
FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING
DEGREE PROGRAMME IN ELECTRONICS AND COMMUNICATIONS ENGINEERING

DIPLOMA THESIS

AN AI-BASED SOLUTION FOR WIRELESS CHANNEL
INTERFERENCE PREDICTION AND WIRELESS

REMOTE CONTROL

Author Christian Padilla
Supervisor Sumudu Samarakoon

Second examiner Samad Ali

March 2023

Padilla C. (2022) An AI-Based solution for Wireless Channel Interference Prediction
and Wireless Remote Control Faculty of Information Technology and Electrical Engineering,
Degree Programme in Wireless Communications Engineering. Master’s Thesis, 48 pages.

ABSTRACT

Most control systems rely on wired connectivity between controllers and plants due to
their need for fast and reliable real-time control. Yet the demand for mobility, scalability,
low operational and maintenance costs call for wireless networked control system designs.
Naturally, over-the-air communication is susceptible to interference and fading and there-
fore, enabling low latency and high reliability is crucial for wireless control scenarios. In
this view, the work of this thesis aims to enhance reliability of the wireless communication
and to optimize the energy consumption while maintaining low latency and the stability
of the controller-plant system. To achieve this goal, two core abstractions have been used,
a neural wireless channel interference predictor and a neural predictive controller. This
neural predictor design is motivated by the capability of machine learning in assimilating
underlying patterns and dynamics of systems using the observed data. The system model
is composed of a controller-plant scheme on which the controller transmits control sig-
nals wirelessly. The neural wireless predictor and the neural controller predict wireless
channel interference and plant states, respectively. This information is used to optimize
energy consumption and prevent communication outages while controlling the plant. This
thesis presents the development of the neural wireless predictor, the neural controller and
a neural plant. Interaction and functionality of these elements are demonstrated using a
Simulink simulation. Results of simulation illustrate the effectiveness of neural networks
in both control and wireless domain. The proposed solution yields about 17% reduction
in energy consumption compared to state-of-the-art designs by minimizing the impact of
interference in the control links while ensuring plant stability.

Keywords: neural controller, long short term memory cells, model reference adaptive
controller, interference prediction, non autoregressive neural networks

CONTENTS

ABSTRACT
CONTENTS
PREFACE

1 INTRODUCTION . 5
1.1 Background and motivation . 5
1.2 Research Problem . 5
1.3 Scope . 6
1.4 Methodology . 6
1.5 Contribution . 7
1.6 Thesis Structure . 7

2 ARTIFICIAL INTELLIGENCE FOR INTERFERENCE PREDICTION 8
2.1 Neural Networks . 8
2.2 Layers of Neural Networks . 9
2.3 Training a Neural Network . 10

2.3.1 Standard Backpropagation Algorithm 11
2.3.2 Levenberg-Marquardt Back Propagation 13

2.4 One-Step ahead Interference Prediction . 14
2.4.1 Nonlinear Autoregressive Neural Networks 14

2.5 Multiple-Step ahead Interference Prediction 15
2.5.1 Long Short-Term Memory model . 15
2.5.2 Encoder-Decoder LSTM networks . 16

3 ARTIFICIAL INTELLIGENCE FOR NONLINEAR CLOSED-LOOP CONTROL . 18
3.1 Basic Concepts in Control . 18
3.2 PID Controller . 18
3.3 Model Reference Adaptive Controller . 19

3.3.1 MIT Rule . 20
3.4 Neural Network Control Systems . 21

3.4.1 Neural Predictive Control . 22
3.4.2 Feedback Linearization Control . 25
3.4.3 Neural MRAC . 27

4 AI-BASED PROPOSED SOLUTION AND RESULTS 31
4.1 System Model Description . 31
4.2 Setting up simulation . 32

4.2.1 Optimization Problem . 32
4.2.2 Simulink Model . 34

4.3 Results . 35
4.3.1 Interference Prediction Results . 35
4.3.2 Performance of Alternative Interference predictors 36
4.3.3 Comparison of Interference Predictors 38
4.3.4 Neural Engine Results . 40

5 CONCLUSIONS AND FUTURE DIRECTIONS 44
6 BIBLIOGRAPHY . 46

PREFACE

This thesis was aimed at the development of an AI-based solution for future systems than
involve both wireless communications and control.
I would like to express my gratitude to my supervisor Sumudu for his exceptional technical
guidance and to my close friends Diana and Xavier who supported me in both academic and
personal aspects during my studies.

Christian Padilla

5

1 INTRODUCTION

Control systems mostly rely on wired connections to send control signals to a plant of interest.
This is due to the fact that real-time control requires low latent and reliable communications
to ensure plant stability and observability. In contrast to the wired connectivity, wireless
transmissions are susceptible to interference and fading, and therefore, are not the default choice
for real-time control. Nevertheless, the benefits of versatility offered within wireless connectivity
can be reaped for control applications if the drawbacks of wireless transmissions are addressed.
latency and reliability. For an example, in manufacturing plant, installation and maintenance
costs can be reduced due to the wireless networking being utilized to enhance the production
process.

This work presents a solution to tackle one major inconvenient of wireless-networked real-
time control applications. This proposal aims to boost reliability of the wireless communication
to ensure stability of the controller-plant system. To achieve this goal, two core abstractions will
be used, a neural wireless channel interference predictor and a neural predictive controller/plant.
The system model is composed of a controller-plant scheme on which the controller transmits
control signals wirelessly. This information is used to send “future” control commands as a
queue before the interference levels make real-time control ineffective. The plant uses this
cached future control commands until the interference levels drop down enough to switch back
to real-time control. Calculating future commands can be challenging since there is also a need
to predict future plant states and every state depends on the previous plant state and current
input. For this reason, the neural predictive controller/plant has been developed.

