
FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING

Johannes Lampela
Tommy Meriläinen

MESSAGING MICROSERVICE FOR LOVELACE
LEARNING ENVIRONMENT

Bachelor’s Thesis
Degree Programme in Computer Science and Engineering

June 2023

Lampela J., Meriläinen T. (2023) Messaging Microservice For Lovelace Learning
Environment. University of Oulu, Degree Programme in Computer Science and
Engineering, 43 p.

ABSTRACT

Microservices have emerged as a key component in addressing the challenges
of the modern era. Companies are constantly seeking better ways to improve
the scalability, extensibility, and flexibility of their applications. Microservices
provide an excellent solution to these problems, as they consist of multiple small
services within a larger system, each serving a specific purpose.

Dividing the application into smaller microservices allows individual services
to be updated and expanded without the need to rebuild the entire application.
This is much more efficient than having a single monolithic system in place.

In this bachelor’s thesis, our goal was to create a messaging microservice for
the Lovelace learning environment, which is used at the University of Oulu for
example in programming-related courses. The current issue with Lovelace is the
lack of an internal messaging system, with communication taking place via email,
which causes various problems.

In the thesis, we described how we intended to implement this particular
microservice. We discussed about the tools we used and how we designed the
microservices to function. At the end we drew conclusions on how well the
microservices suited this project and assessed our performance.

Keywords: microservice, messaging, Python, PostgreSQL, Flask

Lampela J., Meriläinen T. (2023) Viestintä mikropalvelu Lovelace-
oppimisympäristölle. Oulun yliopisto, Tietotekniikan tutkinto-ohjelma, 43 s.

TIIVISTELMÄ

Mikropalvelut ovat nousseet keskeiseen asemaan nykyajan haasteiden
edellytyksenä. Yritykset etsivät jatkuvasti parempia tapoja parantaa
sovellustensa skaalautuvuutta, laajentuvuutta ja joustavuutta. Mikropalvelut
ovat erinomainen ratkaisu näihin ongelmiin, sillä ne koostuvat useasta pienestä
palvelusta suuremmassa systeemissä palvelemassa tiettyä tarkoitusta.

Sovelluksen jakaminen useaan pienempään mikropalveluun mahdollistaa sen,
että yksittäisiä palveluita voi päivittää ja laajentaa huolehtimatta siitä, että
joutuisi rakentamaan koko sovellusta uudelleen. Tämä on paljon tehokkaampaa
kuin se, että meillä olisi vain yksi yhtenäinen järjestelmä käytössä.

Tässä kandidaatintutkielmassa tavoitteemme oli luoda viestinvälitys
mikropalvelu Lovelace-oppimisympäristöä varten, jota käytetään Oulun
yliopistossa esimerkiksi ohjelmointiin liittyvillä kursseilla. Tämänhetkinen
ongelma Lovelacessa on se, ettei siellä ole sisäistä viestintäjärjestelmää, vaan
viestiminen tapahtuu sähköpostien kautta, joka aiheuttaa monia eri ongelmia.

Tutkielmassa selitimme miten aioimme toteuttaa kyseisen mikropalvelun.
Kävimme läpi, millaisia työkaluja käytimme ja miten suunnittelimme
mikropalvelun toimivan. Lopuksi teimme johdopäätöksiä siitä, miten hyvin
mikropalvelu soveltui tähän projektiin ja kuinka hyvin suoriuduimme.

Avainsanat: mikropalvelu, viestintä, Python, PostreSQL, Flask

TABLE OF CONTENTS

ABSTRACT
TIIVISTELMÄ
TABLE OF CONTENTS
FOREWORD
LIST OF ABBREVIATIONS AND SYMBOLS
1. INTRODUCTION... 8
2. RELATED WORK.. 9

2.1. Microservices ... 9
2.2. Lovelace .. 9
2.3. Web Frameworks .. 11
2.4. Databases ... 11
2.5. Social Media Messaging Services .. 12

2.5.1. Discord... 12
2.5.2. Telegram... 13

2.6. Application Programming Interface ... 13
2.7. Principles Of RESTful API.. 14

3. DESIGN... 15
3.1. Design Goal ... 15
3.2. Minimum Requirements .. 15
3.3. System Design.. 15
3.4. Technology Stack ... 18

3.4.1. Flask .. 18
3.4.2. PostgreSQL .. 18

4. IMPLEMENTATION .. 19
4.1. Implementation Process .. 19
4.2. Microservice Implementation .. 19

4.2.1. Database ... 20
4.2.2. REST API... 21
4.2.3. Request Validation .. 23
4.2.4. Localization .. 24
4.2.5. Rate-Limiter ... 25

4.3. Deployment.. 25
4.4. Risk Assessment ... 26

5. EVALUATION ... 27
5.1. Evaluation Plan... 27
5.2. Functional Testing .. 27
5.3. Performance and Load Testing... 28

5.3.1. Baseline Tests ... 28
5.3.2. Load Tests .. 29
5.3.3. Results.. 31

5.4. Compliance with the RESTful Principles.. 32
6. DISCUSSION .. 33

6.1. Reflection on the Project ... 33

6.2. Future Work ... 33
6.2.1. HTML Widget .. 34
6.2.2. Logger.. 34
6.2.3. Deployment .. 34

7. CONCLUSIONS .. 35
8. REFERENCES ... 36
9. APPENDICES.. 39

FOREWORD

We would like to thank Mika Oja for providing such a interesting subject and for
supervising our work.

Oulu, June 8th, 2023

Johannes Lampela
Tommy Meriläinen

LIST OF ABBREVIATIONS AND SYMBOLS

API Application Programming Interface
HTTP Hypertext Transfer Protocol
JSON JavaScript Object Notation
ORM Object±relational mapping
REST Representational State Transfer
RPC Remote Procedure Call
SQL Structured Query Language
URL Uniform Resource Locator
WSGI Web Server Gateway Interface

8

1. INTRODUCTION

Microservices have become increasingly important in software development during
the past two decades. They allow great flexibility and scalability in building complex
applications compared to monolithic systems. The shift towards DevOps and Agile
development practices have accelerated the importance of delivering softwares on the
market as quickly as possible.

With this in mind, our task focused on the development of a microservice for the
learning environment Lovelace designed and created by Miikka Salminen. More
specifically, we built a backend for a messaging tool that will facilitate communication
between the participants of the site. This tool provides a convenient platform for
students to ask questions and for other people to answer them, and it will help teachers
stay more organized and keep track of their students’ interactions. The reason why we
considered this project to be particularly important is because microservices are being
increasingly used year by year, and this was a perfect opportunity to have a better
understanding how microservices work in-depth.

