

FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING

Shushakova Mariia

Improving software quality through non-functional testing

Master’s Thesis
Degree Programme in Computer Science and Engineering

May 2023

3

Shushakova M. (2023) Ohjelmiston laadun parantaminen ei-toiminnallisen
testauksen avulla. Oulun yliopisto, Tietotekniikan tutkinto-ohjelma, 42 s.

TIIVISTELMÄ

Kun koodi muuttuu monimutkaisemmaksi, uusia toimintoja lisätään joka päivä ja vikoja
korjataan, jolloin testaamisesta tulee enemmän aikaa vievää ja monimutkaisempaa.
Raskaasti kuormitetun järjestelmän korkean laadun ylläpitämiseksi toimintatestaus ei
enää riitä. Uusien ominaisuuksien testaamiseen ei sisälly vain toiminnallisia ja regressio
testejä, vaan myös resursseja vaativia ei-toiminnallisia testejä. Toiminnallinen testaus
varmistaa tietyn vaatimuksen toimivuuden. Täysi testiautomaatio tai edes manuaalinen
testaus eivät kuitenkaan takaa vakaata työtä tuotannossa. Paras lähestymistapa on
ratkaisu, jossa ei-toiminnallinen testaus seuraa toiminnallista testausta erottamattomasti.

Tavoite: Tutkimuksen tarkoituksena on luoda järjestelmä, joka kattaa ei-toiminnallisen
testauksen suorituskyvyn puolelta. On ehdotettu, että vain toiminnallisen ja ei-
toiminnallisen testauksen yhdistelmä voi tuottaa korkeaa laatua. Työkaluissa ja
lähestymistavoissa on paljon sudenkuoppia ja vivahteita, joten tässä työssä pyritään
ymmärtämään niitä ja löytämään kullekin tapaukselle paras ratkaisu.

Menetelmä: Opinnäytetyö kattaa erilaisten kuormitus testauksen työkalujen ja
viitekehysten vertailevan analyysin, jossa kehitetään testaustapa testattavaksi
ohjelmistoksi valitulle avoimelle sovellusohjelmointi rajapinnalle, mukaan lukien
automaattisesti skriptatut testit ja tulosteet.

Tulokset: Paras työkalu valittiin ja sen perusteella toteutettiin kuormitustesti skriptit,
jotka täydensivät toiminnallista testausta ei-toiminnallisilla parantaen tuotteen laatua
kokonaisuutena.

Avainsanat: ohjelmistojen testaus, ei-toiminnallinen testaus, suorituskyvyn testaus,
JMeter

4

TABLE OF CONTENT

ABSTRACT

TABLE OF CONTENT

FOREWORD

ABBREVIATION

1. INTRODUCTION .. 7

1.1. Problem statement and motivation .. 7

1.2. Research questions .. 8

1.3. Outline of the research ... 8

2. BACKGROUND ... 9

2.1 Basic concepts of software testing ... 9

2.2. The importance of software testing ... 9

2.3. Non-functional testing ... 10

2.3.1. Types of performance testing ... 11

3. RESEARCH METHOD ... 13

3.1. Search strategy ... 13

3.2. Comparative analysis of performance tools .. 13

3.2.1. Apache JMeter .. 13

3.2.2. LoadRunner .. 17

3.2.3. Gatling .. 19

3.2.4. Taurus ... 22

3.2.5. K6 ... 23

3.3. Evaluation parameters ... 24

3.4. Summary .. 25

4. DESCRIPTION OF SOLUTION ... 26

4.1. Context .. 27

4.1.1. Product .. 27

4.1.2. OURA open API ... 28

4.2. System implementation ... 29

4.2.1. Preparing test scenarios .. 29

4.2.2. Executing tests .. 31

4.2.3. Reporting & Test execution results .. 32

5. RESULTS .. 35

5.1. Research questions and answers .. 35

5.2. Challenges, limitations, and implications .. 36

6. CONCLUSIONS & FUTURE WORK .. 37

6.1. Conclusion ... 37

6.2. Future work ... 38

7. REFERENCES .. 39

5

 FOREWORD

I would like to express huge thanks to Burak Turhan and Ulrico Celentano, who were guiding
me through the whole thesis process and made my work much smooth and enjoyable. Their
advice and suggestions helped tremendously refine all the aspects of the final work.

I am immensely grateful to the people at OURA Health, for the opportunity to carry out my
thesis in such a modern company, and special thanks to Jarkko Lämsä, Non-functional Test
Lead, who helps me to identify a topic and supervise from the technical part.

Finally, many thanks to Test Engineering Manager, Marko Hiltunen, who was sympathetic to
my studies and maintained my work-life balance, giving me some freedom in distributing my
workload and writing master thesis.

Oulu, 1.05.2023

Mariia Shushakova

6

ABBREVIATIONS

API Application Programming Interface

CI Continuous Integration

CVS Comma-Separated Values

GUI Graphical User Interface

HAR HTTP Archive

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

ISTQB International Software Testing Qualifications Board

MLR Multilateral Literature Review

NFT Non-Functional Testing

PT Performance Testing

ST Software Testing

SUT System Under Test

SW Software

UI User Interface

XML Extensible Markup Language

YAML Yet Another Markup Language

7

1. INTRODUCTION

The main peak of interest in software testing came at the end of the last century in the United
States [1]. Rapid development of automated software development systems and network
technologies led to an increased production in the software market. Fierce competition among
software manufacturers required extra attention to product quality. As the range of products had
greatly expanded, and prices had become more affordable, customers started paying more
attention to the quality of the software. Nowadays, almost all areas of human life are a subject
of computerisation. There are almost no spheres of life which do not require interaction with
information technology. Not only is software used in everyday life for routine purposes, but it
is also needed in such essential areas as medicine, transportation, construction, security, and
many others. Thus, the issue of software quality is not only a matter of comfort and
entertainment but also of safety and overall quality of life.

Having realised the importance of improving software quality, companies around the world
started investing in testing technologies, established quality control departments (Quality
Assurance), and applied new technologies that allowed businesses and companies to gain a
competitive advantage by improving the quality of their software products, thus making
software testing an integral part of software development.

