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Abstract 

Sustainability and green values are major themes in the world today. Companies across 

all fields are constantly implementing new technologies to reduce emissions and to limit 

the magnitude of global warming. The steel industry in general is one of the major 

producers of carbon dioxide emissions. 

The objective of this thesis was to develop a system to measure the volume of scrap metal 

being charged to an electric arc furnace. Obtaining the scrap volume would help the 

furnace operators in timing the charging of scrap baskets, thus avoiding the adverse 

effects resulting from early and late charging. The intention is to increase the energy 

efficiency of the process. 

The theory section of the thesis provides a short overview of the electric arc furnace 

process and a more detailed description of the charging process. Depth imaging 

technologies are then explored from a theoretical standpoint to provide the background 

for the selection and usage of imaging hardware. 

In this thesis, design science research methodology was utilized to develop the scrap 

volume measurement system, which consists of imaging hardware and developed 

software. The actual contribution of this thesis is the algorithm to extract the height of the 

scrap surface level from a 3-dimensional image of scrap baskets. The development 

process was iteratively carried out in a steel factory. 

The system performance was evaluated in a real-world scenario. It was established that 

the system was able to capture 3-dimensional data from scrap baskets and determine the 

scrap surface level height according to the algorithm. However, for some cases the image 

capturing did not perform as expected. These failure cases were a result of either steel 

dust obstructing the scene or the inability of the camera to capture data from unreflective 

material. 

Further research prospects were identified during conducting of the thesis. The failure 

cases could be addressed either programmatically, with new hardware technology, or a 

combination of both. Also, research could be conducted on the usage of the information 

provided by the system in actual charging events with the goal of optimizing charging 

timing. 
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Abbreviations 

API   Application Programming Interface 

CW   Continuous Wave 

DSR   Design Science Research 

EAF   Electric Arc Furnace 

FPFH   Fast Point Feature Histograms 

GenICam  General Interface for Cameras 

GigE   Gigabit Ethernet 

HDR   High Dynamic Range 

ICP   Iterative Closest Point 

IOT  Internet Of Things 

K-NN   K-Nearest Neighbours 

LIDAR   Light Imaging Detection And Ranging 

RMSE  Root-mean-square error 

TOF   Time Of Flight 

UDP   User Datagram Protocol 

XML   Extensible Markup Language 



5 

Contents 

Abstract ............................................................................................................................. 2 

Foreword ........................................................................................................................... 3 
Abbreviations .................................................................................................................... 4 
Contents ............................................................................................................................ 5 
1. Introduction .................................................................................................................. 6 
2. Background .................................................................................................................. 8 

2.1 Electric Arc Furnace Process ............................................................................... 8 
2.1.1 Charging Event ......................................................................................... 9 

2.2 Depth Imaging Technologies ............................................................................. 10 
2.2.1 Time-of-flight depth imaging ................................................................. 11 

2.2.2 Depth Camera Outputs ........................................................................... 12 
2.2.3 Depth Image Quality Considerations ..................................................... 12 
2.2.4 Point Cloud Filtering .............................................................................. 15 
2.2.5 Point Cloud Pairwise Registration .......................................................... 15 

2.3 Depth Imaging Applications in Steel Industry .................................................. 16 
3. Research Method ........................................................................................................ 18 

3.1 Design Science Research Methodology ............................................................ 18 

3.1.1 Problem Definition and Motivation ........................................................ 19 
3.1.2 Objectives of the Solution ...................................................................... 19 
3.1.3 Artifact Design and Development .......................................................... 20 

3.1.4 Applicability Demonstration .................................................................. 20 
3.1.5 Performance Evaluation ......................................................................... 20 

3.1.6 Research Communication ....................................................................... 20 
3.2 Methodology Implementation ............................................................................ 20 

4. Artifact Design ........................................................................................................... 23 
4.1 Imaging Environment ........................................................................................ 23 

4.2 Hardware ............................................................................................................ 24 
4.2.1 Image Quality Features ........................................................................... 25 
4.2.2 Other Features ........................................................................................ 26 

4.3 Software ............................................................................................................. 26 

4.4 Scrap Volume Algorithm ................................................................................... 27 
5. Artifact Development ................................................................................................. 29 

5.1 Hardware Installation ......................................................................................... 29 
5.2 Image Capture Software Development .............................................................. 31 
5.3 Algorithm Implementation ................................................................................ 31 

6. Evaluation ................................................................................................................... 35 
7. Discussion .................................................................................................................. 40 

8. Conclusion .................................................................................................................. 42 
References ....................................................................................................................... 43 
Appendix A ..................................................................................................................... 46 
Appendix B ..................................................................................................................... 47 
 



6 

1. Introduction 

Sustainability is a major topic of discussion in the world. To limit global warming, carbon 

dioxide emissions must be reduced. The challenge is great, and effects virtually every 

working sector. 

Steel industry is a major producer of CO2 emissions. According to the World Steel 

Association (2022), in 2021 1951 million tonnes of steel was produced in the world. Steel 

production has more than doubled in 20 years: in 2001 852 tonnes of crude steel was 

produced in the world. Each tonne of cast steel resulted in 1.89 tonnes of CO2 emissions 

on average in 2020 (World Steel Association, 2021b). The steel industry was responsible 

for between 7 and 9 percent of global CO2 emissions in 2020 (World Steel Association, 

2021a). It has been estimated that in 2050 world steel production will grow to between 

2500 Mt and 3000 Mt per year (Holappa, 2020). 

Steel production can be roughly divided to ore-based and scrap-based production. Ore-

based production is extremely energy demanding method and uses fossil fuels as the 

primary energy source. Scrap-based production is based on recycling steel and electric 

energy is used to melt the scrap metal. In 2021, 28.9 percent of steel was produced via 

the electric route (World Steel Association, 2022). Improving the energy efficiency of 

steelmaking reduces CO2 emissions, thus contributing to limiting global warming. 

With the introduction of numerous technological innovations, the manufacturing industry 

has seen major changes in the last decades. The cheap costs and miniaturization of smart 

sensors and other Internet of Things (IoT) devices accompanied by easy availability of 

high computing power has revolutionized production. This revolution is called the 

“Industry 4.0”. The idea of Industry 4.0 is to integrate smart devices and other information 

and communication technologies (ICT) with conventional industries. Many such 

applications aim at improving the process by improving productivity and/or energy 

efficiency. (Cohen, Faccio, Pilati & Yao, 2019) 

The development and use of depth imaging cameras has shifted from mainly research 

laboratories to commercially available products. The capability of cameras ranges from 

microns to a few kilometres (Sansoni, Trebeschi & Docchio, 2009). Combined with a 

decreasing cost and increased robustness, applying depth imaging sensors for industry 

and other applications has become reasonable. The applications range from surface 

quality control and micro profiling in the manufacturing industry to providing machine 

vision systems for robot applications (Sansoni et al., 2009). In the steel industry, 

automatic vision-based systems have been used for quality control. Recently, 3D 

measurements applications have become available to complement the traditional 2D 

imaging-based systems (Hao, Lu, Cheng, Li & Huang, 2021). 

The objective of this thesis is to measure the volume of scrap metal being charged to an 

electric arc furnace (EAF). Obtaining the scrap volume enables the furnace operators to 

more accurately time the charging of the basket. The intention is to charge the basket as 

soon as possible to increase the energy efficiency of the process. 3-dimensional (3D) 

camera hardware will be used to capture a depth image of scrap baskets. A procedure will 

be formulated to obtain the scrap volume inside the basket by using the depth information 

provided by the camera. 

The thesis is produced in cooperation with Luxmet Oy. Luxmet specializes in optical 

emission spectroscopy to measure online light intensity data from inside the furnace. The 
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scrap volume information is planned to be further used along with the Luxmet ArcSpec 

system to accurately time the scrap baskets to the furnace. 

The thesis first describes the relevant background and theoretical basis for the relevant 

technologies: EAFs and depth imaging. The research method and implementation plan 

are then defined. The next two chapters cover the artifact design and development, which 

constitutes the practical part of the thesis. Next, the artifact performance is evaluated. The 

thesis results and implications are considered in the discussion chapter, followed finally 

by the conclusion. 
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2. Background 

The objective of this thesis is to develop a system for measuring the volume of scrap 

charge in the context of electric arc furnace steelmaking. 3D imaging hardware will be 

employed as measurement technology. Thus, relevant background information on electric 

arc furnaces and 3D imaging must be established. In this chapter, the relevant concepts, 

techniques, and technologies are explained to allow the reader to understand the rest of 

the thesis. First, a short summary of the EAF process is presented, along with a more 

detailed overview of the charging event and the influence it has on the rest of the process. 

