
FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING

Alireza Bakhshi Zadi Mahmoodi

FEDERATED LEARNING FOR DISTRIBUTED
INTRUSION DETECTION SYSTEMS IN PUBLIC

NETWORKS

Master’s Thesis
Degree Programme in Computer Science and Engineering

May 2023

Bakhshi Zadi Mahmoodi A. (2023) Federated Learning for Distributed Intrusion
Detection Systems in Public Networks. University of Oulu, Degree Programme in
Computer Science and Engineering, 71 p.

ABSTRACT

The rapid integration of technologies such as IoT devices, cloud, and edge
computing has led to a progressively interconnected network of intelligent
environments, services, and public infrastructures. This evolution highlights
the critical need for sophisticated and self-governing Intrusion Detection
Systems (IDS) to enhance trust and ensure the security and integrity of these
interconnected environments. Furthermore, the advancement of AI-based
Intrusion Detection Systems hinges on the effective utilization of high-quality
data for model training. A considerable number of datasets created in controlled
lab environments have recently been released, which has significantly facilitated
researchers in developing and evaluating resilient Machine Learning models.
However, a substantial portion of the architectures and datasets available are now
considered outdated. As a result, the principal aim of this thesis is to contribute to
the enhancement of knowledge concerning the creation of contemporary testbed
architectures specifically designed for defense systems. The main objective of
this study is to propose an innovative testbed infrastructure design, capitalizing
on the broad connectivity panOULU public network, to facilitate the analysis
and evaluation of AI-based security applications within a public network setting.
The testbed incorporates a variety of distributed computing paradigms including
edge, fog, and cloud computing. It simplifies the adoption of technologies like
Software-Defined Networking, Network Function Virtualization, and Service
Orchestration by leveraging the capabilities of the VMware vSphere platform.
In the learning phase, a custom-developed application uses information from
the attackers to automatically classify incoming data as either normal or
malicious. This labeled data is then used for training machine learning
models within a federated learning framework (FED-ML). The trained models
are validated using previously unseen network data (test data). The entire
procedure, from collecting network traffic to labeling data, and from training
models within the federated architecture, operates autonomously, removing the
necessity for human involvement. The development and implementation of FED-
ML models in this thesis may contribute towards laying the groundwork for
future-forward, AI-oriented cybersecurity measures. The dataset and testbed
configuration showcased in this research could improve our understanding of the
challenges associated with safeguarding public networks, especially those with
heterogeneous environments comprising various technologies.

Keywords: Network Security, Cybersecurity, Federated Learning, Data
Engineering, Distributed Computing, Stream Processing

Bakhshi Zadi Mahmoodi A. (2023) Diplomityön teko-ohjeet. Oulun yliopisto,
Tietotekniikan tutkinto-ohjelma, 71 s.

TIIVISTELMÄ

Teknologioiden, kuten IoT-laitteiden, pilvipalveluiden ja reunalaskennan,
nopea integraatio on johtanut älykkäiden ympäristöjen, palveluiden ja julkisten
infrastruktuurien asteittain yhteenliittyneeseen verkkoon. Tämä kehitys korostaa
edistyneiden ja itsehallinnollisten tunkeutumisen havaitsemisjärjestelmien
(IDS) kriittistä tarvetta parantaa luottamusta ja varmistaa näiden toisiinsa
yhdistettyjen ympäristöjen turvallisuus ja eheys. Lisäksi tekoälypohjaisten
tunkeutumisen havaitsemisjärjestelmien kehitys riippuu korkealaatuisen
datan tehokkaasta hyödyntämisestä mallikoulutuksessa. Viime aikoina
on julkaistu huomattava määrä kontrolloiduissa laboratorioympäristöissä
luotuja tietojoukkoja, mikä on merkittävästi helpottanut tutkijoita kestävien
koneoppimismallien kehittämisessä ja arvioinnissa. Huomattava osa
käytettävissä olevista arkkitehtuureista ja tietojoukoista katsotaan kuitenkin
nyt vanhentuneiksi. Tästä johtuen tämän opinnäytetyön päätavoitteena on
myötävaikuttaa tietoisuuden lisäämiseen erityisesti puolustusjärjestelmiin
suunniteltujen nykyaikaisten testialustojen arkkitehtuurien luomisesta.
Tämän tutkimuksen päätavoitteena on ehdottaa innovatiivista testialustan
infrastruktuurirakennetta, jossa hyödynnetään laajaa liitettävyyttä panOULU-
julkista verkkoa, mikä helpottaa tekoälypohjaisten tietoturvasovellusten
analysointia ja arviointia julkisessa verkkoympäristössä. Testbed sisältää
useita hajautettuja tietojenkäsittelyparadigmoja, mukaan lukien reuna-,
sumu- ja pilvilaskenta. Se yksinkertaistaa teknologioiden, kuten ohjelmiston
määrittämän verkon, verkkotoimintojen virtualisoinnin ja palvelun
järjestämisen, käyttöönottoa hyödyntämällä VMware vSphere -alustan
ominaisuuksia. Oppimisvaiheessa räätälöity sovellus käyttää hyökkääjien
tietoja luokitellakseen saapuvat tiedot automaattisesti joko normaaliksi tai
haitallisiksi. Tätä merkittyä dataa käytetään sitten koneoppimismallien
opetukseen liitetyssä oppimiskehyksessä (FED-ML). Koulutetut mallit
validoidaan käyttämällä aiemmin näkemättömiä verkkotietoja (testitietoja).
Koko prosessi verkkoliikenteen keräämisestä merkintädatan keräämiseen
ja liitetyn arkkitehtuurin koulutusmalleihin toimii itsenäisesti, mikä poistaa
ihmisen osallistumisen tarpeen. FED-ML-mallien kehittäminen ja käyttöönotto
tässä opinnäytetyössä voi auttaa luomaan pohjaa tulevaisuuden, tekoälyyn
suuntautuneille kyberturvallisuustoimenpiteille. Tässä tutkimuksessa esitellyt
tietojoukot ja testialustojen konfiguraatiot voisivat parantaa ymmärrystämme
julkisten verkkojen turvaamiseen liittyvistä haasteista, erityisesti sellaisista,
joissa on heterogeeniset ympäristöt, jotka sisältävät erilaisia teknologioita.

Avainsanat: Verkkoturvallisuus, kyberturvallisuus, yhdistetty oppiminen,
tietotekniikka, hajautettu tietojenkäsittely, suoratoiston käsittely

TABLE OF CONTENTS

ABSTRACT
TIIVISTELMÄ
TABLE OF CONTENTS
FOREWORD
LIST OF ABBREVIATIONS AND SYMBOLS
1. INTRODUCTION... 9

1.1. Problem Statement.. 9
1.2. Contribution ... 11
1.3. Outline of the Thesis ... 11

2. PRIOR RESEARCH ... 12
2.1. Background .. 13

2.1.1. Benchmark Datasets .. 14
2.1.2. Datasets’ Limitations... 19

3. METHODS, TOOLING AND DEVICES ... 20
3.1. Network Monitoring ... 20
3.2. The PanOULU Public Network.. 20
3.3. Operating Systems in the Network ... 21
3.4. Required Tools ... 22
3.5. ESXi Host Installation... 22
3.6. Installing Virtual Machines on ESXi Hosts ... 22
3.7. Installing VCenter Server Appliance .. 25
3.8. Adding ESXi Hosts to VCenter Server ... 26
3.9. Adding SAN to the VCenter Server.. 26
3.10. Creating Distributed Switch... 27
3.11. Adding VMs’ Network Card to Distributed Switch 27
3.12. Port Mirroring .. 28
3.13. Various Levels of Compromise .. 28

3.13.1. Adversary Emulation ... 29
3.14. ML Models Employed on This Work ... 29
3.15. Evaluation Metrics .. 30

4. INFRASTRUCTURE DESIGN ... 32
4.1. Physical Devices... 39

4.1.1. Computational Devices .. 39
4.1.2. Network Devices ... 40
4.1.3. Network Storage Device .. 41

5. RESULTS AND APPLICATIONS ... 42
5.1. Network Performance Evaluation... 42
5.2. Data Collection... 42
5.3. Feature Extraction... 43
5.4. Labeling the Streaming Data ... 47
5.5. Data Analytics .. 47
5.6. Federated Machine Learning Classification .. 48

5.6.1. Nuts and Bolts of the Streaming Data 49

5.6.2. Logistic Regression ... 50
5.6.3. Perceptron .. 52
5.6.4. Passive Aggressive Classifier ... 54
5.6.5. Stochastic Gradient Descent Classifier 55

6. DISCUSSION .. 57
6.1. Answers to Research Questions ... 59
6.2. Limitations and Future Work ... 60

7. CONCLUSION .. 61
8. REFERENCES ... 62
9. APPENDICES.. 68

FOREWORD

I am delighted to present this thesis as part of my MSc in Computer Science
and Engineering, which signifies the culmination of rigorous work spanning several
months. It is my honour to share my discoveries with the academic community and
contribute to the collective body of knowledge in this field. I would like to extend
my heartfelt gratitude to my thesis advisor, Dr. Panos Kostakos, for his invaluable
assistance, backing, and motivation during the undertaking. His knowledge and input
have played a vital role in influencing the direction of my research and writing. I would
also like to thank the staff at the University of Oulu’s Center for Ubiquitous Computing
(UBICOMP) for their support during my studies. The resources and facilities provided
by the Center have been invaluable in enabling me to complete this research project.
Lastly, I aim for this research to add value to the existing pool of knowledge and
understanding about Cybersecurity. By analyzing the performance and effectiveness
of these systems, we can develop new strategies for protecting computer networks
against cyber-attacks and safeguarding sensitive information. Thank you for taking the
time to read this thesis, and I hope you find it informative and insightful.

Oulu, May 24th, 2023

Alireza Bakhshi Zadi Mahmoodi

LIST OF ABBREVIATIONS AND SYMBOLS

AI Artificial Intelligence
AUC Area Under the ROC Curve
DDoS Distributed Denial of Service
CNIs Critical National Infrastructures
CVE Common Vulnerability Exposure
CNN Convolutional Neural Network
DHCP Dynamic Host Configuration Protocol
DoS Denial of Service
DDoS Distributed Denial of Service
DVWA Damn Vulnerable Web Application
FAR False Alarm Rates
FQDN Fully Qualified Domain Name
FTP File Transfer Protocol
FFDNN Feed Forward Deep Neural Network
FED-ML Federated Machine Learning
HIDS Host-based Intrusion Detection System
IoT Internet of Things
IIoT Industrial IoT
IT Information Technology
ICS Industrial Control System
IP Internet Protocol
IaaS Infrastructure as a Service
JS Java Script
LEACH Low-Energy Adaptive Clustering Hierarchy
LSTM Long Short-Term Memory
LAN Local Area Network
LUN Logical Unit Number
MADMAID Mining Audit Data for Automated Models for ID
NFV Network Function Virtualization
NIDS Network-based Intrusion Detection System
NIC Network Interface Card
OT Operational Technology
OS Operating System
PaaS Platform as a Service
R2L Remote to Local
RBM Restricted Boltzmann Machine
RFE Recursive Feature Elimination
SDN Software-Defined Network
SO Service Orchestration
SCADA Supervisory Control and Data Acquisitions
SSH Secure Shell
SQL Structured Query Language
SaaS Software as a Service
SAN Storage Area Network

TTL Time to Live
TCP Transmission Control Protocol
TPR True Positive Rate
U2R User to Root
VM Virtual Machine
WSN Wireless Sensor Networks

9

1. INTRODUCTION

As we journey into an era characterized by technological advancements, the surging
growth of interconnected devices such as sensors, Internet of Things (IoT) devices,
cellphones, and drones underscores the pressing need for a solid and efficient
communication infrastructure. The constraints on capacity and latency inherent in the
current 4G and 5G networks highlight the urgency for innovative solutions to overcome
these limitations. Consequently, cutting-edge technologies like network function
virtualization (NFV), software-defined networking (SDN), edge/cloud computing, and
collaborative federated learning have become instrumental in shaping novel system
architectures. This revolution signifies a shift from the conventional "network of
networks" model to a forward-thinking "service of services" paradigm [1].

The ongoing evolution towards service-centric 6G networks necessitates the
development of adaptable devices and systems attuned to this new connectivity
landscape. At the same time, emerging technologies that enable a seamless fusion
of virtual experiences with our physical reality, coupled with the Internet of Things
(IoT) that’s increasingly interweaving itself into our homes, cities, and workplaces,
are fundamentally reshaping how we engage with technology. The ongoing Industry
4.0 revolution further propels this integration of information technology (IT) and
operational technology (OT), giving rise to AI-enabled systems enhancing productivity
and flexibility. Through the use of sensors, actuators, and software [2], IoT systems
can be managed and controlled remotely, leading to faster manufacturing, enhanced
customization, and the emergence of innovative business models [3].

Nonetheless, this progress also raises significant concerns. Critical National
Infrastructures (CNIs), such as hospitals, ports, energy suppliers, and water
distributors, which heavily depend on Supervisory Control and Data Acquisition
(SCADA) or Industrial Control Systems (ICS) for management [4], are now
increasingly susceptible to cyber attacks. Recognizing this vulnerability, global
powers, including the European Union, have initiated security measures and
policies to safeguard these systems [5]. Yet, to fully secure CNIs, it is crucial
to introduce comprehensive security measures encompassing all legal, capacity-
building, organizational, and technical aspects of cybersecurity. These include policy
formulation, directives, regulations, and technical solutions designed to detect and
prevent cyber threats.