The establishment of a high-quality testing system enables to identify errors in the functionality,
design, and performance at all stages of software implementation. Testing is necessary in order
to understand whether a program works as expected and meets the requirements. Timely
identification and fixing errors and flaws are of great importance in the process of developing
a software product since this mitigates the risks and at the same time reduces the cost of software
development. Thanks to competent testing, companies are able to maintain the quality of their
products at a very high level. [2]

The purpose of this Master's thesis is to find out the most popular non-functional testing
tools on the market according to literature findings, to choose the most suitable
framework for the company's requirements, and cover the target software with non-
functional tests, thereby starting to fill the gap in performance testing in order to improve
software quality.

1.1. Problem statement and motivation

It is necessary to test the performance of a service or application not only after the completion
of the development process but also during it, just like regular unit or regression tests are done.
Properly organized, regular performance tests allow answering a very “subtle” question: have
the latest changes in the application code led to a deterioration in the performance of the
software?

It would seem that measuring performance is an easy task! Take the timestamp twice
(preferably with high accuracy), calculate the difference, add-divide, and that is all - you are
able to optimize. Although it sounds simple, in reality, such measurements are quite difficult to
make, and it is not always reasonable to compare the results of different measurements. One
reason is that tests must be run on the same source data in order to compare results, which
means recreating the test environment with each test run. Another reason is that the comparison
of the subjective perception of the test script running time may turn out to be inaccurate. One
more reason is the difficulty of isolating the impact on the performance of the entire application
and its individual module, the one, which is under work. (To make matters worse, it is even
more difficult to isolate this influence if a team consists of more than one developer working
on the code.)

8

One approach in this situation is to carefully create a complete test script that replicates the real
client service and run it many times while analyzing the load on the server where the test is
taking place in parallel. In this way, it will be clear which part of the script creates a load on
separate resources of the test server, which can provide additional information on finding places
where performance should be taken more seriously. However, this is not always possible in a
real situation, simply because a voluminous test, even repeated 10-20 times, will most likely be
too long to run often, and it will completely destroy the concept of performance testing.

Another approach, more suitable for the development process, is to organize limited-scale,
"micro-" or even "nano-" testing of individual places in the code (running one method or one
function, but a large number of times - i.e., rather, benchmarking). Planning for such testing
requires additional effort on the part of the developer, but the result pays off both with an overall
improvement in code performance and with an understanding of how individual parts of the
project behave as they work on them and on other parts.

The following research questions were developed after taking into account all the complexities
of performance testing and determining whether there is a more advantageous tool available in
the market in terms of usability and cost.

1.2. Research questions

RQ1. What are the advantages and disadvantages of the most popular performance
testing tools according to internet findings?

RQ2. What is the most effective tool or tool set for API testing purposes and the
company's needs?

RQ3. What are the benefits brought by the selected particular tool set, compared with
the current situation, and what are the possible costs?

1.3. Outline of the research

This thesis is structured as follows, Chapter 2 represents the technical background and all
necessary theoretical aspects of non-functional testing to carry out research. Chapter 3 is mainly
dedicated to comparison tools and evaluation parameters. Based on the selection, in Chapter 4
the implementation of the solution can be observed. Chapter 5 presents outcomes and answers
to research questions. Chapter 6 provides the conclusions where future work is discussed.

9

2. BACKGROUND

This chapter is devoted to solving such problems as identifying the theoretical foundations of

testing and classifying and describing the types of testing. It is necessary in order to better

understand the testing processes, distinguish between types of testing and apply knowledge in

assessing the feasibility of implementing performance testing in a company.

2.1 Basic concepts of software testing

Software testing (ST)1 is a way to assess the quality of the software and to reduce the risk of
software failure in operation.

In other words, through validation and verification, ST examines how the system under test
(SUT) behaves. ST can also offer an unbiased, objective perspective of the software to allow
the management to understand and evaluate the risks of software implementation.

Two related but different ideas are referred to as software quality:

● Software's functional quality, which is based on functional requirements or
specifications, measures how well it complies with or conforms to a specific design.
This characteristic is also known as a software product's suitability for use or how well
it stands up to rivals in the market as a valuable offering. It reflects the extent to which
the right software was created;

● Software structural quality refers to how it satisfies non-functional requirements like
robustness or maintainability that help deliver the functional requirements. It has much
more to do with how well the software performs as required. [4]

The main testing objectives are to increase the probability that an application intended for
testing will work correctly under all circumstances. Strictly speaking, to raise the chances that
the application under test will adhere to all the criteria.

In fact, the meaning of testing is to provide up-to-date information about the state of the
product at the moment.

2.2. The importance of software testing

Testing is an important part of the software development process and is one of the most effective
ways to ensure quality. 40% of a software development budget is often set aside for software
testing [5].

The main characteristics of software quality are described in the International Organization for
Standardization and International Electrotechnical Commission (ISO/IEC 9126)2 standard:
functionality, usability, maintainability, efficiency, scalability, and reliability. According to the
standard, the quality of the software is considered to be the totality of its properties that
determine its suitability to satisfy given and implied needs in correspondence with its purpose.
Thus, a quality product is considered to be one that satisfies the quality criteria imposed on it
by interested sides, customers, or users of this product. A software product must meet certain
standards and expectations in order to be considered quality.

1 Definition of Software Testing, ASTQB - American Software Testing Qualifications Board. [3]
2 ISO/IEC 9126-1:2001, Software engineering — Product quality — Part 1: Quality model. [6]

https://www.iso.org/standard/22749.html

10

According to Hossain [7], there are two types of software testing: functional and non-functional
testing, see Figure 1. This work focuses more on non-functional testing.

Figure 1. Testing is divided into two main types.

2.3. Non-functional testing

The main characteristics of software quality are functionality, usability, maintainability,
efficiency, scalability, and reliability. Non-functional testing (NFT) refers to ‘efficiency’
testing. The standard defines efficiency as the ability of software to provide sufficient
performance given certain resources and under a certain load.

It is intriguing the approach of Rex Black, an American tester, author of books, and study
materials for testing. In the past, he was the president of the International Software Testing
Qualifications Board (ISTQB). According to his book “Advanced Software Testing - Vol. 3"
[8], inefficiency can be expressed in different ways:

● slow responses;
● insufficient throughput;
● reliability lapses in load circumstances;
● undue demands on resources.