Next, an overview of the different depth imaging technologies is studied. Furthermore, 

time-of-flight (TOF) depth imaging is investigated in detail, along with the advantages 

and challenges associated with TOF imaging. Next, the types of data provided by depth 

cameras are shortly described. Finally, an overview of the relevant image processing 

methods is given. 

2.1 Electric Arc Furnace Process 

Electric arc furnaces are utilized in the steel industry to recycle scrap metal. An EAF is 

essentially a large metal structure in the shape of a cauldron, into which steel scrap is 

charged. Large graphite electrodes are then used to introduce electric energy into the 

scrap, forming an electric arc between the electrodes and the scrap. 

The EAF process is generally operated as a batch process. A single EAF steel batch is 

called a heat. The EAF operating cycle is called a tap-to-tap cycle, which consists of the 

following operations: charging of the scrap metal, melting, refining, de-slagging, tapping, 

and turnaround. (Jones, Bowman & Lefrank, 1998) 

The raw material for the EAF process is steel scrap. The scrap is stored in the scrap yard, 

where it is loaded into scrap baskets. There are numerous types of scrap in the scrap yard, 

depending on the rough chemical composition and the size of the scrap pieces. 

Oftentimes, the scrap contains contaminants, such as oil and dirt, which are undesirable 

in the process. The basket is loaded in a predetermined way to allow for fast melting and 

to achieve the desired chemical composition of the steel product. After loading, the scrap 

basket is transported to the EAF proximity on rails. The furnace roof and electrodes are 

moved out of the way and the basket is lifted on top of the furnace using a crane. Finally, 

the bottom of the basket is opened, allowing the scrap to fall into the furnace. (Jones et 

al. 1998) 

After the emptied scrap basket is moved out of the way, the furnace roof and electrodes 

are moved back on top of the furnace. The melting stage is now ready to begin. The roof 

lowers to shut the furnace and the electrodes are lowered into the furnace through holes 

in the roof. As the electrodes contact the scrap, an electric circuit is formed, and electric 

arcs form between the electrodes and the scrap. This is the primary method of supplying 

energy into the scrap to melt it. Additionally, furnaces may employ burners or other 

devices to introduce chemical energy into the scrap by burning a mixture of natural gas 

and oxygen. Burners are commonly situated in the cold spots of the furnace, which are 

the areas located furthest away from the electrodes. If the heat consists of multiple scrap 

baskets, melting continues until the subsequent scrap charge fits into the furnace and the 

charging stage is repeated. After the final scrap charge is melted and flat bath conditions 

are reached, the melting stage is over, and refining may begin. (Jones et al. 1998) 
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The purpose of the refining stage is to achieve the desired chemical composition of the 

steel. Generally, this involves the removal of chemical components from the molten 

metal. The method of removing undesired components is allowing them to react with 

oxygen to form compounds which rise on top of the molten steel to form a layer called 

slag. The required oxygen is introduced into the furnace by blowing either through the 

furnace sidewall or from the bottom of the furnace. (Jones et al. 1998) 

When the desired chemical composition and temperature of the molten steel is reached, 

the steel is recovered from the furnace. Before tapping, the slag layer from the top of the 

melt is removed. The slag is removed from the furnace by pouring it out through the slag 

door. Finally, the tapping stage may begin. The taphole is opened, and the molten steel is 

poured through it to a ladle by tilting the furnace. The ladle is a metal structure in the 

shape of a bucket that is used to transfer the molten steel. After the steel is recovered from 

the furnace, the turnaround operation may begin. In the turnaround stage, the furnace is 

prepared for the next batch of scrap to be melted. An inspection of the furnace insides is 

also carried out. (Jones et al. 1998) 

The EAF is such a violent process that it is extremely difficult to obtain online data from 

inside the furnace. Therefore, the melting status of the scrap is instead inferred from 

measured process values that are related to melting. The melting process is inferred from, 

for example, the amount of electric energy and chemical energy introduced to the process 

during the melting process. This method of control is called static because it does not 

consider the dynamics of the process. Several characteristics of the EAF process introduce 

dynamic behaviour into the process, for example:  

• the quality and composition of the steel scrap, 

• how the scrap settles in the furnace, 

• chemical reactions in the furnace, and 

• slag formation. 

2.1.1 Charging Event 

Steel scrap is charged into an EAF using large metal baskets. The volume of the charged 

scrap is generally not known in advance to the furnace operators. It is a common practice 

that multiple scrap baskets are charged to the furnace during a single heat. The basket or 

baskets following the first basket should be charged as early as possible to maximize 

energy efficiency. The following presents three possible charging events, of which 

precisely one is desirable: 

1. The scrap is charged too soon to the furnace, leading to an overcharge event. 

2. The scrap is charged too late to the furnace, leading to lower energy efficiency. 

3. The scrap is charged at the earliest moment when the new scrap fits to the furnace. 

The overcharge event is undesirable, because it means that not all of the scrap was able 

to fit into the furnace. Therefore, the roof may not be able to close and the melting stage 

cannot begin. A practical solution is to use the charging basket to hammer the scrap until 

the roof may be lowered to its position. 

Charging too late on the other hand means that the scrap will fit into the furnace with no 

problems. However, this event is also undesirable, as it leads to decreased energy 

efficiency, as well as reduced productivity. This is because as the melting stage 

progresses, the electric power supplied must be gradually decreased as the scrap melts to 

avoid damage to the furnace structure. In the early parts of melting, the electrodes bore 
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down into the scrap and the scrap shields the furnace walls from the intense radiation 

from the electric arcs. The efficiency of heat transfer decreases as a consequence of the 

scrap melting, as some of the heat is lost to the furnace walls and roof. Therefore, it is 

important to charge subsequent scrap baskets to the furnace at the earliest moment when 

there is enough room in the furnace. 

2.2 Depth Imaging Technologies 

According to Besl (1988), a range image is “a large collection of distance measurements 

from a known reference coordinate system to surface points on object(s) in a scene”. 

Similarly, Hansard, Lee, Choi and Horaud (2013) note that depth images consist of pixels 

that contain the distance to the matching spot in the scene. Besl (1988) also defined range-

imaging sensors as “any combination of hardware and software capable of producing a 

range image of a real-world scene”. 

Depth imaging is a wide topic where the researchers seem to use competing terminology 

when reporting their findings. For example, range finding (Jarvis, 1983), range imaging 

(Besl, 1988), three-dimensional shape measurement (Chen, Brown & Song, 2000), 3-D 

laser imaging (Blais, 2004) and 3D imaging (Sansoni et al., 2009) are some expressions 

that have been used by authors of notable surveys and reviews conducted on capturing 

range/depth information using optical sensors. Recently researchers seem to have shifted 

towards using terms such as “depth” and “depth imaging” (Hansard et al., 2013; Horaud, 

Hansard, Evangelidis & Ménier, 2016; Zanuttigh et al., 2016). This thesis will utilize the 

“depth” based terminology consistent with recent works. Moreover, there seems to be no 

general consensus on how specific depth imaging techniques and technologies are 

classified. This thesis follows the categorization of Sansoni et al. (2009) to aid in 

providing a concise overview of depth imaging technologies. 

Sansoni et al. (2009) mention that there are a great number of varying optical techniques 

for depth imaging, and their classification is not straightforward. Nevertheless, the 

authors recognize that the techniques may be categorized into active and passive 

techniques. Active methods project electromagnetic energy onto an object, after which 

the reflected energy is received. Passive methods rely on recording electromagnetic 

energy from the object without actively projecting anything onto it. The authors also 

recognized the distinction between direct and indirect techniques. Direct techniques 

produce explicit range data, whereas indirect techniques produce data from which 

distance measurements may be inferred when combined with other information. Jarvis 

(1983) used similar terminology to categorize depth imaging techniques. 

Besl (1988) noted four basic types of range sensors distinguished by their viewing 

constraints: point sensor, line or circle sensor, field of view sensor, and multiple view 

sensor system. A point sensor measures distance to a single point and to create a depth 

image either the measuring device, the measured object or both must be moved between 

subsequent measurements. Line sensors can measure multiple points at the same time 

along a line. Again, either the sensor or the object must be moved to create a full depth 

image. Field of view sensors can measure distances to each point in view of the sensor at 

once and thus does not require movement of the sensor or target to create a depth image. 

Multiple view sensor system consists of multiple sensors in cases where not all surface 

points or areas of interest can be made visible from a single viewpoint. (Besl 1988) 
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2.2.1 Time-of-flight depth imaging 

Time-of-flight (TOF) depth imaging is an active technique for acquiring direct range data. 

This approach is based on the time interval a light pulse takes to travel from the camera 

to the target object and back (Jarvis 1983). The camera emits a pulse of light of a specific 

wavelength, some of which is reflected from the target object upon reaching it (Sansoni 

et al., 2009). The reflected pulse is received by a sensor in the camera, and the intensity 

and travel time of the signal is recorded (Sansoni et al., 2009). The simple equation for 

calculating distance is: (Besl 1988) 

vτ = 2r = round-trip distance,  (1) 

where v is the speed at which the signal travels, τ is the time interval between emitting 

and receiving the signal, and r is the distance to the target. 