1.1. Problem Statement

The rapid rise of Networks and Information and Communications Technology (ICT)
systems have made sensitive data constantly exposed to potential attacks from both
internal and external intruders [6]. High-profile security breaches like those of Bitcoin
and Yahoo, which resulted in losses of millions of dollars [7], illustrate the severity of
the issue. Advances in software, hardware, and network topologies, including those
related to the Internet of Things (IoT), have enabled the development of increasingly
sophisticated attack algorithms [8].

To address these concerns, a robust Intrusion Detection System (IDS) is needed to
detect and classify attacks, intrusions, and violations of security policies promptly.

10

IDS is a security technology that monitors network traffic and systems for malicious
activities or policy violations. There are two types of IDS based on intrusive
behaviours: the host-based intrusion detection system (HIDS) and the network-based
intrusion detection system (NIDS) [9].

AI-empowered cyber solutions, specializing in threat hunting, intrusion detection,
privacy protection, malware detection, and digital forensics, can be a response to
some of these challenges [2]. These are centralised solutions that rely on training
datasets to assess their performance and make informed decisions. To analyze network
traffic flows, there are three standard methods: stateful protocol analysis, anomaly
detection, and misuse detection [10]. Each of these methods has its advantages
and disadvantages. Anomaly detection, which detects unknown malicious activities
through heuristics, has a high rate of false positives, making it less reliable [9]. On
the other hand, misuse detection uses filters and signatures to detect known patterns
of malicious traffic, but requires regular updates to its signature database to detect
newer threats. Alternatively, stateful protocol analysis is the most reliable method,
as it uses predefined vendor settings to identify deviations from proper protocols
and applications based on known protocols and applications [10]. Overall, acquiring
valid training datasets to evaluate various proposed techniques presents a significant
challenge due to the complexity of networks and systems, as well as the scarcity of
high-quality testbeds that encompass both normal and malicious network traffic.

The challenge at hand involves creating a comprehensive, economical, and adaptive
security testbed characterisation. This testbed should effectively address the challenges
posed by the evolving landscape of mobile networks, interconnected systems, and
emerging technologies while ensuring the privacy and resilience of users, devices, and
critical infrastructures. The central aim of this thesis is to tackle the stated problem,
with the following research questions serving as the focus of our investigation:

• Research Question 1: How do key enabling technologies, such as
Network Function Virtualization (NFV), Software-Defined Networking (SDN),
edge/cloud computing, and federated learning (FL) help in defining novel testbed
characterisations?

• Research Question 2: How can federated learning (FL) be effectively
incorporated into intrusion detection systems (IDS) to enhance their accuracy,
adaptability, and scalability while preserving the privacy and security of
individual devices and data sources in distributed and heterogeneous network
environments?

• Research Question 3: How can we set up realistic and comprehensive testbeds
for evaluating proposed security techniques, given the complexity of public
networks, systems, and the lack of high-quality, representative datasets?

• Research Question 4: What are the challenges in designing secure and
distributed architectures for complex systems like IoT networks, and how can
these challenges be addressed to protect critical national infrastructures from
cyber attacks?

11

1.2. Contribution

The motivation of this work is to address the aforementioned research challenges
by proposing the creation of an orchestrated testbed infrastructure for cybersecurity
experimentation that includes various systems and devices on edge, fog and
cloud layers that are interconnected to each other using the panOULU public
network. The driving technology behind the fog layer is VMware vSphere which
is managed and orchestrated using vCenter Server Appliance. Functionalities such
as Network Function Virtualization (NFV), Software-Defined Network (SDN) and
Service Orchestration (SO) were enabled by utilizing on-premise hardware resources
at the University of Oulu.

Consequently, the contribution of this work lies in presenting a novel Distributed
Network-based Intrusion Detection System using a FED-ML architecture that utilizes
streaming high-quality data from diverse data sources across multiple tiers in the
proposed architecture, interconnected by the panOULU public network. The streaming
data, encompassing both regular and malicious network activities, is employed to train
various ML models in a federated manner. Specifically, this work employs a federated
learning architecture to enhance cybersecurity in the context of intrusion detection
systems (IDS) by leveraging a proposed testbed augmented with custom Python code.
In this architecture, nodes continuously collect streaming data containing network
information, such as network packets. A custom-built agent is then responsible for
processing the collected packets and labeling the data as regular or malicious, based
on the attackers’ IP addresses within the network.

The processed data is fed to FED-ML models in each learning round, with the
learning process continuing until the desired number of rounds is satisfied. This entire
process is autonomous and requires no human involvement. Once the models are
trained, they are evaluated on unseen collected data to determine their effectiveness. In
the following sections, more details are provided on the proposed federated learning
architecture and how ML models are trained and evaluated using it.

1.3. Outline of the Thesis

The structure of this thesis is as follows. Initially, an examination of state-of-
the-art research efforts is conducted, providing a comparison and identification of
corresponding studies. This section also offers an overview of the background in
this field, familiarizing the reader with foundational principles. The discussion then
progresses to the tools and methodologies employed in the study. Subsequently, an
explanation of the infrastructure design is provided. The next segment presents the
results and practical applications of the research. Additionally, there is a detailed
discussion section that explores every aspect of the specific area that this work focuses
on, in comparison to other studies. Lastly, the work concludes by summarizing the
main information that has been discovered through this research.

12

2. PRIOR RESEARCH

The use of self-learning systems, which employ unsupervised, semi-supervised, and
supervised machine learning algorithms, is an effective method for dealing with attacks
by processing both benign and malicious network traffic. Despite the many machine
learning solutions offered in the literature, the applicability of these approaches to
commercial network-based IDS (NIDS) is still in its early phases [11]. The primary
issue with current machine learning solutions lies in their elevated false positive rate,
coupled with substantial computational expenses. This problem primarily emerges
because the classifiers locally learn the attributes of basic TCP/IP features.

Respectively, deep learning, a intricate subset of machine learning, acquires
hierarchical feature representations and uncovers concealed sequential connections
by utilizing TCP/IP data across multiple hidden layers. Deep learning has gained
popularity in AI tasks for various applications like Natural language processing
(NLP), speech recognition, image processing, etc [12]. In the field of cybersecurity,
deep learning has found application in various domains, such as traffic analysis,
classification of Android malware, network traffic prediction, categorization of
encrypted text, intrusion detection, ransomware detection, malicious URL detection,
malicious domain name detection, and anomaly detection, among others [13].

KDDCup 99 is a widely used benchmark dataset for academic research aimed at
improving the success rate of intrusion detection [10]. The dataset was generated
as the outcome derived from tcpdump data captured from the DARPA Intrusion
Detection Evaluation Network in 1998 and was used for the third International
Knowledge Discovery and Data Mining Tools Competition. The primary objective
of the competition was to develop a predictive model with the ability to categorize
network connections as either attack or normal. The attacks were R2L, U2R, DoS, and
Probe.

For this competition, MADAMID served as the framework for constructing features
[14]. This framework produces 41 features, 9 of which are basic features of a packet,
12 of them are content features, eight of them correspond to traffic characteristics,
while the rest are related to host-based attributes. The entire dataset is provided, along
with an additional 10% of complementary data. Decision tree and 1-nearest neighbor
were two main algorithms for classifying the data that were used by contestants.

The majority of the published outcomes relied on 10% of this dataset, while a limited
number of studies employed custom-built datasets. After the KDDCup 99 challenge,
several published results have utilized feature engineering methods for dimensionality
reduction. However, most recent studies have used the same dataset without custom-
built features for machine learning classifiers, and their results are comparable to other
contestants’ outcome.

A comprehensive survey on ML intrusion detection with KDDCup 99 dataset was
conducted by [15]. The investigation evaluated the efficacy of various machine
learning algorithms in detecting intrusions by analyzing the KDDCup 99 dataset.
According to the authors’ findings, decision tree and Naive Bayes algorithms
demonstrated strong performance on this particular dataset. The authors also noted
that the dataset suffers from class imbalance, and methods such as undersampling and
oversampling can be employed to tackle this problem.

13

The classification model presented in Agarwal’s work [16] consists of two phases:
P-rules, used to forecast the presence of the class, and N-rules, employed to predict
its absence. It performed well on most categories in the KDDCup 99 dataset except
for U2R. In [17], a relevance analysis was conducted for intrusion detection systems
(IDS) using the KDDCup 99 dataset. The study measured feature relevance using
information gain, identified and presented the most significant features associated with
each class label.

A random forest approach utilized for detecting misuse, using anomaly detection
and outlier detection techniques is presented by [18]. The research revealed that the
misuse approach yielded superior outcomes compared to the results obtained from
the KDDCup 99 challenge, and that the hybrid system enhanced the performance
when merging anomaly detection and misuse [19, 20]. An intrusion detection
algorithm using AdaBoost and decision stumps as weak classifiers was proposed by
[21]. The approach exhibited superior performance compared to other methods, as it
demonstrated a lower false alarm rate, higher detection rate, and faster computational
speed. Nevertheless, it did not incorporate the incremental learning approach.

In [22], the Shared Nearest Neighbor (SNN) model was found to be the optimal
algorithm exhibiting a high rate of intrusion detection. The study used a 10% dataset
and showed that SNN outperformed K-means in detecting the U2R attack type.
However, the research did not present any findings regarding the complete testing
dataset.

Several studies have explored the utilization of Bayesian networks for intrusion
detection. In one study [23], Naive Bayesian networks were employed, wherein the
root node represented a class and the connecting nodes represented the connection
features. Another study [24] investigated the application of Naive Bayes networks for
intrusion detection by conducting a thorough analysis of experimental details. Their
findings demonstrated that Bayesian networks exhibited comparable, and in some
cases superior, performance in the probe and U2R categories when compared to the
results of the KDDCup 99 challenge.

In addition to Bayesian networks, non-parametric density estimation methods have
also been studied for intrusion detection. For instance, [25] studied the use of Parzen-
window estimators, normal distribution, and Gaussian kernels. In comparison to
studies utilizing an ensemble of decision trees, their findings yielded favorable results.

Moreover, a genetic algorithm was proposed by [26] that models spatial and
temporal data used to detect intricate abnormal behavior. The algorithm was designed
to streamline the process of identifying complex anomalous behavior.

Swarm intelligence methods have also been studied for intrusion detection. Study
conduct by [27] investigated the application of ant colony clustering, ant colony
optimization, and particle swarm optimization techniques in systems. These methods
have shown potential for detecting anomalous behavior in intrusion detection systems.

2.1. Background

To fully comprehend the content of this work, we need to become familiar with the
required background in this field. This section is dedicated to that purpose, so the

14

reader can go through all the necessary information to fully understand the dynamics
and foundations.

2.1.1. Benchmark Datasets

In this portion, you can find information regarding the commonly utilized datasets by
researchers and analysts to evaluate the effectiveness of their suggested approaches.
As a result of concerns regarding security and privacy, the majority of datasets are not
accessible to the public. Moreover, the datasets that are publicly available undergo
extensive anonymization processes and may not accurately represent the diverse range
of network traffic observed today. Consequently, there is still no definitive dataset that
can be considered exemplary [28]. The details pertaining to different IDS datasets are
elaborated upon in [29] and [30]. In [30], a comprehensive summary of the datasets
available from 1998 to 2016 is presented.

We examine the advantages and disadvantages of the current datasets employed in
NIDS (Network Intrusion Detection Systems) and HIDS (Host Intrusion Detection
Systems). Generally, based on the contents of each dataset, they could be classified
into the seven following groups:

1. Internet-connected devices

2. Electrical network

3. Virtual private network

4. Android app

5. Internet traffic

6. IoT traffic

7. Network traffic

In the following we will go through most of the datasets used in this field.

• The DARPA dataset, which utilizes audit logs and network traffic, was initially
released in February 1998. The training dataset comprises seven weeks’ worth of
network-based attacks, whereas the testing dataset includes a two-week period
of network-based attacks [4]. Nevertheless, according to Sharafaldin et al., this
dataset fails to accurately depict real-world network traffic [31].

• With a training set comprising five million records and a testing set consisting
of two million records, the KDD Cup ’99 dataset is recognized as one of the
most widely utilized and popular datasets for Intrusion Detection Systems (IDS).
Each row of the dataset has forty-one distinct features (attributes) and is labeled
as either attack or normal. The creation of this dataset involved the processing of
tcpdump data extracted from the 1998 DARPA intrusion detection dataset. The
Mining Audit Data for Automated Models for ID (MADAMID) was employed
to derive features from tcpdump-captured data. MIT Lincoln Lab developed this

15

dataset by utilizing numerous UNIX machines and involving hundreds of users.
The capturing of the network traffic continued for ten weeks. The dataset comes
in two variations: the full dataset and the 10% dataset. The attacks in this dataset
are categorized into four distinct types: Denial of Service (DoS), Probe, Remote
to Local (R2L), and User to Root (U2R) [32]. The features are organized into
various categories as outlined below:

– The basic features from UDP datagrams, TCP segments, and packet
headers were extracted using pcap files obtained from tcpdump. Bro,
which is a remodeled network analysis tool, was used to carry out this
task. Features one to nine are related to this section.