Inefficiency is often hidden in ill-conceived design and architecture, and it is difficult to make
changes to them in the latest stages of development. Therefore, it is better to start testing the
effectiveness even at the design and programming stage - review and static analysis will help
with this.

Rex Black highlights the key points of non-functional testing:

● NFT is not only an overload of the system with a ton of virtual users when they are
simultaneously set on the system and it breaks under their ‘onslaught’. In fact, most load
testing does not result in failure. There is an NFT that looks for this point of no return,
but that is just one type of NFT.

11

● As with all testing, NFT should be comprehensive throughout the software lifecycle,
not on the latest stage of development.

2.3.1. Types of performance testing

Efficiency testing is referred to as performance testing (PT). According to ISTQB1 terminology
[9], performance testing is a type of NFT testing conducted to assess how a system's part or
system responds to different loads, usually between expected low, typical, and peak load
conditions. As a matter of fact, PT is testing to find out if a system or system’s component
performs its tasks under constraints for given time intervals and with a certain throughput.

Some of the types of performance testing that Rex Black lists are:

1. Load testing evaluates the behavior of a component or system under increasing load,
such as an increase in the number of concurrent users and/or the number of transactions,
to understand whether this component or system can withstand such a load. The
emphasis is on expected and realistic workloads, although the basis of this is that PT
has a variety of combinations of requests and their number. Queries are created in such
a way as to simulate the simultaneous operation of a set of users. This allows for
evaluating response time and throughput. Sometimes a distinction is made between
multi-user PT with a realistic number of users and bulk PF with a huge number of users.

2. Stress testing is a type of testing to study the behavior of a system or component under
peak loads and under unusual operating conditions, such as when there is a shortage of
resources such as memory or access to servers. Stress testing is PT ‘turned on to the
maximum’. Its goal is to make sure that Response time, dependability, and functionality
should all degrade gradually and predictably - and eventually, a message like "I'm busy,
call back later" is displayed. There should be no unfriendly behavior on the part of the
system: data corruption, system blocking, or system crash.

3. Scalability testing allows us to find out bottlenecks and then make sure that increasing
capacity will help solve the problem. For example, if the plan is to add multiple
processors to improve performance, then scalability testing will make sure that one
processor is enough. Also, such testing helps to determine the limits of scalability in
production.

4. Spike testing is performance testing during bursts of load, it simulates a sharp impulse
increase in the number of parallel users or processes within the system and allows to
evaluate of stability during such surges and between them, making sure that the system
completely returned to normal between surges.

5. Reliability testing checks the ability of a system to carry out its functions under certain
conditions for a specific amount of time or for a certain number of operations.

6. Tip-over testing is aimed at saturating the system with a load and finding the point and
place of failure. The point that could not withstand the load is marked as the weakest in
the system. Based on this, it can be assumed that changing the design of this point can
lead to improved performance and response time under heavy loads.

1 ISTQB - International Software Testing Qualifications Board.

This type of testing is something in between stress and spike testing, but the time frame of the
load is different (observe Figure 2).

12

Figure 2. Some of the types of performance testing graphically, according to Rex Black.

13

3. RESEARCH METHOD

This chapter is devoted to the tool selection for performance testing. In addition, this chapter

defines the criteria against which the analysis and comparison will be made for the

implementation of a non-functional automation framework.

3.1. Search strategy

To achieve the purpose of this research, a multilateral literature review (MLR) [10] was chosen
as a research method. MLR is a form of systematic literature review, that includes grey
literature, such as blog posts, articles, Wikipedia, etc, in addition to published official literature,
such as journals and conferences.

This particular research method was chosen, because Systematic Literature Reviews (SLR) may
not provide insight into the "state of the practice" in software engineering, as they do not
typically include the "grey" (non-published) literature. Nowadays, there are a lot of cutting-
edge solutions that are not published in academic sources, due to the very hectic development
of the information technology industry. Based on the 2016 research of Garousi: “grey literature
can give substantial benefits in certain areas of SE [software engineering]” [10].

Therefore, I decided not to neglect blogs, IT forums, articles, and other ‘grey’ sources of
information in my work. I used Google Scholar to research academic literature, and the standard
Google search engine to research grey literature.

3.2. Comparative Analysis of Performance Tools

There is a huge number of competing load-testing tools that have their own advantages and
disadvantages. The chapter analyzes some of the most popular tools based on an Internet search.

3.2.1. Apache JMeter

JMeter is one of the most popular open-source tools [11] for testing web applications. For more
than twenty years, it has been a frequent choice for many options and types of performance
testing. Key features:

- convenient GUI,
- platform independence (thanks to 100% pure Java application),
- multithreading support,
- extensibility,
- excellent reporting capabilities,
- support for many protocols for queries.

Thanks to the modular architecture, JMeter can be extended in the direction the user needs,
implementing even very unusual test scenarios. Besides, if none of the plugins written by the
community in the past suit engineers, there is an open API for creating a custom user's library.

Working in proxy mode is one of JMeter's practical features. Host - “127.0.0.1:8080” is
specified as a proxy in the browser settings and visit the pages of the site we need with the
browser, meanwhile, JMeter stores all of our actions and any associated requests as a script that
later can be edited as needed - this makes the process of creating HTTP tests much easier.

The storage of test scripts in JMeter is implemented in XML files, which, as it turned out quite
inconvenient to write them manually, is also inconvenient to work with such files in version
control systems. Products competing in the field of load testing, such as Taurus are able to

15

Figure 4. Apache JMeter - Thread Group.

Next, I set HTTP Request, which source will be under test, I chose the Oura Ring site [13]. I
defined the type of the request - GET, server name, and path to the particular product.

Figure 5. Apache JMeter - HTTP Request.

Also, I added graphical result reports, such as “Graph Results”, and “View Results Tree” for
clarity. In Figure 6 you can see the result of the HTTP request, it was performed successfully
and returned <200> code, and some dynamics in Figure 7, the graph is not very revealing due
to the limited set of test cases.

16

Figure 6. Apache JMeter - View Results Tree, successful request.

Figure 7. Apache JMeter - Graph results.