At first, we wrote about related work. What are microservices in general and
frameworks that could be used in the project. Also, we took many different databases
into consideration, since there were many good options to choose from. Then we
demonstrated the planned design and the final technology stack we decided to go with.
After that, we defined the implementation process in-depth, how our microservice
communicates with the database and how the requests work. Security risks were also
a thing we wanted to investigate, since microservices must be secure in order to be
used in the first place. From the evaluation point of view, we did a lot of testing and
evaluations based on the results.

With the time constrain we have, the actual software deployment part is excluded
from the thesis. The frontend part is also dismissed. We focused solely on the services
functionality so that if wanted, someone could use our messaging microservice as a
base on their own web application.

9

2. RELATED WORK

2.1. Microservices

Microservices are independently releasable services that are modeled around a
business domain. The idea is to build complex systems from building blocks, that are
much easier to handle as individuals. Microservices give you options to choose how
to solve problems you face, as each microservice encapsulates its own database where
required and hides as much information as possible from the outside world, exposing
as little as possible via external interfaces.

One of the key benefits of microservices is independent deployability. This
means that changes made to a microservice can be deployed and released to users
without having to deploy any other microservices. However, to achieve independent
deployability, microservices must be loosely coupled, meaning that changes to one
service should not require changes to any other services. To achieve this, microservices
should be modeled around a business domain, allowing services to be structured to
better represent the real-world domain that the software operates in.

Another important aspect of microservices is owning their own state. Microservices
should avoid the use of shared databases, as sharing databases goes against independent
deployability, which is one of the main reasons microservices exist in the first place.
Instead, if a microservice needs to access data held by another microservice, it should
go and ask that second microservice for the data. This approach helps to ensure that
each microservice can be worked on in isolation and released on demand.

Microservices offer flexibility in architecture, making it easier to adopt new
technologies with ease. When a system is composed of multiple, collaborating
microservices, it is beneficial to use different technologies inside each one. This allows
for the selection of the right tool for each job rather than having to select a more
standardized, one-size-fits-all approach that often ends up being the lowest common
denominator.

One major advantage of microservices is the ease of isolating problems. If one
component fails, it is easy to isolate the problem and solve it, while the rest of the
system can carry on working. This contrasts with monolithic systems where if the
service fails, everything stops working.

However, working with databases can be more difficult with microservices than with
monolithic systems, as working with multiple different databases can be troublesome.
It is important to consider this when deciding whether to adopt microservices as an
architecture.

When the core concepts of microservices are properly understood and implemented,
they can help create empowering, productive architectures that can help systems
become more than the sum of their parts. [1]

2.2. Lovelace

Lovelace is a web-based virtual learning environment created by Miikka Salminen
that is mainly utilized by students from the Faculty of Information Technology and
Electrical Engineering. Lovelace offers courses that mainly focuses on programming

11

without creating any new bugs or larger problems within the system. To tackle these
problems a change in the system is needed which we will go over more in the design
part of this thesis.

2.3. Web Frameworks

Web frameworks drastically speed up the development of making web applications.
They provide software tools that has structures and sets of libraries for building web
applications.

Frameworks provide functionality in their code or through extensions to perform
common operations required to run web applications, such as URL routing, input form
handling and validation, different output formats with a templating engine, database
connection configuration and persistent data manipulation through an object-relational
mapper, Web security against common malicious attacks and session storage and
retrieval.

Every web framework has their unique functionalities. For example, Django web
application framework includes the Django ORM layer that allows a developer to
write relational database read, write, query, and delete operations in Python code rather
than SQL, but it cannot work without modification on non-relational databases such as
MongoDB.

On the other hand, some other web frameworks such as Flask and Pyramid are easier
to use with non-relational databases by incorporating external Python libraries. For the
purposes of this project we were looking for a web framework that has good enough
functionality for a microservice with easy extensibility [4].

Most of the self-hosted Python applications are often deployed using lightweight
Nginx or with Web Server Gateway Interface (WSGI) servers because specially WSGI
is a standardised way of working between Python web application frameworks and
web servers. Both of them offer top-performance and are relatively easy to set up.

Nginx is a web server that includes many useful features such as load-balancing
and basic authentication. Nginx is known for being simple yet high performant
for application with high loads. Stand-alone WSGI servers often provide more
efficient solutions while providing great performance when compared to traditional
web servers. Few popular WSGI servers includes Gunicorn, Waitress and uWSGI,
while Gunicorn being the recommended one for new Python web applications. All
of them have their own pros and cons that needs to be evaluated when deploying the
application. [5]

2.4. Databases

Databases play important role not only storing massive amounts of data, but they are
essential part of many applications and services. There are multiple types of databases,
but relational and Not Only SQL (NoSQL) databases are most common ones.

Relational databases store and provide access to data points that are related. Each
row in the table has a unique ID, that can be easily used to make relationships between
different data points. Relational databases has many benefits such as is the best at

12

maintaining data consistency even with large amounts of data and it can handle strict
rules and policies. [6]

All NoSQL databases have one thing in common that they are not relational. They
were created to be able to handle unstructured data and at the same time thrive
where relational databases struggle. Advantages with NoSQL databases are that it
can generally process data faster than relational databases. Another major advantage
is that they are much more flexible than relational databases. [7]

In summary, databases are critical tools when needed to store large amount of data
efficiently. Choosing a correct database for your application can be tricky since it
depends on what kind of application you are building or what features you need from
a database. Every database has their own pros and cons that need evaluated before
deciding the one for your needs.

2.5. Social Media Messaging Services

There are many social media messaging services out there, each having their unique
features and functions.

For example, Facebook Messenger is a multipurpose messaging service. Users can
send messages, have a live video call, send pictures and other data to users. Whereas
Snapchat is more focused on sending videos and pictures to other users that will
disappear after set amount of time.

In general, the choice of which kind of messaging service the application needs
to have completely depends on what kind of features you want to have in it. Each
messaging service should mainly focus on the parts that are relevant to its functionality.
There are so many different kinds of messaging services to choose from, and it should
be taken into account when choosing which kind of application is used.

2.5.1. Discord

Discord has become one of the most popular messaging platform during the last few
years. It is possible to send text messages, go in a voice call with someone or a group
of people or you can even go in a video call with whoever you want with. There is also
an option to choose whether you make a private or public chat rooms, where users can
interact. There are many kinds of different servers, since it doesn’t take much effort
to make one. Everyone will find a server that fits their needs, whether it’s related to
programming, gaming or whatever you desire. Discord is popular due to its flexibility
and customization, and it basically covers everything a person could ever need from a
communication platform.