In a more recent review of specifically TOF technologies Horaud, Hansard, Evangelidis 

and Ménier (2016) use the term LIDAR (which stands for either “Light Imaging Detection 

And Ranging” or “LIght and raDAR”) in parallel with TOF. They further detail that there 

are two different principles utilized for TOF: pulsed-light cameras (explained above) and 

continuous-wave (CW) modulated-light cameras. Pulsed-light cameras are further 

divided into scanning and scannerless types. Scanning cameras illuminate a single point 

or line at a time and thus must be equipped with functionality to rotate or otherwise adjust 

the angle of the emitted light to obtain the complete depth image. Scannerless cameras 

illuminate the entire scene at once and thus obtain the complete depth image at once. 

Continuous-wave modulation cameras determine distance indirectly by measuring the 

phase difference between the emitted and reflected signals, which is directly associated 

with distance. (Horaud et al., 2016) 

 

Figure 1. Operation of a continuous-wave modulated-light camera (Adapted from Hansard et al., 
2013). 

Figure 1 illustrates the operating principle of CW modulated-light cameras. The distance 

values can be calculated from (Hansard et al. 2013): 

d = 
c

2f

td

2π
   (2) 

where d is the distance to point in the scene, c is the speed of light, f is the frequency of 

the emitted signal and td is the measured phase difference. 
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2.2.2 Depth Camera Outputs 

Depth imaging cameras produce multiple types of data. The most important construction 

is the point cloud, which is an unorganized set of (x, y, z) coordinate points that represent 

the target scene. Another common production is the amplitude image, which is associated 

with the amount of detected light signal per pixel (Lefloch et al, 2013). Lefloch et al. 

(2013) explain that the amplitude image may be used as a quality or reliability metric. 

Some cameras may also produce a confidence image as well as a grayscale 2D depth 

image. 

 
(a) Amplitude image 

 
(b) Confidence image 

 
(c) Depth image 

 
(d) Point cloud 

Figure 2. Example of depth camera outputs with 250ms exposure time. 

Figure 2 presents example outputs from a TOF depth camera. The amplitude image (a) 

shows the intensity of the reflected light pulses. The second image (b) is the confidence 

image, which visualizes the reliability of captured depth data per pixel. A dark pixel 

corresponds to low confidence and a bright pixel corresponds to high confidence. The 

depth image (c) contains the captured raw depth data. The example image is in gray scale, 

with a darker pixel corresponding to a shorter distance and a brighter pixel to a farther 

distance. The final image (d) is the point cloud of the scene. 

2.2.3 Depth Image Quality Considerations 

Zanuttigh et al. (2016) provide a detailed analysis of possible issues with specifically TOF 

depth imaging. The first addressed issue, phase wrapping is an intrinsic issue of CW 

modulation cameras, as the wavelength of the signal directly limits the measurable 

distance. Another issue related to the sinusoidal nature of the signal used in modulation 
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cameras is harmonic distortion, meaning that it is difficult to create perfectly sinusoidal 

signals without distortion. Furthermore, recording the reflected signal has a similar issue, 

as the received signal is sampled in finite time intervals. This results in harmonic 

distortion and consequently in a predictable offset in measured distance. Lookup table 

correction is used to compensate for this offset. The next issue, photon-shot noise, is 

related to the dark electron current, which causes a disturbance in the receiver. (Zanuttigh 

et al., 2016) 

 
(a) Amplitude image 

 
(b) Confidence image 

 
(c) Depth image 

 
(d) Point cloud 

Figure 3. Example images captured using a TOF depth camera with 1000ms exposure time and 
saturated areas circled in red. 

Averaging measurements over time is effective in reducing noise from the measurement. 

However, averaging presents the issues of saturation and motion blur. Saturation happens 

when the number of photons received exceeds the amount the receiver can handle. 

Saturation is more common when there is a source or reflection of uncontrolled IR 

radiation present in the scene or if there are highly reflective surfaces in the scene. Figure 

3 presents example images of a scene where saturation was experienced. The image was 

captured using a TOF depth camera. The very brightest spots in the amplitude image (a) 

are black in the confidence image (b) and depth image (c). The corresponding pixels in 

the point cloud (d) are white, indicating no measurement. The saturated areas are circled 

in red for illustration purposes. 

Motion blur occurs when objects in the scene move during the averaging period. The 

effect is comparable to that of normal cameras. The averaging (or integration) time may 

be adjusted to compensate for these. It should be noted that tuning the averaging time is 

a compromise between allowing for noise in the measurement and mitigating saturation 

and motion blur. (Zanuttigh et al., 2016) 
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(a) Amplitude image 

 
(a) Point cloud (front view) 

 
(a) Point cloud (right side view) 

 
(a) Point cloud (top view) 

Figure 4. Example depth camera outputs with a reflective scene. 

Ideally, projected light is reflected back from the target in a single beam. However, in 

reality this is not the case due to scattering of the light when hitting the target. Some of 

the scattered light may be observed by the sensor after multiple reflections, resulting in 

what is referred to as multipath error. Most of the time the magnitude of the primary 

reflection outweighs the energy compared to the secondary reflections. Figure 4 presents 

a scene with reflective surfaces. Notice that the corner (circled in black) does not appear 

sharp in the point clouds but appears rounded. This rounding is the result of a multipath 

error due to the emitted light reflecting multiple times between surfaces. 

 

Figure 5. Example of depth camera outputs with flying pixels present. Left image shows the 
amplitude image, and the right image is the point cloud (left side view). The areas circled in black 
point to corresponding areas between the images. 
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Another problem similar to multipath error is the problem of flying pixels, which is a 

result of the pixel size in the sensor. Each pixel corresponds to a small region in the target 

scene. If there are sharp changes of depth in the region the distance may be incorrectly 

estimated because the combination of the signals is inconsistent. Figure 5 illustrates 

example depth camera outputs containing flying pixels. Note the areas circled in black in 

the amplitude image: these are areas with sudden changes in depth. Flying pixels appear 

in the corresponding areas in the point cloud. This effect could be mitigated by calculating 

a confidence value for pixels based on the intensity and amplitude of the observed signal. 

(Zanuttigh et al., 2016) 

2.2.4 Point Cloud Filtering 

In the context of outlier identification, multiple studies (Knorr & Ng, 1998; Breunig, 

Kriegel, Ng & Sander, 2000; Sugiyama & Borgwardt, 2013) cite the outlier definition by 

Hawkins (1980): “An outlier is an observation that deviates so much from other 

observations as to arouse suspicion that it was generated by a different mechanism.” As 

explained above, time-of-flight cameras suffer from several intrinsic and extrinsic error 

sources. The erroneous measurements arising from error sources related to the scene and 

the environment may be identified as outliers as per the above definition by Hawkins. 

The objective of depth image filtering is to remove outliers, such as erroneous 

measurements (Axelsson, 1999). Further processing of point clouds necessitates the 

filtering of these outliers (Han et al., 2017). 

Nurunnabi, West and Belton (2015) point out that detecting outliers in point cloud data is 

difficult because of the disorganized, noisy, and ambiguous nature of the data. According 

to Han et al. (2017) methods for filtering point clouds may be categorized into seven 

groups: statistical-based filtering, neighbourhood-based filtering, projection-based 

filtering, signal processing-based filtering, PDEs-based filtering, hybrid filtering, and 

other methods. They further provide a review on algorithms for each category. 

Rusu, Marton, Blodow, Dolha & Beetz (2008b) employed a simple outlier removal 

method with good results. The method first calculates the k-nearest neighbours (K-NN) 

distances for all measurement points. Subsequently, the mean and standard deviation of 

the calculated distances are determined. Finally, points that have a K-NN distance outside 

the following range are removed (Rusu et al, 2008b): 

μ ± α ∙ σ, (3) 

where µ is the mean and σ is the standard deviation of the K-NN distances, and α is a 

scalar that signifies the magnitude of filtering (greater number results in fewer points 

removed). The authors used values α = 1, and k = 30 (for the K-NN algorithm). The value 

of α indicates how much the K-NN value of a point may differ from the mean before it is 

considered an outlier. If the distances were normally distributed, an α value of 1 would 

filter out about 32% of the points. However, Rusu et al. (2008b) report that roughly 1% 

of the points were filtered using the stated values. (Rusu et al., 2008b) 

2.2.5 Point Cloud Pairwise Registration 

Registration of point clouds refers to the process of aligning two or more point clouds 

with each other (Rusu, Blodow & Beetz, 2009). The objective of registration is to find 

the transformation operations that when applied to a source point cloud, overlaps it with 
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a target point cloud (Chen & Medioni, 1991). The problem of finding such a 

transformation is called the correspondence problem, in other words which points in the 

source point cloud correspond with which points in the target point cloud (Chen & 

Medioni, 1991). The problem manifests itself in numerous ways: building a digital model 

from a physical object (Chen & Medioni, 1991), measuring the similarity of a physical 

object and a model of said object (Besl & McKay, 1992), and obtaining 3D object maps 

of rooms (Rusu et al, 2008b) to name a few. Point cloud registration is commonly 

performed in two steps: a rough alignment, followed by a more refined alignment 

(Zanuttigh et al., 2016). 

