of sample. This method 

may not be as accurate for complex or variable samples. 

Safety and Environmental Impact: The ISO 15705:2002 method uses hazardous 

chemicals, which poses safety risks during handling and disposal concerns afterward 

(Standardization, 2002). In contrast, UV-Vis spectroscopy is generally safer and more 

environmentally friendly, as it does not require hazardous chemicals (Christian 

Bergaud, 2022). 



 

In conclusion, the choice between these methods can depend on various factors, such as 

the nature of the samples, the resources available, the accuracy required, and the 

importance of environmental and safety considerations. 

While the ISO 15705:2002 standard is reliable and offers highly accurate results, it is 

not without its drawbacks. The method can be time-consuming and potentially costly, 

requiring the use of hazardous chemicals, specialized equipment, and trained personnel. 

Moreover, safety risks during handling and post-analysis disposal concerns are 

significant due to the use of hazardous substances. 

In contrast, UV-Vis spectroscopy presents a promising alternative that can address 

many of these concerns. It is generally faster and less costly, does not require hazardous 

chemicals, can process multiple samples concurrently, enhancing the efficiency of the 

testing process, and can be utilized to automatize the process. The safety and 

environmental footprint of UV-Vis spectroscopy is far more favorable compared to the 

ISO method, which is a critical consideration in today's environmentally conscious 

world (Anon., n.d.). 

However, the accuracy of UV-Vis spectroscopy is contingent upon establishing a 

reliable correlation between absorbance and COD for each sample type (Ye, 2022). 

While this may present challenges for complex or variable samples, continued research, 

and technological advancements are likely to mitigate this limitation over time. 

Therefore, the development of a real-time measurement system for COD and other 

nutrients using UV-Vis spectroscopy holds significant promise. Such a system could 

revolutionize wastewater treatment monitoring, enabling faster, safer, more cost-

effective, and environmentally friendly operations. This aligns well with the broader 

objectives of sustainability and efficiency in water resource management. As such, 

efforts should be intensified toward the realization of this innovative approach. 

3.2 Analysis Methodology 

To analyze the correlation between the UV-Vis spectroscopy data and the COD values 

provided by the reference labs, a chemometric approach was applied in this study. As 

mentioned before, chemometrics is a method used to extract meaningful information 



 

from chemical systems by data-driven means. It involves applying mathematical and 

statistical methods to achieve maximum relevant chemical information by analyzing 

chemical data. It is a powerful tool in the analysis and interpretation of complex data 

sets in the chemical domain (Fidel Toldra, 2015). 

The chemometric method employed was constructed in MATLAB, a high-performance 

language for technical computing. MATLAB was chosen for its versatility, extensive 

suite of built-in functions, and the ability to develop customized functions to perform 

specific tasks (Pavel Kraikivski, 2021). 

3.2.1 Data Import and Selection 

The first step involved importing the data from the Excel files using the ’readable’ 

command in MATLAB, which allowed for the manipulation and analysis of the data in 

a tabular form. Once the data was imported, the user was prompted to select the 

columns and rows of interest. This step was crucial to narrow down the scope of the 

analysis to specific variables and samples. 

In this process, a distinctive choice was made to focus on the UV-Vis absorbance data 

in the wavelength range from 200 to 400 nm, diverging from the more commonly 

utilized 254 nm. This decision was based on several considerations. While the 254 nm 

wavelength is typically associated with the absorbance of aromatic compounds (John A. 

Izbicki, 2000) and unsaturated bonds, it might not encompass all the oxidizable 

materials present in the water or wastewater samples, given their diverse nature 

(Norwitz, 1975). 

By extending the wavelength range from 200 to 400 nm, a broader spectrum of organic 

and inorganic substances that could contribute to the Chemical Oxygen Demand (COD) 

was captured (Weining Xu, 2022). This range includes many organic compounds, 

including aromatic organics and certain inorganics, that absorb light, and therefore, it 

provides a more comprehensive picture of the absorbance characteristics of the sample 

(APHA, 2005) (Weining Xu, 2022). 

This approach, however, does not negate the need for careful consideration and 

validation. 



 

3.2.2 Data Visualization 

After data selection, scatter plots were generated with regression lines and correlation 

coefficients. The scatter plots were used to visually assess the relationships between the 

UV-Vis absorbance values and the COD values. This visual inspection served as an 

initial check of the possibility of a linear relationship. 

3.2.3 Machine Learning Models 

To further investigate the relationships between the UV-Vis absorbance and the COD 

values, three machine-learning models were developed: Linear Regression, Polynomial 

Regression, and Ridge Regression. 

A straightforward machine learning model called linear regression assumes a linear 

connection between the input variables (Amita Kapoor, 2022)(UV-Vis absorbance 

values) and the single output variable (COD values). 

Polynomial Regression, an extension of linear regression, was used for a more complex 

relationship between the UV-Vis and COD values. This model considered not just the 

linear component, but also higher-degree terms of the input variables, hence allowing 

for a curved relationship between the input and output variables (Kai-Tai Fang, 2005). 

Ridge Regression, a type of regularized linear regression that includes an L2 penalty, 

was employed to manage possible multicollinearity among the predictors due to closely 

related input variables. This model helped in improving the prediction accuracy and 

interpretability of the coefficient estimates (Trevor Hastie, 2013). 