Due to massive increase in popularity, Discord uses ScyllaDB to handle enormous
amounts of data. [8] It utilizes using nodes in a cluster, and more nodes are added as
the data grows. System’s performance also improves with these additions. Because of
this, it doesn’t rely on a single point of failure. The data is replicated across multiple
nodes, minimizing the risk of data loss. [9]

Discord’s API uses both, a HTTPS and REST API to operate. It also has persistent
secure WebSocket based connection for sending and subscribing to real-time events.

13

This makes Discord a great application, it can handle enormous amounts of people
communicating at the time. [10]

2.5.2. Telegram

Telegram is a cloud-based mobile and desktop messaging app that focuses on security
and speed, greatly emphasized the security. The messages are heavily encrypted and
they can self-destruct. [11] It uses end-to-end encryption, meaning that only you and
the sender can see the data between the two of you. Only the intended recipient
can decrypt it, meaning that it prevents third parties from accessing the data while
transferring from one device to another. [12] Other than that, Telegram provides all the
basic features that you would expect from a messaging service.

Telegram apps are open source, and they support reproducible builds. Telegram
uses TDLib (Telegram Database Library), which is highly modifiable for third-party
developers to create fast and secure Telegram apps. TDLib takes care of all the
functionality features, such as network implementation details, local data storage and
encryption. [13] The Telegram API is RPC-based, meaning that interacting with the
API involves sending a payload representing a function calling and receiving a result.
[14]

2.6. Application Programming Interface

Application Programming Interface (API) is a set of rules that allows different
software components and programs to communicate and share information. APIs
enable creating powerful connected applications and services for the users. APIs are
nowadays used everywhere and they serve an important foundation for the digital world
around us.

APIs can be categorized based on access permissions. Private APIs are used
internally inside organizations while public APIs can be accessed by everyone. Partner
APIs allows collaboration between companies by restricting the access. APIs can also
be categorized by their architectural styles such as:

• Representational state transfer (REST)
• Simple Object Access Protocol (SOAP)
• GraphQL
• Webhooks
• gRPC

Each of the architectural styles serve specific purposes and offers different ways to
approach creating an API. REST is easily the most popular one of the styles above,
which uses standard HTTP methods to perform operations accessed via endpoints.
[15]

14

2.7. Principles Of RESTful API

REST, like other architectural styles, obeys a set of guiding principles and constraints
that define its nature. These principles must be satisfied for a service interface to be
considered RESTful. According to the information provided by [16], the RESTful
architecture encloses six guiding principles or constraints:

- Uniform Interface: The interface should uniquely identify each resource involved
in the communication between the client and the server. Resources should have
consistent representations in the server’s responses. API consumers should utilize
these representations to modify the state of resources on the server. Each resource
representation should contain sufficient information to describe how to process the
message and provide details on additional actions that the client can perform on the
resource. The client should possess only the initial application URI, driving all other
resource interactions dynamically using hyperlinks.

- Client-Server: The client and server should be separate and independent
components, allowing them to evolve and scale independently.

- Stateless: Each request from the client to the server must contain all of the
information necessary to understand and complete the request. The server cannot take
advantage of any previously stored context information on the server.

- Cacheable: The cacheable constraint requires that a response should implicitly or
explicitly label itself as cacheable or non-cacheable. If the response is cacheable, the
client application gets the right to reuse the response data later for equilevant requests
and a specified period.

- Layered System: Allows an architecture to be composed of hierarchical layers by
constraining component behavior. For example, in a layered system, each component
cannot see beyond the immediate layer they are interacting with.

- Code on Demand: REST allows client functionality to extend by downloading
and executing code in the form of applets or scripts. The downloaded code simplifies
clients by reducing the number of features required to be pre-implemented. Servers
can provide part of features delivered to the client in the form of code, and the client
only needs to execute the code. This constraint is optional.

15

3. DESIGN

3.1. Design Goal

The goal is to design a messaging microservice that provides a scalable solution for
communication between users that solves the problems associated with the current
system. The microservice needs to be its own standalone service and it must be easy to
integrate into the existing system. Additionally, it must take authentication into account
to ensure confidentiality. The microservice must be able to handle traffic performantly
and be able tolerate failures and errors without crashing. Overall, the plan is to design
a solution that is reliable, easy to integrate and is able perform adequately.

3.2. Minimum Requirements

We were given a few design requirements to offer precise instructions to successfully
complete the project with desired result. The functional requirements given helped
us to create clear guidelines on the expected functionality as it is important for the
final product to meet the needs and expectations of the wanted results. The minimum
functional requirements that were given for our project were:

• Messages include basic fields such as title, content, sender, and course space.
• Title- and content fields can be both in Finnish and English and additionally it

can be easily to expanded to other languages too.
• Message receiver can be single student, group of students, whole course, course

staff or the courses responsible teacher.
• The service must maintain information about which of the recipients has seen

the message, and it must be able to retrieve information whether there are any
unread messages and to retrieve them too.

• Messages can be linked to another message as a response.

On top of the given minimum requirements, we wanted to focus on making easy
to read and clear code with documentation. That’s because if someone else want to
further develop the microservice it will be much easier.

3.3. System Design

We started design phase by getting familiar with all the different technology stack
possibilities, wanted functionality, and with the architecture model. We decided to
design the system in a way that it is very customisable and easy to swap or add different
libraries or technologies.

18

3.4. Technology Stack

We use Python as our programming language because not only was it required by the
supervisor but it is packed with many great features. One of the main reasons is that
we are familiar and have experience creating programs with it. Secondly, there is great
support for web frameworks that allows to create microservices efficiently without
having to handle low-level details as protocols, sockets, or process management. [19]
Overall, the ease of use, large and active community, scalability and fast development
makes it a great choice for our project.

3.4.1. Flask

As our web framework we decided to go with Flask micro web framework since we
are working on a simple microservice with only a few API endpoints. We had multiple
different options to go with such as FastAPI and Django. In the end we decided to go
with Flask because it is rather easy to get started as a beginner since there is very little
boilerplate needed to get app up and running. [20] Flask allows to developers to have
complete control over their apps. Unlike other frameworks, Flask is made in a way
that allows developers select or even create their own components. In addition, Flask
supports numerous different database engines such as relational and NoSQL databases.
[21]

Even though there are many more high-performance web framework, such as
FastAPI, the reasons should not be only based on the speed alone. For example,
features, and ease of development should be much more important factors since the
bottleneck for most applications is going to be the design of the database and the
architecture rather than the web framework. [22] In the end, Flask’s adaptability,
flexibility and lightweight approach and rather limited time to create our application
made us choose it.