1.1 Background and motivation

Increasing the control coverage of a manufacturing line with wireless communications can be
very advantageous, an increased control coverage makes possible to adjust parameters of the
manufacturing line dynamically to accommodate new requirements. With wireless links, adjust-
ments are not restricted to any movement or hazards involving rewiring existing infrastructure.
Consider the expansion of production capacity in a factory, the ability of remote configura-
tion and control facilitates deployment of new actuators while avoiding the inherent hazards of
installing new wires.

The productivity of a manufacturing line is mainly affected by downtime, which is not
only caused by failures in machinery but also by broken cables that are attached to moving
parts. Finding and repairing a broken cable is a time-consuming and costly task [1]. In other
words, a broken cable causes downtime, material costs and maintenance. The advantages of
wireless technologies in an industrial environment are not limited to wiring costs and improved
flexibility, wireless communications also make easier to add redundancy and add support for
mobile systems in industrial environments.

1.2 Research Problem

According to [2], when wireless networks are deployed, often factories do not meet requirements
of reliability, resilience and scalability. Wireless transmissions are susceptible to fading and
interference from other transmitters; these issues affect reliability of the communication, and
therefore wireless networks are not the default choice to establish communication between
a controller and actuators; in [3], it is stated that wireless communication is not within the

6

first ten most popular communication protocols. Another key challenge regarding wireless
communications is the stringent latency requirement for industry environments, usually 0.5-1ms
[4]. Methods based on artificial intelligence (AI) are proposed in this work to overcome these
challenges.

1.3 Scope

The targets of this work can be summarized in overcoming reliability and latency issues with
maximum energy efficiency in a wireless industrial environment. To tackle these challenges,
interference prediction is needed; in this work, AI and more specifically, deep learning is used to
predict interference. Having knowledge of future interference power allows to adjust transmitting
power (at the wireless transceiver at the controller) to avoid outage and ensure latency. Another
advantage of having this knowledge is that is possible to choose to transmit in advance a set of
control commands if the maximum transmit power at the controller cannot meet the requirements
to keep the plant stable. This feature can also be exploited to reduce transmit energy consumption
by sending in advance control commands that according to predictions might have to overcome
high interference in the future, transmitting them now while the interference is low is better that
transmitting in the future when the interference has risen.

Sending future control commands require knowledge of future states of the plant. These
states must be calculated recursively since the next state depends on the current state and control
command applied, i.e. if the control command needed for ten steps in the future is needed,
the previous nine steps need to be calculated. In addition, all plants are different and require
different mathematical modelling. As a novel method, this work presents development of neural
controllers and neural plant both which can be trained using historical data. This implies that
they can be used on a myriad of scenarios and do not require specific design as long as the
training data is available.

In conclusion, this work proposes methods based on deep learning to achieve reliability,
latency and energy efficiency in wireless industrial environments.

1.4 Methodology

This work consists mainly on developing three neural networks: neural wireless predictor, neural
controller and neural plant.

For the neural wireless predictor, this work started by generating the interference power data
in simulations. Later, this data was used to train and test the neural network, since this is
a prediction this problem, a time series forecasting neural network was needed; performance
of various neural network architectures were tested to find the most suitable one to forecast
interference power.

For the neural plant, the goal was to mimic the behaviour of a real plant. Doing this, required
choosing the dynamics of the plant and using random numbers and inputs applied to these
dynamics to obtain outputs. The input-output pairs were used to train and validate the neural
plant.

For the neural controller, a reference model with the desired behaviour of the controller-plant
system was used. In this case, the inputs were made of random input references for the controller
and the desired outputs obtained from the reference model. This is known as a Neural Model
Reference Adaptive Controller. More details will be further explained in the following chapters.

There is one last piece of the system: an optimizer that was developed to gather all neural

7

networks and reduce power consumption by choosing which command needed to be transmitted
instead of transmitting every command. To achieve this an optimization problem was formulated
and solved.

1.5 Contribution

The main contribution of this thesis is to propose a novel wireless interference prediction
method and an innovative controller design. The proposed solution focuses on maximizing
energy efficiency while ensuring reliability and latency. A key advantage of this proposal is that
the whole system only requires historic data for training making deployment relatively easy. In
addition, the neural plant is made of a shallow neural network and the controller has only 4 layers
and around 20 neurons in total, its simplicity can help keep the complexity of implementation
low while reducing computational cost, the Neural Wireless predictor does use LSTM cells.

Currently, wired communications are the most common in industrial environments, but
given the promising advantages of wireless technologies in a factory like improved flexibility,
redundancy, safety and cost reduction, AI methods have been developed in this work in the favor
of wireless communications.

1.6 Thesis Structure

This thesis consists of four chapters, it is organized in the following manner: Chapter 2 explores
AI principles and its applications in wireless communications, Chapter 3 explores relevant
control theory principles and AI-aided control. Chapter 4 showcases the system model and the
proposed solution and exposes results and benchmarking and Chapter 5 shows conclusions and
future directions.

8
2 ARTIFICIAL INTELLIGENCE FOR INTERFERENCE PREDICTION

AI, machine learning and deep learning have great potential for improving efficiency of a
wireless system; these technologies can aid resource allocation, scheduling, system monitoring,
optimization, and other applications [5]; Figure 2.1 shows how Artificial Intelligence, Machine
learning and Deep Learning are related. Deep learning is a subset of machine Learning, and at
the same time machine learning is a subset of AI.