– The features described in this section are obtained by extracting
information from the payload of TCP/IP packets contained within pcap
files. In recent years, the analysis of features within the payload has
emerged as a significant research focus. Instead of performing feature
extraction, a deep learning approach was introduced to analyze the
complete payload data [33]. The primary objective of these features is
to detect attacks falling under the Remote to Local (R2L) and User to
Root (U2R) categories. As an example, an essential feature in identifying
malicious behavior within the payload is the presence of multiple failed
login attempts. Sequential patterns are not evident in R2L and U2R attacks
due to the nature of events occurring within a single connection. Features
ten to twenty-two relate to this section.

– Time-related features are obtained using a temporary window of two
seconds. Connections are categorized as either "same host" or "same
service" based on their characteristics observed within the past two
seconds [10]. In occasions like slow probing attacks, a window of
hundred connections is used on the same host to calculate the required
characteristics. These features are referred to as either connection-based
or host-based traffic characteristics. Features twenty-three to forty-one are
related to this section.

• Kyoto dataset contains data from darknet sensors, web crawler, honeypots, email
servers in addition to other network security measures. The records are from
year 2006 to year 2015. There are a total of 24 features for each record, 14 of
which come from KDD Cup’99 [34]. These 14 features hold significance as they
originate from data extracted in Kyoto University.

• NSL-KDD is a modified version of the KDD Cup’99 dataset with redundant
connection records removed which was introduced by Tavallaee et al. [35].
This dataset contains forty-one features, with attacks divided into four classes
[36]. This dataset is normally used to avoid bias in machine learning algorithms.
However, one limitation of the NSL-KDD dataset is that it does not accurately
capture the characteristics of real-time network traffic profiles.

• Containing about two million records with forty-nine features, the creation of
the UNSW-NB15 dataset was carried out by the Australian Center for Cyber

16

Security to overcome limitations observed in KDDCup99 and NSLKDD. The
data is heterogeneous and The UNSW-NB15 dataset includes both normal
network behaviors and various attack behaviors captured from live network
traffic. The dataset was generated using IXIA Perfect Storm tool, which
incorporates a collection of attacks, as well as the Common Vulnerability
Exposures (CVE) repository. To generate both normal and malicious activities
within the network, the IXIA traffic generator tool employed two servers. The
task of capturing and storing network packets into pcap files of 1,000 MB was
carried out by Tcpdump. The extraction of features was performed using both
Bro (also known as Zeek) and Argus tools. C# was used for the in-depth analysis
of each packet utilizing recently developed algorithms, the feature extraction
process was conducted. The dataset encompasses the following categories of
attacks [37]:

– Worms

– Port Scans

– Shell code

– DoS

– Exploits

– Fuzzers

– Reconnaissance

– Backdoor

– Generic

The data is available in two different formats as described below:

– Complete two million network sessions

– A percentage of the dataset that contains 82,332 records as train, and
175,341 records as test. Both train and test include 10 attacks. They also
include 42 features [38].

• The CIC-IDS2017 dataset, established by the Canadian Institute for Cyber
Security (CIC), comprises genuine network traffic as well as real-world attack
instances [39]. The complete traffic data was gathered over a span of five
days, commencing from July 3rd to July 7th, 2017. During this period, one
day captured normal network activity, while the remaining days consisted of
intentionally injected attacks into the network. Protocols such as SSH, HTTPS,
FTP, HTTP from 25 users were used for normal traffic. In the analysis process
using CICFLowMeter, details such as protocols used, IP addresses, timestamps
and attacks were employed for the elicitation of the eighty network features. The
dataset comprises the standard attack scenarios as described below [40]:

– DoS

– Brute Force for FTP and SSH

17

– Botnet

– DDoS

– Web attack

– Infiltration

– HeartBleed

• The CSE-CIC-IDS2018 dataset comprises a variety of attack scenarios,
including Heartbleed, Infiltration, DoS, Brute Force, DDoS, Botnet, Web
attacks, and others [41]. The CICFlowMeter tool was utilized to analyze the
network traffic and derive 80 network flow features.

• WSN-DS dataset was specifically designed for Wireless Sensor Networks and
includes four categories of DoS attacks: Flooding, Blackhole, Scheduling, and
Grayhole, which is comprised of 23 features in total.

• The DEFCON dataset is divided into two versions: DEFCON-10 and DEFCON-
8. DEFCON-10 includes a range of non-probing and probing attacks such as bad
packets, port sweeps, and port scans. DEFCON-8 contains only buffer overflow
and ports scan.

• The CAIDA dataset comprises multiple datasets such as Internet traces 2016
from CAIDA, DDoS from CAIDA, and RSDoS attack metadata which was
provided by the Center of Applied Internet Data Analysis. The RSDoS attack
metadata contains randomly spoofed DoS attacks deduced from the backscatter
packets gathered by the UCSD Network Telescope.

• The CDX dataset established during a network battle competition, encompasses
both regular and malicious TCP communications on vulnerable network
services, including those susceptible to buffer overflow attacks [42].
Furthermore, the dataset includes four types of vulnerable servers from CDX
2009: OpenFire Chat FreeBSD, Apache Web Server Fedora 10, Postfix Email
FreeBSD and BIND DNS FreeBSD.

• TWENTE has a subdivision employing three IP protocols: ICMP, UDP, TCP. It
contains over fourteen million flows and over seven million alerts.

• Being proposed by Jazi et al. [43], CIC DoS dataset includes application layer
DoS attacks. We have low and high volume attacks for this dataset. Examples
of high-volume HTTP attacks comprise:

– Goldeneye

– ddossim

– hulk

On the other hand, instances of low-volume HTTP attacks encompass::

– read

18

– send headers

– send body

– RUDY

– Slowloris

• The ISCX dataset consists of a compilation of seven days’ worth of network
activity, encompassing the following:

– Benign

– DoS

– Brute Force

– DDoS

– Port Scanning

– Botnet

– Web

– Infiltration

– SQL Injection

– R2L

– U2R

Shiravi et al. [44] created this dataset, which includes two classes of profiles.
The first class is designed to describe attack scenarios, while the second class
encapsulates the extracted mathematical distributions of specific entities.

• The ADFA2013 dataset, introduced by Creech and Hu [45, 46], was developed
for attacking the Ubuntu OS using vectors and payloads. The dataset’s structure
contains 4373 normal data points, 833 validation data points, with 10 attack
data. The payloads include C100 Webshell, Java-based Meterpreter, password
brute force, and Linux Meterpreter.

• Moustafa [47] has presented a heterogeneous dataset known as "TON_IoT,"
which comprises real-world IoT network activities from cloud, edge, and fog
layers. This dataset is designed for evaluating the credibility of new systems
and consists of sophisticated scenarios. The complete dataset was generated
at the IoT lab of the University of New South Wales, utilizing the NSX vCloud
NFV platform. It includes both raw and processed data collected from Telemetry
datasets of IoT services, Operating Systems datasets, and network traffic. The
dataset encompasses nine specific types of attacks as the following:

– Scanning

– Denial of Service

– Distributed Denial of service

– Ransomware

19

– Backdoor

– Injection

– XSS

– Password Cracking

– MITM

2.1.2. Datasets’ Limitations

Privacy and security issues hinder the publication of datasets that represent current
network traffic attacks, while publicly available datasets are often extremely
anonymized, rendering them less pragmatic. Despite criticisms of the KDDCup
99 public dataset, it has been used for many research studies on NIDS over the
years. Through a comprehensive examination of the contents, [35] identified simulated
artifacts and discrepancies within the simulated network traffic data. They claimed that
various network attributes, such as TTL, TCP window size and options, and remote
client address, have limited range and are small in the KDDCup 99 datasets but exhibit
growing range and are larger in real-world network traffic environments.

In KDDCup99, machine learning models face limitations in accurately detecting
R2L and U2R attack types [48]. None of the classifiers were capable of improving the
attack detection rate using this dataset. It is argued that attaining a high detection rate
often involves the creation of a new dataset by amalgamating both testing and training
datasets. Moreover, machine learning classifiers perform poorly with this data as many
of the "snmpgetattack" belong to the R2L type [49].

As mentioned earlier, KDDCup 99 is a widely used, reliable benchmark dataset
for security-related tasks. NSL-KDD was proposed by [35] to solve the inherent
problems pertaining to KDDCup 99. Redundant connection records were eliminated
from both train and test. This was specifically done to protect the classifier against bias
towards connection records with more frequency. However, because NSL-KDD fails
to accurately represent network traffic data observed in real-world scenarios, it falls
short in addressing the issues presented by [50]. Extra features were added to enhance
its performance in detecting attacks.

Even though automated network traffic using honeypots was used in the Kyoto
dataset, its normal traffic was not obtained from network traffic data in real-world
scenarios. Furthermore, it lacks the inclusion of false positives, which aid in
minimizing the number of alerts for the network administrator.

Using two profile systems, one for normal activities and the other for generating
attacks, [44] produced a new dataset. However, most of the attacks lack the features
of real-world statistics, and the traffic does not contain HTTPS protocol traffic.
Incorporating the concept of profiles that encompass comprehensive information
regarding protocols, applications, intrusions, and network details, [50] proposed
UNSW-NB15. On the other hand, in an effort to offer a standardized dataset that can
serve as a reference for the research community, [39] provided a dataset that contains
both malicious and benign network activities. They also validated the network traffic
features in experiments toward detecting various attacks.

20

3. METHODS, TOOLING AND DEVICES

The details of the methods, tools, and devices that were utilized for this work will be
illustrated in this section.

3.1. Network Monitoring

Intrusion Detection Systems (IDS) are designed to identify various types of attacks,
such as malware infections, network scanning attempts, port scanning, and other
suspicious activities. When an Intrusion Detection System (IDS) identifies a potential
threat, it can either notify security personnel or initiate automated actions to prevent
or mitigate the attack. [10]. Two primary categories of IDS exist: network-based IDS
(NIDS) and host-based IDS (HIDS) [9], which are other two important terms in our
jargon. NIDS monitors network traffic, while HIDS monitors activity on individual
systems. IDS plays a crucial role as a component of network security and is frequently
utilized alongside complementary security measures, such as firewalls and antivirus
software, to enhance overall network security. [10].

Suricata is open-source network intrusion detection and prevention system
(IDS/IPS) that is freely available. This system can actively monitor real-time network
traffic and promptly notify administrators of any suspicious activities or potential
security threats. Initially launched in 2010, it is written in the C programming
language [51]. Suricata is designed with a strong emphasis on scalability, enabling
it to inspect high-speed network traffic on multiple network interfaces simultaneously,
and it provides extensive protocol support, encompassing a broad array of protocols
such as HTTP, SMTP, DNS, TLS/SSL, and others. In addition to rule-based and
signature-based detection techniques, it possesses the capability to conduct advanced
threat detection and analysis through behavioral analysis and anomaly detection
methodologies. Suricata is widely used in various industries, including government,
financial services, healthcare, and telecommunications, to strengthen network security
and safeguard against cyber attacks. It is also compatible with many other security
tools and can be integrated into existing security infrastructures.

3.2. The PanOULU Public Network

As the goal of the thesis is to develop a Distributed Intrusion Detection System (IDS)
for public networks, it is essential to possess a comprehensive understanding of the
network itself and its extensive coverage area. PanOULU is a wireless network
infrastructure that provides Wi-Fi connectivity in Oulu, Finland. It is a network
publicly available for anyone to use freely, and it covers a large part of the city center
as well as some surrounding areas.

The network is operated by the City of Oulu in collaboration with the local
university, research institutes, and businesses. It was originally launched in 2006 and
has since been expanded and upgraded to provide faster and more reliable connectivity.

PanOULU uses a mesh network architecture, which means that the Wi-Fi access
points are interconnected wirelessly to establish a network. This allows users to move

21

around the city and maintain a stable connection to the network without having to
constantly reconnect to different access points.

The network is designed to provide both indoor and outdoor coverage and is intended
to support various applications and services, such as public transportation, tourism, and
business activities. PanOULU is also used as a research platform for developing and
testing new wireless technologies and applications.

Juha Tiensyrjä et al. develop a novel multiplayer game with pervasive location
awareness utilizing the panOULU [52]. The game requires players to conquer real-
world access points (APs) of the panOULU network to score points, and implementing
the game as a web service is facilitated by the network’s built-in support for session
mobility, which serves as a key functionality. Examining the impact of the game on
players’ network usage, the study focuses on session mobility and its relevance to
network design.

The panOULU network was the basis for the development of the Luotsi web mash-
up application by Hannu Kukka et al. [53]. The objective of the application is to deliver
users with timely and pertinent information that aligns with their present geographical
position to improve their experience by enabling easy access to information regarding
neighbour service and sites etc. Specifically, Luotsi leverages the integration of diverse
information feeds and real-time user positioning to enhance its functionality, provided
by panOULU, to provide valuable insights about the user’s present circumstances.

Timo Ojala et al. aim to highlight the relevance of the panOULU by presenting
analysis on its ability to freely provide Internet access to the general public [54].
The paper discusses the founding and evolution of panOULU, its usage statistics, and
the motivations behind its establishment, with specific attention to the involvement
of the City of Oulu. Furthermore, panOULU is used as an example to illustrate the
application of the Triple Helix Model (THM) in innovative studies and as a model
for tackling typical difficulties encountered by urban wireless networks. Ultimately,
panOULU serves as an embodiment of successful collaboration between different
sectors in pursuit of a common goal.