The models were implemented using the MATLAB built-in functions ’film’ (for Linear 

Regression), ’fitpolym’ (for Polynomial Regression), and ’fitrlinear’ (for Ridge 

Regression). The data was split into training and testing sets, with 70% of the data used 

for training the models and 30% for testing. Five-fold cross-validation was performed to 

tune the hyperparameters and to assess the models' performance. 

3.2.4 Spectral Data Analysis 

The spectral data from the UV-Vis spectroscopy was thoroughly analyzed by comparing 

UV-Vis spectra under various conditions. This involved comparing different days, 



 

different points, different concentrations, and even different temperatures. This helped 

in understanding how these factors could potentially influence the UV-Vis spectra and 

subsequently the predicted COD values. 

In conclusion, the analysis methodology employed in this study leveraged a 

combination of chemometric methods, machine learning models, and thorough spectral 

data analysis. These rigorous analytical procedures were aimed at establishing a 

reliable, accurate, and efficient process for predicting COD values from UV-Vis 

spectroscopy data. It is important to note that while this section provides an overview of 

the methods used, the results and discussion sections will delve into the outcomes of 

these analyses and the implications of the findings. 



 

4 ASSESSMENT OF THE RESULTS 

The data obtained from the UV-Vis spectroscopic analyses and COD reference lab 

results provide a comprehensive understanding of the wastewater characteristics under 

investigation. This chapter will present these findings in a structured manner to 

highlight their significance and implications. The data has been organized into three 

main sections. Each section provides a unique perspective on wastewater properties, 

leading us toward the development of a COD prediction model. 

4.1 Spectral Analysis and Initial Observations 

This section focuses on the spectra results obtained from UV-Vis analyses. The spectral 

characteristics will be compared across various parameters such as time of sampling, 

sampling points, and sample preparation methods like dilution and filtration. By doing 

so, the aim is to understand the spectral behavior of the different constituents present in 

the wastewater and how they change according to these variables. 

4.1.1 UV-Vis Spectra Overview  

 

Figure 13 - Sample UV-Vis spectra result 

The spectral analysis of wastewater samples was conducted within the 190-1100 nm 

wavelength range, and the data drawn from this analysis has highlighted a range of 



 

distinct characteristics pertinent to our study. Spectral profiles for the four chosen 

sampling points displayed unique variations that can be attributed to the different 

constituents present in the wastewater at each point. 

In the spectrum, as can be seen in Figure 13, the absorbance values spanned a broad 

range from around -0.02 to over 3.6, suggesting a substantial diversity in the 

concentration of absorbing species in the samples. The maximum absorbance was 

observed between the wavelengths of 190 and 240 nm. This high absorbance region, 

however, was accompanied by significant noise, potentially reflecting the presence of 

multiple absorbing compounds, or perhaps the high-energy interactions at shorter 

wavelengths (Weining Xu, 2022). 

Between 240 and 420 nm - the wavelength range highly significant to the Chemical 

Oxygen Demand (COD) (Weining Xu, 2022) - the absorbance showed a gradual 

decrease. This range revealed a clear distinction among the spectra from different 

sampling points, emphasizing the role of spatial factors in shaping the absorption 

properties of the wastewater. The observed decreasing trend may suggest the differential 

distribution of organic and inorganic substances contributing to COD. 

Beyond 420 nm up to 1100 nm, the absorbance dropped to the lowest levels, indicating 

a reduced presence of light-absorbing substances. However, this range was also 

characterized by a notable degree of noise, albeit with a very low differential range. 

While the low absorbance suggests limited spectral activity, the noise might indicate 

minor fluctuations due to trace compounds absorbing in this range or possible 

instrumental artifacts (Jinyi Li, 2020). 

In sum, the spectral profile from 190 to 1100 nm displayed a significant peak 

accompanied by noise between 190 and 240 nm, a gradually decreasing slope from 240 

to 420 nm, and high noise with limited absorbance variability from 420 to 1100 nm. 

These spectral characteristics serve as a roadmap for our further exploration into the 

precise correlation between UV-Vis spectra and COD and our subsequent model 

development for COD prediction. The following sections will delve deeper into the 

specifics of these spectral features, their implications, and the results derived from them. 

 



 

4.1.2 Temporal variation 

Variation in Spectra Across Sampling Days  

The temporal analysis of the spectral data provides insight into the variation of UV-Vis 

absorbance patterns over time. Multiple spectra were analyzed across six distinct 

sampling days for the four different sampling points.  

 

Figure 14 - Results from all 6 samples after Secondary Clarifier 



 

 

Figure 15 - Results from all 6 samples of Filtration 

 

Figure 16 - Results from all 6 samples after MBR 



 

 

Figure 17 - Results from all 6 samples of Effluent 

The study found noticeable differences in the spectra across the sampling days for each 

point (Figures 13-17), demonstrating a temporal effect on the absorbance characteristics 

of the wastewater samples. This temporal variation can likely be attributed to changing 

concentrations and compositions of organic and inorganic substances in the wastewater 

across different days. 

4.1.3 Impact of Filtration on Spectra 

The investigation extended to analyze the impact of filtration on the UV-Vis spectra of 

wastewater samples. Undiluted samples after the secondary clarifier were subjected to 

two rounds of filtration - first with paper filters (F1) and then with 1.2 µm filters (F2). 