3.4.2. PostgreSQL

As our database of choice is PostgreSQL. PostgreSQL is an open-source object-
relational database with decades of active development. PostgreSQL is known for
being very reliable, feature robust, and high performant database. It has many helpful
features such as strong support for JSON data types, powerful query language can
handle structured data very well and highly scalable both in sheer quantity of data and
number of users. [23] Since our data is going to be rather structured, with defined
fields PostgreSQL appeared to be a strong choice for our project. On top of that as
we need to track the messages read status and if messages are linked to another there
PostgreSQL’s strong transactional consistency comes in handy. There are dozens of
database engines which we considered such as NoSQL database MongoDB. In the end
we came into a conclusion that PostgreSQL would be a better choice for our project
with the features mentioned above.

19

4. IMPLEMENTATION

4.1. Implementation Process

We started our project by creating a Github repository which allows us to easily stay
organized and collaborate effectively. Github is a web-based platform that provides
features such as cloud storage of the source code and version control. On top of the
great features, Github is free which was a major key why we chose it. [24]

We utilized a Kanban board, which is a tool for visual representation of our project
tasks and their status. Kanban board helped us to not only to maximize the efficiency
but it helped us to stay on track of the current status of the project.

Based on our schedules, we tried to hold as many meetings as possible and discuss
about potential issues that have arisen during the development of the project. The
project itself got split into smaller tasks and we decided which tasks we would like
to take. Eventually the tasks got sort of naturally split so that Meriläinen took the
database tasks and Lampela focused on the messaging part. This strengthened the
value of frequent meetings, since the database and the messages that will be sent have
to go hand in hand in order to work.

Most of the time, the coding process went so that we were on a Discord call
programming together. We utilized Visual Studio Code’s built-in Live Share feature,
which made it possible to work on the same code at the exactly same time. This further
ensured that we were constantly on the same page about how we both imagine the code
to function.

4.2. Microservice Implementation

We started the implementation process by getting familiar with the tools we would
be using. In this case, Flask was the web framework we chose to use. We spent some
time learning the basics of Flask, such as setting up basic web server and how to handle
HTTP requests. After getting comfortable with the basics, we created a simple app that
allowed both GET and POST requests.

Then we added a PostgreSQL database for the app using Flask extension called
Flask-SQLAlchemy. It provides a SQL toolkit and Object-Relational Mapping (ORM)
layer that allows not only to connect, but also to create everything from the tables
to SQL queries easily with Python code. Flask-SQLAlchemy simplifies the process
of working with databases because it allows to interact with databases using Object-
Oriented programming (OOP) concepts, rather than writing raw SQL queries that can
be cumbersome. On top of that, it’s properly integrated with Flask so configuring
everything is straightforward. [25]

With the database in place, we could easily start adding the wanted more complex
functionality to our microservice. This way it’s easier to start building functionality
since we have a working foundation, which we can rely on.

21

class ChatModel(db.Model):

__tablename__ = ’chats’

id = db.Column(db.Integer, primary_key=True, unique=True)

chat_id = db.Column(db.String(80), unique=True)

topic = db.Column(db.String(80), nullable=False)

course_space = db.Column(db.String(80), nullable=False)

type = db.Column(db.String(80))

language = db.Column(db.String(2))

messages = db.relationship(’MessageModel’,

backref=’messages’,

lazy=’dynamic’,

order_by=’messages.timestamp’)

Figure 5. Example of chats database table using ORM.

As shown above, creating database tables is very swift since we only need to create a
model, which is just a Python class. Each of the class variables represents a column in
the database. First argument to db.Column tells SQLAlchemy what is the type of data
it’s going to be receiving. In our case, we are going to use integers, strings, booleans
and datetimes. We can limit strings and integer lengths by giving the type an extra
argument. Both chats and messages database tables use a simple auto incremented
number every time a new record is inserted to table. That can be defined using the
primary_key=True argument. Unique=True argument makes the column only accept
unique values. Nullable argument defines if the column must have defined value or
not. Db.relationship function creates a virtual column that connects with our messages
model. First argument is the class we referencing to. Backref enables us to access the
messages class. Lazy parameter controls how objects that are related will be loaded.
Dynamic option loads the objects on access and before returning they can be filtered.
Finally with order by argument we can order the messages by their timestamps.

4.2.2. REST API

We created the REST API using a extension called Flask-RESTful that adds support
for quickly building REST APIs. This extension is lightweight abstraction, which is
independent of ORM. One of the best things with this extension is that it’s needs very
minimal setuping and it encourages the best practices. Flask-RESTful allows to create
API endpoints easily since it takes away much of the boilerplate code needed. We
started by defining the main building block the extension provides called resources.
Resources are built on top of Flask pluggable views, allowing you to quickly access
multiple HTTP methods by defining methods on your resource. [27] This design
pattern makes it easy to structure and organize the code in a clean way that it is much
easier to maintain in the future.

22

class Chat(Resource):

def get(self, userId, chatId):

Return chat with given chatId

def post(self, userId, chatId):

Create a new message to given chatId

def put(self, userId, chatId):

Update chat messages as read

class ChatLists(Resource):

def get(self, userId):

Return list of users chats

def post(self, userId):

Create a new chat with another user

Figure 6. Example how to create the resource classes.

We created two resource classes as shown above for our API. Both classes support
the usual two HTTP methods: GET and POST. The chat resource supports the PUT
method to allow update the chat messages read status. In order to these resources to
work, we need to register routes to the resource classes. This is done by first initializing
an API object, and creating an instance of it.

api.add_resource(ChatLists, ’api/chat/userId’)

api.add_resource(Chat, ’/api/chat/userId/chatId’)

Figure 7. Example how to map the API endpoints

Then mapped the API endpoints to the API object using an add_resource method as
seen above in the Figure 7. Then all the corresponding HTTP requests are linked to
the correct resource. REST APIs are designed to be simple and intuitive so that each
URL represents a specific value. In our case, the URL api/chat/{userId} is
used to retrieve all current users chats or create a new one. Then with api/chat/

{userId}/{chatId} URL you can retrieve the corresponding chat, send a new
message into the specific chat or update read status of the messages.