3.3. Operating Systems in the Network

To guarantee the efficiency of the framework that utilizes the panOULU network, it
was crucial to obtain a comprehensive understanding of the operating systems used by
devices within the network. To achieve this, the p0f v3 tool was employed to passively
collect information about the operating systems of devices that were in the same subnet
as the IDS.

As a passive tool, p0f v3 examines the network traffic patterns of remote hosts to
identify the operating system being used. This includes details such as the user’s
language, hardware type, and the version of the operating system and time zone.
Network administrators can use this information to better understand the devices
on their network, identify any potential security risks, and take appropriate security
measures.

The use of p0f v3 is highly beneficial in ensuring that the appropriate security
measures are in place for devices on the network. Administrators can also take
proactive measures to prevent attacks that target specific operating systems.

22

The following figures depict operating systems both within and outside of the
panOULU network, including those from servers on the internet. The presented
operating systems are determined by the distinctive combination of source and
destination IP addresses, ensuring that no OS is counted multiple times for a single
device that connects to multiple other devices. However, this approach is not a perfect
indicator of uniqueness, as one device could connect to multiple machines and servers
with different IP addresses. As a result, it is possible that some of the reported OSes
may be counted multiple times, but the figures still provide a rough estimate of the
frequency of OSes in the network.

Figure 1 presents a bar plot of the OSes in the network, while Figure 2 provides a
detailed breakdown of the number of each OS. These figures provide insight into the
OS types in the network and its connected devices and servers.

3.4. Required Tools

Five ESXi hosts were used to install the required virtual machines. Different devices
and machines with varying computational capacity and disk space were used to install
ESXi hosts. Furthermore, the vSphere client appliance was installed on one of the
machines to enable connection to the server, manage installations and handle inventory
objects from a central location using vCenter Server Management Software. The
following section provides a detailed description of the necessary steps that were taken
to set up the entire infrastructure.

3.5. ESXi Host Installation

To install an ESXi host on a device, the installation link [55] is visited. The image is
then burned onto a USB stick using the Rufus application. After the setup process is
completed, a static or dynamic IP address can be assigned. In this case, DHCP assigned
IP addresses were used. The ESXi host can then be accessed using the assigned IP
address from anywhere within the panOULU network.

3.6. Installing Virtual Machines on ESXi Hosts

After entering the IP address of the desired ESXi host and providing our own setup
username and password, a dashboard is presented to manage and control the machine.
A glimpse of the dashboard is provided in Figure 3.

Accurate time synchronization is crucial for effective management of ESXi hosts
through vCenter Server. Vital to this is ensuring that all ESXi hosts are using the same
time server. The NTP settings can be edited by navigating to the "System" tab under
the Host option in the manage section of the navigator pane. The time server address,
such as time.google.com, can be entered here.

To upload the image of the operating system, navigation to the "Datastore browser"
button in the "Datastores" tab of the storage section in the navigator pane is required.
The "Upload" button can be used to upload the image of the operating system.

24

Figure 2. The frequency of the OSes involved in the experiment.

27

which can be accessed from any part of the network. To configure the storage, the
Synology DiskStation needs to be set up properly. Once this is done, the ESXi hosts
can incorporate the necessary data storage.

To create a LUN, a volume needs to be created in the disk station. A volume can
be created by accessing the storage manager application at the IP address of the disk
station. A storage pool is then created to enable volume creation. Once the desired
volume has been created, the SAN manager application can be opened. In the LUN
section of this application, a desired LUN is created. This LUN will be utilized by
ESXi hosts as a data store.

To add a data store using LUN, the ESXi host’s dashboard needs to be visited. The
Adapters tab in the storage section should be clicked on, followed by the Software
iSCSi button. The IP address and port number of the disk station should be added in
the dynamic area, and a vmkernel adapter should be added for managing the network
communications in the port binding area. Once these settings have been configured,
the datastores tab can be clicked on. From there, a new data store can be selected, and
the "New VMFS data store" option can be chosen. On the following page, the created
LUN can be seen and added to the data stores. The desired VMs can then be stored in
this data store.

3.10. Creating Distributed Switch

To enable monitoring of traffic from all virtual machines hosted on various ESXi
hosts, it is necessary to create a distributed switch within the vCenter Server. To do
so, one can click on the network icon in the inventory section of the vCenter Server.
Next, right-click on the created data center and select the "Distributed Switch > New
Distributed Switch" option. The required information should be filled out in order to
create the distributed switch.

Once a distributed switch has been created, available Network Interface Cards
(NICs) from various ESXi hosts need to be added to it. To do so, the created distributed
switch should be right-clicked and the "Add and Manage Hosts..." option selected. In
the wizard menu, ESXi hosts with available NICs should be chosen and free NICs
assigned to the desired uplink of the distributed switch.

After all these steps have been completed, the distributed switch will be deployed on
the selected ESXi hosts. It is also possible, at one of these steps, to migrate the switch
of existing virtual machines to this distributed switch.

3.11. Adding VMs’ Network Card to Distributed Switch

When creating a new virtual machine, the deployed distributed switch in the ESXi
host can be selected instead of the internal networking in each ESXi host. This can
be accomplished via vCenter Server by right-clicking on the desired ESXi host and
choosing "New Virtual Machine". In the "Customize hardware" section of the wizard
menu, the port group of the distributed switch to be used for the network hardware can
be selected. With this configuration, the network settings of the VMs will be managed
via the selected distributed switch.

28

3.12. Port Mirroring

To listen to the traffic of all VMs in one or multiple locations, port mirroring can be
utilized. The process involves clicking on the network icon in the inventory section of
the vCenter Server appliance, followed by clicking on the created distributed switch
and selecting the configure section. In the configure section, the "Port Mirroring"
option in the settings pane can be chosen, followed by clicking on "NEW..." A wizard
menu will appear, where the "Encapsulated Remote Mirroring (L3) Source" option
should be selected. Then, the desired VMs that need to be listened to can be chosen
in the next pages. In the end, the IP address of the machine that will listen to all the
traffic of the selected VMs should be provided.

3.13. Various Levels of Compromise

Attackers are typically defined as unauthorized users who attempt to initiate intrusions.
Malicious activities can be performed by an attacker using a remotely accessible
computer. To accurately detect an intrusion, it is necessary to understand the methods
used by an attacker.

An attack generally consists of five phases: Reconnaissance, Exploitation,
Reinforcement, Consolidation, and Pillage [10]. It is possible to detect an attack during
the first three stages. However, once the attacker progresses beyond the third stage, the
system is fully compromised. Distinguishing between benign and malicious behavior
becomes extremely challenging at that point. To gain a better understanding, each of
these stages will be explored in more detail.

In the reconnaissance step, information is gathered by an attacker to collect data
on reachable devices and hosts, their running services, OS versions, and running
applications. In the exploitation step, a specific service is exploited by the attacker
to hijack the targeted device. Breaching, abusing (like dictionary attacks or stolen
passwords), or subverting (like SQL injection) or some examples for this.

After gaining access to the targeted system, a camouflage phase is initiated where
necessary tools and services are installed by the attacker to exploit the privileges gained
in the reinforcement step to use the applications that are available via the hacked
account. In the consolidation step, the accessed system is fully controlled by the
attacker via the backdoor that is employed for communication in this step. In the final
stage, the pillage step, the attacker steals data and computational resources or could
even impersonate.

It is almost always the case that there are some bugs in either hardware or software.
These bugs, induced by human faults, could lead to security vulnerabilities. Data
Integrity, Confidentiality, and Availability are the three essential components that form
the pillars of information security. Additionally, we can include accountability and
authenticity. Attacks on confidentiality usually relate to passive attacks, such as
scanning and availability of addresses. Exploiting available addresses could make
network resources down, by attacks like Denial of Service (DoS) or Distributed
Denial of Service (DDoS), which can prevent normal users from accessing them.
Eavesdropping is often challenging for IDS systems, and locally within a system or
over a network, probing can be performed.

29

With this background, a set of actions that may compromise the confidentiality,
availability, data integrity, or other security policies of a targeted resource or system
can be defined as an attack.

3.13.1. Adversary Emulation

The proposed architecture utilizes the panOULU network by deploying the distributed
switch and connecting edge, fog, and cloud tiers. Apart from the benign packets that
are naturally flowing in the network, this work also requires malicious packets. This is
to make sure that the dataset contains both benign and malicious packets that could be
utilized by the machine learning models.

The reconnaissance phase was implemented to generate the malicious packets. This
was done by assigning two VMs in the fog layer to act as attackers. Nmap was used
to scan the devices in the fog layer and edge layer, which were set up in the cyber
range. Used by network administrators and security experts, Nmap is a popular tool
for network exploration and security auditing. Creating a map of the network, it is
utilized to discover hosts and services on a computer network. Identifying open ports,
running services, and the operating systems used by hosts on a network are among its
capabilities. The scanning process for this work included ping scanning using ICMP
packets and host scanning by skipping port scanning during host recovery. After each
step of scanning the specified devices and systems, a 5-minute break is given, and then
again the process loops indefinitely.

It should be emphasized that the scan is confined to devices within the cyber range,
ensuring a limited scope for the analysis, and it does not extend beyond this boundary.
This is important to ensure compliance with GDPR and other regulations.

3.14. ML Models Employed on This Work

There are four ML models that are employed in this work, and later in the section,
certain metrics will be introduced to assess their performance. The following
enumerates these employed models along with their terse description:

1. Logistic regression is a statistical method used for binary classification. The
probability of the binary outcome is estimated by the model through the
application of a logistic function to a linear combination of the input variables.
It also can be used for both numerical and categorical input variables.

2. Perceptron is an artificial neural network model used for binary classification.
It takes a set of input values, applies weights to each input to produce a binary
output. The algorithm is trained using an iterative process to adjust the weights
until the classification error is minimized. It is a linear classifier and works
well when the data is linearly separable, but may not perform well on complex
datasets

3. Another binary classification model used for binary classification is Passive
Aggressive Classifier. It is a variant of perceptron and is designed to update

30

its model parameters in an aggressive manner when it misclassifies an example,
while remaining passive when it makes a correct classification. The algorithm
is known for its fast training speed and ability to handle large-scale datasets. It
is commonly used in online learning scenarios where the model is updated in
real-time.

4. Stochastic Gradient Descent (SGD) Classifier is another binary classification
model. It is a variant of gradient descent optimization algorithm that in which the
model parameters are adjusted by making incremental changes in the direction
opposite to the gradient of the loss function, using randomly selected examples
from the training set. The algorithm is particularly well-suited for large datasets,
as it updates the model incrementally and does not require the entire dataset
to be loaded into memory. Stochastic Gradient Descent (SGD) finds extensive
usage in various fields, including deep learning and other machine learning
applications, where it is employed for the purpose of training a wide range
of models, including logistic regression, support vector machines, and neural
networks.

3.15. Evaluation Metrics

Ground truth is required to evaluate the estimates of various evaluation metrics. The
ground truth is comprised of a mixture of connection records that are categorized
accordingly as either malicious or benign for binary classification. The following terms
are employed to evaluate the quality of the classification models:

• False Negative (FN) refers to a situation where a true positive outcome is
mistakenly classified as negative.

• True Negative (TN) refers to a situation where a true negative outcome is
correctly classified as negative.

• True Positive (TP) refers to a situation where a true positive outcome is correctly
classified as positive.

• False Positive (FP) refers to a situation where a true negative outcome is
mistakenly classified as positive.

We also have the following commonly used evaluation metrics:

• Precision refers to the measure of the accuracy of positive predictions. Higher
precision rate indicates better machine learning model.

precision =
TP

TP + FP
(1)

Precision ∈ [0; 1]

31

• Recall refers to the measure of the ability to identify positive instances correctly.
A higher recall indicates a superior machine learning model.

Recall =
TP

TP + FN
(2)

Recall ∈ [0; 1]

• Accuracy refers to the measure of correct predictions over the total number of
predictions made. It serves as a reliable metric for evaluating the performance
of a machine learning model on a test dataset with balanced classes. Higher
accuracy means better machine learning model.

accuracy =
TP + TN

TP + TN + FP + FN
(3)

Accuracy ∈ [0; 1]

• F1-Score or F1-Measure combines precision and recall into a single metric to
assess the model’s overall performance.

F1− score = 2×
precision× recall

precision+ recall
(4)

F1-score ∈ [0; 1]. The higher value means better machine learning model.

• Receiver Operating Characteristics (ROC) curve is a graphical representation
of the trade-off between true positive rate and false positive rate. The evaluation
metric used to compare machine learning models is the Area Under the ROC
Curve (AUC), which represents the extent of the area beneath the ROC curve.

AUC =

∫
1

0

TP

FN + TP
d

FP

FP + TN
(5)

Higher value is an indication for better machine learning model.

32

4. INFRASTRUCTURE DESIGN

This section presents the proposed architecture intended to generate a novel dataset that
accurately mirrors the modern edge networks and IoT devices employed by smart cities
and organizations in today’s context. The details of the federated learning developed
and implemented on top of this architecture will also be explored.

The proposed architecture is based on IoT systems and interacting networks with
layers of fog and edge to represent the realistic implementation of today’s networks.
The design of this architecture is illustrated in Figure 5. Furthermore, the cloud layer
in the architecture is provided by the CSC — the IT Center for Science, owned by
the Finnish state and higher education institutions, is a Finnish center of expertise in
information technology.