This sequential filtration was performed to differentiate between the effects of these two 

types of filters on the spectra. 



 

 

Figure 18 - Results from a sample after the second clarifier with two different 

filtrations 

A comparison of the spectra from the original unfiltered sample and the two filtered 

samples revealed significant differences in the COD-related wavelength range (Figure 

18). Both filtration processes led to substantial changes in absorbance within this range. 

These findings imply that filtration can significantly modify the composition of the 

samples, potentially by removing particulate matter and certain types of organic and 

inorganic materials that contribute to COD. 

In parallel, the research also assessed the impact of filtration on diluted samples from 

the secondary clarifier output (Figure 19). A stark difference was observed in the 

spectra, particularly in the 200-250 nm range, which is indicative of nitrate 

concentration (Jing Dong, 2023). 



 

 

Figure 19 - Results from a Diluted sample of after Secondary Clarifier with two 

different filtrations 

 

Figure 20 - Results from a Diluted sample of after Secondary Clarifier with two 

different filtrations in the nitrate-related wavelength range 

 



 

Upon filtration, diluted samples revealed distinct and easily distinguishable peaks 

within this nitrate-related range as shown in figure 19 and even better in Figure 20. 

These conspicuous differences in the spectral patterns suggest that the filtration process 

could have influenced the nitrate composition in the samples. Moreover, the filtration 

appears to enhance the clarity of the differences in nitrate levels among the samples, 

making them more distinguishable. 

This significant differentiation could potentially offer a straightforward and efficient 

method of estimating nitrate levels using UV-Vis spectral data. By enhancing the 

visibility of differences in nitrate levels across samples, filtration may facilitate more 

accurate predictions of this parameter. 

Apart from the nitrate-related range, noticeable effects of filtration were also observed 

across other wavelengths. Notably, the region beyond 420 nm demonstrated an elevated 

level of noise in the filtered samples compared to the unfiltered ones. This could be a 

consequence of dilution and filtration altering the chemical complexity of the sample. 

To summarize, the filtration process seems to profoundly affect the UV-Vis spectra of 

diluted wastewater samples. It underlines the necessity of considering the effects of 

filtration during the interpretation of spectral data for more accurate predictions of 

nitrate levels, as well as COD. Appreciating these influences will contribute to the 

enhancement of prediction models for water quality parameters. 

4.1.4 Comparative Analysis of Spectra Across Different Sampling Points  

This section focuses on the comparative analysis of the spectral data across the four 

different sampling points - after the secondary clarifier, after filtration, after the MBR 

process, and after the effluent. These locations offer a holistic perspective of the 

wastewater treatment process, revealing insights into the effectiveness of each stage in 

reducing COD levels. 

The UV-Vis spectra provide a clear indication of the variation in the absorbance 

characteristics, particularly within the COD-relevant range, across the four different 

points in the wastewater treatment process (Figure 21). 



 

 

Figure 21 – Results from samples of different sampling points 

 

After the secondary clarifier, the samples displayed the highest absorbance levels within 

the COD range, indicating the highest levels of organic and inorganic substances that 

contribute to COD. Following filtration, the absorbance levels decreased but remained 

significantly high. In samples taken after the MBR process, a more significant reduction 

in absorbance within the COD range was observed. Finally, in the effluent samples, 

which is a mix of 1/3 MBR and 2/3 filtration outputs, a slight increase in absorbance 

levels was noted compared to the MBR-only samples. 

In summary, this comparative analysis of spectral data provides valuable insights into 

the progressive reduction of COD levels across the different stages of the wastewater 

treatment process. The UV-Vis spectroscopic data corroborates the anticipated 

efficiency of each treatment stage, thereby highlighting its potential as a reliable tool for 

real-time wastewater quality monitoring. 



 

4.1.5 Impact of Dilution on Spectra 

This section explores the influence of dilution on the spectral characteristics of 

wastewater samples across the full UV-Vis range (190-1100 nm). The spectral data of 

both undiluted and diluted samples from all sampling points on a randomly selected 

sampling day were evaluated, and the comparative differences in absorbance were 

examined (Figures 21 & 22). 

 

Figure 22 – Results from diluted samples of different sampling points 

Undiluted samples demonstrated a wide range of absorbance values, spanning from -

0.02 to 3.34 in Figure 13. After dilution, however, the absorbance values contracted 

significantly to a range between 0 and 1.1 in Figure 22. 

Notably, the shape of the spectra underwent a marked transformation upon dilution. The 

spectra of diluted samples within the range of 190 to 240 nm exhibited a distinct peak, 

followed by a drastic decrease in absorbance post-240 nm. After this point, the 

absorbance level remained close to zero for the remainder of the UV-Vis range, 

underscoring the dramatic effect of dilution on the spectral shape. 



 

Among all sampling points, diluted samples from the Membrane Bio-Reactor (MBR) 

showed the highest and most distinguishable peak (Figure 22). This implies that these 

samples contain an abundance of substances that absorb light within this nitrate range 

and may provide more accurate estimations of nitrate levels in subsequent machine 

learning model predictions. 