In [5], it is stated that AI is a term used to describe intelligence demonstrated by a machine
by mimicking some human-related mental processes as comprehension, learning and decision
making. In the context of wireless communications, machine learning is the research area that
aims to provide a networked system with autonomous performance improvement capabilities
by interacting with the real world [5]. In other words, machine learning enables the design of
self-optimizing systems.

Deep learning is inspired by the human brain, for this reason, a neural network mimics
the human brain structure [5]. Predictions of future behavior of systems have fundamental
importance in this thesis work; deep learning can be utilized to obtain models with forecasting
capabilities. Prediction ability of several model architectures will be exploited in Chapter
2 and Chapter 3. Note that applications for machine learning are not limited to prediction;
classification, clustering and regression are other in-demand use cases.

2.1 Neural Networks

Neural networks are made of numerous nodes. These nodes are called neurons because they
simulate the behaviour and functions of a biological neuron [6]. Neural networks replicate the
neuron’s association process by using weights [7]. The structure of a neuron with only one input
is shown in Figure 2.1. The scalar input 𝑥 is multiplied by the weight 𝑤 to obtain the product 𝑤𝑥,
which is added to the value of bias 𝑏 and then fed to the transfer (also called activation) function
𝑓 , which produces the output of the neuron 𝑦. Weights and bias are adjusted during training
to obtain a desired specific behaviour [7]. Regarding the activation function, there is a vast
assortment of functions available but two specific types were commonly used when designing
neural networks in this work: linear and log-sigmoid activation functions. Usually, a linear
function is used in the output layer neurons while log-sigmoid is used in the hidden layers. The
linear function is expressed by

𝑓 (𝑛) = 𝑛, (2.1)

Figure 2.1. Relationship between AI, machine learning and deep learning.

9

Figure 2.2. Neuron architecture.

Figure 2.3. Linear (left) and log-sigmoid (right) activation functions.

where 𝑛 is the result of vector operations 𝑤𝑥 + 𝑏, and 𝑓 (𝑛) is the output of the neuron. This
function is plotted in Figure 2.3.

The log-sigmoid activation function is expressed by

𝑓 (𝑛) = 1
1 + 𝑒−𝑛 , (2.2)

where 𝑛 is the result of operations 𝑤𝑥 + 𝑏 and 𝑓 (𝑛) is the output of the neuron. This function is
plotted in Figure 2.3.

In real-life scenarios, neurons have more than one input. A neuron with multiple inputs
is depicted in Figure 2.4 inside the red dashed lines. The elements in the input vector x =

[𝑥1, 𝑥2, ..., 𝑥𝑁] are weighted respectively by elements of vector w = [𝑤1, 𝑤2, ..., 𝑤𝑁]; bias
b = [𝑏1, 𝑏2, ..., 𝑏𝑁] is added to wx, the result is passed as an argument to the activation function
𝑓 .

2.2 Layers of Neural Networks

Neural networks have a layered structure as shown in Figure 2.4 [6]. Every multi-input neuron
is represented by a circle and input nodes are depicted as squares. Layers are widely classified
in bibliography as input, hidden and output layers. Input layer passes input signals to neurons in
the hidden layer. The input layer does not perform the weighted sum, bias and it does not apply
activation function, these operations are applied on hidden and output layer neurons. The layers
between input and output are known as the hidden layers. A neural network with two or more
hidden layers is called a deep neural network.

Consider the multi-input neuron in Figure 2.4. If a second neuron is added after the output

10

Figure 2.4. Neural network architecture and multi-input neuron.

of the first neuron, the output of this shallow neural network is given by

𝑦 (2) = 𝑓 (2) (𝑊 (2,1)
𝐿

𝑓 (𝑊 (1,1)
𝐼

𝑥 + 𝑏 (1)) + 𝑏 (2)), (2.3)

where 𝑊𝐿
(2,1) represents the layer weight matrix of connections starting at layer 1 and ending

at layer 2. The second index indicates the source, and the first index indicates the destination.
𝑊𝐼

(1,1) is the matrix corresponding to the input weights, it is implied that both its indices are 1
since they connect the input with neurons at the first layer. An index above the bias 𝑏 has also
been used to indicate their respective layer; 𝑏 (1) and 𝑏 (2) represent biases for first and second
layer respectively.

2.3 Training a Neural Network

There are two main learning paradigms for neural networks: unsupervised and supervised
learning. In supervised learning, neural networks are trained using labeled input and output

11

Figure 2.5. Neural network training procedure.

data. Unsupervised learning algorithms do not require someone to understand and label inputs
and outputs. This work was developed using supervised learning only. Supervised learning
consists of reducing the difference between the correct output and the neural network output
in an iterative manner. To achieve this, first the weights of the neural network are initialized,
second the input data set must be fed to the neural network, its output is compared to the output
data set to calculate the error. The third step consists of adjusting the weights and bias to try
to reduce the error. The second and third steps should be repeated until the error has been
decreased enough to consider the training is effective. The neural network should be tested
against a dataset that has not been used in training to verify the outputs are accurate and to make
sure that the model is useful regardless of the data source. This procedure is depicted in Figure
2.5 and it is based on the description in [8].

To update the weights during training a technique called backpropagation is needed. Back-
propagation is performed to reduce the error between the output and the reference output.
Backpropagation consists of propagating a value delta, which is a function of the error and the
activation function. Propagation starts at the output layer and ends at the input layer hence
the name backpropagation. A notorious learning algorithm is the Levenberg-Marquardt back
propagation (LMBP); its key features are its fast convergence and accuracy [9]. This work was
developed using the LMBP algorithm for every neural network implementation. The following
subsections will explore backpropagation in more detail.