Fog computing and edge computing provide similar on-premise services, including
Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a
Service (SaaS). They offer end-users and organizations the benefits of managing their
data or IoT systems and empowering intelligence and analytics that are close to them
in lieu of transferring a vast quantity of data to the cloud sources.

This architecture aims to generate a dataset that accurately reflects the current state
of smart cities and organizations in the world. Federated learning is implemented on
top of this architecture to enable collaborative machine learning between devices in
the network while maintaining data privacy. This approach allows for the development
of intelligent and efficient systems that can benefit various industries, including
healthcare, transportation, and energy.

There is a difference between fog and edge computing based on the location of
computing, intelligence, and analytics components. The edge layer places these
components in physically sensible devices, such as IoT devices, laptops, personal
computers, and physical servers. In contrast, analytics, computing and intelligence
for the fog layer is considered in Local Area Networks (LANs) where data is routed
through gateways to their intended destinations.

In the proposed architecture, the edge layer encompasses IoT devices, servers,
routers, laptops, Raspberry Pi etc. where the fog is intended for intelligence,
computing, and analytics using Hypervisor technology and LAN. The cloud layer,
in this case, is used for hosting the Flower server — an open-source framework for
federated learning systems. Flower enables data to be stored on distributed devices or
servers, and the model is trained decentrally [56]. Flower clients access the server in
the cloud.

The key functionalities of each layer in the proposed architecture are as follows:

• The fog layer is a virtualized space that controls services and virtual machines
using the VMware vSphere platform. This platform includes frameworks for
Network Function Virtualization (NVF), Software Defined Networking (SDN),
and Service Orchestration (SO) in the proposed architecture. These frameworks
are made possible through SDN management and hypervisor technology.

• The physical devices are included in the edge as the infrastructure for deploying
virtualization. This layer includes multiple IoT devices such as smartphones,
smart TVs, cameras, air fresheners, etc. and host systems such as servers,

33

workstations, and laptops used for connecting gateways and IoT devices to the
panOULU network, and from this network to the internet.

VMware vSphere hypervisor technology is deployed on multiple hosts at the
edge layer for managing VMs operating on the fog.

• The cloud is specifically used to host the Flower server, which is required for
federated learning. Therefore, all the Flower clients process their streaming data
locally, and various machine learning models are trained. The learning weights
of these individual ML models are sent to the Flower server in the cloud to be
aggregated and averaged. Then, the end result from the Flower server in the
cloud is sent back to the Flower clients in the fog layer. This is a continuous and
automated process without any human intervention.

The proposed architecture leverages various technologies to enable flexibility and
dynamism between layers, including Software Defined Networks (SDN), Network
Function Virtualization (NFV), and Service Orchestration (SO). The intended
functionality of the proposed architecture relies on the significant contribution of each
of these technologies. To provide a better understanding of how these components
work together, let us take a closer look at the functions of each layer and the involved
technologies.

1. Service Orchestration (SO) refers to the coordination and management of
multiple services to achieve a specific business process or goal to establish
and deliver end-to-end services [47]. In the proposed architecture, vCenter
server appliance was deployed on one of the hosting ESXi servers to allow
the implementation of NFV and SDN technologies. NFV is the virtualization
technique of network services to replace traditional hardware-based network
functions, while SDN is an approach that separates the network control plane
from the forwarding plane for the purpose of centralized network management.
These technologies enable the operation for SO, as well as the monitoring of
running systems and dynamic workload optimization along with proactive issue
avoidance.

2. SDN enables the development of virtual networks that possess the functionalities
of physical networks [57]. To improve network performance with dynamic and
programmable network configurations, SDN is utilized. SDN implementation
and generation of datasets for the proposed architecture is accomplished using
the VMware vSphere platform, which utilizes virtual switches. Furthermore, the
VMware vSphere hypervisor is deployed to create and manage multiple virtual
machines that operate concurrently to provide various services.

3. By decoupling network functions from dedicated hardware, NFV enables
virtualization and dynamic allocation of network services [58]. In order to
facilitate hybrid deployments involving both physical and virtual machines
across multiple domains, the VMware vCenter appliance is deployed, providing
an abstracted modular design. The virtual distributed switch located within the
vCenter server facilitates the transmission of data for both benign and malicious
activities by enabling communication between the different layers.

35

Virtualizations of the proposed architecture are included in the fog. NFV, fog
devices, and SDN are deployed and managed by the VMware vSphere, and the detail
is as follows:

• SDN management and hypervisor technology were configured and deployed
using the network and controller platforms.

1. Firstly, the vCenter server acts as a controller for the proposed architecture.
It offers a server for virtualization that consolidates applications onto
hardware. This centralized platform is utilized for the management of
vSphere systems, ensuring security through the inclusion of vSphere
replication and data protection features. In other words, it serves as our
service orchestration (SO) tool.

2. The second component of the proposed architecture is the network, which
facilitates virtualization of the testbed network and its management to
enable network communications between the layers. It empowers granular
overlay security and networking by offering distributed network services
for Network Function Virtualizations (NFVs).

3. The proposed architecture’s storage component is supported by Synology
and implemented as a Storage Area Network (SAN). LUNs are provided
by the SAN to vCenter to enable storage space for VMs that operate inside
the ESXi hosts. The SAN and other components are co-located in the same
network to minimize latency and communication jitter (Figure 5).

• NFV data center service is facilitated by the vCenter server, where computational
resources are provided by ESXi hosts for VMware vSphere. These hosts can
be grouped together to provide aggregated resources, which are referred to as
clusters.

• The VMs in the fog nodes are deployed to simulate the necessary devices
for generating new datasets. Five main components are deployed in the
architecture for various tasks such as executing benign and malicious scenarios,
and managing services between layers. The functionalities of these components,
as shown in Figure 7, are illustrated below.

– Regular Systems: are a set of systems that operate normally within the
fog layer. They are configured to have dynamic IP addresses assigned to
them within the panOULU network. This configuration resembles a real-
world scenario where all machines get their IPs through a DHCP server
automatically. The regular systems have the following operating systems
installed on them:

* Windows 7

* Windows 10

* Ubuntu 18.04

* Ubuntu 20.04

* Ubuntu 14.04

36

– Exploitable Systems: These are systems that are intentionally vulnerable
so that they can be easily hacked. They resemble real-world systems that
are never updated and have real security vulnerabilities.

It is noteworthy to know that these naive systems were cordoned off by
a firewall so that they could not have outbound traffic to the rest of the
network. This is for security concerns so that no real attacker could exploit
other systems in the network via these exploitable systems. The following
lists the systems in this category:

* DVWA: The Damn Vulnerable Web Application (DVWA) is built
with MySQL and PHP that is deliberately created to have numerous
vulnerabilities. The main goal of this penetration-testing environment
is to assist security professionals and penetration testers in evaluating
their capabilities and tools. Furthermore, it can assist web developers
in gaining a deeper comprehension of web application security and
strategies for enhancing security measures. Additionally, it can serve
as a valuable educational resource for students and teachers seeking
to learn about web application security and the various vulnerabilities
that may arise.

* OWASP: OWASP Security Shepherd is a platform designed to provide
comprehensive training in the security aspects of web and mobile
applications. Security Shepherd is intentionally developed to enhance
and cultivate security awareness among individuals with varying levels
of skills and expertise.

* Metasploitable3: Metasploitable3 is a purpose-built virtual machine
(VM) that is deliberately designed with an extensive array of security
vulnerabilities from its inception. Its intended purpose is to serve as
a designated testing target for exploring and assessing exploits using
the Metasploit framework. Metasploitable3 is a freely available virtual
machine that enables the simulation of attacks, primarily utilizing the
capabilities of the Metasploit framework.

– Attacking Systems: These are the systems specifically used for hacking in
the testbed architecture. All devices shown in the proposed cyber range
architecture can be considered as possible targets for attacking scenarios.
In this context, a probing attack (scanning) is launched only for the devices
in the fog layer and edge layer of the cyber range. It is important to
limit other attack scenarios so that they do not affect all the devices in
the network.

– Collector Systems are responsible for capturing and collecting network
traffic from the entire testbed architecture. Suricata and WAZUH were
deployed for this purpose. Suricata captures network traffic in pcap format
that is mirrored to it from both the SPAN port of the switch and the
port forwarding capability of the virtual distributed switch in the vCenter.
It then sends the captured logs to WAZUH for further visualization and
indexing in the ELK stack.

Furthermore, for packet-level analysis, the Tshark tool is employed to
extract valuable network packet features, which are subsequently utilized

37

Figure 6. WAZUH’s dashboard [59].

in conjunction with machine learning and deep learning algorithms. The
identified patterns and deviations in network traffic, derived from the
extracted features, can be leveraged to detect potential malicious activity
within the network.

– Federated Learning Systems: These are the systems that employ the
whole proposed architecture and infrastructure to provide the end result of
recognizing malicious patterns done by hacker machines through federated
machine learning. These systems reside on the different parts of the
architecture, namely the fog and cloud layers.

The Flower clients in the fog layer are deployed within the subnet and
can be deployed anywhere within the geographical location covered by
the panOULU network. The same principle applies to the Flower server
machine, which can be deployed in any cloud computing platform, such
as AWS, Azure, GCP, or private hosted clouds. In this work, the suricata
machines, which are IDS/IPS machines, also host the Flower clients. These
clients constantly read the streaming pcap files provided by suricata and
extract useful features from them.

Based on the attackers’ IP addresses and the timestamp of the attacks, these
packets are labeled as either benign or attack type (probe packets). After
labeling, the IP addresses are stripped from the data to represent the real-
world situation for the ML model, ensuring that it does not learn patterns
biased by IP addresses. After the ML model is trained locally in each
suricata machine, the learned weights are sent to the Flower server in the
cloud layer, which is deployed on OpenStack provided by CSC.

The Flower server then aggregates and averages the weights from all the
Flower clients and sends back the updated weights to each individual
Flower client. In this way, the Flower clients can learn from each other
as each individual client has access to specific network traffic. The
process can continue for as long as desired, as it is configurable during
the initialization phase of the whole federated machine learning process.

Figure 8 illustrates the operational mechanism of federated learning within the
presented architecture. Each suricata machine in the fog layer hosts an individual

40

• Server

– Processor: AMD Ryzen Threadripper 3960X 24 core

– RAM: 128 GB

– Two NICs

• HP EliteBook 850 G3

– Processor: Inter(R) Core(TM) i7-6600U CPU 2.60 GHz

– One NIC

– RAM: 16 GB

• Zotac ZBOX-EN1070

– Processor: Inter(R) Core(TM) i5-6400 CPU 2.20 GHz

– Two NICs

– RAM: 32 GB

• Lenovo ThinkStation 30D0S39X00

– Processor: Intel(R) Core(TM) i7-9700 CPU 3.00 GHz

– RAM: 32 GB

– One NIC

• Raspberry Pi4 Model B Starter Kit (pi-8gb-starterkit)

– Processor: ARM Limited Cortex-A72 r0p3

– RAM: 8 GB

– One NIC

4.1.2. Network Devices

The following lists the network devices employed for the proposed testbed.

• TP-Link TL-SG108E Gigabit Switch 8 ports

• TP-Link Archer MR600 4G+ Cat6 AC1200 Wireless Dual Band Gigabit Router

41

4.1.3. Network Storage Device

Here is the list of components used for the SAN & NAS device employed in the
architecture.

• 1 X Synology Disk Station DS920+ 4BAY 2.0 GHZ QC 2X GBE 4GB

• 2 X Samsung 970 EVO Plus 500GB M-2-NVME SSD

• 1X Synology 4GB SO-DIMM DDR4 2666MHZ NON-ECC

• 4X Synology HAT5310 NAS 8TB SATA/600 HDD

42

5. RESULTS AND APPLICATIONS

This section covers the usage of the implemented architecture, emphasizing on the
empirical findings obtained from the implemented FED-ML models. The models are
trained using streaming data that flow through the distributed switch in different layers
of the proposed architecture. The evaluation dataset, which was captured and utilized
to evaluate the models’ performance, has been made public in [60].

5.1. Network Performance Evaluation

To ensure the network devices’ capabilities support the experiment in the proposed
architecture, the iperf3 tool was used to gauge their performance. iPerf3 is a proactive
measurement utility used to ascertain the upper limit of bandwidth attainable on IP
networks. It provides the adjustment of multiple parameters related to timing, buffers,
and protocols (including TCP, UDP, SCTP with both IPv4 and IPv6), and generates
comprehensive reports for every test, encompassing details such as bandwidth, loss,
and various other parameters.

The network performance evaluation was carried out in panOULU for both TCP
and UDP protocols over a period of four days. The ribbon plot and box plot for the
measurements are shown in Figures 9, 10, 11, and 12. The plots indicate that the
network devices attached to the panOULU have sufficient bandwidth and speed to
support the proposed architecture.

5.2. Data Collection

To process network traffic, the first step is to capture network data in pcap format.
Two of the collector systems with Suricata software installed on them were used
to capture the network traffic in transit through the panOULU network. Suricata is
a widely employed open-source software for network analysis and threat detection,
extensively utilized by both private and public organizations and incorporated by
prominent vendors for safeguarding their assets.