23

HTTP

Verb
CRUD

Entire Collection

(e.g. api/chat/userId)

Specific item

(e.g. api/chat/userId/chatId)

POST Create

201 (Created), ’Location’ header includes

link to created resource.

400 (Fail), JSON validation error

201 (Created)

400 (Fail), JSON validation error

404 (Not found)

GET Read
200 (OK)

404 (Not Found)

200 (OK)

404 (Not found)

PUT
Update/

Replace
Not implemented

200 (OK)

404 (Not found)

PATCH Update Not implemented Not implemented

DELETE Delete Not implemented Not implemented

Figure 8. HTTP methods used by the REST API

The table shown above summarizes the return values of the HTTP methods in
combination with the resource Uniform Resource Identifier (URI) in our REST API.
Sending a POST request successfully to an entire collection, the API returns HTTP
status 201 with a link to the newly created chat in the ’Location’ header. On the other
hand, when sending a message to a specific resource, the API returns a status of either
200, 400 or 404, depending on whether the request was successful or not.

Similarly, sending a GET request successfully to the entire collection, the API
returns HTTP status 200 along side with a list of chats that have been ordered by the
newest message first. If no chats are found, the API returns a status of 404. Sending a
GET request to a specific resource, the API returns status of 200 with all the messages
related to the specific resource, or a status of 404 if the chat is not found. Lastly, we
implemented a PUT request in order to enable the functionality to change the message
read status in the database. Similarly, as other requests it return either 200 or 404 based
on whether the request was successful or not. These return values provide a clear and
consistent way to understand the REST API and its features.

4.2.3. Request Validation

JSON Schema is a declarative language that allows to annotate and validate JSON
documents. It describes existing data format(s), provides clear documentation and
validates data which is important for ensuring the quality of client submitted data. [28]
JSON Schema itself is a JSON document and it provides a set of keywords and rules
for defining the expected structure and data types of a JSON document. As we can see
in the Figure 9, we have defined one of our used schemas so that the JSON sent by the
client must include specific fields in a specific format in order to send it successfully.
If one of these requirements are not met, it will return a validation error. This ensures
that the data is correctly submitted, and errors will be detected early. We have schemas
for every REST API endpoint.

24

chatlists_post_schema = {

’type’ : ’object’,

’properties’ : {

’receiver’ : {’type’ : ’string’},

’course_space’ : {’type’ : ’string’},

’topic’ : {’type’ : ’string’},

’message’ : {’type’ : ’string’},

’language’ : {’type’ : ’string’}

},

’required’ : [’receiver’, ’course_space’,

’topic’, ’message’, ’language’]

}

Figure 9. Example of schema used to validate a POST request.

We also used a "flask-expects-json" package made by Alfred Melch. The package
uses JSON Schema to validate JSON data. It provides request validation for JSON
payloads sent in the request body against a schema using JSON Schema. When a
request is received with a JSON payload, it automatically parses the JSON data and
validates it against the specified schema. When using this decorator - if the validation
fails, it will return a validation error. This is really handy because we can add the
JSON data validation without actually changing the code itself while profiting from an
already established standard. [29]

4.2.4. Localization

We were given a requirement that fields can be in different languages, so we needed
to implement a localization functionality for the application. Therefore, Flask-Babel
extension to Flask comes in handy. It provides localization and internationalization
support for Flask applications. Flask-Babel allows effortlessly add support for multiple
languages. [30]

We configured Flask-Babel default locale and time zone variables to Finnish since
most of the users are Finnish. Once configured, we could just start adding localized
responses for our REST API endpoints using the functions provided by Flask-Babel.
Additionally, Flask-Babel can not only provide localized responses but it can handle
date and time formatting, number formatting and pluralization. Even though these
are not used currently they can be useful in the future if the application is going to
be further developed. In the end, adding localization using Flask-Babel was a swift
process yet a valuable one since it makes the application more accessible and user-
friendly.

25

4.2.5. Rate-Limiter

We decided to implement a rate limiter for the REST API that we can use to control the
rate of requests client can send to the application. Main reason we wanted to add it was
to prevent malicious users overwhelming the server with sending massive amounts of
requests. Overwhelming the API with the requests can easily lead to poor performance
or in the worst-case scenario server crashes. Additionally, rate limiter can help improve
the overall performance by limiting the requests.

We decided to use Flask-Limiter extension as our rate limiter since it allows us to
easily to configure various rate limits with minimal effort. It also allows to configure
rate limits at different levels e.g., application wide or per resource. [31] This is not
only a very useful feature but it’s great for the future development of the application.
Flask-Limiter support multiple different storage such as Memcached and Redis but we
went with Memcached for its simplicity yet high-performance.

Adding the Flask-Limiter was very swift after configuring we only needed to add it
to our resources. We gave all the HTTP requests rate limit of 30 requests per minute.
We configured the rate limiter with a fixed window with elastic expiry strategy. If
we would have used only a fixed window it would have allowed bursts within each
window which allows to by-pass the rate limits. Using elastic expiry helps circumvent
these bursts by locking out the attacker with a time penalty. [32]

4.3. Deployment

Flask comes with built-in development server, debugger, and reloader. The
development server is great for local development, but it is not suitable for production
use because it is not designed to be particularly secure, stable, efficient, or scalable.
On top of that, the development server only provides a single synchronous process,
which means that it can only handle 1 request at a time. [33] Therefore we decided
to use an actual production server to get more accurate and reliable results. We used
Gunicorn which is a production grade Web Server Gateway Interface (WSGI) server
that can handle high volume of traffic with very acceptable performance. Gunicorn
is simply implemented and can be deployed quickly. We also added nginx, an HTTP
proxy server, that is strongly advised to use together with Gunicorn. Lastly, since we
need to run multiple Gunicorn instances during the tests, we needed to containerize
the microservice with Docker. This is because Gunicorn is a HTTP server for UNIX
meaning that it doesn’t support Windows. [34]

26

4.4. Risk Assessment

Risks Likelihood Impact

Security Risks Unlikely Major

Performance Risks Common Moderate

Availability Risks Unlikely Moderate

Table 1. Risk assessment

Security risks are major concern when creating a microservice. Adequate
authentication and authorization mechanisms are key part of making a microservice
secure. In our case, we do not create the authentication service as seen on Figure 2.
Instead we need to worry about attacks such as SQL injection attacks. To prevent
SQL injections, we have used a ORM package to help make our database more secure.
Additionally, we have made a separate config file where we store different deployment
environments with corresponding credentials. This way we can easily use the correct
deployment environment.