18

Figure 10. LoadRunner - create test, distribution.

Step 2: Run the test

After configuring all settings, the test can be executed. Initializing a test takes a few minutes
and measurements are collected and reported in real time during the test run.

Figure 11. LoadRunner - run the test, initializing stage.

 Step 3: Analyze the results

In the dashboard, the user can easily manage a large number of metrics and customize the
dashboard for more convenient work.

19

Figure 12. LoadRunner - run the test, initializing stage.

3.2.3. Gatling

An open-source framework for load and performance testing built on Scala, Akka, and Netty is
called Gatling. According to Gatling Corp's official blog [16], over a million people
downloaded Gatling in 2021 [17].

A very powerful and serious tool (not in vain named after a rapid-fire machine gun), primarily
because of its performance and wide protocol support. For example, where load testing with
JMeter will be slow and tedious (work with web sockets is not very fast), Gatling will almost
certainly create the required load without much difficulty.

It should be noted that, unlike JMeter, Gatling does not use a GUI at all and it is generally
considered a possibility aimed at an experienced audience, who is able to create a test script in
the form of a code file.

Gatling also has disadvantages for which it is criticized. Firstly, there is a lack of comprehensive
documentation. Secondly, it is required the knowledge of Scala to work with it: both Gatling
itself, as a testing tool, and test scripts, are written in this language. Thirdly, developers radically
changed the API in the past, as a result, it was possible to face that tests written six months
earlier do not run on the new version, or require improvement/migration. Gatling also lacks the
ability to do distributed testing, which limits its possible applications.

3.2.3.1. Hand-on tests

My first introduction to this tool started with a Gatling Recorder with which I generated my
first test script. It is possible to write a script manually, but Recorder is quite useful for getting
a quick basic test script in place.

20

Figure 14. Gatling Recorder - configuration.

I defined Recorder mode as ‘HAR Converter’ because for me it is easier to catch. I opened SUT
(Oura ring web store), downloaded the HAR content file, and browsed it to the Recorder.

Figure 15. Gatling Recorder - with HAR file.

21

Finally, after clicking start, the script is generated automatically. There is quite a huge file with
headers and HTTP requests can be observed in Figure 16 below. Looking at the code we can
investigate what was browsed when we load Oura Ring main store.

Figure 16. Gatling - generated script.

After running the generated previous script, Gatling creates a graphical report for users, where
they can find all necessary data, such as statistics of requests, number of requests, response
time, number of requests per second, etc.

Figure 17. Gatling stats - the global information.

22

3.2.4. Taurus

Taurus is an open-source automation framework that extends and abstracts the functionality of
leading open-source testing tools [18]. Taurus supports Apache JMeter, the most popular load
testing tool, Selenium, Gatling, The Grinder, and others.

Taurus offers an easy method for creating, running, and analyzing performance tests. It can be
configured to send test statistics to the BlazeMeter.com online service, which will display the
data in fancy graphs and tables. The approach is not very common, but worthy of attention: the
report output engine, obviously, improves over time, and will gradually display information
even more attractively.

3.2.4.1. Hand-on tests

Taurus provides an option that automates the execution of native tests (whether Gatling scripts,
JMeter tests, or even Selenium) locally and seamlessly switches into the BlazeMeter clock to
run tests at a massive scale.

I decided to try Taurus with the Selenium combination. I started with the YAML script which
executes simple Selenium tests.

Figure 19. Taurus - Executor script and Selenium script.

After the executing script, Taurus starts running Selenium tests.

24

Figure 22. K6 - test script.

After that, I ran the test via the command: > k6 run script.js and get results in the console,
such as virtual users (‘vus’), iterations, etc.

Figure 23, K6 - test results.

3.3. Evaluation parameters

Before starting to compare performance tools I settle on the most important criteria for the
particular case because obviously, some tools may suit better for solving some problems but
worse in others, hence the collection of existing tools and their analysis could be done
considering strengths and weaknesses only for particular input parameters.

The first significant parameter was from Oura management, the tool(s) have to be free. There
are a bunch of options, that provide open-source or commercial tools: fully free, trial, free with
some limitations in use and etc. Therefore, I come to the first evaluation parameter -
availability.

25

Also, it is important to understand the capacity of the tool, and whether it is possible to simulate
and maintain a huge load on the SUT, the second evaluation parameter was defined as - request
per second (RPS). Based on the article “Performance Comparison of Load Testing Tools” [20]
we can observe some load capacity of chosen tools. For testing, the primitive web server in Go
was created, which processes a single GET request and returns a static response.

Not only creating test scripts is an important criterion for selecting a new tool, but in terms of
testing, it is significant to retrieve the results of tests. And the simpler and clearer results will
be shown, the more effective it will be eventually. The third evaluation parameter is analysis
and report.

Speaking about new technology, especially if you do not have a strong department of engineers
in your company it is very important to have a strong vast community and exhaustive
documentation in order to support and resolve some issues on the way to creating a framework.
Moreover, a lively community also helps in case technology experts would leave the company,
so there would be robustness against possible loss of key human resources. Thus, the fourth
evaluation parameter is community support and tutorials.

Another important factor is a scripting language, that maintains a particular tool. In order to
use the tool at full capacity, engineers should be confident in the scripting language, and it is
common enough among engineers.

Last, but not least is the “user-friendly” parameter, which is subjective. However, the fact that
a tool is user-friendly is important regardless of who is then actually using it, since it increases
work efficiency by being faster to use, and minimizes the possibility of errors due to its
cleanness and simplicity. Hence this parameter even affects personnel costs.

3.4. Summary

Summarization is presented in Table 1 for all evaluation parameters, which were mentioned in
Chapter 3.3, the more detailed conclusions are further below.

Table 1. Summary table for all parameters.