The network traffic flowing in the proposed architecture is recorded by the Suricata-
installed systems, which keep track of the systems in the cyber range interacting with
each other on the panOULU network while their traffic is captured for further analysis.
The traffic is mirrored to these systems through the SPAN port in the switch, enabling
them to capture the entire traffic in the cyber range depicted in Figure 7. The network
configuration in the systems is set to promiscuous mode, which enables them to listen
to the traffic.

The captured traffic is saved as 3,000 pcap files, each with a size of 100MB, in the
highest possible compressed form (level 16 of lz4 algorithm), and rotated when the
maximum amount of files is reached, with older files being replaced by new ones. It
is crucial to highlight that the captured traffic is confined to the visibility scope of
the virtual machines (VMs) on which the capture software is installed. This traffic is
being captured legitimately and pertains only to traffic going to and from the illustrated
systems.

46

Table 1. This table shows most 37 useful features employed during FED-ML phase
with examples.
Feature Description Example Value
arp.hw.type Hardware type 1
arp.hw.size Hardware size 6
arp.proto.size Protocol size 4
arp.opcode Opcode 2
data.len Length 2713
eth.dst.lg LG bit 1
eth.dst.ig IG bit 1
eth.src.lg LG bit 1
eth.src.ig IG bit 1
frame.offset_shift Time shift for this packet 0
frame.len Frame length on the wire 1208

frame.cap_len
Frame length stored into the
capture file

215

frame.marked Frame is marked 0
frame.ignored Frame is ignored 0
frame.encap_type Encapsulation type 1

gre Generic Routing Encapsulation
’Generic Routing
Encapsulation (IP)’

ip.version Version 6
ip.hdr_len Header Length 24

ip.dsfield.dscp
Differentiated Services
Codepoint

56

ip.dsfield.ecn
Explicit Congestion
Notification

2

ip.len Total Length 614
ip.flags.rb Reserved bit 0
ip.flags.df Don’t fragment 1
ip.flags.mf More fragments 0
ip.frag_offset Fragment Offset 0
ip.ttl Time to Live 31
ip.proto Protocol 47

ip.checksum.status
Header checksum status 2

tcp.srcport Source Port 53425
tcp.flags Flags 0x00000098
tcp.flags.ns Nonce 0

tcp.flags.cwr
Congestion Window Reduced
(CWR)

1

udp.srcport Source Port 64413
udp.dstport Destination Port 54087
udp.stream Stream index 1345
udp.length Length 225

47

udp.checksum.status
Checksum Status 3

5.4. Labeling the Streaming Data

In order to differentiate between regular network activities and malicious ones in the
streaming data, a probing scan is conducted on cyber-range victim VMs within the
panOULU network. The scan is performed using hacking machines that are hosted
on ESXi systems under the control of the vCenter server. Criteria such as the time of
scanning and the IP addresses of the hacking systems are recorded during the scan.
These criteria are then used to label the streaming data.

Packets that have the attacker’s IP address in either the source or destination and
include the time of attack are categorized as attack packets. In contrast, packets that
don’t meet these criteria are designated as normal network packets. This classification
procedure is essential for machine learning algorithms, which depend on accurately
labeled packets to perform classification tasks.

Python is utilized to process the network pcap files that are supplied by suricata-
installed machines. The packets are labeled based on their features, which are extracted
and converted to CSV format. It should be noted that the whole explained process is
entirely automated, with no need for human intervention.

5.5. Data Analytics

The Python scripting language was used in addition to multiple packages for machine
learning and deep learning methodologies, as well as other necessary packages for data
processing and manipulation to analyze the streaming data. These packages undertake
crucial roles in pre-processing, feature selection, and machine learning classification.
Some of the packages used for the analysis include scikit-learn, Pandas, numpy,
Flower, and matplotlib.

During each learning round in FED-ML, the prepared dataset is partitioned into two
segments, namely training and testing. The ratio of test to train is set at 1 to 4. The
train portion is used to feed the FED-ML algorithms to acquire knowledge about the
behavior of the network from the streaming data. The test portion of the data is used
to evaluate the performance of the model following each training iteration.

The model’s performance is logged and displayed on the terminal during the learning
phase. Following every training iteration, the model’s performance is assessed by
employing the test data, and the resulting data is logged to track the model’s progress.
This evaluation process is crucial for determining the model’s efficacy and identifying
areas that need improvement.

The trained models were saved on the hard disk for future evaluation on unseen data.
To evaluate their performance, 3,000 ML-unseen pcap files were used as mentioned
earlier. However, it was not feasible to process all the data simultaneously as it was
too large in volume. Despite having a powerful server with 128GB of RAM, we had
to devise innovative programming solutions to overcome this challenge.

48

Figure 14. Pie chart for regular packets to probe packets ratio for evaluation data (3000
pcap files).

To cope with the substantial volume of data, 110GB of RAM and 350GB of
swap memory were allocated. To expedite the entire process, multi-processing
techniques were implemented, which allowed multiple processor cores to be utilized
simultaneously.

It should be noted that processing such a large volume of data requires significant
computational resources. Even with the most powerful servers available today, it
is not possible to process all the data at once. Therefore, novel techniques and
programming solutions are required to tackle the challenges associated with processing
large datasets.

The ratio between regular network traffic packets and malicious packets for the
3,000 pcap files that were utilized to evaluate the FED-ML trained models is displayed
in Figure 14. After extracting packets from these 3,000 pcap files, a total of
2,789,874,382 entries were obtained. Out of this total, 2,783,207,918 packets were
regular packets, while the remaining 6,666,464 packets were probe packets.

5.6. Federated Machine Learning Classification

In the experiment, four machine learning models were established for training. After
the FED-ML models completed the desired number of learning phases, they were
saved in a storage device for future classification purposes. During the FED-ML

49

process, several commonly used machine learning algorithms were utilized. The
efficacy and efficiency of these algorithms in classifying malicious and benign packets
on previously unseen data were also evaluated in this study.

During the experiment, two rounds of training were conducted for the FED-ML
models. In the initial round, four models were trained in a federated manner for
5 rounds and their performance was evaluated. Since there were no comparable
experiments in the literature that was similar to this study, a second round of training
was conducted. In the second round, the same four models were trained on streaming
data with 50 rounds of training to allow for comparisons and to identify any similarities
or differences that arose due to the fluctuations in the quantity of training iterations.

The second round of training was conducted with the goal of comparing the
results and identifying any similarities or differences that may have arisen due to the
varying number of training rounds. This comparison was intended to improve our
understanding of the models’ performance and their capacity to classify malicious and
benign packets on unseen data.

5.6.1. Nuts and Bolts of the Streaming Data

According to Figure 7, the two Suricata machines function as Flower client machines,
collecting network activities and performing the role of IDS systems. The streaming
data utilized in the FED-ML algorithms is procured separately from these machines.
It is fortunate that we have logged all essential steps of the process. As a result, we
can examine the logs for these machines and present statistical information about the
foundational data employed in the training stage of the machine learning algorithms.

The training process of the four chosen machine learning models commenced on
January 17, 2023, at 09:36:28 on the first Suricata machine and ended on January 29,
2023, at 05:18:44. During this time, 13,488 pcap files were processed, but only 3,266
of them were used for training the models. The remaining files were discarded because
they did not contain any sign of attacker’s machine packets. The models underwent
training using a grand total of 485,924,228 packets.

It is worth emphasizing that when dealing with streaming data, there may be pcap
files that only contain regular packets and no malicious packets. If no malicious
packets are included in the training data, the machine learning algorithms complain
as they expect at least two different categories. Therefore, these files were discarded
during the training phase. This also underscores the importance of ML algorithms to
be able to learn from data with only one class (i.e. a unary category of data).

For the second Suricata machine, training of the models began on January 17, 2023,
at 09:36:35, and ended on January 29, 2023, at 05:18:44. During this period, 18,092
pcap files were processed, of which only 3,238 were used for training the models. The
remaining files were discarded for the same reason discussed earlier, as they did not
contain any malicious packets.

A sum of 503,236,492 packets was extracted from the 3,238 pcap files in total. This
highlights the significant amount of data that was processed and analyzed during the
training phase.

Figure 15 provides additional insight into the regular to probe ratio for streaming
data for both Flower clients during the training phase.

57

6. DISCUSSION

The creation of AI-based intrusion detection systems requires the application of high
quality data to train the models. A wealth of datasets has been publicly disclosed
over past years to facilitate researchers in developing high-performance models.
Notwithstanding, a large portion of the introduced architectures and datasets has
become obsolete. Consequently, the central objective of this thesis is to engineer
a contemporary testbed architecture suitable for defense systems, factoring in the
ceaseless evolution of technologies and streaming Federated Learning models. Below
we discuss the strengths and limitations of the proposed solutions.

In the research conducted, the majority of predictions were negative, with only
a small fraction being positive. As a result, unsatisfactory results were obtained,
providing an opportunity for further discussion and analysis. Several related studies
have employed IP addresses for classification purposes. However, this approach
presents various potential shortcomings. Hackers frequently alter their IP addresses
deliberately to evade detection, and machine learning algorithms excel in discerning
patterns within datasets, IP addresses included. If a model is trained to link malevolent
activities to specific attacker IPs, its efficacy may be compromised in real-world
scenarios where IP addresses are regularly changing and dynamic. While IP addresses
were not employed during the learning phase of this work, their inclusion remains
a subject of discussion. The usage of IP addresses can potentially introduce biased
results, and disregarding them can lead to inaccurate outcomes. It is crucial to
recognize the limitations of not using IP addresses, including the distribution of cases.

The developed testbed is unique compared to other testbeds discussed in the prior
research section (2) because we utilize a public network for our experiments, while
most existing testbeds rely on private networks. This difference brings several
strengths that distinguish our approach from other testbeds. One of the distinctive
features of this work is the streaming network data that is fed into FED-ML models.
The data streaming is subjected to preprocessing and being labeled as they flow in the
network, enabling data collection and pre-processing to occur concurrently with the
learning phase of FED-ML models.

In contrast to existing literature, which typically follows a sequential approach of
collecting data first and then performing pre-processing for ML models, this method
introduces a groundbreaking approach. In this traditional approach, there is no
concurrency, and there are multiple interruptions in the whole pipeline that require
manual human involvement. In contrast, our approach enables the employed models
to capture the dynamism of the network flow on-the-go.

It is worth emphasizing that the models employed in this study have been trained
using streaming data, meaning that they have seen different data streams during their
training phase. This approach is nonconformist compared to traditional machine
learning models examined in the earlier section of research, which are often trained
using the same set of data. However, since the models in this work see a lot of data
during their learning time, the discrepancy of their learning data shouldn’t make much
of a difference over the long run.

To ensure fair comparisons between the different models, they are all evaluated using
a consistent set of test data, even though they were trained on different data streams.
This approach guarantees that the evaluation metrics are reported against the same set

58

of data, allowing us to make accurate comparisons between the models. This method
of evaluating the models aligns with other studies in the field where the models are
also tested using the same set of test data.

Normalization was not employed as part of the learning procedure in this study.
While some algorithms benefit from normalization and standardization [61], it was not
possible to perform this step in the current study due to the streaming nature of the data.
Previous works, such as [62], [10], and [63], have utilized normalization techniques in
their work. However, in the proposed architecture of this study, each round during the
learning phase could be viewed as a new opportunity for the machine learning models
to be appropriately trained, and normalization could still be applied.

The effectiveness of the selected features may not have been as expected, and
there could be other features that would benefit the models. However, it should be
highlighted that string features were ineligible for selection since machine learning
models only recognize numbers. While it is possible to transform strings into numbers
through the process of label encoding or one-hot encoding, this presents another
problem in the case of streaming data processing. Unlike the conventional approach
taken by other related works of training models, where all data is available during the
learning phase, streaming data is not readily available all at once.

The reason why it is not possible to transform categorical data into numerical
equivalents is because there is always a possibility that a new category could appear in
the future data. Converting categorical values into numerical equivalents is a common
practice in related works, such as [64]. However, this requirement poses a challenge
for the federated learning case, which deals with streaming data. One of the findings
of this work is the need to address this challenge.

Plot 14 indicates a notable disparity between the quantity of regular packets and
probe packets, which may have adverse effects on the efficacy of machine learning
algorithms trained on this data. A balanced dataset is crucial for optimal model
performance, with each category represented proportionally. In our case, this would
require a more balanced representation of regular and probe packets.

To address this issue, we could increase the number of probe packets by conducting
reconnaissance and gathering more data from the network. One way to do this is
by scaling out the number of hacker machines, which could increase the number of
probe packets generated. However, increasing the number of hacker machines must be
done carefully and ethically, with proper precautions taken to prevent any harm to the
network or its users.

Other related studies such as [65], [66] and [67] have addressed imbalance by
resampling data from the same dataset. However, this approach can lead to overfitting,
where the model exhibits excessive fitting to the training data and performs poorly on
new data.

The use of packet-level features alone in this work may not be sufficient for
accurately identifying malicious activity in network traffic data. To extract features at
the packet-level, TShark was utilized to process pcap files. However, this approach did
not consider the sequences of back-and-forth packets, as this could be quite challenging
due to the complexity of the architecture with devices connecting from different layers
in the cyber range.

On the other hand, several related studies mentioned in the prior research section
have utilized common benchmark datasets that are available for intrusion detection

59

research. These datasets typically consist of various features generated using different
tools and scripts. Utilizing these datasets with distinct features could have a positive
impact on the results of these studies. For example, this work excluded IP addresses of
the packets during the learning phase of the models, whereas in the study by Moustafa
[47], these features were included.