2.3.1 Standard Backpropagation Algorithm

To obtain the output of the m-th layer, (2.3) can be extended [10], which is given by

𝒚(𝒎+1) = 𝒇 (𝒎+1) (𝑾 (𝒎+1) 𝒚(𝒎) + 𝒃(𝒎+1)), (2.4)

where y(m+1) and y(m) are the outputs of the (𝑚 + 1)-th and 𝑚-th layers respectively. The initial
condition for (2.4) is constituted by the initial input vector 𝑥. This is shown in (2.5). Note that

12

the matrix W is a generic term for both layer and input weights𝑊𝐿 and𝑊𝐼 respectively.

𝒚(0) = 𝒙. (2.5)

To train a neural network a data set with input-output pairs (x1, t1), (x2, t2), ..., (xk, tk) is needed
[7] [6] [10] ; xk and tk represent the input vector and the target output respectively. The main
goal is to find the weights that minimize the mean square error between the outputs of the neural
network yk and the target output tk. The mean square error 𝐺 (𝑥) can be calculated as

𝐺 (𝒙) = 𝐸 [(𝒕 − 𝒚)𝑇 (𝒕 − 𝒚)], (2.6)

where t contains elements t1, t2, ..., tk and y contains elements y1, y2, ..., yk.
According to [10], (2.6) can be approximated using the approximate steepest descent rule.

The expectation of the squared error is replaced by the squared instantaneous error resulting in

�̂� (𝒙) = (𝒕(𝑘) − 𝒚(𝑘))𝑇 (𝒕(𝑘) − 𝒚(𝑘)). (2.7)

The steepest descent algorithm is given by

𝑤𝑖, 𝑗 (𝑘 + 1) = 𝑤𝑖, 𝑗 (𝑘) − 𝛼
𝜕�̂�

𝜕𝑤𝑖, 𝑗
, (2.8)

𝑏𝑖 (𝑘 + 1) = 𝑏𝑖 (𝑘) − 𝛼
𝜕�̂�

𝜕𝑏𝑖
, (2.9)

where 𝛼 factor represents the learning rate; (2.8) and (2.9) describe how the biases and weights
of the network should be updated in every training iteration.

After calculating the derivatives in (2.8) and (2.9), the approximate steepest descent algorithm
is obtained, and is given by

𝑾𝑚 (𝑘 + 1) = 𝑾𝒎
(𝒌) − 𝛼𝒔𝒎 (𝒂𝑚−1)𝑇 , (2.10)

𝒃𝑚 (𝑘 + 1) = 𝒃𝑚 (𝑘) − 𝛼𝒔𝑚, (2.11)

where the sensitivity parameter 𝒔𝑚 is defined as

𝒔𝑚 ≡ 𝜕�̂�

𝜕𝒏𝑚
= [𝜕�̂�

𝜕𝑛𝑚1
,
𝜕�̂�

𝜕𝑛𝑚2
, ...,

𝜕�̂�

𝜕𝑛𝑚
𝑖

], (2.12)

and

𝑛 = 𝑾 𝒑 + 𝑏. (2.13)

Note that 𝑚 represents the layer and 𝑖 is related to the 𝑖-th element in that specific layer (every
layer has a number of neurons larger than one). Note that 𝒔𝑚 is given by (2.14).

13

𝒔𝑚 = 𝑮𝑚 (𝒏𝑚) (𝑊𝑚+1)𝑇 𝒔𝑚+1. (2.14)

To execute backpropagation, first the input is propagated in the forward direction through the
whole network, second the sensitivities must be propagated in the backward direction and third,
the weights and biases are updated according to the approximate steepest descent rule in (2.8)
and (2.9) [10]. Since the backpropagation starts at the final layer, sensitivity should be initialized
with (2.15).

𝒔𝑀 = −2𝑮𝑀 (𝒏𝑚) (𝒕 − 𝒂). (2.15)

2.3.2 Levenberg-Marquardt Back Propagation

Levenberg-Marquardt backpropagation is an algorithm based in Newton’s method [11] [12] [13].
Newton’s method is designed to minimize sum of squares of nonlinear functions [13]. Assume
we have a function 𝐹 (𝑥) that requires minimization with respect to parameter 𝑥. The Newton’s
method is given by

Δ𝒙 = −[∇2𝐹 (𝒙)]−1∇𝐹 (𝒙), (2.16)

where ∇2𝐹 (𝑥) is the Hessian matrix and ∇𝐹 (𝑥) is the gradient. Assume that 𝐹 (𝑥) is a sum of
squares function, then 𝐹 (𝑥) is calculated as

𝐹 (𝑥) =
𝑁∑︁
𝑖=1

𝑒2
𝑖 (𝑥) = 𝒆𝑇 (𝒙)𝒆(𝒙). (2.17)

According to [11] the gradient and the Hessian matrix are given by

∇𝐹 (𝒙) = 2𝑱𝑇 (𝒙)𝒆(𝒙), (2.18)

∇2𝐹 (𝒙) = 2𝑱𝑇 (𝒙)𝑱(𝒙) + 2𝑺(𝒙), (2.19)

where 𝑱(𝒙) is known as the Jacobian matrix

𝑱(𝒙) =

𝜕𝑒1(x)
𝜕𝑥1

· · · 𝜕𝑒1(x)
𝜕𝑥𝑛

...
. . .