Availabilit

y
RPS Reports Community

support,
tutorials

Scripting
language

User-friendly

JMeter
fully free 28 000 9 10 Java, Groovy,

BeanShell [*]
10

LoadRunner
priced

(License)
7 800 10 9 C (main),

JavaScript, VB,
VBscript, java, c#

9

Gatling
partially

free
(License)

22 500

8 8 Scala
(Java Kotlin)

3

Taurus
fully free no

data
0 (no

embedded
visual

reporting)

3 ‘wrapper’ over
other tools

2

26

K6
partially

free
(License)

4 500 0 (can be
integrated)

9 JavaScript 9

[*] JMeter supports a number of scripting languages out of the box. It can support JSR223-compatible languages
not configured with default settings.[30]

My impression of each tool is based on my findings during the hands-on experience and some
literature findings. Some metrics can not be estimated precisely, thus I graded it with a 10-point
scale, where 10 is the top score and 1 is the smallest (0 reserved for the case, that can not be
evaluated).

Apache JMeter is the winner in the RPS competition. Also, it is a good tool for both a beginner,
because it is easy to learn, and for a specialist, it has a huge functionality out of the box, as well
as opportunities for expansion. Moreover, JMeter is absolutely free and has great community
support.

LoadRunner - the performance of this banking veteran tool turned out to be approximately in
the middle. It is an expensive software testing tool, despite providing a free version with almost
all of its capabilities, however, it is just temporary usage and also limited to 50 virtual users. It
is quite weak regarding load capacity, with only 7 800 requests per second. LoadRunner has a
very user-friendly GUI for simple tests. However, for more complex execution, the user must
dedicate more time. It supports also multiple languages, but the main one is “C”, which greatly
complicates development.

Gatling is a powerful tool and showed high performance (22500 RPS), it will be difficult for a
beginner due to the code-only approach and the need to master Scala, but it can definitely come
in handy for an experienced specialist, especially if you have to test web sockets.

Taurus is well suited in a situation where power is essential to create a test, but there is no
desire or opportunity to deal with Gatling (as well as writing test scripts in Scala). It is enough
to describe the test in the much simpler Taurus file format, configure it to use Gatling as a load
creation tool, and all Scala files will be generated automatically. "Automation of automation"
in action! However, as a standalone tool, it does not provide anything, therefore you still should
learn one of the performance testing tools and then only use Taurus as a wrapper. Personally, I
did not realize the simplicity of the tool, besides there is a lack of tutorials and communities.

K6 - perhaps it is still ‘raw’ and therefore did not show very good results in RPS evaluation,
only 4500 RPS, which in turn is one of the key parameters. However, I was impressed with how
earlier it was settled down and how quickly I executed my first test. If the user doesn’t need to
perform a considerable load, or for a startup project, that only starts its journey in production,
this tool will be very applicable. Also, it has good tutorials and good integrations with CI
systems.

To summarize the above, each tool is good for its own purposes, so this survey should not be
taken as a rating of performance testing tools. I have given my preference to Apache JMeter, as
the leader in the majority of evaluation parameters and the most ‘seasoned’ tool on the market,
which is used in production nowadays. This conclusion provides the answer to the first research
question [RQ1].

28

Oura ring indicates the user's heart rate also during the day and during sports exercises [24]. At
the same time, the company expanded its product range to monthly paid software products that
utilize the data collected by the ring [23]. The third version was sold with the ability to monitor
blood oxygen saturation, but the software that enables it was only completed nine months after
the product release [23].

4.1.2. OURA open API

The Oura API allows Oura users and partner applications to improve their user experience with
Oura data by fetching data for the particular user. Individual Oura users can access their own
data through the API by using a Personal Access Token. [25]

Table 2. List of endpoints under test.

Name Description Endpoint Response example

Personal
Info
Routes

The Personal Info scope
includes personal
information (e.g. age, email,
weight, and height) about
the user

/v2/usercollection/personal_i
nfo

{
 "id": "string",
 "age": 0,
 "weight": 0,
 "height": 0,
 "biological_sex": "string",
 "email": "string"
}

Daily
Sleep
Routes

A sleep cycle is a time spent
laying in bed that is almost
continuously long. [25]

/v2/usercollection/daily_sleep
{
 "id": "string",
 "contributors": {
 "deep_sleep": 0,
 "efficiency": 0,
 "latency": 0,
 "rem_sleep": 0,
 "restfulness": 0,
 "timing": 0,
 "total_sleep": 0
 },
 "day": "2019-08-24",
 "score": 0,
 "timestamp": "2019-08-24T14:15:22Z"
}

Daily
Activity
Routes

The scope of Daily Activity
comprises detailed activity
levels and daily activity
summary numbers. The
metabolic equivalent of task
minutes (MET mins) is a
unit of measurement for
activity levels. Oura
monitors motion and
records activity. [25]

/v2/usercollection/daily_activ
ity

[*]

29

Daily
Readiness
Routes

Readiness tells how ready
you are for the day
(calculated based on other
metrics).

/v2/usercollection/daily_readi
ness

[*]

Heart Rate
Routes

The Heart Rate data scope
includes time-series heart
rate data throughout the day
and night. Heart rate is
provided at 5-minute
increments. For heart rate
data recorded from a
Session, see Sessions
endpoint.

/v2/usercollection/heartrate
{
 "data": [
 {
 "bpm": 0,
 "source": "awake",
 "timestamp": "2019-08-24T14:15:22Z"
 }
],
 "next_token": "string"
}

Workout
Routes

The Workout data scope
includes information about
user workouts. This is a
diverse, growing list of
workouts that help inform
how the user is training and
exercising.

/v2/usercollection/workout
{
 "data": [
 {
 "id": "string",
 "activity": "string",
 "calories": 0,
 "day": "2019-08-24",
 "distance": 0,
 "end_datetime": "2019-08-
24T14:15:22Z",
 "intensity": "easy",
 "label": "string",
 "source": "manual",
 "start_datetime": "2019-08-
24T14:15:22Z"
 }
],
 "next_token": "string"
}

 [*] Presented in appendix 1.

There are also other endpoints, but I chose these ones, as more usable and demonstrative.

4.2. System implementation

For performance testing, Apache JMeter was selected based on the comparison in Chapter 3.
JMeter allows the simulation of several scenarios with numerous concurrent users with the aim
of, among other things, locating the system bottleneck and resource issues. Performance testing
is done utilizing a dynamic testing method and a black-box strategy. In other words, tests are
performed on the deployed application, however, the tester is unaware of how the code is
processed.

4.2.1. Setting up test scenarios

A collection of components from Apache JMeter are available to support a particular user
situation. I started creating test scripts via GUI.