6.1. Answers to Research Questions

In the introduction sections we laid out four fundamental research questions for this
work. Now that we have gone through all the works and the final results, we can
answer each of these questions in an explicit manner as the following:

• Answer to Research Question 1:

The virtualization of network functions and the utilization of software-defined
networking provided by VMware vSphere enabled the deployment of the
Distributed Switch in the proposed architecture, allowing all devices in the fog
layer to communicate with each other, as well as with the edge layer and cloud
layer. This helped create a single virtual switch that spans multiple physical
hosts, enabling centralized network management and configuration, which could
were further utilized for capturing and analyzing PCAP files.

Furthermore, the service orchestration feature provided by the vCenter Server
Appliance enabled integrated control of the devices in the fog layer. By
using this feature, the process of deploying, managing, and monitoring virtual
machines in the cyber range was streamlined.

Moreover, the federated learning architecture of the work enabled the use of
edge/cloud computing, as the Suricata-installed devices were responsible for
training the models locally and sending the updated results back to the cloud.
This had the benefit of reducing latency and providing a cost-effective way of
storing and managing large volumes of data.

• Answer to Research Question 2: Federated learning has the distinctive feature
of preserving privacy at the edge layer without revealing any information about
the data. This paradigm was employed in this work to address security concerns.
Specifically, this was achieved by training models locally with the streaming data
and updating the Flower server with the trained model.

This paradigm could be taken advantage of by extending the leverage of
federation to different layers in any other situation. This level of granularity
means that even edge devices, like Raspberry Pi, for instance, could train models
locally without needing access to the entire network traffic. They could simply
train the models locally and send updates back to the Flower server.

• Answer to Research Question 3: The proposed architecture aimed to showcase
the intricate nature of modern-day network topologies. The setup includes both
wired and wireless connections to the panOULU network, which encompasses
diverse topologies. The devices used in this work span across IoT devices,
smartphones, VMs, and more.

60

By combining these devices with various communication media and
technologies, a realistic testbed has been established. This testbed includes
different tiers such as edge, fog, and cloud, which can be utilized to generate
a high-quality dataset.

The inclusion of diverse devices and topologies in this architecture emphasizes
the intricacy of contemporary networks. With the increasing number of IoT
devices and the need for seamless connectivity, it has become crucial to develop
such a testbed that accurately replicates real-world scenarios.

• Answer to Research Question 4:

Based on the findings of this study, it can be concluded that securing devices
in a public network can be a challenging task. The plots and figures generated
from the trained machine learning models clearly demonstrate the difficulty of
accurately predicting malicious activities.

Despite extensive research in this field, the results have not been entirely
satisfactory. Many models are based on outdated datasets or datasets created
on private networks, rendering them less effective when applied to public
networks. Additionally, most models reported by other studies are not trained
using streaming data, which can be ineffective in a real world.

It could be inferred from the results that the best possible way to protect the
network assets and devices is by securing them in the first place by setting up
strict firewall rules and limiting the inbound and outbound activities of these
devices. Keeping the operating systems of these devices up-to-date is another
precaution that could mitigate the security breach of these devices.

6.2. Limitations and Future Work

A selection of ML algorithms was chosen to evaluate the results in this study. It is
possible to further expand this selection to include other ML algorithms with different
methodologies. Additionally, one FED-ML master node and two slave nodes were
used to conduct the experiment in the proposed architecture. In future studies, it may
be feasible to scale out the number of slave nodes. However, such scaling may result
in a substantial rise in the ratio of probe packets to regular packets, ultimately resulting
in a more balanced dataset compared to the current status of the data ratio as illustrated
in figure 14.

In addition, it would be interesting and necessary to extend this work by performing
different types of attacks on the cyber range and training ML models on these diverse
attacks. The ML models utilized in this work have the capability of predicting multi-
class data, making it easier to expand this study to multi-attack-type scenarios for
FED-ML learning.

Moreover, it is possible to deploy multiple honeypots in various ESXi hosts in
a distributed manner to attract attackers engaging in malicious activities within the
panOULU network. The resulting data can be utilized to train ML algorithms for
cyber security purposes. The proposed architecture can provide the necessary platform
for implementing the described blueprint.

61

7. CONCLUSION

The presented testbed architecture highlights the necessity of a robust and efficient
communication infrastructure to facilitate the growing network of interconnected
devices, encompassing sensors and IoT devices, cellphones, and drones that are being
connected to public networks and the Internet. The future of mobile networks is
undergoing a transformative phase beyond the limitations of 4G and forthcoming 5G
networks, with enabling technologies paving the way for novel system architectures.
However, the cybersecurity of these emerging systems is neglected and fails to keep
pace with the necessity for a unified cybersecurity framework. Cybersecurity should be
prioritized as critical national infrastructures are targeted by cyber attacks, and a robust
Intrusion Detection System (IDS) is a must for attack classification and detection,
intrusions, and violations of security policies promptly. The challenges faced by
researchers in obtaining valid datasets to evaluate their proposed techniques due to
the complexity of networks and systems and the lack of high-quality testbeds were
also discussed in this work.

An architecture was outlined and implemented to facilitate the deployment of
Federated Machine Learning (FED-ML) algorithms designed for real-time analysis
of network traffic to enhance cybersecurity. The experimental results of the deployed
FED-ML model were discussed, which was trained on streaming data flowing through
the distributed switch across various layers of the architecture. The feature extraction
process involved using tshark to extract features from binary pcap files, with Python
serving as the underlying language for the entire work. The streaming data was
classified into normal network activities and malicious ones by performing a probing
scan on the cyber-range victim VMs, and the process was described.

The fog layer consisted of key components such as VMware vSphere hypervisor,
Service Orchestration (SO), SDN, NFV, as mentioned. Streaming data was utilized
to train the models, and normalization was not conducted while learning. Upon
analyzing the results, it was observed that the chosen features may not be as efficient as
anticipated, and the regular to probe packet ratio was imbalanced. Some of the possible
reasons for such results were further outlined in the discussion section (6).

62

8. REFERENCES

[1] Taleb T., ika Benza C., Lopez M.B., Mikhaylov K., Tarkoma S., Kostakos P.,
Mahmood N.H., Pirinen P., Matinmikko-Blue M., Latva-aho M. et al. (2022)
6g system architecture: A service of services vision. ITU journal on future and
evolving technologies 3, pp. 710–743.

[2] Alcácer V. & Cruz-Machado V. (2019) Scanning the industry 4.0: A
literature review on technologies for manufacturing systems. Engineering
Science and Technology, an International Journal 22, pp. 899–919. URL:
https://www.sciencedirect.com/science/article/pii/

S2215098618317750.

[3] O’Donovan P., Gallagher C., Bruton K. & O’Sullivan D.T. (2018) A
fog computing industrial cyber-physical system for embedded low-latency
machine learning industry 4.0 applications. Manufacturing Letters 15, pp. 139–
142. URL: https://www.sciencedirect.com/science/article/
pii/S2213846318300087, industry 4.0 and Smart Manufacturing.

[4] Ferrag M.A., Maglaras L., Moschoyiannis S. & Janicke H. (2020) Deep
learning for cyber security intrusion detection: Approaches, datasets,
and comparative study. Journal of Information Security and Applications
50, p. 102419. URL: https://www.sciencedirect.com/science/
article/pii/S2214212619305046.

[5] Maglaras L.A., Kim K.H., Janicke H., Ferrag M.A., Rallis S., Fragkou P.,
Maglaras A. & Cruz T.J. (2018) Cyber security of critical infrastructures.
ICT Express 4, pp. 42–45. URL: https://www.sciencedirect.com/
science/article/pii/S2405959517303880, sI: CI & Smart Grid
Cyber Security.

[6] Mukherjee B., Heberlein L. & Levitt K. (1994) Network intrusion detection.
IEEE Network 8, pp. 26–41.

[7] Larson D. (2016) Distributed denial of service attacks - holding back the flood.
Netw. Secur. 2016, p. 5–7. URL: https://doi.org/10.1016/S1353-
4858(16)30026-5.

[8] Venkatraman S. & Alazab M. (2018) Use of data visualisation for zero-day
malware detection. Security and Communication Networks 2018, pp. 1–14.

[9] Mishra P., Varadharajan V., Tupakula U. & Pilli E.S. (2019) A detailed
investigation and analysis of using machine learning techniques for intrusion
detection. IEEE Communications Surveys & Tutorials 21, pp. 686–728.

[10] Vinayakumar R., Alazab M., Soman K.P., Poornachandran P., Al-Nemrat A. &
Venkatraman S. (2019) Deep learning approach for intelligent intrusion detection
system. IEEE Access 7, pp. 41525–41550.

63

[11] Paxson V. (1999) Bro: a system for detecting network intruders
in real-time. Computer Networks 31, pp. 2435–2463. URL:
https://www.sciencedirect.com/science/article/pii/

S1389128699001127.

[12] LeCun Y., Bengio Y. & Hinton G. (2015) Deep learning. Nature 521, pp. 436–44.

[13] Venkatraman S. & Alazab M. (2018) Use of data visualisation for zero-day
malware detection. Security and Communication Networks 2018, pp. 1–13.

[14] Lee W. & Stolfo S.J. (2000) A framework for constructing features and models
for intrusion detection systems. ACM Trans. Inf. Syst. Secur. 3, p. 227–261. URL:
https://doi.org/10.1145/382912.382914.

[15] Özgür A. & Erdem H. (2016), A review of kdd99 dataset usage in intrusion
detection and machine learning between 2010 and 2015.

[16] Agarwal R.C. & Joshi M.V. (2001) Pnrule: A new framework for learning
classifier models in data mining (a case-study in network intrusion detection).
In: SDM.

[17] Kayacik H.G., Zincir-Heywood A.N. & Heywood M.I. (2005) Selecting features
for intrusion detection: A feature relevance analysis on kdd 99. In: Conference
on Privacy, Security and Trust.

[18] Zhang J., Zulkernine M. & Haque A. (2008) Random-forests-based network
intrusion detection systems. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews) 38, pp. 649–659.

[19] Huda S., Abawajy J., Alazab M., Abdollalihian M., Islam M.R. & Yearwood J.
(2014) Hybrids of support vector machine wrapper and filter based framework
for malware detection. Future Generation Computer Systems 55.

[20] Alazab M., Huda S., Abawajy J., Islam M.R., Yearwood J., Venkatraman S. &
Broadhurst R. (2014) A hybrid wrapper-filter approach for malware detection.
Journal of Networks 9.

[21] Hu W., Hu W. & Maybank S. (2008) Adaboost-based algorithm for network
intrusion detection. IEEE Transactions on Systems, Man, and Cybernetics, Part
B 38, pp. 577–583.

[22] Ertöz L., Steinbach M. & Kumar V. (2003) Finding clusters of different sizes,
shapes, and densities in noisy, high dimensional data.

[23] Amor N.B., Benferhat S. & Elouedi Z. (2004) Naive bayes vs decision trees in
intrusion detection systems. In: ACM Symposium on Applied Computing.

[24] Valdes A. & Skinner K. (2000) Adaptive, model-based monitoring for cyber
attack detection. pp. 80–92.

[25] Yeung D.Y. & Chow C. (2002) Parzen-window network intrusion detectors .

64

[26] Li W. (2004) Using genetic algorithm for network intrusion detection .

[27] Kolias C., Kambourakis G. & Maragoudakis M. (2011) Swarm intelligence
in intrusion detection: A survey. Computers & Security 30, pp. 625–
642. URL: https://www.sciencedirect.com/science/article/
pii/S016740481100109X.

[28] Nehinbe J.O. (2011) A critical evaluation of datasets for investigating IDSs and
IPSs researches. In: 2011 IEEE 10th International Conference on Cybernetic
Intelligent Systems (CIS), IEEE. URL: https://doi.org/10.1109/

cis.2011.6169141.

[29] Sharafaldin I., Lashkari A.H. & Ghorbani A.A. (2018) Toward generating a new
intrusion detection dataset and intrusion traffic characterization. In: Proceedings
of the 4th International Conference on Information Systems Security and Privacy,
SCITEPRESS - Science and Technology Publications. URL: https://doi.
org/10.5220/0006639801080116.

[30] Gharib A., Sharafaldin I., Lashkari A.H. & Ghorbani A.A. (2016) An evaluation
framework for intrusion detection dataset. In: 2016 International Conference on
Information Science and Security (ICISS), IEEE. URL: https://doi.org/
10.1109/icissec.2016.7885840.

[31] Sharafaldin I., Habibi Lashkari A. & Ghorbani A.A. (2019) A detailed analysis
of the cicids2017 data set. In: P. Mori, S. Furnell & O. Camp (eds.) Information
Systems Security and Privacy, Springer International Publishing, Cham, pp. 172–
188.

[32] Bay S. (1999), The uci kdd archive. https://kdd.ics.uci.edu/. Irvine,
CA: University of California, Department of Computer Science.

[33] Li D., Deng L., Lee M. & Wang H. (2019) Iot data feature extraction
and intrusion detection system for smart cities based on deep migration
learning. International Journal of Information Management 49, pp. 533–
545. URL: https://www.sciencedirect.com/science/article/
pii/S0268401218311356.