 

Figure 23 – Results from diluted and undiluted samples of after effluent 

The spectra of effluent samples in Figure 23, both undiluted and diluted, taken on the 

same day also demonstrated clear differences in their absorbance characteristics, 

reinforcing the significant impact of dilution on the spectra. 

These observations highlight the critical role of sample preparation, particularly 

dilution, in UV-Vis spectroscopy analysis of wastewater. The drastic spectral 

transformations induced by dilution underscore the need for careful calibration during 

sample preparation, particularly when working with samples containing lower 

concentrations of COD-contributing compounds. 



 

4.2 Correlation between UV-Vis Results and Reference Lab Results 

In this section, the relationship between the results obtained from the UV-Vis 

spectroscopy and the reference laboratory data is explored.  

4.2.1 Correlation with Original Samples 

Here, in Figure 24 the correlation graphs between the UV-Vis spectra and COD 

laboratory results of the original, untreated samples are explored. 

 

Figure 24 – Compatibility graph for all original samples 

The correlation coefficient of 0.887 between the results from UV-Vis and the reference 

laboratory for COD in the original, undiluted, and unfiltered wastewater samples is 

quite high, indicating a strong linear relationship between the two sets of data. This 

suggests that the UV-Vis spectrophotometry method is capable of providing reliable and 

accurate COD measurements, with results that are comparable to those obtained from 

traditional laboratory methods. 

4.2.2 Correlation with Filtered Samples 

This subsection with Figure 25 focuses on the correlation between the UV-Vis results 

and COD laboratory values of the filtered samples. 



 

 

Figure 25 – Compatibility graph for all filtrated samples 

The correlation coefficient between the UV-Vis results and reference laboratory results 

for COD determination in the original samples (0.887) is slightly lower than that 

obtained for the filtered samples (0.922). This could be attributed to the presence of 

suspended solids and other contaminants in the original samples, which may interfere 

with the UV-Vis measurements and affect the accuracy of COD determination.  

4.2.3 Correlation at Different Sampling Points 

Lastly, the comparison between the UV-Vis and COD lab data across different sampling 

points is explored in Figures 26 - 29, presenting the relationship in separate graphs for 

each point. 



 

 

Figure 26 – Compatibility graph for samples of after secondary clarifier 

For the samples after the secondary clarifier (Figure 26), the correlation is 0.776, which 

indicates a relatively strong correlation. This correlation may be due to the presence of 

residual solids and organic matter that could interfere with the UV-Vis measurement. 

 

Figure 27 – Compatibility graph for samples of after filtration 



 

 

For the samples collected after the filtration process of the post-secondary clarifier the 

initial correlation analysis returned a coefficient of -0.019. However, an interesting 

transformation occurred upon revisiting the dataset and eliminating identified outliers 

with MATLAB. Following the exclusion of these outlier data points, the correlation 

coefficient significantly increased to 0.625 (Figure 27). This substantial improvement 

indicates a moderate positive correlation between the UV-Vis spectroscopy data and the 

reference lab results, thereby suggesting that the UV-Vis method may indeed be a 

reliable approach for predicting COD levels post-filtration, granted the dataset is 

carefully curated and outliers are appropriately addressed. 

 

Figure 28 – Compatibility graph for samples after MBR 

For the samples after MBR, shown in Figure 28, the correlation is 0.90, which indicates 

a strong positive correlation between the UV-Vis and reference laboratory methods. 

This is likely due to the removal of most of the organic matter and suspended solids 

during the MBR process, resulting in a more consistent and accurate measurement of 

COD. 

 



 

 

 

Figure 29 – Compatibility graph for samples of Effluent 

For the samples of effluent, as can be seen in Figure 29, the correlation is 0.389, which 

indicates a weak positive correlation. This result is likely since the effluent is a mixture 

of 1\3 MBR and 2\3 filtration after the second clarifier, with varying levels of organic 

matter and suspended solids.  

Overall, these results suggest that the accuracy of the UV-Vis method for COD 

determination may vary depending on the specific sampling point in the wastewater 

treatment process. Further investigation and optimization of the method may be 

necessary to improve the accuracy and consistency of the results across different stages 

of the treatment process. 



 

 

Figure 30 – Compatibility graph for filtered samples after secondary clarifier 

 

Figure 31 – Compatibility graph for filtered samples of after filtration 



 

 

Figure 32 - Compatibility graph for filtered samples of MBR 

 

Figure 33 – Compatibility graph for filtered samples of effluent 



 

 

The compatibility graph results for the filtered samples, in Figures 30 to 33, show a high 

correlation coefficient between the COD values measured by UV-Vis and the reference 

laboratory. The highest correlation coefficient of 0.986 was obtained for the samples 

taken after the MBR, indicating that the developed UV-Vis method is highly applicable 

for monitoring COD levels in treated wastewater samples. The correlation coefficient of 

0.75 for the samples taken after the secondary clarifier indicates that the developed 

method is still effective for detecting COD levels in the primary treatment stage of the 

wastewater treatment process. 

Comparing these filtered sample results with the original samples' results discussed 

earlier, it is observed that the correlation coefficients for the filtered samples are 

generally higher. This may be due to the removal of any particulate matter or interfering 

substances through the filtration process, which may have affected the accuracy of the 

COD measurements in the original samples. However, it is important to note that the 

filtration process may not always be practical in real-world applications, and the 

developed method needs to be validated for both filtered and unfiltered wastewater 

samples. 