30

A thread is used to represent each user. Every thread's scenario is specified in the Thread Group
component (Figure 27). For this case, three main thread properties were set:

- “Number of Threads (users)” - which indicates the number of simulated users;
- “Ramp-up period (seconds)”- which determined when to start each thread;
- “Loop count” - shows how many times test will be conducted.

All fields, mentioned above, are parametrized.

Figure 26. Thread Group.

The next step is to set up HTTP Request, essentially, this component processes actions
(endpoint) that are intended to load and measure. Here, I will use the Oura endpoints for creating
requests, on Figure 27 “Personal Info Routes” is used. Fields “Server Name” and “Path” also
can be parametrized, but I left them in the initial state for demonstrative purposes.

Figure 27. HTTP Request, Personal Info Routes.

In order to fetch the data of the particular user a Personal Access Token should be used. HTTP
request headers can be added and modified in HTTP Header Manager (Figure 28) for
authorization purposes.

31

Figure 28. HTTP Header Manager.

By analogy, I added the rest of the endpoints to the same test plan “OURA API”:

- Daily Sleep Routes
- Daily Activity Routes
- Daily Readiness Routes
- Heart Rate Routes
- Daily Readiness Routes
- Workout Routes

Figure 29. All endpoints are under test.

4.2.2. Executing tests

Execution tests are possible from Apache Maven GUI, by clicking on the green button execute.
Or using a command prompt for integration with other systems.

To create a report in console mode, the following command was used:

$ jmeter -n -t ‘path’/apache-jmeter-5.1.1/bin/documents/Homepage.jmx -l
‘path’/apache-jmeter5.1.2/bin/documents/test2.csv -e -o ‘path’/apache-jmeter-
5.1.2/bin/documents/htmlreport

Where:

-n non-GUI mode;
-t path to Jmeter script file;
-l path to the file;
-e create report dashboard after the tests execution;
-o path to the output folder for report dashboard.

32

4.2.3. Reporting & Test execution result

The test results that has been executed might be presented in a variety of ways. It could be in
table form or a graphical illustration. It is crucial to understand the significance of the table's
numbers and the graph's curves. JMeter provides a lot of graph results by default version, even
without additional integration. I presented the most demonstrative ones.

Summary Report

Figure 30 shows a table row for each differently named request in our test, which is useful for
understanding how long queries take to run. This result table presents the error rate, which
indicates that the action failed. Errors for all scenarios are showing 0% because all the tests are
passed.

Figure 30. Apache JMeter - Summary Report.

View Result Tree

The view result tree shows details of each request. In Figure 31 can be observed JSON response
for the ‘personal info request’ and also the status of the request.

Figure 31. Apache JMeter - View Result Tree.

Aggregate Graph

33

The aggregated graph is a listener that provides handy metrics, it compares the Average
response time and Median response time for every single request. The graph also has a bar chart
with several variables that may be altered to meet your needs, in my case, it visualizes the
average elapsed time in milliseconds for each endpoint. According to the graph below, we can
see that HTTP GET request “daily activity” is the most resource-consuming.

Figure 32. Apache JMeter - Aggregate Graph.

Graph Results

Line charts for general metrics are shown in JMeter Graphs Results along with numerical
values:

● No of Samples - how many samples are being processed;
● Latest Sample - last elapsed time slot in milliseconds;

The graph is quite hard to read, in my opinion, but some tendencies, such as Average response
time, Response time Deviation, the Median, and Throughput could be noticed during load
testing. In Figure 33 throughput drastically increased, which indicates the high number of
requests per second, that are sent to the server during the high load testing.

34

Figure 33. Apache JMeter - Graph Results.

35

5. RESULTS

This chapter is dedicated to the technical results after implementing the test framework,

executing tests against SUT, and answers to the research questions.

5.1. Research questions and answers

The main purpose of this dissertation was to compare existing technologies for performance
testing, select a tool stack, and, based on it, implement tests and execute them for the OURA
API. The tests were designed with the Apache JMeter tool, which is a free solution for this
approach. After the work is done, the answers to the following questions can be observed below.

RQ1. What are the advantages and disadvantages of the most popular performance
testing tools according to literature findings?

A more detailed answer is provided in the summary of section 3.4. As a matter of fact, each
tool is useful for its own purposes. For instance, regarding K6 quick start and console interface
will be a very huge advantage for engineers, who need to execute simple tests for Web-Server
applications without creating comprehensive reporting. Load Runner can be beneficial for
significant and bulky systems (such as bank systems) due to it is a licensed tool with a support
team who can help to manage all unique scenarios, of course not freely. And Gatling will appeal
to those who do not hesitate about dealing with code and want to create an entire framework
from scratch without predefined options.

RQ2. What is the most effective tool or tool set for API testing purposes and the
company's needs?

I have discovered that software performance testing tools operate considerably differently from
other software. It is difficult to choose software testing solutions that meet every company's
requirements. Software testing tools are widely available today (also which were not considered
in this thesis) and such variety makes it more difficult to make the right decision.

However, based on the defined six evaluation parameters, namely: availability, request-per-
second, community support, scripting language, and user-friendly, among the five performance
tools that were compared I have given my preference to Apache JMeter. As an open source
software, the leader in the majority of evaluation parameters, which is easy learn how to use,
simple in installation, and has significant community support.

RQ3. What are the benefits brought by the selected particular tool set, compared with
the current situation, and what are the possible costs?

The main benefit of choosing JMeter is the vast functionality, that is provided, for further
developing non-functional testing in the company and the costs of the tool (which is free). We
managed not only to cover the gap of performance testing for API but also don’t spend money
on the tool during the implementation of the complete framework.

Obviously, it should not be claimed, that it is totally free. There is expenditure on the work of
engineers, also future work of maintenance and executing testing scripts (such as integration
with CI system, integration with monitoring system, etc). However, from the side of new
software or hardware, it does not cost the company anything.

Another benefit that should be mentioned is the total visibility that OURA open API is stable
(in the frame of the staging environment, this limitation is noted in section 5.1).

36

Finally, as with any automation testing, it provides confidence in regression testing. That old
functionality, in my case, OURA open API will not be broken during the implementation of
new features.