Performance risks is the possibility that the microservice doesn’t perform optimally
under load, slow to respond, timeouts or even crashes. Likelihood of performance
hiccups can be common, but we try to optimize the code and database in a way that we
can avoid these hiccups as much as we can. There might be some slight hiccups but
we try to optimize everything to avoid any larger performance issues. On top of that,
we are going to test the microservice with tools that mimic the possible load to try find
out any problems before deploying the code.

Availability risks is the possibility if the microservice is unavailable due to network
or server issues. Luckily large availability risks are rather unlikely but not uncommon.
To prevent these availability risks microservice performance needs to be regularly
checked, e.g., databases performance issues before it causes any issues and use
monitoring tools.

27

5. EVALUATION

5.1. Evaluation Plan

The way we are planning to evaluate the quality of the code includes testing
functionality, performance, error handling and compliance with RESTful principles.

It is essential to ensure that the software’s functions work as intended and it produces
the correct results. We can accomplish this by performing functional testing and
creating unit tests and integration tests. Unit tests are automated tests which ensure
that a section of an application meets its design and behaves as intended. On the other
hand, in integration testing, individual software modules are combined and tested as a
group.

Evaluating the performance of the software is important because we want to know
that the software is capable of handling the loads it is going to be facing. Here we
use different load tests to find out whether the software can handle the data and deliver
results in a reasonable time frame.

We also want our software to have proper error handling which helps users to
identify the potential issues and provide them a solution to resolve the error. It is
important to test the software with various error scenarios to make sure the system can
handle unexpected errors effectively. Lastly, we want to make sure that our API is an
actual REST API by evaluating compliance with RESTful principles.

5.2. Functional Testing

Functional testing is an essential part of this project since we want to ensure that the
quality and functionality of the code meets our standards. During the tests, we wanted
to make sure that our code work as intended and that they can handle errors as intended.
This will not only allow us to fix any issues and ensure that our final product is high
quality but it will help the future development.

We are using unit testing framework called unittest to write our test functions. The
main goal is to make sure that our requests work properly and specially meets the
minimum requirements. We can execute this by making different kinds of requests
that tests posting certain data to the database and then using the get function to get it
back to make sure it works or vice versa. We can also try getting messages from URIs
that don’t exist and make sure it handles the error properly. Making sure that we cover
tests from the main code as broadly as possible is important because we can never
know whether there is a slight bug in one line of the code. Also, we can’t cheat on our
test codes by forcing the tests to be successful, because it would give a false coverage
rate.

A Python tool coverage comes helpful when we want to measure the tests code
coverage. It allows us to see how extensively our code has been executed. The plan is
to get the coverage rate as close to 100 as possible, but realistically we will be satisfied
to land somewhere near 95 percent.

28

5.3. Performance and Load Testing

We are going to execute all the necessary performance and load testing to find out
how our microservice handles the expected load. Performance testing ensures that our
microservice can perform under different loads. Load testing ensures that the system
can handle users at the same time without performance degradation. Doing these kinds
of tests is also great to help identify any potential bottlenecks in our microservice,
such as slow database queries. These tests can also ensure scalability whether it can
scale to handle increased traffic. Identifying these bottlenecks helps to optimize our
microservice and improve its performance.

We decided to use Apache JMeter as our application to perform our performance
and load tests. JMeter is a open-source application that simulates real-user behaviours
and testing environments, and it also provides a user-friendly GUI and easy installation
for REST API testing. [35]

5.3.1. Baseline Tests

We wanted to do a baseline test in order to get a benchmark for our microservice
performance during normal conditions. Baseline tests are important since it gives
us a point of references for evaluating the performance under heavy loads or spikes.
We created a test plan with JMeter that simulates the estimated average loads. We
estimated that on a normal day it could be having around 100 people accessing the
chat and we expect each user to make an average of 5 requests per minute. This is our
estimate which is probably way above the actual average load.

Based on the estimates made, we started creating the baseline test in JMeter. We
created the test plan in a way that it reflects the actual use as realistic as possible.
Meaning that we do not only send one specific request e.g., sending only GET requests
to get the chat list since the actual users are creating new chats, reading and sending
new messages to specific chats. That is why we added different kinds of HTTP
request to the test plan to reflect the real usage more. On top of that, we added a
constant throughput timer to achieve the actual output by trying to produce a constant
throughput. With the estimates made, we set the target throughput to little under 9
requests per second. Lastly, we decided to run the test for around 10 minutes to get
more reliable results since if there happen any anomalies during a short test it can
impact the results massively.

32

Despite the response times being higher with single instance the microservice was
still able to complete every single requests successfully without any errors. The load
test should be taken with a grain of salt because it doesn’t actually represent the actual
usage patterns of users, but it allowed us to identify one possible problem and find
an answer for it. To avoid similar performance issues in the future, the performance
should be investigated further. To improve the overall performance of the microservice,
there could be done things such as:

• Add more instances
• Scale the infrastructure
• Optimize database calls
• Asynchronous processing

With the steps mentioned above, the microservice performance could be even more
increased especially during the high loads. In summary, the tests demonstrated that
the microservice could easily handle the different loads with great performance. All
in all, these tests provided valuable information into the performance capabilities
of the microservice under different kinds loads and give ideas how to enhance the
performance.

5.4. Compliance with the RESTful Principles

In our opinion, the microservice mainly obeys the RESTful principles appropriately.
We used the guiding principles of REST provided by [16] when we designed and
programmed the API.

Uniform interface principles are mainly achieved because each resource is uniquely
identified, resources have uniform representation in the response and messages are
self-descriptive. Current version doesn’t fully follow the hypermedia as the engine
of application state (HATEOAS), but the code can be easily modified to comply the
constraint fully. The client and the server components can evolve independently, except
that databases and requests have to follow the defined schemas. The server doesn’t take
advantage of any previously stored context information on the server. Each request
from the client to the server can be done with the information that is coming from the
client side.

Our system is layered so that our requests and database are apart from each other
and they can communicate with each other. The client does not have a third layer, so
this is kind of trivial. If we were to make a HTML widget, it would have been the third
layer and it could have only communicated with the request part. The widget would
never know a database exists. The client application can obviously reuse the data sent
to the database in the form of getting the chats. That is why the API is considered as
cacheable.

Code on Demand is only optional principle of the RESTful architecture. It could
have been implemented, but we didn’t implement anything that would return applets
or scripts. This can be done with the current implementation, but we only provide a
REST API that web apps consumes. Therefore, it wasn’t relevant regarding the thesis,
hence why this part was unaccounted.