4.3 COD Prediction Model Results 

This final section will showcase the output of the COD prediction models developed in 

MATLAB. The efficiency of the models will be evaluated by comparing the predicted 

COD values with the reference lab results. This section will help assess the viability of 

the prediction models and determine their accuracy and applicability. 

The given results reflect the performance of three regression models - Linear 

Regression, Polynomial Regression, and Ridge Regression - on predicting the Chemical 

Oxygen Demand (COD) value based on UV-Vis data. The models were trained on 47 

data sets and tested on a separate data set with a known COD of 38. 

A good starting point was to try linear regression and then polynomial regression. If the 

performance was not satisfactory, then move on to more complex models. Cross-



 

validation was used to estimate the generalization error of the models and to tune any 

hyperparameters. 

Linear Regression:  

The code is designed for MATLAB and uses built-in functions for linear regression, 

cross-validation, hyperparameter tuning, and outlier detection. The outlier detection 

method used is based on the Z-score, which is a common statistical approach for 

identifying outliers. All samples that have a Z-score greater than 3 or less than -3 are 

considered outliers and are removed from the training set. This threshold can be 

adjusted depending on the specific requirements of the data and analysis (Richard De 

Veaux, 2013). The Z-score is a measurement of how far an element deviates from the 

mean by standard deviation.  

In the case of a normally distributed dataset, about 68% of Z-scores will lie between -1 

and 1 (i.e., within one standard deviation of the mean), approximately 95% between -2 

and 2, and approximately 99.7% between -3 and 3 (Boris Iglewicz, 1993). 

In the context of outlier detection, a common approach is to consider values with a Z-

score of greater than 3 or less than -3 as outliers, as these are more than three standard 

deviations away from the mean (Boris Iglewicz, 1993). However, this threshold can be 

adjusted depending on the specifics of the data and the analysis. 

The linear regression model has been run twice, as indicated by the two different z-

scores (3 and >4) and corresponding results. 

The first run (z-score = 3) has an RMSE (Root Mean Square Error) on the testing set of 

11.118333 and predicts a COD value of 40.806247. 

The second run (z-score > 4) has an RMSE on the testing set of 9.071002 and predicts a 

COD value of 36.020252. 

In this case, it seems to be indicating the degree of outlier removal: a higher z-score 

threshold (>4) allows more extreme data points to be considered, leading to a different 

model and slightly better performance (lower RMSE). The RMSE of 9.07 indicates that 



 

the typical prediction error made by the linear regression model is approximately 9.07 

units of COD. RMSE is a measure of prediction error and lower values are better. 

In both runs, the predicted COD value is reasonably close to the true COD value of 38, 

though the model with z-score > 4 provides a closer prediction. 

Polynomial regression: 

If the relationship between the UV-Vis data and the COD level is not linear but rather 

follows some sort of curve, then polynomial regression might be a good choice. 

Polynomial regression fits an n-th degree polynomial to the data and can capture 

relationships that a simple linear regression cannot (Gareth James, 2017). However, the 

degree of the polynomial should be chosen carefully, as high degrees can lead to 

overfitting. 

In this modification, a loop was created to try different polynomial degrees (1 through 2, 

in this case). For each degree, 5-fold cross-validation was performed, computing the 

root-mean-square error (RMSE) for each fold and then averaging the RMSEs to get a 

mean RMSE for each degree. Then the degree was selected with the smallest mean 

RMSE as the best degree for our final model. 

RMSE on the testing set: 6.762511 

Predicted COD value: 23.831920 

The Polynomial Regression model has an RMSE on the testing set of 6.762511 and 

predicts a COD value of 23.831920. 

This model significantly underpredicts the true COD value. However, it has a lower 

RMSE than the linear regression models, indicating that it makes smaller errors on 

average on the test set. The fact that it underestimates the COD so significantly for this 

particular test case might suggest that the model is underfitting, or not complex enough 

to capture the relationship in the data. 

Ridge Regression:  



 

This is a method of linear regression where a penalty is applied to the magnitude of 

coefficients. This can help to prevent overfitting when dealing with a large number of 

predictors, which might be the case with UV-Vis data (Trevor Hastie, 2008). 

RMSE on the testing set: 4.240694 

Predicted COD value: 36.552118 

The Ridge Regression model has an RMSE on the testing set of 4.240694 and predicts a 

COD value of 36.552118. 

This model performs the best among the three in terms of RMSE, making the smallest 

average errors on the test set. Its predicted COD value is also the closest to the true 

value, indicating that it generalizes well to unseen data. 

Overall, based on the RMSE values, the Ridge Regression model appears to perform the 

best on average, followed by the Polynomial Regression model, and then the Linear 

Regression model. However, when it comes to predicting the specific test instance with 

a COD of 38, both the Linear Regression and Ridge Regression models perform well, 

while the Polynomial Regression model does not.  

Then the Ridge Regression model was modified to include the computation and output 

of the additional metrics (MAE and R^2), as well as the creation of a scatter plot for the 

predicted vs actual values and a residual plot. And here are the results for that: 

MAE (Mean Absolute Error) is another measure of how well the model's predictions 

match the actual values. The MAE is 3.29. Like RMSE, a lower MAE indicates a better 

fit. The MAE is often easier to interpret than the RMSE because it's in the same units as 

the original data. It means that, on average, the model's predictions are about 3.29 units 

away from the actual values. 