5.2. Challenges, limitations, and implications

Any research work is limited by timeframe, and mine is not an exception. First and foremost, I
would like to consider more testing tools, that are existing nowadays. In this case, the
comparison analysis would be more full and comprehensive. In addition to this, I would like to
examine other metrics, such as domain applicability, resource intensity, and others.

Another limitation was from the resources side, I have not had a test environment that fully
replicates the production environment from the load capacity. Thus, each test that has been
executed on a test environment was relevant only in the frame of the test environment and does
not reflect the real state of the product on production.

The main challenge that I stumbled upon was that JMeter is not compatible with RestAssured1
tests. OURA company has already had functional API tests, which would be nice to reuse with
Apache JMeter integration, in order not to script the same tests again. However, I have not
found any solution, on how to integrate the REST Assured framework with JMeter. Hereby, the
new performance framework was created from scratch using GUI (see - 4.2.1. Preparing test
scenarios).

1 REST-assured [29] - Java library for testing RESTful APIs. It is widely used for testing JSON and XML-based
web applications. Also, it fully supports all methods including GET, PUT, POST, PATCH, DELETE.

37

6. CONCLUSIONS & FUTURE WORK

This chapter concludes the thesis, outlines the summary of the work that has been done, and

discusses future work.

6.1. Conclusion

In the course of writing the thesis, not only new technologies and tools were studied, and the
subtleties of non-functional testing were analysed, but also a significant part of work was done
on the testing process on the whole. I have observed and studied software testing from inside
the company in such departments as the hardware department, the electronics department, the
mobile application department, the end-to-end department. Although all the teams mentioned
above have completely different approaches, methods, and technologies, they are united by one
idea, namely providing the end consumer with a high-quality product. After all, the question of
software quality is not only a matter of comfort and entertainment but also of overall quality of
life, especially for healthcare companies, for instance, OURA Health.

This thesis can be divided into two main parts: theoretical and practical.

In the theoretical part, non-functional testing was investigated, and the currently existing
approaches, tools of performance testing, and the effectiveness of their implementation were
studied using the example of the OURA product. In order to achieve this goal, the following
tasks were undertaken:

- theoretical foundations of testing in general and NFT in particular;
- the classification and description of various types and levels of performance testing;
- the analysis of tools for performance testing;
- the identification and description of criteria for designing a viable solution.

In the practical part of the work within the OURA product, the tests were implemented using
the open-source Apache JMeter performance testing tool. The process in generating
performance testing consists of selecting a test stack and designing specific test scenarios.
There is a huge number of different components of the OURA system, that requires
performance testing, but my focus was on the open API of the product that enables third-party
apps (for instance “Strava” [26] - a service for tracking physical exercise) to get data from of
OURA’s users. The designed scenarios cover the most common API calls and successfully run
against SUT.

Despite the fact, that no obvious vulnerabilities were identified at the testing implementation
stage, observation of the high load on the system and analysis results will help improve
robustness of the whole system.

In order to implement a useful performance testing process, it is necessary to have theoretical
knowledge in this area, to distinguish between types of NFTs, levels, and their main goals, and
to understand how the correct test script should be written. This work is relevant for companies
aimed at developing the testing department with an emphasis on performance testing and
improving the quality of their products since the thesis covers the necessary theoretical
foundations, analyses the most popular tools, and criteria for the effectiveness of their use on a
specific example.

38

6.2. Future work

This research can be extended with a more exhaustive comparative analysis of various software
testing tools by means of considering more evaluation parameters, which would provide more
realistic results and many more choices.

Moreover, future work will also implement continuous integration (CI) practice that allows all
members of the team (developers, testers) to work on the same project more efficiently.

In the past, engineers could work in isolation for long periods of time and only merge their
changes back into the master branch after having completed their work. This made it difficult
and time-consuming to merge code changes and also led to the accumulation of a large number
of bugs which in turn add complexity to delivering updates to customers. Nowadays, regular
code merges by developer team into a central repository are followed by automated builds with
tests, as well as performance tests, which can shorten the time it takes to test and release new
software features and enhance software quality by making it easier to detect and fix errors.

Besides, the more complex and useful graph results can be retrieved, the more beneficial
information you can provide to the project. For instance, JMeter could be integrated with other
modern monitoring systems, such as Datadog (monitoring service for cloud applications) [27].

The methods proposed in this thesis covered the gap for open API Oura Ring. Future work will
investigate whether they will scale for other parts of the product as well.

39

7. REFERENCES

1. Tozzi Ch.(2016), Quality Assurance and Software Testing: A Brief History. URL:
https://saucelabs.com/resources/blog/quality-assurance-and-software-testing-a-brief-
history. Accessed 1 5.04.2023.

2. Mistrik I., Soley R., Ali N., Grundy J., Tekinerdogan B. (2016) Software Quality
Assurance In Large Scale and Complex Software-Intensive Systems. Waltham. Morgan
Kaufmann, Elsevier.

3. ASTQB - American Software Testing Qualifications Board. URL:
https://astqb.org/what-is-software-testing/. Accessed 22.11.2022.

4. Siadati R., Wernick P., Veneziano V. (2019) International Requirements Engineering.
"Learning from history: The case of Software Requirements Engineering –
Requirements Engineering Magazine".

5. Dubey G., Tuteja M. (2012) A Research Study on importance of Testing and Quality
Assurance in Software Development Life Cycle (SDLC) Models, International Journal
of Soft Computing and Engineering (IJSCE) ISSN: 2231-2307, vol. 2, no. 3.

6. ISO/IEC 9126-1:2001. URL: https://www.iso.org/standard/22749.html. Accessed
22.11.2022.

7. Hossain, M. S. (2012). Performance evaluation web testing for e-commerce websites.
Paper presented at the 2012 International Conference on Informatics, Electronics, and
Vision, ICIEV 2012, 842-846.doi:10.1109/ICIEV.2012.6317531

8. Jamie L, Mitchell, Black R.(2015) Advanced Software Testing - vol. 3, 2nd Edition.

9. Definition of performance testing, Standard Glossary of Terms Used in Software
Testing, ISTQB - International Software Testing Qualifications Board. URL:
https://glossary.istqb.org/en/search/performance%20testing. Accessed 22.11.2022.