The objective of the rough registration is to find an initial transformation as an input to 

the fine registration (Rusu, Blodow, Marton & Beetz, 2008a). In their paper on efficient 

variants of the IPC algorithm, Rusinkiewicz & Levoy (2001) mention some methods for 

finding a rough alignment, among them surface feature identification and indexing, and 

manual transformation. Clearly manual finding of a rough transformation is out of the 

question for any actual application of point cloud registration. Rusu et al. (2008a) 

presented a method for calculating explanatory feature values, such as whether the point 

belong on a plane or some other geometric shape, for point cloud data. The authors called 

their construction “persistent point feature histograms”. They demonstrated that when 

combined with an alignment algorithm based on geometric features, the method proved 

superior to other methods. Later, Rusu et al. (2009) improved on the work by Rusu et al. 

(2008a) into a more optimized version called “fast point feature histograms” (FPFH). 

Zhou, Park & Koltun (2016) presented an algorithm for “fast global registration” to 

compute very quickly an excellent initial transformation. As the feature set in the 

algorithm, they used the FPFH presented by Rusu et al. (2009). 

Fine registration uses the initial transformation as a starting point to find a transformation 

that aligns the point clouds tightly. The algorithm used for this step is usually some variant 

of the iterative closest point (ICP) algorithm (Zanuttigh et al., 2016). ICP algorithms 

necessarily converge to a local minimum (Chen & Medioni, 1991; Besl & McKay, 1992). 

In their paper introducing the ICP algorithm, Chen & Medioni (1991) explain that the 

algorithm does not necessarily ensure that the global minimum is found due its iterative 

nature. The authors therefore argue that a good initial guess is vital. The rough registration 

explained above is precisely the solution for obtaining such a guess. Rusinkiwicz & 

Levoy (2001) reviewed and evaluated some ICP algorithms, while also presenting an 

optimized ICP algorithm. 

2.3 Depth Imaging Applications in Steel Industry 

Depth imaging has been utilized in the steel industry mainly as a means for online quality 

control of steel products. Traditionally, surface quality inspection of steel products are 

laborious tasks. Such methods include cutting a sample of the product to be inspected by 

an expert or stationing process operators on the product line to inspect the product for any 

defects (Neogi, Mohanta & Dutta, 2014). Automated vision-based systems have been 

applied in steel surface defect inspection as a more effective solution. According to Neogi, 

Mohanta & Dutta (2014), the most noteworthy categories of steel surfaces inspected for 

defects are slab, billet, plate, hot strip, cold strip, and rod. Slabs and billets are semi-

finished products that are produced directly from liquid steel by the continuous casting 

process. Plates and hot strips are produced from slabs after reheating and rolling to desired 

thickness. The surface of these products is oxidized. Cold strips may be further produced 

from hot strips in cold rolling mills. Rods are produced from billets by a hot rolling 

process. There is no general consensus on the categorization of defects in the steel 
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products, but the most noteworthy defects are different types of cracks. The defects are a 

result of flawed casting and the huge forces used in the rolling processes. (Neogi, 

Mohanta & Dutta, 2014) 

Conventional cameras are commonly used to capture images of the steel surface. 

However, such systems suffer from pseudo-defects, which are non-defects with features 

like actual defects, caused by inconsistent lighting conditions (Landström & Thurley, 

2012). As an improved solution to steel surface defect monitoring, Landström & Thurley 

(2012) proposed the use of depth imaging to detect imperfections on steel surfaces more 

reliably. Their system used 3D profile data of steel slab surfaces to detect cracks and was 

based on morphological image processing and statistical classification. Zhao, Ouyang, 

Chen & Wen (2011) described a 3D inspection method to find defects on continuously 

cast slab surface. Park, Bae, Yun & Yun (2013) also developed a hot slab surface 

inspection system based on depth imaging. Hsu et al. (2017) described a 3D modelling 

framework for capturing 3D data from steel billet images. Hsu et al. (2018) introduced an 

automatic steel product tracking system based on 3D data features, contrary to the normal 

practice of embedding an identification code on the steel surface. 
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3. Research Method 

This thesis follows the methodology for conducting design science research (DSR) 

presented by Peffers, Tuunanen, Rothenberger & Chatterjee (2007). According to 

Hevner, March, Park & Ram (2004), DSR is a research paradigm intended for problem 

solving. Hevner et al. (2004) continue that the objective of DSR is to construct innovative 

artifacts that “define the ideas, practices, technical capabilities, and products through 

which the analysis, design, implementation, management, and use of information systems 

can be effectively and efficiently accomplished.” Another definition provided by Hevner 

et al. (2004) states that DSR constructs and critically assesses Information Technology 

(IT) inventions aimed at solving specific problems found in the industry. Peffers et al 

(2007) distinguish design science from other paradigms by citing Simon (1969): 

“Whereas natural sciences and social sciences try to understand reality, design science 

attempts to create things that serve human purposes”. In this chapter, the DSR 

methodology presented by Peffers et al. (2007) is explored. Each research activity is 

investigated and explained. Finally, the research questions guiding this thesis are given 

and the implementation of the methodology to answer them is described. 

3.1 Design Science Research Methodology 

Hevner et al. (2004) described seven guidelines for conducting design science research: 

1. research must produce an artifact, 

2. the artifact must solve a meaningful business problem, 

3. the applicability and performance of the artifact must be evaluated, 

4. the research provides real a contribution to its respective field, 

5. artifact construction and evaluation must be executed in a meticulous manner, 

6. existing expertise must be utilized in the design of the artifact, and 

7. the research must be communicated to relevant audiences. 

According to Peffers et al. (2007), a complete methodology consists of three components: 

principles (definition), practice rules (the guidelines by Hevner et al., 2004) and finally 

a detailed procedure as how to execute the research. Peffers et al. (2007) formulated the 

missing procedure component to complement the prior work of others and thus developed 

a complete methodology for design science in information systems. Peffers et al. (2007) 

attempted to identify elements of research that had been generally established as 

appropriate in the field. They used seven papers as basis for discovering process elements 

associated with the DSRM process. Figure 6 presents the procedure in a visual form. The 

procedure is designed to be iterative after the problem definition. 
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Figure 6. DSR Process (adapted from Peffers et al., 2007) 

The procedure presented by Peffers et al. (2007) is as follows: 

1. definition and justification of the problem, 

2. definition of the goals for a solution, 

3. design and development of the artifact, 

4. demonstration of the applicability of the artifact to solve the problem, 

5. evaluation of the performance of the artifact, and 

6. communication of the research. 

3.1.1 Problem Definition and Motivation 

Peffers et al. (2007) synthesised the definition of the problem as the first activity in the 

methodology. This activity also contains reasoning what a solution would accomplish and 

what value it would bring in the scope of the problem. Peffers et al. (2007) further argue 

that breaking down the problem into detailed parts is beneficial for crafting an artifact 

that solves the problem, as this helps the designer capture the intricacies of the problem. 

Establishing the hypothetical value of solving the problem provides the researcher and 

the target audience with inspiration to focus efforts on solving the problem. Furthermore, 

it helps with conveying the reasoning behind why the research must be carried out. 

Finally, Peffers et al. (2007) communicate the resources required for this activity, which 

are expertise of the problem in its respective context and the significance of its solution. 

3.1.2 Objectives of the Solution 

The second activity identified by Peffers et al. (2007) is defining what objectives the 

solution must accomplish. The objectives should be derived from the problem definition 

considering what is achievable and reasonable. The objectives can be formulated in 

different ways according to the nature and context of the problem. One possibility is to 

describe what benefits the solution should offer compared to existing ones. This activity 

requires expertise on the problem, what existing solutions there are, how effective they 

are, and what room for improvement there is. (Peffers et al. 2007) 
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3.1.3 Artifact Design and Development 

The artifact is created in this activity. According to Peffers et al. (2007), an artifact can 

be any designed object that incorporates the research contribution in its design. In this 

activity, the range of capabilities of the artifact are decided according to the objectives 

the artifact must accomplish. Furthermore, the architecture of the artifact is developed, 

and the actual artifact created accordingly. Expertise on the theory related to the artifact 

instantiation is required in this activity. (Peffers et al. 2007) 

3.1.4 Applicability Demonstration 

In this activity, the applicability of the artifact to solve the problem is demonstrated. The 

artifact should be employed in the problem context as a means for solving the problem. 