The proportion of the dependent variable's (COD) variation that can be predicted from 

the independent variables (UV-Visual data) is measured by R-squared. The R-squared 

value is 0.611, or 61.1%. This means that approximately 61.1% of the variation in COD 

values can be explained by the model. The remaining 38.9% of the variation is 

unexplained, which might be due to other factors not included in your model. 



 

 

Figure 34- Predicted vs Actual COD values plot 

Ideally, all points should lie along the 45-degree reference line, which represents perfect 

prediction. The distance of the points from this line represents the error of the 

prediction. If points are above the line, the model is underpredicted; if they are below, it 

is overpredicted. The distribution of points around the line shows the model's 

performance. In Figure 34 the points seem to be scattered moderately close to the 45-

degree reference line which indicates that this model is working well, although there is 

room for improvement.  



 

 

Figure 35- Residual Plot 

In this plot, the residuals (anything which separates actual values from predictions) are 

plotted against the predicted values. Ideally, the residuals should be randomly scattered 

around the horizontal axis. If patterns can be seen in the residuals (like a curve), it 

suggests that the model isn’t capturing some underlying pattern in the data. If the 

residuals are randomly distributed, it validates the assumption that the errors are 

normally distributed, and the model is appropriate for the data which seems to be the 

models on a single test case. For a more robust evaluation, additional metrics should be 

considered, and multiple test cases should be used to better understand how these 

models perform across various scenarios. And in Figure 35 which showcases the 

residual plot for my Ridge Regression model seems to be randomly scattered with no 

underlying pattern which further assures the accuracy of the model. 

To use materials with known COD as a reference for calculating COD with a MATLAB 

model, reference materials that have a wide range of COD values and are representative 

of the types of organic and inorganic compounds typically found in wastewater should 

also be used. Here are some examples of materials that could be considered using 

(American Public Health Association, 2017): 



 

Glucose: Glucose is a common organic compound that is often used as a reference 

material for COD analysis. It has a known COD value of approximately 1.0 g COD/g 

glucose. 

Acetic acid: Acetic acid is another organic compound that is commonly used as a 

reference material for COD analysis. It has a known COD value of approximately 1.5 g 

COD/g acetic acid. 

Potassium hydrogen phthalate: Potassium hydrogen phthalate is an inorganic compound 

that is commonly used as a reference material for COD analysis. It has a known COD 

value of approximately 6.0 g COD/g potassium hydrogen phthalate. 

Toluene: Toluene is an organic compound that is commonly found in industrial 

wastewater. It has a known COD value of approximately 3.6 g COD/g toluene. 

Ammonium chloride: Ammonium chloride is an inorganic compound that is commonly 

found in wastewater. It has a known COD value of approximately 0.2 g COD/g 

ammonium chloride. 

Using a range of reference materials with different COD values and chemical 

compositions will help to ensure the accuracy and reliability of the MATLAB model for 

COD analysis  (American Public Health Association, 2017). 

 

 



 

5 CONCLUSIONS AND RECOMMENDATIONS 

5.1 Answers to the Objectives of this Thesis 

This thesis set out to collect preliminary data and information to provide an initial 

understanding necessary for the further advancement and elaboration of the project. The 

primary focus was the development of an efficient and dependable method for real-time 

Chemical Oxygen Demand (COD) determination in wastewater samples utilizing UV-

visible spectrophotometry, intending to integrate this method into a prospective device 

designed by Valmet. 

This initiative originated from the envisioned creation of a Real-time measurement 

product capable of multi-parameter monitoring. It would enable the simultaneous 

determination of the COD, nitrate, nitrite nitrogen, and phosphorous content in the 

wastewater. Traditional techniques often present hurdles due to their complexity, 

instability, time consumption, lack of integration, and potential to cause secondary 

pollution. The proposed product addresses these issues, showcasing the potential for 

widespread application by enhancing stability, speeding up the determination process, 

bettering integration, and preventing secondary pollution. 

One key part of this research includes evaluating the reliability, precision, and 

repeatability of the proposed method in contrast to traditional COD measurement 

approaches. The creation and execution of a MATLAB code for processing and 

analyzing UV-Vis spectral data are vital for the swift calculation of COD values for 

diverse wastewater samples. The thesis also probes the correlation between UV-Vis 

spectral characteristics and COD values, aiming to enhance calibration and prediction 

models for COD determination. 

During my research, six wastewater samples were collected from four distinct locations 

within the Taskila wastewater treatment plant, and these samples were filtered and 

diluted, and analyzed using UV-Vis spectroscopy.  

Building on the primary data, the study also explored the development of COD 

prediction models using MATLAB. Three regression models - Linear Regression, 

Polynomial Regression, and Ridge Regression - were developed and evaluated. Results 



 

showed the highest prediction accuracy for the Ridge Regression model, with a Mean 

Absolute Error (MAE) of 3.29 and an R-squared value of 61.1%. These metrics suggest 

that this model accounts for a significant portion of the variability in COD values and 

can predict COD with reasonable precision. 