[34] Song J., Takakura H., Okabe Y., Eto M., Inoue D. & Nakao K. (2011), Statistical
analysis of honeypot data and building of kyoto 2006+ dataset for nids evaluation.
Paper presented at proceedings of the 1st Workshop on Building Analysis
Datasets and Gathering Experience Returns for Security. Salzburg Austria.

[35] Tavallaee M., Bagheri E., Lu W. & Ghorbani A.A. (2009) A detailed analysis
of the kdd cup 99 data set. In: 2009 IEEE Symposium on Computational
Intelligence for Security and Defense Applications, pp. 1–6.

[36] Tavallaee M., Bagheri E., Lu W. & Ghorbani A. (2009), A detailed analysis of
the kdd cup 99 data set. Paper presented at proceedings of the IEEE Symposium
on Computational Intelligence for Security and Defense Applications. Ottawa.

65

[37] Moustafa N. & Slay J. (2016) The evaluation of network anomaly detection
systems: Statistical analysis of the UNSW-NB15 data set and the comparison
with the KDD99 data set. Information Security Journal: A Global Perspective
25, pp. 18–31. URL: https://doi.org/10.1080/19393555.2015.
1125974.

[38] Moustafa N., Slay J. & Creech G. (2019) Novel geometric area analysis technique
for anomaly detection using trapezoidal area estimation on large-scale networks.
IEEE Transactions on Big Data 5, pp. 481–494.

[39] Sharafaldin I., Lashkari A.H. & Ghorbani A.A. (2018) Toward generating a new
intrusion detection dataset and intrusion traffic characterization. In: ICISSP.

[40] Abdulhammed R., Musafer H., Alessa A., Faezipour M. & Abuzneid A.
(2019) Features dimensionality reduction approaches for machine learning based
network intrusion detection. Electronics 8, p. 322. URL: https://doi.org/
10.3390/electronics8030322.

[41] Sharafaldin I., Lashkari A. & Ghorbani A. (2018), Toward generating a new
intrusion detection dataset and intrusion traffic characterization. Paper presented
at proceedings of the 4th International Conference on Information Systems
Security and Privacy (ICISSP). Madeira.

[42] Homoliak I., Barabas M., Chmelar P., Drozd M. & Hanacek P. (2013)
The steering committee of the world congress in computer science,
computer âǪ. Proceedings of the International Conference on Security and
Management (SAM) , p. 1URL: https://www.scopus.com/inward/
record.uri?eid=2-s2.0-85127925725&partnerID=40&md5=

3588bf0d65255264ce9949de9a67d063, cited by: 1.

[43] Jazi H.H., Gonzalez H., Stakhanova N. & Ghorbani A.A. (2017)
Detecting http-based application layer dos attacks on web servers in
the presence of sampling. Computer Networks 121, pp. 25–36. URL:
https://www.sciencedirect.com/science/article/pii/

S1389128617301172.

[44] Shiravi A., Shiravi H., Tavallaee M. & Ghorbani A.A. (2012) Toward
developing a systematic approach to generate benchmark datasets for
intrusion detection. Computers & Security 31, pp. 357–374. URL:
https://www.sciencedirect.com/science/article/pii/

S0167404811001672.

[45] Creech G. & Hu J.J.I.T.o.C. (2013) A semantic approach to host-based
intrusion detection systems using contiguousand discontiguous system call
patterns 63, p. 807 – 819. URL: https://www.scopus.com/inward/
record.uri?eid=2-s2.0-85093168076&partnerID=40&md5=

ee02796b7d947729a2467c2cc34dd01e, cited by: 0.

[46] Creech G. & Hu J. (2013) Generation of a new ids test dataset: Time to retire
the kdd collection. In: 2013 IEEE Wireless Communications and Networking
Conference (WCNC), pp. 4487–4492.

66

[47] Moustafa N. (2021) A new distributed architecture for evaluating ai-based
security systems at the edge: Network ton_iot datasets. Sustainable Cities and
Society 72, p. 102994.

[48] Sabhnani M. & Serpen G. (2004) Why machine learning algorithms fail in misuse
detection on kdd intrusion detection data set. Intell. Data Anal. 8, p. 403–415.

[49] Mtimet J. & Amiri H. (2013) Image classification using statistical learning for
automatic archiving system. International Review on Computers and Software
(IRECOS) 8. URL: https://www.praiseworthyprize.org/jsm/

index.php?journal=irecos&page=article&op=view&path%

5B%5D=11048.

[50] Moustafa N. & Slay J. (2015) Unsw-nb15: a comprehensive data set for network
intrusion detection systems (unsw-nb15 network data set). In: 2015 Military
Communications and Information Systems Conference (MilCIS), pp. 1–6.

[51] Suricata. URL: https://suricata.io/.

[52] Tiensyrjä J., Ojala T., Hakanen T. & Salmi O. (2010) panoulu conqueror:
pervasive location-aware multiplayer game for city-wide wireless network. In:
Proceedings of the 3rd International Conference on Fun and Games, pp. 157–
165.

[53] Kukka H., Ojala T., Tiensyrjä J. & Mikkonen T. (2008) panoulu luotsi: A
location based information mash-up with xml aggregator and wifi positioning.
In: Proceedings of the 7th International Conference on Mobile and Ubiquitous
Multimedia, pp. 80–83.

[54] Ojala T., Orajärvi J., Puhakka K., Heikkinen I. & Heikka J. (2011) panoulu:
Triple helix driven municipal wireless network providing open and free internet
access. In: Proceedings of the 5th International Conference on Communities and
Technologies, pp. 118–127.

[55] ESXi installation link. URL: https://customerconnect.vmware.

com/en/evalcenter?p=free-esxi7.

[56] Flower official link. URL: https://flower.dev/.

[57] Li C.S. & Liao W. (2013) Software defined networks. IEEE Communications
Magazine 51, pp. 113–113.

[58] Han B., Gopalakrishnan V., Ji L. & Lee S. (2015) Network function
virtualization: Challenges and opportunities for innovations. IEEE
communications magazine 53, pp. 90–97.

[59] WAZUH dashboard ref. link. URL: https://documentation.

wazuh.com/current/user-manual/agents/listing/wazuh-

dashboard.html.

[60] Evaluation dataset of this work. URL: https://doi.org/10.5281/

zenodo.7956304.

67

[61] Ahmad Z., Shahid Khan A., Wai Shiang C., Abdullah J. & Ahmad F. (2021)
Network intrusion detection system: A systematic study of machine learning
and deep learning approaches. Transactions on Emerging Telecommunications
Technologies 32, p. e4150.

[62] Kelli V., Argyriou V., Lagkas T., Fragulis G., Grigoriou E. & Sarigiannidis P.
(2021) Ids for industrial applications: A federated learning approach with active
personalization. Sensors 21, p. 6743.

[63] Li S., Qi Q., Wang J., Sun H., Li Y. & Yu F.R. (2020) Ggs: General gradient
sparsification for federated learning in edge computing. In: ICC 2020-2020 IEEE
International Conference on Communications (ICC), IEEE, pp. 1–7.

[64] Mirzaee P.H., Shojafar M., Pooranian Z., Asefy P., Cruickshank H. & Tafazolli
R. (2021) Fids: A federated intrusion detection system for 5g smart metering
network. In: 2021 17th International Conference on Mobility, Sensing and
Networking (MSN), IEEE, pp. 215–222.

[65] Karatas G., Demir O. & Sahingoz O.K. (2020) Increasing the performance of
machine learning-based idss on an imbalanced and up-to-date dataset. IEEE
access 8, pp. 32150–32162.

[66] Khan F.A., Gumaei A., Derhab A. & Hussain A. (2019) A novel two-stage deep
learning model for efficient network intrusion detection. IEEE Access 7, pp.
30373–30385.

[67] Jiang K., Wang W., Wang A. & Wu H. (2020) Network intrusion detection
combined hybrid sampling with deep hierarchical network. IEEE Access 8, pp.
32464–32476.

68

9. APPENDICES

Feature Description
arp Address Resolution Protocol
arp.hw.type Hardware type
arp.proto.type Protocol type
arp.hw.size Hardware size
arp.proto.size Protocol size
arp.opcode Opcode
arp.src.hw_mac Sender MAC address
arp.src.proto_ipv4 Sender IP address
arp.dst.hw_mac Target MAC address
arp.dst.proto_ipv4 Target IP address
data Data
data.data Data
data.len Length
eth Ethernet
eth.dst Destination
eth.dst_resolved Destination (resolved)
eth.dst.oui Destination OUI
eth.dst.oui_resolved Destination OUI (resolved)
eth.src Source
eth.src_resolved Source (resolved)
eth.src.oui Source OUI
eth.src.oui_resolved Source OUI (resolved)
eth.type Type
eth.addr Address
eth.addr_resolved Address (resolved)
eth.addr.oui Address OUI
eth.addr.oui_resolved Address OUI (resolved)
eth.trailer Trailer
eth.dst.lg LG bit
eth.dst.ig IG bit
eth.src.lg LG bit
eth.src.ig IG bit
eth.lg LG bit
eth.ig IG bit
frame Frame
frame.time Arrival Time
frame.offset_shift Time shift for this packet
frame.time_epoch Epoch Time
frame.time_delta Time delta from previous captured frame
frame.time_delta_displayed Time delta from previous displayed frame
frame.time_relative Time since reference or first frame
frame.number Frame Number

69

frame.len Frame length on the wire
frame.cap_len Frame length stored into the capture file
frame.marked Frame is marked
frame.ignored Frame is ignored
frame.protocols Protocols in frame
frame.encap_type Encapsulation type
gre Generic Routing Encapsulation
gre.proto Protocol Type
gre.flags_and_version Flags and Version
gre.flags.checksum Checksum Bit
gre.flags.routing Routing Bit
gre.flags.key Key Bit
gre.flags.sequence_number Sequence Number Bit
gre.flags.strict_source_route Strict Source Route Bit
gre.flags.recursion_control Recursion control
gre.flags.reserved Flags (Reserved)
gre.flags.version Version
gre.key Key
ip Internet Protocol Version 4
ip.version Version
ip.hdr_len Header Length
ip.dsfield Differentiated Services Field
ip.dsfield.dscp Differentiated Services Codepoint
ip.dsfield.ecn Explicit Congestion Notification
ip.len Total Length
ip.id Identification
ip.dst Destination Address
ip.dst_host Destination Host
ip.src Source Address
ip.src_host Source Host
ip.addr Source or Destination Address
ip.host Source or Destination Host
ip.flags Flags
ip.flags.rb Reserved bit
ip.flags.df Don’t fragment
ip.flags.mf More fragments
ip.frag_offset Fragment Offset
ip.ttl Time to Live
ip.proto Protocol
ip.checksum Header Checksum
ip.checksum.status Header checksum status
tcp Transmission Control Protocol
tcp.srcport Source Port
tcp.dstport Destination Port
tcp.port Source or Destination Port

70

tcp.stream Stream index
tcp.completeness Conversation completeness
tcp.seq Sequence Number
tcp.seq_raw Sequence Number (raw)
tcp.nxtseq Next Sequence Number
tcp.ack Acknowledgment Number
tcp.ack_raw Acknowledgment number (raw)
tcp.hdr_len Header Length
tcp.flags Flags
tcp.flags.res Reserved
tcp.flags.ns Nonce
tcp.flags.cwr Congestion Window Reduced (CWR)
tcp.flags.ecn ECN-Echo
tcp.flags.urg Urgent
tcp.flags.ack Acknowledgment
tcp.flags.push Push
tcp.flags.reset Reset
tcp.flags.syn Syn
tcp.flags.fin Fin
tcp.flags.str TCP Flags
tcp.window_size_value Window
tcp.window_size Calculated window size
tcp.window_size_scalefactor Window size scaling factor
tcp.checksum Checksum
tcp.checksum.status Checksum Status
tcp.analysis SEQ/ACK analysis
tcp.analysis.flags TCP Analysis Flags
tcp.len TCP Segment Len
tcp.analysis.acks_frame This is an ACK to the segment in frame
tcp.analysis.bytes_in_flight Bytes in flight
tcp.analysis.push_bytes_sent Bytes sent since last PSH flag
tcp.analysis.ack_rtt The RTT to ACK the segment was
tcp.urgent_pointer Urgent Pointer
tcp.option_kind Kind
tcp.option_len Length
tcp.options TCP Options
tcp.options.timestamp.tsval Timestamp value
tcp.options.timestamp.tsecr Timestamp echo reply
tcp.time_relative Time since first frame in this TCP stream
tcp.time_delta Time since previous frame in this TCP stream
tcp.segment_data TCP segment data
tcp.payload TCP payload
tcp.analysis.retransmission This frame is a (suspected) retransmission
tcp.options.nop TCP Option - No-Operation (NOP)
tcp.options.timestamp TCP Option - Timestamps

71

tls Transport Layer Security
tls.record Record Layer
tls.record.content_type Content Type
tls.record.version Version
tls.record.length Length
tls.app_data Encrypted Application Data
udp User Datagram Protocol
udp.srcport Source Port
udp.dstport Destination Port
udp.port Source or Destination Port
udp.stream Stream index
udp.length Length
udp.checksum Checksum
udp.checksum.status Checksum Status
udp.time_relative Time since first frame
udp.time_delta Time since previous frame
udp.payload Payload
_ws.expert Expert Info
Table 2. This table shows most 150 useful features extracted using TShark tool.