This could be performed for example in a simulation, case study, experiment, or other 

such endeavour. This activity requires expertise on how the artifact should be used to 

solve the problem. (Peffers et al. 2007) 

3.1.5 Performance Evaluation 

This activity includes evaluating the performance of the artifact in solving the problem. 

Depending on the context, this could involve for example observing and measuring how 

the artifact performs in solving the problem. Additionally, the observed outcome should 

be compared to the objectives of the artifact defined previously in activity 2 (Objectives 

of the Solution). Finally, the researcher considers whether to return to activity 3 (Artifact 

Design and Development) to improve on the artifact or not, based on the performance of 

the artifact. It is also possible to leave further improvements to future projects. (Peffers et 

al. 2007) 

3.1.6 Research Communication 

The final activity is communicating the consequences and implications of the research to 

target audiences. Peffers et al. (2007) suggest that researchers could use the structure of 

the DSMR process as the structure for research papers. 

3.2 Methodology Implementation 

The purpose of the thesis is to develop a system for measuring the fullness of scrap baskets 

loaded to electric arc furnaces. The research entry point is Problem-Centered Initiation, 

circled in green in Figure 6. The following research questions are formulated to provide 

direction for the thesis. 

1. How can scrap volume information be extracted from a Point Cloud captured of 

a scrap basket? 

a. How does image quality influence the outcome? 

b. What other factors influence the outcome? 

This thesis seeks answers to these questions by employing the design science research 

methodology. 
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Problem Definition and Motivation 

As explained earlier, several scrap baskets may be charged into an EAF during a single 

heat. It is beneficial to accurately time the charging to prevent undesired events. Accurate 

timing of the charging event requires information on the following properties: 

1. The melting status of the scrap inside the furnace. 

2. The volume of the scrap basket to be charged. 

As discussed before, neither of these properties are generally known to the operators 

before the actual charging event. The furnace operators must make decisions based on 

inferred and incomplete data, which increases the risk of inaccurate charge timing. 

The critical question is: “Does the next charge fit into the furnace?”. This question may 

also be formulated as: “Is the free volume in the furnace greater than or equal to the 

volume of the scrap charge?”. To answer this question, two sub-questions are derived: 

“What is the free volume in the furnace?”, and “What is the volume of the scrap charge?”. 

This thesis focuses on the latter question. 

As discussed earlier, obtaining accurate information on the volume of the scrap charge 

leads to a more accurate charging timing, which results in improved process efficiency 

and productivity. A solution to this problem would provide accurate volume information 

to the operators and the automation system to enable more accurate charging timing. 

 

Objectives of the Solution 

The naïve solution involves estimating the volume of the scrap in the baskets after the 

first basket visually by the operators. This solution has multiple issues, however. Visually 

estimating the scrap volume requires operators to be able to see the basket. There are two 

alternatives for accomplishing this: visually inspecting the basket by walking over to the 

waiting scrap basket or using cameras to see the basket. Depending on the factory safety 

regulations, entering the furnace area when the furnace is powered might be forbidden 

due to safety concerns. Cameras might solve this problem, but it will not eliminate the 

human error from the volume estimation. Further, different people will have different 

estimates on the volume. 

The objective of the solution researched in this thesis is to obtain accurate scrap volume 

information from the charging basket in an autonomous manner and relay this information 

to the operators and the automation system, eliminating the human factor completely. 

 

Artifact Design and Development 

The artifact to be designed and developed in this thesis is a system that accomplishes the 

following: 

1. obtain signal when the scrap basket is in position, 

2. use imaging hardware to capture a point cloud of the scrap basket, 

3. calculate scrap volume using the data in the point cloud, and 
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4. relay the volume information to furnace operators and automation system. 

The system consists of both hardware and software. The hardware used is a 3D camera 

to capture a point cloud image of the scrap basket and a computer. Software will be 

developed to communicate with the factory automation system and capture images from 

the 3D camera. An algorithm or procedure will be designed and developed to extract 

volume information from the captured images. The algorithm or procedure will be 

implemented in software. 

 

Applicability Demonstration 

The applicability of the artifact will be demonstrated in a factory environment by 

experimenting with using the system. Demonstration will include receiving basket 

location signal from the automation system, capturing a point cloud image of the scrap 

basket and successfully calculating the scrap volume information using the developed 

algorithm. 

 

Performance Evaluation 

The performance evaluation of the system focuses on the ability and efficiency of the 

system to calculate the volume of the scrap charge. Some properties to consider are the 

quality of the image captured by the 3D camera, the accuracy of the camera, the speed of 

the image capturing, computation speed of the algorithm and the algorithms robustness 

to disturbances in the image. The critical property obviously is the accuracy of the scrap 

volume measurement. However, verifying the accuracy is not trivial, because it is very 

likely that there is no way to determine the actual volume of the scrap charge to compare 

the result against. One possibility is to compare a set of captured images and calculated 

volumes and comparing them against each other to see if the algorithm is consistent. 

 

Research Communication 

This thesis serves as the communication medium for the research. 
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4. Artifact Design 

This chapter discusses the imaging environment and the hardware that will be used for 

capturing images of scrap baskets in a steel factory. The imaging environment is static, 

and the camera will be placed on a railing in an angle compared to the basket. The 

hardware used for capturing the images is the Blaze-101 camera from Basler, which uses 

Time-of-Flight measuring method to capture a depth image of the full scene at once. The 

chapter discusses the various physical interfaces of the camera and the protocols used for 

communication between the camera and the PC. Furthermore, various image quality 

features of the camera are presented. A short overview of the software design is given. 

Finally, the algorithm design is explained. 

4.1 Imaging Environment 

The environment where imaging will take place is a steel factory. Scrap baskets arrive to 

the loading zone on a carriage riding on rails. Figure 7 presents the plan for the imaging 

environment. The baskets always stop in the same place below a crane, which is used to 

lift the basket and transport it over the open furnace. In Figure 7, note the proposed 

placement of the camera. There is a walking platform next to the loading zone with clear 

view to the basket. Optimally, the camera would be situated perpendicular to the scrap 

basket. However, that is not possible in this case. The camera will therefore be placed on 

a railing in some angle compared to the basket. It is noteworthy that the camera 

placement, camera angle relative to the basket, and the basket position are static between 

captured images. 

 

Figure 7. Imaging environment. 
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4.2 Hardware 

The camera used for capturing images of the basket will be the Blaze-101 model from 

manufacturer Basler. The measuring method is Time-of-Flight, and the actual sensor is 

the Sony DepthSense IMX556. The bulky design of the camera allows for a wide range 

of custom installation options. Time-of-Flight measurement method is selected to capture 

a depth image of the full scene at once, without the need for physically moving the camera 

or the target object. This simplifies the implementation of image capturing. The camera 

model is selected based on retailer availability, price, ethernet data interface, camera 

features, such as different filtering mechanisms, and resilience to harsh environments. 

Figure 8 shows an image of the camera. 

 

Figure 8. Basler Blaze-101 camera. 

The camera has two physical connectors: data and power. The data connector is a M12, 

8-pin, x-coded, female ethernet connector. The power connector is a M12, 8-pin, female 

connector. The physical interfaces are shown in Figure 9. 



25 

 

Figure 9. Basler Blaze-101 physical interfaces. 

All communication between the PC and the camera is accomplished according to 

protocols specified in the GigE Vision standard: GigE Vision control protocol, GigE 

Vision stream protocol, and GigE device discovery protocol. The protocols employ the 

User Datagram Protocol (UDP) for data transfer. GigE Vision is a proprietary standard, 

of which Basler provides an implementation along with their camera. In addition to the 

mentioned protocols, an Extensible Markup Language (XML) file describing camera-

specific details is required. The camera conforms to the Generic Interface for Cameras 

(GenICam) application programming interface (API), which enables configuring and 

operating cameras using a uniform programming interface, regardless of the underlying 

transport layer interface used to communicate with the camera. The camera manufacturer 

delivers a description file according to the GenICam standard. The file maps 

configuration nodes to registers on the physical camera, as well as implements the 

transport layer interface. 

The Basler Blaze-101 depth camera contains numerous features that may be configured 

as necessary using the GenICam API. There are no definitive guidelines for selecting and 

manipulating features, as they depend on the properties of the imaged scene. Features that 

aim to remove incorrect measurements may be enabled and disabled. Many such features 

may be additionally configured through a threshold or strength value. There are also 

features such as region of interest, exposure time and pixel formats, to name a few (Basler, 

2022). 