...
𝜕𝑒𝑁 (x)
𝜕𝑥1

· · · 𝜕𝑒𝑁 (x)
𝜕𝑥𝑛

(2.20)

and

𝑺(𝒙) =
𝑁∑︁
𝑖=1

𝑒𝑖 (𝒙)∇2𝑒𝑖 (𝒙). (2.21)

14

If we assume that 𝑺(𝑥) is very small (Gauss-Newton method), that means that (2.16) can be
approximated as

Δ𝒙 = [𝑱𝑇 (𝒙)𝑱(𝒙)]−1𝑱𝑇 𝒆(𝒙). (2.22)

The LMBP algorithm makes a subtle modification to (2.22) [11], it is given by

Δ𝒙 = [𝑱𝑇 (𝒙)𝑱(𝒙) + 𝜇𝑰]−1𝑱𝑇 𝒆(𝒙), (2.23)

where 𝑰 is the identity matrix

I =

1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...
...
...
. . .

0 0 0 · · · 1

. (2.24)

2.4 One-Step ahead Interference Prediction

Interference has long been considered a deleterious factor that limits the wireless system capacity
[14]. At the same time, interference has always been a challenge in the design of a wireless
system [15]. Having the ability to predict future interference is beneficial to tackle the effects
of interference [14]. Obtaining accurate forecasts of the interference power is a challenging
task due to the time varying nature of wireless channels [8]. Various researchers have proposed
different interference prediction methods in [9], [15] and [16].

According to [8], the interference power prediction can be classified into statistical and AI
methods. Statistical interference power prediction implies that some statistical properties of the
interference power, such as mean interference, or even full probability distributions are used
to estimate future interference values [8]. On the other side, AI-based interference prediction
methods use a machine learning algorithm to approximate the behavior of the channel with
a model that uses past interference values as inputs and future interference values as outputs
[8]. In this thesis, one of the methods that is going to be explored is the use of the Nonlinear
Autoregressive Neural Network Architecture (NARNN) for interference power prediction.

2.4.1 Nonlinear Autoregressive Neural Networks

Interference power in a time series is difficult to forecast accurately due to the random nature
of the wireless channel [8]. Linear models are often used but a nonlinear approach was utilized
in [8] as a novel technique to model the random variations in the wireless channel. A NARNN
was used as part of this work for effective time series prediction of the interference power.

The NARNN is a recurrent dynamic neural network with feedback connections enclosing
layers of the network; this implies that the current output depends on the values of the past
outputs [17]. The NARNN is defined as [18]

𝑦(𝑡) = 𝑓 (𝑦(𝑡 − 1), 𝑦(𝑡 − 2), 𝑦(𝑡 − 3), ...𝑦(𝑡 − 𝑛)) + 𝜖 (𝑡), (2.25)

15

Figure 2.6. NARNN architecture.

where 𝑦 is the data series for the combined interference of N-1 interferers [8], 𝑓1(·) and 𝑓2(·)
represent the log-sigmoid and linear activation functions, 𝑛 is the input delay of the interference
time series and 𝜖 is the error due to the approximations of the neural network. The architecture
of the NARNN is shown in Figure 2.6. The NARNN requires an specific number of delays,
hidden nodes, activation functions and an efficient training algorithm [8] [19]. According to
[20], the aforementioned parameters can be found by trial and error. Regarding the training
algorithm, LMBP was utilized in [8]; LMBP has fast convergence and accuracy [11] [21].

2.5 Multiple-Step ahead Interference Prediction

In [22] a performance comparison of several deep learning models for time series prediction is
presented. The main architectures presented in this article are convolutional neural networks,
long short-term memory cells (LSTM), bidirectional LSTM networks and encoder-decoder
LSTM (ED-LSTM). The main finding in the article is that the ED-LSTM had the best perfor-
mance in regards of time series prediction. For this reason, LSTM and ED-LSTM architectures
will be explored in Subsection 2.5.1 and Subsection 2.5.2.

2.5.1 Long Short-Term Memory model

Recurrent neural networks are difficult to train, their main drawback is the exploding/vanishing
gradient problem [23], which is common when learning long-term dependencies [24]. To
overcome this problem, the LSTM architecture was introduced in [25].

The basic LSTM cell is called vanilla LSTM cell. It is composed of an input gate, an output
gate, a forget gate and a cell [26]. The forget gate is used to allow the network to reset its state
[27]. A key feature of LSTM neural networks is that they are capable of remembering values
while the gates are used to regulate the flow of information related with the cell. LSTM cells are
trained using supervised techniques using an adaptation of the BPTT (Backpropagation through
time) algorithm that considers the respective gates [25]. The vanilla LSTM cell architecture is

16

Figure 2.7. Long Short Term Memory Cell.

depicted in Figure 2.7.
According to [22], LSTM networks calculate a hidden state ℎ𝑡 with (2.26). In this set of

equations, 𝑖𝑡 , 𝑓𝑡 and 𝑜𝑡 are related to the input, forget and output gates respectively. 𝑊 and𝑈 are
the weight matrices. 𝐶𝑡 is the internal memory and �̃�𝑡 is a candidate hidden state.

𝑖𝑡 = 𝜎(𝑥𝑡𝑈 (𝑖) + ℎ𝑡−1𝑊
(𝑖)),

𝑓𝑡 = 𝜎(𝑥𝑡𝑈 (𝑓) + ℎ𝑡−1𝑊
(𝑓)),

𝑜𝑡 = 𝜎(𝑥𝑡𝑈 (𝑜) + ℎ𝑡−1𝑊
(𝑜)),

�̃�𝑡 = tanh(𝑥(𝑡)𝑈 (𝑔) + ℎ(𝑡−1)𝑊
(𝑔)),

𝐶𝑡 = 𝜎(𝑓𝑡𝐶𝑡−1 + 𝑖𝑡�̃�𝑡),
ℎ𝑡 = 𝑜𝑡 tanh(𝐶𝑡).