10. Garousi V., Felderer M., Mäntylä M.V. (2016) The need for multivocal literature
reviews in software engineering: complementing systematic literature reviews with
grey literature.

11. Colantonio J (2022) 15 Top Load Testing Software / Tools for 2023 (Open Source
Guide), URL: https://testguild.com/load-testing-tools/. Accessed 25.02.2023.

12. Sushma S. and Shahid A. (2020) Preperformance Testing of a Website.
DOI:10.5121/csit.2020.100703

13. OURA website: https://ouraring.com/

14. Micro Focus Solution, URL: https://www.microfocus.com/en-us/home. Accessed
25.02.2023.

15. David M, (2023), LoadRunner. URL: https://en.wikipedia.org/wiki/LoadRunner.
Accessed 25.03.2023.

16. (2017) Soirée de présentation Gatling FrontLine, Gatling Paris User Group (in
French). Meetup.

17. Anonymous (2022), Gatling (software). URL:
https://en.wikipedia.org/wiki?curid=39083978. Accessed 25.03.2023.

https://saucelabs.com/resources/blog/quality-assurance-and-software-testing-a-brief-history
https://saucelabs.com/resources/blog/quality-assurance-and-software-testing-a-brief-history
https://astqb.org/what-is-software-testing/
https://www.iso.org/standard/22749.html
https://glossary.istqb.org/en/search/performance%20testing
https://testguild.com/load-testing-tools/
https://ouraring.com/
https://www.microfocus.com/en-us/home
https://www.microfocus.com/en-us/home
https://en.wikipedia.org/wiki/LoadRunner
https://en.wikipedia.org/wiki?curid=39083978

40

18. BlazeMeter Support (2023), Creating a Taurus Test. URL:
https://guide.blazemeter.com/hc/en-us/articles/13261981701265. Accessed 1.05.2023.

19. K6 documentation. URL: https://k6.io/docs/. Accessed 25.03.2023.

20. Anonymous (2022) Сравнение производительности инструментов нагрузочного
тестирования. Performance Comparison of Load Testing Tools (in Russian). URL:
https://habr.com/ru/post/649295/. Accessed 15.03.2023.

21. Anonymous (2022), Oura Health, URL: https://fi.wikipedia.org/wiki/Oura_Health.
Accessed 15.02.2023.

22. ÔURA Health (2017) ÔURA shrunk the ring - The developer of the well-being ring
released a new generation device at Slush.

23. Teknologia (2021) Oura released the third version of its smart ring. Monthly fee, more
sensors, and heart rate measurement also during the day.

24. Victoria Song (2022) Blood oxygen sensing is finally Rolling out on the Oura Ring
The Verge.

25. Oura API Documentation (2.0), URL: https://cloud.ouraring.com/v2/docs. Accessed
15.01.2023.

26. Strava | Running, Cycling & Hiking App - Train, Track & Share. URL:
https://www.strava.com/. Accessed 15.04.2023.

27. Datadog: Cloud Monitoring as a Service, URL: https://www.datadoghq.com/.
Accessed 1.04.2023.

28. OURA Team (2022), New to Oura: Blood Oxygen Sensing (SpO2), URL:
https://ouraring.com/blog/blood-oxygen-sensing-spo2/. Accessed 1.04.2023.

29. Haleby J., RESR-Assured. URL: https://rest-assured.io/. Accessed 20.04.2023.

30. Anonymous (2022), Why should we use JMeter for. URL:
http://www.naveenautomationlabs.com/2018/03/why-should-we-use-jmeter-for.html.
Accessed 15.05.2023.

https://guide.blazemeter.com/hc/en-us/articles/13261981701265
https://k6.io/docs/
https://habr.com/ru/post/649295/
https://fi.wikipedia.org/wiki/Oura_Health
https://cloud.ouraring.com/v2/docs
https://www.strava.com/
https://www.datadoghq.com/
https://ouraring.com/blog/blood-oxygen-sensing-spo2/
https://rest-assured.io/
http://www.naveenautomationlabs.com/2018/03/why-should-we-use-jmeter-for.html

41

Appendix 1. First appendix

Daily Activity Routes, response example

{
 "id": "string",
 "class_5_min": "string",
 "score": 0,
 "active_calories": 0,
 "average_met_minutes": 0,
 "contributors": {
 "meet_daily_targets": 0,
 "move_every_hour": 0,
 "recovery_time": 0,
 "stay_active": 0,
 "training_frequency": 0,
 "training_volume": 0
 },
 "equivalent_walking_distance": 0,
 "high_activity_met_minutes": 0,
 "high_activity_time": 0,
 "inactivity_alerts": 0,
 "low_activity_met_minutes": 0,
 "low_activity_time": 0,
 "medium_activity_met_minutes": 0,
 "medium_activity_time": 0,
 "met": {
 "interval": 0,
 "items": [
 0
],
 "timestamp": "2019-08-24T14:15:22Z"
 },
 "meters_to_target": 0,
 "non_wear_time": 0,
 "resting_time": 0,
 "sedentary_met_minutes": 0,
 "sedentary_time": 0,
 "steps": 0,
 "target_calories": 0,
 "target_meters": 0,
 "total_calories": 0,
 "day": "2019-08-24",
 "timestamp": "2019-08-24T14:15:22Z"
}

Daily Readiness Routes, response example

 {
"data": [
{
"id": "string",
"contributors": {
"activity_balance": "Contribution of cumulative activity balance in range [1, 100].",
"body_temperature": "Contribution of body temperature in range [1, 100].",
"hrv_balance": "Contribution of heart rate variability balance in range [1, 100].",
"previous_day_activity": "Contribution of previous day's activity in range [1, 100].",
"previous_night": "Contribution of previous night's sleep in range [1, 100].",
"recovery_index": "Contribution of recovery index in range [1, 100].",
"resting_heart_rate": "Contribution of resting heart rate in range [1, 100].",
"sleep_balance": "Contribution of sleep balance in range [1, 100]."
},
"day": "2019-08-24",
"score": 0,

42

"temperature_deviation": 0,
"temperature_trend_deviation": 0,
"timestamp": "2019-08-24T14:15:22Z"
}
],
"next_token": "string"

 }