4.2.1 Image Quality Features 

The camera internally implements the following image quality features: ambiguity filter, 

confidence threshold, outlier removal, spatial filter, and temporal filter. The ambiguity 

filter, as the name states, removes ambiguities from the depth calculation. It aims to solve 

the issue of phase wrapping, which was explained earlier in this study. There is also a 

threshold value that may be used to adjust the strength of the filtering. This threshold 

value is a compromise of detecting ambiguities and removing correct distance 

measurements. 
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Next, for every pixel the camera calculates a confidence value that signifies the reliability 

of the distance measurement for that pixel. It is calculated from the amount of light 

collected for that pixel. A threshold value may be chosen to filter measurements with a 

low confidence value. This value should be determined empirically for each imaging 

scene. 

Outlier removal is a feature that attempts to remove pixels that differ significantly from 

their neighbourhood. The camera uses an internal algorithm to calculate this. For this 

feature, there is again a threshold value that may be used to adjust the strength of this 

filter. Pixels that are deemed outliers are removed from the final depth image. Again, 

there is no conclusive guideline on selecting the threshold value. It must be determined 

individually according to the scene environment. 

The spatial filter aims at smoothing out surfaces in depth images by removing spatial 

noise from the measurement. This filter may only be enabled or disabled, there is no 

strength value to adjust. 

The temporal filter attempts to filter out temporal noise from the measurement. The filter 

operates using information from multiple frames. The objective is to remove motion 

artifacts, which as explained before is a result of averaging distance measurements using 

multiple frames. The filter analyses pixels between frames and tries to detect whether the 

distance measurement for pixels differ significantly between frames. There is a strength 

value that may be adjusted to control the filtering. 

4.2.2 Other Features 

Other notable features of the camera that may be adjusted are minimum and maximum 

range of measurement, the exposure time, and the pixel formats of the camera. The 

minimum and maximum range are self-explanatory, they are used to define the region of 

interest. The exposure time is an important parameter that may have a great effect on the 

measurement. Generally, the exposure time should be set as maximum possible and then 

lowered as necessary if there are highly reflective elements in the scene that result in 

saturation. The pixel formats are useful in selecting how the images are represented in 

data. The camera allows capturing depth images, intensity images, confidence images and 

point clouds. For each, the pixel format may or may not be adjustable. 

4.3 Software 

Software will be developed to configure and operate the camera. Additionally, the 

algorithm for extracting the scrap volume from the captured point cloud will be developed 

and implemented in software. The software will be written in Python programming 

language to enable rapid development. Furthermore, the author is well familiar with 

Python and the availability of useful libraries for Python is excellent. 
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Figure 10. Scrapvol python package hierarchy. 

The design for the scrapvol python package is presented in Figure 10. The cam module 

will contain the components related to configuring and operating the camera, whereas the 

pcdfun module will contain components related to manipulating the captured point clouds 

and implementing the algorithm for obtaining the volume of the scrap. 

In addition to configuring and operating the camera, software will be developed to 

communicate with the factory automation system. The purpose is to receive signals 

whenever a scrap basket arrives at the loading zone and subsequently transmitting the 

calculated scrap volume to the automation system. 

4.4 Scrap Volume Algorithm 

The algorithm to obtain the scrap volume will exploit the fact that the camera placement 

and the scrap basket position is static. Therefore, it is safe to assume that the captured 

images will be roughly similar in what portion of the basket is visible to the camera. The 

first objective of the algorithm is finding the basket top edge, which in combination with 

knowledge of the basket depth will be used to calculate the volume later. Second, a 

coordinate transform will be performed on the point cloud to shift the z-axis 

(corresponding to the distance) to be perpendicular to the basket edge. Figure 11 

illustrates the coordinate transformation. The objective of the transformation is to obtain 

distance values that are directly comparable between one another. Moreover, the z-

coordinates of the pixels will directly relate to height after the transformation. Finally, all 

the image pixels of the scrap surface must be found. The scrap surface will most likely 

not be smooth, so an average value of the height of the pixels must be found. Figure 12 

presents the information obtainable after transformation and finding the basket edge and 

scrap surface pixels. 
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Figure 11. Coordinate transformation. 

 

Figure 12. Scrap basket height calculation. 

After the transformation and finding the distances to the basket top edge and scrap 

surface, the height of the scrap surface relative to the basket may be calculated using the 

equation: 

Hscrap = Hbasket + Dedge - Dscrap, (4) 

where Hscrap is the height of the scrap surface from the bottom of the basket, Hbasket is the 

height of the scrap basket, Dedge is the distance from the camera to the basket edge, and 

Dscrap is the average distance from the camera to the scrap surface. Thereafter, the fill 

percentage of the basket may be calculated by dividing the scrap height with the basket 

height. 
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5. Artifact Development 

This chapter presents detailed information on the implementation of the camera system 

to capture images of scrap baskets, and the algorithm to extract scrap volume data from 

the captured images. First, the installation location and orientation of the camera are 

explained. Encountered issues related to the positioning of the camera are described along 

with discussion on the probable reason for the issue and the derived solution. Next, the 

development of the software to actuate the camera is explained. The implementation 

decisions are clarified, and example snippets are given to illustrate the usage of the created 

software. Finally, the algorithm implementation is described. The software developed to 

manipulate and interpret image data is depicted. Issues faced in the implementation 

process are explained along with the steps taken to rectify them. 

5.1 Hardware Installation 

The hardware was installed in the target environment as illustrated in Figure 7. Some time 

was spent finalizing the location and installation method of the camera. Initial location 

revealed issues related to the image capturing method. Figure 13 presents an intensity 

image of a scrap basket captured from the initial installation location. There is an obvious 

light band on the right side of the image. The image is also quite gray and hazy. This is a 

result of gamma correction performed on the intensity image. Without gamma correction, 

the image would be very dark. This was due to a vertical bar in the safety railing. The 

vertical railing was not in front of the camera, but close enough to cause a major 

disturbance in image capturing, likely due to it reflecting the radiation emitted by the 

camera. Consequently, the camera was moved a bit further away from the vertical bar in 

the railing. Figure 14 shows an image taken from the final camera location. The basket is 

now in full view and there are no anomalies present in the image. 
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Figure 13. Initial camera installation with a lighter band on the right side. 

 

Figure 14. Image from the final camera position. 
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5.2 Image Capture Software Development 

Software was written as designed in Figure 10 using Python programming language. The 

initial requirement was the ability to capture images using the camera. The Harvesters 

image acquisition library was used for this purpose. It implements the GenICam API to 

enable effortless image acquisition. “Harvesters simple use case” code snippet in 

Appendix A demonstrates a simple use case for the library. 

First, we construct a Harvester object, which handles manufacturer descriptor files and 

keeps track of available devices. The descriptor file is added to the Harvester, after which 

the update method is called. This causes the Harvester to consume the provided descriptor 

files and attempts to find devices accordingly. The descriptor files contain the necessary 

implementations of the transport layer interface used by the camera. Next, an Image 

Acquirer (ia in the snippet) object is created using the Harvester. The individual cameras 

may be identified by their serial numbers, for example. The Image Acquirer object 

enables the configuration of individual cameras, as well as image capturing. The code 

snippet contains an example of image capturing. 

The software used to operate the camera was developed to make use of the Harvesters 

library. The cam module of the scrapvol package contains two classes: CamReader and 

BlazeReader. CamReader is designed to abstract away all the Harvester related code, such 

as setting up and storing the Harvester object, creating Image Acquirers as necessary and 

handles image capturing. The design allows subclassing in a way that minimizes 

development time for using different GenICam compliant cameras. The BlazeReader is a 

subclass of the CamReader. It contains code specifically related to the Basler Blaze 101 

camera. The BlazeReader class only implements camera configuration and feature 

manipulation as specified by the manufacturer. It also must specify the descriptor file 

consumed by Harvester. To enable quick configuration without the need for code 

changes, a configuration file is employed to enable users to set and control features of the 

camera, such as exposure time and whether certain filters are used. “BlazeReader simple 

use case” code snippet in Appendix A demonstrates creating a BlazeReader object and 

using it to capture a single point cloud. The returned point cloud is a PointCloud object 

created using the Open3D library. The Open3D library was selected because it contains 

numerous useful algorithms and functions for manipulating and visualizing point clouds. 

Furthermore, the library is fully open source and is developed by an active community. 

Further details on the library and its use later. 

5.3 Algorithm Implementation 

After the final position of the camera was established, a simple program was written to 

capture images of baskets whenever one arrived at the loading zone. Upon analyzing 

some images, it was determined that the camera exhibits some degree of variance in the 

absolute distance measurements. Originally, it was hypothesized that the distance 

measurements would be mostly consistent. This would allow a static transformation and 

subsequent static cropping of the point cloud to extract only pixels belonging to the basket 

or scrap surface. Due to variance in the absolute distance measurement, this approach 

would probably lead to erroneous results. 