(2.26)

2.5.2 Encoder-Decoder LSTM networks

In [28], Sutskever et al. presented a novel neural network architecture: the ED-LSTM. They
demonstrated remarkably accurate translations from English to French. It is important to note
that this architecture allows mapping of sequences with different lengths. It is possible to have
as an input sequence an audio recording and as output sequence the text corresponding to the
conversation in the recording, this is useful to generate closed captions automatically. According
to [22], mapping sequences of different lengths, is equivalent to estimating the conditional
probability of an output sequence [𝑦1,𝑦𝑞] given an input sequence [𝑥1, ..., 𝑥𝑛]. The ED-
LSTM architecture is shown in Figure 2.8. In the context of the wireless communications, 𝑛
inputs can be used for the past samples and 𝑞 samples as the forecasts of any variable of interest.

17

Figure 2.8. ED-LSTM network.

18

3 ARTIFICIAL INTELLIGENCE FOR NONLINEAR CLOSED-LOOP
CONTROL

Control systems are designed to modify the behavior of a system to perform in a desired way
[29]. Examples of day-to-day life are: air conditioner (temperature control), steering control
of a car, aircraft flight path control system, etc. Considering the air conditioner, elements to
modify the temperature are needed, known as actuators. To make sure the desired temperature
has been reached, sensors are needed. The last required element is the control software/logic.
It is important to note that the air conditioner is going to keep the desired temperature even if a
perturbation has been introduced in the room, this is a key feature of control systems.

3.1 Basic Concepts in Control

According to [30] a control system is an interconnection of components forming a system
configuration that will provide a desired system response. In control theory, a cause-effect
behavior is assumed for components of a system [30]. This behavior is represented in Figure
3.1. There are two types of control systems if we sort them by the existence of a feedback loop:
open-loop and closed-loop control systems. An open-loop control system is shown in Figure
3.2; the controller is used to obtain a desired response but there is no mechanism (sensors and
feedback loop) to verify the state of the process. In other words, there is no way to verify that
the actual output of the process is the same as the desired output response.

A closed-loop control system is shown in Figure 3.3, the feedback mechanism allows the
control system to compare the actual output with the desired output. In addition, having a
feedback mechanism implies that perturbations in the process are continuously managed by the
controller [29]. A feedback control system often uses a function of a prescribed relationship
between the output and reference input to control the process [30].

3.2 PID Controller

The most popular controller used in process industries for closed loop is the PID controller [31].
PID stands for Proportional, Integral and Derivative. According to [32], 97% of the regulatory
controllers in industry use the PID algorithm. The PID controller reacts proportionally to the
error, integral of the error and derivative of the error [29]; hence it is known as the three term
controller. The PID controller in the time domain is defined by

𝑢(𝑡) = 𝐾𝑝
(
𝑒(𝑡) + 1

𝑇𝑖

∫ 𝑡

0
𝑒(𝑡)𝑑𝑡 + 𝑇𝑑

𝑑𝑒(𝑡)
𝑑𝑡

)
, (3.1)

Figure 3.1. Process under control.

19

Figure 3.2. Process under control.

Figure 3.3. Process under control.

where 𝑢(𝑡) is the control signal, 𝐾𝑝 is a proportionality factor, 𝑒(𝑡) is the difference between the
plant output and the reference, 𝑇𝑖 is integration time and 𝑇𝑑 is derivative time.

The expression in (3.1) can be rewritten as [29]

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖
∫ 𝑡

0
𝑒(𝑡)𝑑𝑡 + 𝐾𝑑

𝑑𝑒(𝑡)
𝑑𝑡

,

𝐾𝑖 =
𝐾𝑝

𝑇𝑖
,

𝐾𝑑 = 𝐾𝑝𝑇𝑑 .

(3.2)

Consider (3.2), after simple manipulations the transfer function 𝐺PID of a PID controller is
obtained and it is equal to

𝐺PID(𝑠) =
𝑈 (𝑠)
𝐸 (𝑠) = 𝐾𝑝 +

𝐾𝑖

𝑠
+ 𝐾𝑑𝑠. (3.3)

From (3.3) it can be noted that a PID controller adds one pole and two zeros to the plant. An
example of a PID controller and plant is shown in Figure 3.4. The PID controller is depicted
inside the blue dashed rectangle; note the presence of a feedback connection and how the error
signal is fed into the terms of PID controller. An integrator is represented as 1

𝑠
and a derivator

is expressed as 𝑠 in frequency domain.
The main goal of a controller is to make the plant reach a desired reference. Figure 3.5 shows

the input reference signal 𝑢(𝑡) and the plant output 𝑦(𝑡) for the example of Figure 3.4. The
figure demonstrates it takes around 𝑡 = 5s for the plant output to reach the reference.

3.3 Model Reference Adaptive Controller

Adaptive control is a technique used for adjusting parameters in real-time in order to maintain a
desired level of performance when the parameters of the system are unknown and/or change with

20

Figure 3.4. PID controller and plant.

time [33]. Model reference adaptive control (MRAC) offers considerably higher performance
when compared to conventional closed-loop feedback control [34]. The block diagram of
an MRAC system is depicted in Figure 3.6, the MRAC system comprises a reference model,
controller, plant and adjustment mechanism. The controller and plant form an inner loop,
and the reference model and adjustment mechanism form an outer loop [34]. The outer loop
provides the adaptive capabilities of an MRAC controller and the inner loop is typical in
conventional feedback control. MRAC controllers are capable of adjusting the variables of the
system dynamically by comparing the plant output with the reference response (obtained with
the reference model) [35].