33

6. DISCUSSION

6.1. Reflection on the Project

Our project goal was to design and implement a microservice that will provide
messaging functionalities for the Lovelace online learning environment. We were
given minimum requirements to successfully complete the project with desired results
and our microservice covers all the minimum requirements given at the start. We think
that we fulfilled the design goals and additional requirements we decided together. The
microservice was implemented with Python, Flask web framework and PostgreSQL as
the database. Whole implementation process was surprisingly easy, for example it was
easy to setup the database and use it with SQLAlchemy that allowed easy reading and
writing to the database.

Current microservice version supports both one-on-one and group chats. The
microservice allows to keep track of messages if it’s linked to another message or
if there are any unread messages. Additional features we added includes for example,
request validation and a rate-limiter. We performed a lot of both manual and automated
testing to find out that the microservice works correctly. Performance and load testing
was done to verify the microservices performance. We found out that it could easily
handle the loads we expected it is going to be having.

There are obviously many extra features and different functionality we wanted to
add, for example a possibility to use a HTML widget. But the time constraints we had
made it difficult to create everything we wanted. Therefore, we needed to focus mainly
on the core functionality. We are satisfied how easy it is to read the code and understand
it since we tried to keep any complex code at a minimum. We benefited a lot from all
the books, documentation and different tutorials we came familiar with during the
process. Especially, books contained surprisingly precise and useful information you
would ever need in order to build a microservice. Now looking back at the technology
choices made, we think that they were all appropriate for the use case. FastAPI could
potentially been a stronger choice over Flask, but the benefits would have probably
been so small that it wouldn’t matter much.

6.2. Future Work

Next logical step for the project would be to integrate the microservice to Lovelace.
But there are still a few things that need and should be implemented before doing so.
Most important functionality that needs to be added is the authentication provider as
seen on the Figure 2. Without e.g., token based authentication the service can not be
used securely. Therefore, our current version of the microservice should not be yet to
deployed into actual use.

34

6.2.1. HTML Widget

Since currently the microservice only provides a RESTful API without any visualised
interface, implementing a HTML widget for the microservice could be beneficial for
simpler integration and it would enforce data validation even further.

6.2.2. Logger

Another feature we would add before deploying the microservice would be adding a
logger that allows to track messages the microservice generates. Since someone needs
to maintain the microservice, a logger is pretty much a must have feature to trace out
any possible errors. Even if the code is perfect there is always the possibility to have
non-code related errors happen and without a logger it is very time consuming to find
out the problem source. Python inbuilt logging system works with Flask but we would
add more advanced service called Sentry. Sentry is open-source error tracking service
that not only allows to monitor and fix errors in real time, but it allows performance
monitoring to see any code related sluggishness. [36]

6.2.3. Deployment

When all the wanted features and functionalities are added to the microservice and
it’s ready to be integrated to Lovelace comes deploying to production into picture.
Since the development server provided with Flask shouldn’t be used in production
there should be made a choice what server to use. There is a lot of great opinions for
this but Gunicorn would be our choice since it is simply implemented, light on server
resources, and fairly speedy. [34]

35

7. CONCLUSIONS

Currently Lovelace learning environment has issues with the sent emails not being
read for multiple reasons. They can be easily go unread for both teachers and students.
They can end up in the spam folder, students may not read the email address marked
or simply can get lost if not responded immediately. Therefore, an internal messaging
service is preferred.

To tackle these issues, we designed and implemented a messaging microservice. We
started the project by getting familiar with the microservice service model and all the
different options that we could use to make the best possible messaging microservice.
Then we started to design the microservice based on the minimum requirements given
to us. We added a few extra key points to focus on to create an application which
is easier to further develop. Implementing the application was done by splitting the
project into smaller tasks between us. In the end, we tested the application broadly to
find out that it works correctly with various of different testing methods.

Overall, there are things that can be added and further developed with the changes
proposed earlier but our thesis project fulfills all the minimum requirements we were
given at the start. Microservice is a great addition to Lovelace learning environment
and on top of that, the source code can be used anywhere else aswell if wanted.
Learning about microservices changed our perspective on how to make an efficient
and robust application.

36

8. REFERENCES

[1] S. N. (2021) Building Microservices: Designing Fine-Grained Systems Second
Edition. O’Reilly, 3-34 p.

[2] Lovelace-ohje opettajille. URL: https://lovelace.oulu.fi/

lovelace-ohje-opettajille/lovelace-ohje-opettajille/.
Accessed 21.2.2023.

[3] S. N. (2021) Building Microservices: Designing Fine-Grained Systems Second
Edition. O’Reilly, 18 p.

[4] Python web frameworks. URL: https://www.fullstackpython.com/
web-frameworks.html. Accessed 21.2.2023.

[5] Web applications and frameworks. URL: https://docs.python-guide.
org/scenarios/web/. Accessed 4.6.2023.

[6] What is a relational database? URL: https://www.oracle.com/

database/what-is-a-relational-database/. Accessed 28.3.2023.

[7] Leavitt N. (2010), Will nosql databases live up to their promise? URL: http:
//www.leavcom.com/pdf/NoSQL.pdf. Accessed 28.3.2023.

[8] How discord stores trillions of messages. URL: https://discord.com/
blog/how-discord-stores-trillions-of-messages. Accessed
30.5.2023.

[9] Scylladb documentation. URL: https://www.scylladb.com/

product/technology/. Accessed 30.5.2023.

[10] Discord documentation. URL: https://discord.com/developers/

docs/reference. Accessed 30.5.2023.

[11] Telegram documentation. URL: https://telegram.org/privacy?

setln=fa. Accessed 30.5.2023.

[12] End-to-end encryption (e2ee) definition. URL: https://www.

techtarget.com/searchsecurity/definition/end-to-end-

encryption-E2EE. Accessed 31.5.2023.

[13] Telegram database library documentation. URL: https://core.

telegram.org/tdlib. Accessed 4.6.2023.

[14] Telegram api introduction. URL: https://towardsdatascience.com/
introduction-to-the-telegram-api-b0cd220dbed2. Accessed
4.6.2023.

[15] Postman: What is an api? URL: https://www.postman.com/what-is-
an-api/. Accessed 4.6.2023.

37

[16] About restful apis. URL: https://restfulapi.net/. Accessed
21.2.2023.

[17] About grpc. URL: https://grpc.io/docs/what-is-grpc/faq/.
Accessed 21.2.2023.

[18] Json introduction. URL: https://www.json.org/json-en.html.
Accessed 21.2.2023.