Further analysis was carried out on the correlation between the UV-Vis and COD lab 

results for both the original and filtered wastewater samples. It was observed that the 

correlation coefficients were generally higher for the filtered samples. This further 

strengthened the evidence for the use of UV-Vis spectroscopy in wastewater treatment, 

although it was noted that the filtration process might not always be practical in real-

world applications, underscoring the need for additional studies on unfiltered 

wastewater samples. 

In conclusion, the study demonstrated the potential of UV-Vis spectrophotometry as a 

reliable, efficient, and accurate method for COD determination in wastewater treatment. 

The high correlation between UV-Vis spectroscopy findings and laboratory reference 

outcomes successfully proves that UV-Vis spectroscopy is a reliable tool for 

determining at least nitrate and COD in wastewater, further supporting the thesis's core 

argument. The MATLAB prediction models, while showing promise, require further 

refinement and validation with larger datasets and across diverse wastewater treatment 

scenarios. The outcome of this research serves as a foundation for future studies seeking 

to advance wastewater treatment monitoring methods, aiming for real-time, accurate, 

and efficient processes to ensure optimal environmental sustainability. 

5.2 Suggestions for further research 

In advancing this line of research, a broad array of strategies is recommended to 

enhance the accuracy, applicability, and overall understanding of the developed method. 

To begin, it is proposed that the frequency of sampling measurements should be 

increased, and further testing should be carried out in the Valmet office lab and 

collaboration with more reference laboratories. These measures will contribute to 

establishing a more precise reference COD value, thereby improving the accuracy of 

MATLAB models and assisting in the selection of the most suitable model. 



 

It's further recommended to expand the study by testing different types of water. This 

approach will result in a more diverse dataset and foster the development of more robust 

models. Undertaking measurements at varying temperatures and pH levels are also 

proposed, as this can aid in calibrating the UV-Vis spectrophotometry method and 

defining any necessary correction factors. It is suggested to develop an automated, 

continuous sampling system for the real-time measurement device to enable more 

frequent and representative monitoring of wastewater treatment processes. 

To achieve a more holistic understanding of wastewater quality, the project scope 

should be expanded to incorporate additional water quality parameters, such as 

Biological Oxygen Demand (BOD), Total Suspended Solids (TSS), and nutrient 

concentrations. 

In the pursuit of refining the UV-Vis spectrophotometry method, the use of advanced 

chemometric methods and machine learning algorithms should be explored. 

Additionally, the correlation between UV-Vis spectral features and COD values should 

be further investigated, to improve calibration and prediction models for COD 

determination.  

Moving forward, it is proposed to integrate the developed method into a portable, real-

time measurement device. This device would not only facilitate on-site monitoring of 

wastewater treatment processes but also ensure compliance with environmental 

regulations. The potential economic and environmental benefits of such a real-time 

COD measurement method should be evaluated, with considerations such as quicker 

analysis time, reduced reagent use, and more efficient wastewater management. 

Moreover, the exploration of integrating other real-time monitoring techniques, such as 

fluorescence spectroscopy or electrochemical methods, should be pursued. This could 

lead to the development of a multi-parameter monitoring system, capable of conducting 

a comprehensive wastewater analysis. Long-term field tests of the real-time 

measurement device should also be conducted, to assess its performance, durability, and 

applicability under various environmental conditions and wastewater matrices. 

Lastly, a detailed life-cycle assessment and cost-benefit analysis should be conducted to 

compare the developed real-time measurement method with conventional techniques. 

Factors such as instrumentation cost, reagent consumption, and labor requirements 



 

should be taken into account. The results of this analysis will not only highlight the 

strengths of the proposed method but also identify areas for further optimization and 

refinement. 

Addressing these uncertainties can further improve the accuracy of the UV-Vis 

spectrophotometry method and enhance the reliability of the developed models. The 

sources of uncertainty identified during this study, including the time delay between 

sample collection and analysis, as well as the division of samples for filtering, dilution, 

and sending to different laboratories, warrant particular attention. 

Firstly, the time delay between sample collection and measurement, as well as the gap 

between the measurement and the analysis by the reference laboratory, introduce 

variability that could affect the consistency of the results. It is suggested that future 

research should aim to minimize this time delay. This could involve synchronizing 

sample collection and analysis schedules more effectively or optimizing the transport 

and storage conditions to better preserve the sample properties during transit. 

Secondly, the division of samples may introduce heterogeneity, particularly concerning 

the suspended solids present. It is recommended that future work should involve 

standardizing the procedure for sample division to ensure that each aliquot is as similar 

as possible to the others. Techniques such as thorough mixing before division or 

employing statistical methods to account for this source of variability could be 

beneficial. Moreover, investigating the impact of these variables on the outcomes and 

devising methods to control or correct them could enhance the reliability and 

reproducibility of the measurements. 

For future research, it is also recommended to consider a more systematic approach for 

the experimental design and statistical analysis, which can effectively reduce the effect 

of the sources of uncertainty. The application of Quality by Design (QbD) principles 

can aid in the identification and quantification of sources of variability affecting the 

process, enabling the researchers to control and reduce the level of uncertainty. 

Furthermore, more robust pre-treatment methods for the samples, especially for those 

with high suspended solid content, can be implemented to minimize the disparity during 

sample division and enhance the homogeneity of the samples. 