Note that inner and outer loops in in Figure 3.6 have been highlighted in blue and orange
respectively. A reference signal 𝑟 is sent to the controller which produces a control signal𝑈 for
the plant, then the plant output 𝑌𝑝 is compared to the reference signal 𝑌𝑚 to obtain the output
error which is sent to the outer loop for the adaptive law/mechanism to adjust dynamically
controller parameters. In the following subsection a technique to solve MRAC with MIT rule
will be explained.

3.3.1 MIT Rule

MRAC was first proposed by Whitaker in 1950’s [33]. MIT developed a rule for the adaptive
law of an MRAC controller namely the MIT rule. This technique became the main method to
solve MRAC.

Let’s define the output error 𝑒 as the difference between the plant output𝑌𝑝 and and the model
output 𝑌𝑚, this definition is consistent with Figure 3.6. The output error is then given by

𝑒 = 𝑌𝑝 − 𝑌𝑚 . (3.4)

The main goal is to minimize the error, a cost function 𝐽 (𝜃) (where 𝜃 is the adaptable parameter)
has to be defined. The cost function is expressed as

21

Figure 3.5. Reference and plant output.

𝐽 (𝜃) = 1
2
𝑒2(𝜃). (3.5)

Parameter 𝜃 needs to be adjusted so that the cost function is minimized, this implies that changes
in parameter 𝜃 are made in the direction of the negative gradient of 𝐽 (𝜃) [36], that is

𝜕𝜃

𝜕𝑡
= −𝛾 𝜕𝐽

𝜕𝜃
. (3.6)

After replacing (3.5) in (3.6) we obtain

𝜕𝜃

𝜕𝑡
= −𝛾𝑒 𝜕𝑒

𝜕𝜃
, (3.7)

where the term 𝜕𝑒
𝜕𝜃

is known as the sensitivity derivative, which describes changes in error
with respect to the adjustable parameter 𝜃. The 𝛾 factor represents the adaptation gain of the
controller. Figure 3.7 shows a Simulink® example of MRAC controller presented in [36].
Simulation results of MRAC controller in Figure 3.7 are depicted in Figure 3.8. Note how the
plant response is equal to the model reference output after 25 seconds. The current adaptation
rate in this example is 0.5. Increasing adaptation rate value would ensure faster convergence but
might cause plant instability.

3.4 Neural Network Control Systems

Hagan M. and Demuth H. presented several neural control architectures in [37]. The three
main architectures discussed in this work are: Model Predictive control (MPC), Feedback

22

Figure 3.6. Block diagram of MRAC controller.

Linearization control and Model Reference Adaptive Control.
There are two steps required for neural control training: Plant identification and control

design [37]. In the plant identification, a neural network is trained to mimic the behavior
of the plant we are intended to control (neural plant), the control design stage depends on
the neural controller architecture of choice. According to [37], MPC requires a plant model
(obtained in plant identification) to predict future states of the plant, an optimization algorithm
is also required to determine which control command optimizes future performance. Feedback
linearization requires to rearrange the neural plant after it has been trained. In MRAC a neural
plant is used to train the controller.

3.4.1 Neural Predictive Control

A predictive controller is depicted in Figure 3.9. The predictive controller is a combination
of a neural plant and an optimization algorithm. The neural plant is used to predict future
behavior of the real plant, the optimization algorithm determines the control input that gets the
best performance out of the plant.

Regarding system identification, neural networks are utilized since they have the capacity
of capturing nonlinear dynamics [38]. It is recommended to use a neural network architecture
that uses previous control inputs and plant outputs to predict the future plant responses, that is
a dynamic neural network. Training must be performed offline using historical data. Although
many neural network architectures are suitable to be trained as a neural plant, the NARX
architecture was chosen due to its simple structure and reliable performance.

Regarding the predictive control, the optimization algorithm is key for a high-performing
controller. A promising optimization algorithm implementation is presented by Soloway and
Haley in [39]; this work shows how a Generalized Predictive control algorithm is derived using
the Newton-Raphson method as optimization algorithm. The goal of a predictive controller is
to minimize a cost function over a finite prediction horizon. The cost function is shown in (3.8)
[39].

23

Figure 3.7. Simulink model of MRAC controller.

𝐽 =

𝑁2∑︁
𝑗=𝑁1

[𝑦𝑚 (𝑛 + 𝑗) − 𝑦𝑛 (𝑛 + 𝑗)]2 +
𝑁𝑢∑︁
𝑗=1
𝜆(𝑗) [Δ𝑢(𝑛 + 𝑗)]2

+
𝑁𝑢∑︁
𝑗=1

[𝑠

𝑢(𝑛 + 𝑗) + 𝑟
2 − 𝑏 + 𝑠

𝑟
2 + 𝑏 − 𝑢(𝑛 + 𝑗) − 4

𝑟

],
(3.8)

where 𝑁1 is the minimum costing horizon, 𝑁2 is the maximum costing horizon, 𝑁𝑢 is the control
horizon, 𝑦𝑚 is the reference, 𝑦𝑛 is the predicted response of the neural network, 𝜆 is the control
input weighting factor, Δ𝑢(𝑛 + 𝑗) represents variation in 𝑢 which is 𝑢(𝑛 + 𝑗) − 𝑢(𝑛 + 𝑗 − 1), s
is the sharpness of the corners of the constraint function, r is the range of the constraint, and
b is an offset to the range. It is important to note that 𝑁1 and 𝑁𝑢 must be less or equal to 𝑁2.
The first summation represents the error between the predicted output and the reference. The
second summation is necessary to make sure we perform as little variations in the control input
as possible. The third summation refers to the shape of constraint function. In [38] a simplified
version of (3.8) was used; the reduced version is