[19] Web frameworks for python. URL: https://wiki.python.org/moin/
WebFrameworks. Accessed 21.2.2023.

[20] Flask web framework. URL: https://www.fullstackpython.com/

flask.html. Accessed 21.2.2023.

[21] M. G. (2018) Flask Web Development: Developing Web Applications with
Python. O’Reilly, 4 p.

[22] A realistic look at python web frameworks. URL: https://suade.org/
12-requests-per-second-with-python. Accessed 21.2.2023.

[23] About postgresql. URL: https://www.postgresql.org/about.
Accessed 21.2.2023.

[24] Github documentation. URL: https://docs.github.com/en/get-

started/learning-about-github/githubs-products. Accessed
30.5.2023.

[25] Sqlalchemy source code. URL: https://github.com/sqlalchemy/

sqlalchemy. Accessed 28.3.2023.

[26] Dwyer G. Aggarwal S. S.J. (2017) Flask: Building Python Web Services. Packt
Publishing, 237 p.

[27] Flask-restful documentation. URL: https://flask-restful.

readthedocs.io/en/latest/. Accessed 28.3.2023.

[28] Jsonschema documentation. URL: https://json-schema.org/.
Accessed 28.3.2023.

[29] Flask-expects-json package documentation. URL: https://pypi.org/

project/flask-expects-json/. Accessed 28.3.2023.

[30] Flask-babel documentation. URL: https://python-babel.github.

io/flask-babel/. Accessed 28.4.2023.

[31] Flask-limiter documentation. URL: https://flask-limiter.

readthedocs.io/en/stable/. Accessed 28.4.2023.

[32] Flask-limiter strategies. URL: https://flask-limiter.

readthedocs.io/en/stable/strategies.html. Accessed
28.4.2023.

38

[33] Flask deploying to production. URL: https://flask.

palletsprojects.com/en/2.3.x/deploying/. Accessed 28.4.2023.

[34] Gunicorn documentation. URL: https://gunicorn.org/. Accessed
30.5.2023.

[35] Jmeter documentation. URL: https://jmeter.apache.org/. Accessed
30.5.2023.

[36] Sentry documentation. URL: https://docs.sentry.io/platforms/
python/?original_referrer=https%3A%2F%2Fsentry.io%2F.
Accessed 31.5.2023.

39

9. APPENDICES

Appendix 1 HTTP requests JSON validation formats

chatlists_post_schema = {

’type’ : ’object’,

’properties’ : {

’receiver’ : {’type’ : ’string’},

’course_space’ : {’type’ : ’string’},

’topic’ : {’type’ : ’string’},

’message’ : {’type’ : ’string’},

’language’ : {’type’ : ’string’}

},

’required’ : [’receiver’, ’course_space’,

’topic’, ’message’, ’language’]

}

chatlists_get_schema = {

’type’ : ’object’,

’properties’ : {

’language’ : {’type’ : ’string’}

},

’required’ : [’language’]

}

chat_post_schema = {

’type’ : ’object’,

’properties’ : {

’message’ : {’type’ : ’string’},

’linked_to’ : {’type’ : ’string’},

’language’ : {’type’ : ’string’}

},

’required’ : [’message’, linked_to, ’language’]

}

40

chat_get_schema = {

’type’ : ’object’,

’properties’ : {

’language’ : {’type’ : ’string’}

},

’required’ : [’language’]

}

41

Appendix 2 Database tables with SQLAlchemy

class ChatModel(db.Model):

__tablename__ = ’chats’

id = db.Column(db.Integer, primary_key=True, unique=True)

chat_id = db.Column(db.String(80), unique=True)

topic = db.Column(db.String(80), nullable=False)

course_space = db.Column(db.String(80))

type = db.Column(db.String(50))

language = db.Column(db.String(2))

messages = db.relationship(’MessageModel’,

backref=’chats’,

lazy=’dynamic’,

order_by=’MessageModel.

timestamp’)

participants = db.relationship(’Participants’,

lazy=’dynamic’)

class MessageModel(db.Model):

__tablename__ = ’messages’

id = db.Column(db.Integer, primary_key=True, unique=True)

chat_id = db.Column(db.Integer, db.ForeignKey(’chats.id’),

nullable=False)

sender = db.Column(db.String(50), nullable=False)

message = db.Column(db.String(500), nullable=False)

is_read = db.Column(db.Boolean, default=False)

timestamp = db.Column(db.DateTime, default=datetime.

datetime.utcnow)

linked_to = db.Column(db.Integer,

db.ForeignKey(’messages.id’))

42

class Participants(db.Model):

__tablename__ = ’participants’

id = db.Column(db.Integer, primary_key=True,

unique=True)

chatId = db.Column(db.Integer, db.ForeignKey(’chats.id’),

nullable=False)

userId = db.Column(db.String(50), nullable=False)

43

Appendix 3 Work distribution

Group

Member

Stage 1

Hours
Contributions

Johannes

Lampela
36

Studying and researching technologies,

planning, creating presentation and

writing thesis

Tommy

Meriläinen
32

Studying and researching technologies,

planning, creating presentation and

writing thesis

Stage 2

Johannes

Lampela
47

Designing and implementing the project,

creating presentation and write thesis

Tommy

Meriläinen
42

Designing and implementing the project,

studying databases and write thesis

Stage 3

Johannes

Lampela
28

Coding the project, writing thesis and

creating presentation

Tommy

Meriläinen
25

Coding the project, writing thesis and

creating presentation

Stage 4

Johannes

Lampela
114

Coding and testing the code, writing

thesis, creating presentation and refining

the project

Tommy

Meriläinen
119

Testing the code, writing thesis, creating

presentation and evaluating

Total

Johannes

Lampela
225

Tommy

Meriläinen
218

	Introduction
	Related Work
	Microservices
	Lovelace
	Web Frameworks
	Databases
	Social Media Messaging Services
	Discord
	Telegram

	Application programming interface
	Principles Of RESTful API

	Design
	Design Goal
	Minimum Requirements
	System Design
	Technology Stack
	Flask
	PostgreSQL

	Implementation
	Implementation process
	Microservice implementation
	Database
	REST API
	Request validation
	Localization
	Rate-limiter

	Deployment
	Risk assessment

	Evaluation
	Evaluation plan
	Functional testing
	Performance and load testing
	Baseline tests
	Load tests
	Results

	Compliance with the RESTful principles

	Discussion
	Reflection on the project
	Future Work
	HTML Widget
	Logger
	Deployment

	conclusions
	REFERENCES
	Appendices