 

Lastly, the collaboration with reference laboratories should continue and be expanded, if 

possible, to include additional methods of verification, such as proficiency testing or 

round-robin studies. These activities would help to identify and quantify sources of 

uncertainty, facilitate the sharing of best practices, and provide an external check on the 

quality of the results. 

Collaboration with industry partners and regulatory agencies is recommended to 

validate the developed method and encourage its adoption in wastewater treatment 

plants and environmental monitoring programs. The exploration of emerging 

technologies, such as IoT and cloud computing, could further enable remote monitoring 

and control of the real-time measurement device, thereby facilitating more efficient 

wastewater management and decision-making. 



 

6 SUMMARY 

The overarching aim of this thesis was to explore the use of UV-Vis spectrophotometry 

and MATLAB modeling to enhance the real-time measurement of Chemical Oxygen 

Demand (COD) in wastewater treatment processes. While the research does not purport 

to offer an absolute and definitive solution to real-time COD measurement, it lays an 

essential groundwork for future investigations and progress in this field. 

The study's initial phase explored the utility of UV-Vis spectrophotometry as a method 

for determining COD and nitrate levels in wastewater samples. The outcomes indicated 

the potential for the method's use as a real-time monitoring tool in wastewater treatment 

operations. This discovery could be instrumental in advancing the current practices in 

wastewater treatment monitoring. 

Building on the foundation of these primary data, the research then delved into the 

development of COD prediction models using MATLAB. Three regression models 

were developed— Linear Regression, Polynomial Regression, and Ridge Regression. 

Among them, the Ridge Regression model demonstrated the highest prediction 

accuracy, with a Mean Absolute Error (MAE) of 3.29 and an R-squared value of 61.1%. 

These metrics indicate that the Ridge Regression model accounts for a significant 

portion of the variability in COD values and has the potential as a reliable prediction 

tool. 

Further investigations into the correlation between UV-Vis and COD lab results were 

undertaken for both the original and filtered wastewater samples. Generally, higher 

correlation coefficients were observed for the filtered samples, thereby bolstering the 

case for the use of UV-Vis spectroscopy in wastewater treatment. However, the 

practicality of the filtration process in real-world applications was questioned, leading to 

the need for further research on unfiltered wastewater samples. 

Having explored the foundational and applied aspects of COD measurement, it is 

necessary to understand the implications and potential benefits of real-time COD 

measurement, which forms the crux of this thesis. Real-time measurement of Chemical 

Oxygen Demand (COD) plays a crucial role in various stages of the wastewater 

treatment process. Providing real-time monitoring helps optimize treatment processes 



 

and enhances the overall efficiency of the treatment system (Metcalf & Eddy, 2014). 

For instance, real-time COD measurement in the influent wastewater enables rapid 

adjustments to treatment processes, accommodating fluctuations in the incoming 

wastewater composition, and ensuring efficient removal of organic matter. Additionally, 

real-time COD monitoring can optimize aeration control in biological treatment 

processes, ensuring adequate removal of organic matter and reducing energy 

consumption (Grady, 2011). 

In advanced treatment systems, such as membrane bioreactors (MBRs), moving bed 

biofilm reactors (MBBRs), or sequencing batch reactors (SBRs), real-time COD 

measurements can aid in optimizing the processes to enhance treatment performance 

(Judd, 2011). Real-time COD analysis in the final effluent ensures compliance with 

regulatory discharge limits and enables timely adjustments to the treatment process if 

needed, thus preventing non-compliance issues and potential fines (Metcalf & Eddy, 

2014). 

The benefits of real-time COD measurement include enhanced process control, allowing 

for more accurate adjustments to treatment parameters, and ensuring the efficient 

removal of organic matter (Metcalf & Eddy, 2014). By optimizing aeration and other 

energy-intensive processes based on real-time COD data, it is possible to reduce energy 

consumption and operational costs (Grady, 2011). Continuous monitoring of COD 

levels helps maintain compliance with regulatory discharge limits, minimizing the risk 

of non-compliance and potential fines (Metcalf & Eddy, 2014). Furthermore, real-time 

COD measurements can provide an early warning system for process upsets or 

equipment failure, allowing operators to take corrective action before issues escalate 

(Metcalf & Eddy, 2014). 

In summary, this thesis represents a critical milestone in Valmet's journey toward the 

development of a product for real-time COD measurement in wastewater treatment. 

Although the MATLAB models conceived in this research require additional data and 

refinement to reach a stage where they can be considered solid measurement methods, 

the research's results yield valuable insights and establish a solid foundation upon which 

future product development can be built. 

The continuation of this work carries immense potential, not just from an academic 

viewpoint but from an industrial perspective as well. The advancement of this project 



 

can optimize treatment processes, ensure regulatory compliance, reduce operational 

costs, and function as an early warning system for potential issues in real-time 

wastewater treatment. 

The future implications of this research are far-reaching, promising transformative 

changes to the way wastewater treatment processes are managed and monitored by 

Valmet. This can be accomplished by offering a technologically advanced, real-time, 

and accurate measurement system for COD and potentially other nutrients and 

wastewater parameters, thereby contributing significantly to operational efficiency and 

environmental sustainability. 
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