Therefore, another approach had to be devised. The solution was to use a reference point 

cloud to ensure consistency. Aligning subsequent point clouds with the reference point 

cloud allows the normalization of coordinates. The reference point cloud was carefully 

selected such that there is an abundance of basket top edge pixels present. Figure 15 
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presents the selected point cloud and Figure 16 presents the extracted basket top edge 

pixels. Finally, a coordinate transform was found manually for the point cloud containing 

just the basket top edge points, such that the z-axis is precisely (as close as possible) 

perpendicular to the scrap basket. Now, aligning new point clouds with this point cloud 

accomplishes three things. First, the distance to the basket top edge is known. Second, the 

z-value of scrap pixels directly relates to the depth of the scrap surface relative to the 

basket top edge. Third, because it is known where the basket top edge pixels are, the scrap 

surface pixels may be extracted. This is accomplished simply by cropping the point cloud 

according to the basket edge coordinates. At this point, the distance to the basket edge is 

known from the basket top edge reference point cloud. Furthermore, the distance to the 

scrap surface may be calculated by averaging the z-values of the scrap surface pixels. The 

scrap surface height relative to the basket may then be calculated using equation 4. 

 
(a) Amplitude image 

 
(b) Range image 

 
(a) Point cloud (front view) 

 
(a) Point cloud (right side view) 

Figure 15. The selected reference point cloud. 
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Figure 16. Basket top edge points extracted from the reference point cloud. 

From the point clouds it was quickly determined that some processing had to be 

conducted on the point clouds to enable analysis. First, the inbuilt camera features were 

utilized to remove as much of the erroneous measurements as possible while maintaining 

the maximum number of valid measurements. Each of the image quality features that 

were enumerated before were utilized. The threshold or strength values for each feature 

were experimentally determined to obtain the best possible images. However, the 

resulting measurements still contained disturbances. To further improve image quality, 

an additional statistical outlier removal method presented by Rusu et al. (2008b) was used. 

Figure 17 illustrates the effectiveness of the method. 

 

Figure 17. Point cloud outlier removal. Left image: original point cloud. Right image: point cloud 
after outlier removal. 

Software implementation of the algorithm employed the Open3D image processing 

library. The pcdfun, pcdalign, and pcddisp modules were developed. The pcdfun module 

contains generic point cloud functions that allow processing the point clouds. These 

include rotating, cropping, removing outliers, and creating PointCloud objects from 

coordinates. The pcddisp module contains functions that allow visualizing point clouds. 

Finally, pcdalign contains the functions related to aligning point clouds with each other. 

As noted, the Open3D library was used as it implements many algorithms and other 

functionality related to manipulating and processing point clouds. The most important 

object defined in the library is the PointCloud object, which in itself contains numerous 

helpful methods to manipulate point clouds. Furthermore, many of the functions defined 

in the library accept PointCloud objects as inputs. Therefore, the first objective of the 

software was to construct a PointCloud object from the captured depth data. This was 
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quite simple to achieve, as the coordinate data provided by the Basler Blaze-101 camera 

could be directly used as input to the PointCloud construction function. 

Upon constructing the PointCloud object, implementing the scrap volume algorithm was 

effortless. Outliers are removed using the PointCloud object’s statistical outlier removal 

method, which uses the algorithm presented by Rusu et al. (2008b). The next stage of the 

algorithm is aligning point cloud with the basket top edge reference point cloud. Open3D 

conveniently implements geometric feature finding, rough registration, and fine 

registration methods. First, the point clouds are down sampled using voxel down 

sampling. A voxel grid is a uniform 3D grid, where each pixel belongs to precisely one 

voxel. For each voxel, a single point is generated by averaging the contained points. The 

size of the voxel determines the degree of down sampling. 

Next, for both point clouds, surface normals are estimated. This is required by the function 

that computes the FPFH features presented by Rusu et al. (2009). Finally, the rough 

registration is computed using the fast global registration by Zhou et al. (2016). The result 

of the rough transformation is used as input to the fine registration method. The fine 

registration method is the ICP algorithm. The transformation that aligns the point cloud 

with the basket top edge reference point cloud is performed using the rotate method of 

the PointCloud object. The final step is extracting the scrap surface points by cropping 

the point cloud according to the known basket edge points. Finally, the scrap surface level 

height relative to the scrap basket is calculated using equation 4. 
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6. Evaluation 

This chapter covers the usage of the complete scrap volume measurement system. As 

explained in the research method chapter, the applicability of the system is demonstrated 

in the target environment. Upon starting the system, the camera is configured according 

to the configuration file. The system then waits for a signal from the automation system 

until a scrap basket is in place to be imaged. When a basket arrives, the system operates 

the camera to obtain a depth image of the basket, along with an intensity image and a data 

array of (x, y, z) coordinates. The system then proceeds to compute the fill percentage of 

the basket as explained before. Finally, the result is broadcasted to whichever system is 

interested in receiving it. 

Figure 18 presents the intensity and depth images of a scrap basket, thus demonstrating 

that the system can receive a signal from the automation system, as well as capturing 

depth images using the camera. The image quality looks acceptable. Figure 19 presents 

the pre-processed point cloud, and a combined point cloud with the basket top edge 

reference point cloud. It is evident from the image that plenty of basket top edge pixels 

were obtained. Moreover, many scrap surface pixels were obtained, even though some 

were invalidated. It is noteworthy, however, that some of the white pixels in the image 

are simply not visible to the camera. Those are the pixels that lie behind the scrap pile. 

 

Figure 18. The scrap basket intensity (left) and depth (right) images. 

 

Figure 19. The pre-processed point cloud (left). The right image also visualizes the basket top 
edge reference point cloud. 
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The basket fill percentage may now be computed. First the point cloud is aligned with the 

reference point cloud. Figure 20 presents the results of the rough and fine registration 

results. Looking at the images, the rough transformation does a pretty good job with 

aligning the point clouds. However, the fine registration does seem necessary and based 

on the image it does accomplish an acceptable alignment. Table 1 presents the registration 

results. The fitness value describes the successfulness of the registration, with a value of 

1.0 denoting perfect registration. Root-mean-square error (RMSE) describes how 

erroneous the registration turned out, with a value of 0.0 meaning no error. From the table, 

it is evident that the fine registration improved the registration. In addition to fitness and 

RMSE, the number of points in the point cloud and the mean nearest neighbour distance 

were used to evaluate the final registration. The nearest neighbour distance is the distance 

from a point on the reference point cloud to the nearest point on the aligned point cloud. 

This property proved useful in cases where a captured point cloud was lacking in basket 

edge points. As may be observed in Figure 20, the reference point cloud contains only the 

basket edge, whereas the aligned point cloud also contains points belonging to the scrap 

surface. This explains the seemingly low fitness and large RMSE values. Success criteria 

for these were experimentally determined and are shown in the final row of Table 1. 

 

Figure 20. Rough (left) and fine (right) registration results. Blue pixels belong to the reference 
point cloud and orange pixels to the image to be aligned. 

Table 1. Registration results. 

Registration Fitness RMSE Mean nearest neighbour distance # Points 

Rough 0.271 48.08   

Fine 0.437 26.56 14.56 mm 134 057 

Success criteria > 0.40 < 40.00 < 400 mm > 30 000 

Figure 21 presents the point cloud transformed according to the fine registration result. 

Red colour corresponds to pixels that are closest and blue colour to the farthest pixels. 

Observing the top edge of the basket visually, it does look like the transformation result 

is acceptable. The top-most points of the basket edge are all a dark red colour, relating to 

the closest points, and the lowest points blue, corresponding to the farthest points.  
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Figure 21. Point cloud transformed according to the fine registration result. 

Finally, Figure 22 presents the scrap surface extracted from the transformed point cloud. 

The scrap surface point cloud contains 37 061 points. Visual evaluation suggests that the 

system was able to extract the points related to the scrap surface. Thereafter, the average 

of the z-values of the scrap surface pixels is easily obtained. The result is that the depth 

of the scrap surface with respect to the basket top edge is 1.19 meters. Using knowledge 

of the basket height, the system can compute the basket fill percentage, which is directly 

related to the scrap volume in the basket. Relating this to the intensity image presented in 

Figure 18, the result is plausible. It has therefore been shown that the system can complete 

the task it was designed for. Unfortunately, more accurate evaluation of the result is 

difficult, as the true volume of the scrap is unknown. Another example of the algorithm 

result is included in Appendix B. 

 

Figure 22. Point clouds of the extracted scrap surface. Left is view from above and right is view 
from the side. 

In some cases, image capturing was unsuccessful. The most noteworthy failure cases 

resulted from either a dust cloud in front of the camera or very dark metal scrap. The steel 

factory as an environment is difficult because of steel dust floating in the atmosphere. 

Different steel scrap materials have different chemical compositions. The steel scrap is 

layered into the baskets in a precalculated manner according to the desired steel grade of 

the final product. The reflectiveness of the scrap varies greatly. 
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(a) Example 1 intensity image 

 
(b) Example 1 range image 

 
(c) Example 2 intensity image 

 
(d) Example 2 range image 

Figure 23. Poor-quality images resulting from dust in front of the camera and their respective 
depth images. 

It is inevitable that sometimes a cloud of steel dust will block the view of the camera. 

Figure 23 presents two examples of poor-quality images resulting from a dust cloud in 

view of the camera. A simple solution to avoid this issue is to examine the registration 

results and capturing a new image when success criteria are not met. Another possible 

solution could be to capture multiple images with a set interval between subsequent shots 

and constructing a clearer image from them. Mitigating this issue is not in the scope of 

this thesis, however. The problem could be explored in a later study. 

Figure 24 presents the other notable failure case resulting from the imaging target being 

particularly dark and unreflective. This situation is more difficult than the steel dust case. 

The root cause is that the camera is unable to measure distance to the target due to hardly 

any light reflecting from the target. Thus, the camera is unable to determine the phase 

difference required to compute the corresponding distance to the target. It is difficult to 

say at this point how the problem could be mitigated. Again, further research could be 

conducted to tackle this issue. 
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(a) Example 1 intensity image 

 
(b) Example 1 range image 

 
(c) Example 2 intensity image 

 
(c) Example 2 range image 

Figure 24. Poor quality images resulting from very dark and unreflecting scrap. 
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7. Discussion 

An algorithm to compute the fill percentage of scrap baskets was successfully developed. 

Furthermore, the ability of the artifact to compute the scrap basket fill percentage was 

demonstrated successfully in the target industrial context. Assuming that there are no 

external factors that might influence the image quality, the algorithm performs adequately 

well. Image acquisition normally takes less than one second. The processing time of the 

point cloud is in the order of seconds, which could probably be reduced by decreasing the 

computational complexity by down sampling the processed point clouds, for example. 

The camera hardware performed sufficiently well. After the installation location of the 

camera was finalized, there were no more static issues with image capturing. The more 

pressing matters associated with capturing images are the issues related to the ambient 

dust clouds moving around in the factory atmosphere as well as the reflectivity (or lack 

thereof) of some scrap grades. To some degree, these issues were mitigated by recapturing 

the image if the image registration did not meet success criteria. This solution has some 

problems. First, the scrap basket may not be in view of the camera anymore when the new 

image would be captured. That is, the operators might lift the basket before a new image 

could be captured, resulting in an empty image. Second, it does not address the root issues, 

but naïvely assumes that the second image will turn out better than the first. Now, 

sometimes that was indeed the case. The dust cloud could have passed between capturing 

the images. However, capturing a new image of unreflective material does not lead to a 

better result. 

Attempts were made to improve image quality by adjusting the internal camera settings 

and features. The varying reflectivity of different scrap grades provides a challenge to 

image acquisition, especially when determining the used exposure time. Some scrap 

pieces may be highly reflective, necessitating the use of a shorter exposure time to avoid 

oversaturation. Other types of scrap may be the complete opposite, requiring a longer 

exposure time to obtain measurements. It was noted based on some experimentation that 

the maximum exposure time allowed by the camera yielded the best results. The filter 

features of the camera were all employed and the threshold or strength values for each 

were determined separately. It was noted that each filter improved the image quality. 

However, the process for selecting the threshold or strength values could have been 

carried out in a more rigorous manner.  

There is also an issue related to the algorithm itself. Since a reference image is required 

to execute the coordinate transformation reliably, setting up the algorithm requires some 

manual configuration, testing and estimation. The reference image must be selected, the 

basket edge pixels and the corresponding cropping values must be found manually, and 

the rotation parameters must be determined. These steps must be taken for each camera 

separately. Furthermore, if the camera location must be changed, these steps must be 

redone. Arguably, however, the magnitude of these efforts is negligible compared to the 

potential benefits of the system. 

Further research should be conducted to address the issues outlined above. It is possible 

that the scrap surface could be found programmatically without the use of a reference 

image. Finding the pixels in point clouds that belong only on the scrap surface or the 

basket would eliminate the need for a reference image. Removing the need for a reference 

image also indirectly reduces the computational complexity of the algorithm. It is not 

certain, however, that employing a different method for finding the scrap surface would 

reduce computation time. Furthermore, some method for determining the quality of the 
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image immediately after capturing would enable rejecting unusable images in an earlier 

stage in the procedure. Such cases are, for example, the presence of a dust cloud blocking 

the view of the camera or unreflective scrap causing hardly any pixels to be acquired of 

the scrap surface. Determining the quality of the captured image is only half of a solution. 

The other half is how to mitigate the effect of the mentioned phenomena. 

Cameras from different manufacturers should be considered for possible performance 

gains. A technology called High Dynamic Range (HDR) is a noteworthy technology that 

is based on capturing multiple images of the scene using different exposure times. This 

enables capturing high quality images of scenes with varying reflectivity. Some cameras 

implement this technology on the camera hardware, which is significantly faster than a 

pure software implementation. 

Ultimately, the system is intended to be used in conjunction with the Luxmet ArcSpec 

system to accurately time scrap basket charging into electric arc furnaces. This study 

demonstrates the feasibility of acquiring the volume of the charged scrap. Further research 

should be conducted to combine this information with the data produced by the ArcSpec 

system, as well as other process parameters to achieve more accurate charging timing. 
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8. Conclusion 

Energy efficiency, emissions and sustainability are major trends in the steel industry. The 

demand for steel is projected to grow in the coming decades, while at the same time 

emissions should be reduced drastically. Therefore, all feasible methods to improve the 

energy efficiency of steel making should be considered. One solution is to transition from 

static control of the process more and more towards dynamic methods. Determining the 

timing of the charging of scrap baskets dynamically is one of many of such methods. 

The objective of this study was to develop a system which would help in facilitating 

dynamic charging timing by providing accurate information of scrap volume in charging 

baskets. The purpose is to avoid problems caused by early charging and reduce the 

adverse effect on energy efficiency caused by late charging. Accurate timing of charging 

is possible with information on the volume of scrap being charged and the free volume 

inside the furnace. 

Depth imaging hardware was used in the thesis to measure 3D data of scrap baskets. A 

camera was installed in the production environment in the melting shop of a steel factory. 

Software was developed to configure and actuate the camera. The camera features were 

experimented with, and suitable parameters were determined to obtain good quality 

images. An algorithm was subsequently developed and implemented in software to find 

the points belonging to the basket, as well as the scrap surface from the data. These points 

were then used to calculate the depth of the scrap surface relative to the basket top edge. 

Finally, knowledge of the basket dimensions could be used to compute the volume of 

metal scrap inside the basket. 

It was demonstrated that information of the scrap volume may be obtained using depth 

imaging and the algorithm developed in this thesis. Feasible results were obtained in cases 

where the depth image quality was sufficient. Most notable issues related to obtaining 

depth images were dust clouds inherent to melt shops and the low reflectivity of some 

scrap grades. 

Further research should be conducted to further evaluate the accuracy of the 

measurements. Moreover, technological innovations such as HDR and other camera 

hardware features should be explored to achieve better quality depth images specifically 

in this context. Furthermore, the computational complexity of the algorithm and ways to 

improve it should be examined. Finally, the information on the melting stage inside the 

furnace provided by Luxmet ArcSpec system should be combined with the scrap volume 

data to achieve an accurate timing of scrap basket charging. 
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Appendix A 

 

Harvesters simple use case: 

from harvesters.core import Harvester 

import numpy as np 

h = Harvester() 

h.add_file(“path/to/basler_blaze_description_file”) 

h.update() 

ia = h.create(0) 

ia.start() 

with ia.fetch() as buff: 

 component = buff.payload.components[0] 

 height = component.height 

 width = component.width 

 raw_image = np.copy(component.data) 

ia.stop() 

 

BlazeReader simple use case: 

from configparser import ConfigParser 

from scrapvol.cam import BlazeReader 

config = ConfigParser() 

config.read(“blaze_config.ini”) 

reader = BlazeReader.from_config(config[“cam1”]) 

point_cloud = reader.capture_pcd() 
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Appendix B 

Example of the algorithm. 

 
(a) Intensity image 

 
(b) Range image 

 
(c) Point cloud 

 
(d) Point cloud with reference 

 
(e) Rough registration result 

 
(f) Fine registration result 
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(g) Transformed point cloud 

 
(h) Scrap surface point cloud 

 

Registration Fitness RMSE Mean nearest neighbour distance # Points 

Rough 0.387 59.14   

Fine 0.430 25.85 15.00 mm 129 268 

Success criteria > 0.40 < 40.00 < 400 mm > 30 000 

 

FINAL RESULT: Scrap surface is 0.50m below the basket top edge. 

 