𝐽 =

𝑁2∑︁
𝑗=𝑁1

[𝑦𝑚 (𝑛 + 𝑗) − 𝑦𝑛 (𝑛 + 𝑗)]2 + 𝜆
𝑁𝑢∑︁
𝑗=1

[Δ𝑢(𝑛 + 𝑗)]2. (3.9)

Note that 𝜆 in (3.9) is no longer a function of time step. The cost function 𝐽 in (3.9) should be
minimized with respect to the sequence of control commands [𝑢(𝑛+1), 𝑢(𝑛+2), ..., 𝑢(𝑛+𝑁𝑢)]𝑇
namely U as specified by the Newton-Rhapson algorithm [39]. 𝐽 is minimized in an iterative
manner to find optimal U. This iterative process produces intermediate values of 𝐽, namely
𝐽 (𝑘), where k represents the iteration number. Every iteration of 𝐽 (𝑘) has a corresponding
U(𝑘) which is denoted by

U(𝑘) = [𝑢(𝑛 + 1), 𝑢(𝑛 + 2)..., 𝑢(𝑛 + 𝑁𝑢)]𝑇 , 𝑘 = 1, 2..., 𝑁iter, (3.10)

24

Figure 3.8. Reference and Plant output.

Figure 3.9. Neural Predictive controller.

where 𝑁iter represents the number of iterations. The Newton-Raphson method consists mainly
of an update rule that in this case must be applied to U as

U(𝑘 + 1) = U(𝑘) − (𝜕J2

𝜕U2 (𝑘))
−1 𝜕J
𝜕U

(𝑘). (3.11)

The most challenging task in the iterative computations of (3.11) is obtaining the inverse of the
Hessian function, the 𝑚 − th and ℎ − th elements of the Hessian were derived in [38], they can
be calculated as

25

Figure 3.10. Simulink model of a neural predictive controller.

𝜕2𝐽

𝜕𝑢(𝑛 + 𝑚)𝜕𝑢(𝑛 + ℎ) = 2
𝑁2∑︁
𝑗=𝑁1

{𝜕𝑦𝑛 (𝑛 + 𝑗)
𝜕𝑢(𝑛 + 𝑚)

𝜕𝑦𝑛 (𝑛 + 𝑗)
𝜕𝑢(𝑛 + ℎ)

− 𝜕2𝑦𝑛 (𝑛 + 𝑗)
𝜕𝑢(𝑛 + 𝑚)𝜕𝑢(𝑛 + ℎ) [𝑦𝑚 (𝑛 + 𝑗) − 𝑦𝑛 (𝑛 + 𝑗)]}

+ 2
𝑁𝑢∑︁
𝑗=1
𝜆(𝑗){𝜕Δ𝑢(𝑛 + 𝑗)

𝜕𝑢(𝑛 + 𝑚)
𝜕Δ𝑢(𝑛 + 𝑗)
𝜕𝑢(𝑛 + ℎ)

+ Δ𝑢(𝑛 + 𝑗) 𝜕2Δ𝑢(𝑛 + 𝑗)
𝜕𝑢(𝑛 + 𝑚)𝜕𝑢(𝑛 + ℎ) }.

(3.12)

The Figure 3.10 shows a Simulink® model of a neural predictive controller. For this example,
a catalytic continuous stirred tank reactor has been used.

For simplicity, a mask has been used at the neural predictive controller. A detailed description
of the neural predictive controller is shown in Figure 3.11. The neural network model is a clone
of the real plant, it is not capable of producing control commands. Control commands are
generated in the block predopt which makes use of plant model predictions to calculate the
future performance to choose the best possible control command using the Newton-Raphson
method. This example demonstrates a neural predictive controller, plant output and reference
are shown in Figure 3.12, the plant has an oscillatory response but recall it is a nonlinear plant,
stabilizing such plant is a complex task; the neural predictive controller reduces the difficulties
of the controller design to the training of neural plant with plant inputs and responses.

3.4.2 Feedback Linearization Control

The key feature of NARMA-L2 control, is the ability to transform nonlinear dynamics into linear
dynamics. This is done by cancelling nonlinearities [40]. The NARMA model is a discrete
representation of a nonlinear dynamical system in neighborhood of the equilibrium state [40].
According to [41], for an 𝑛 − th order nonlinear SISO system, the comapnion form of NARMA
is written as

𝑦(𝑘 + 𝑑) = 𝐹 [𝑦(𝑘), 𝑦(𝑘 − 1), ...𝑦(𝑘 − 𝑛 + 1),
𝑢(𝑘), 𝑢(𝑘 − 1), ..., 𝑢(𝑘 − 𝑛 + 1)], (3.13)

26

Figure 3.11. Simulink subsystem of neural predictive controller.

where 𝑢(𝑘) is the system input (control signal), 𝑦(𝑘) is the system output (plant output) and
𝑑 is the degree, which in turn represents the delay between the system input and the system
output; (3.13) is useful for system identification but according to [40], model in (3.13) is not
useful to compute the system input/control signal because it is a solution of the inverse dynamics
problem. There is a solution to this problem presented in [41], using linear approximations of
NARMA, namely NARMA L2. To design a NARMA L2 controller, consider the reference
trajectory 𝑦𝑟 (𝑘 + 𝑑) and the system output 𝑦(𝑘 + 𝑑), ideally 𝑦(𝑘 + 𝑑) = 𝑦𝑟 (𝑘 + 𝑑), that means
our system (the plant) is following the reference trajectory. Then, a nonlinear controller must
have the form

𝑢(𝑘) = 𝐺 [𝑦(𝑘), 𝑦(𝑘 − 1), ...𝑦(𝑘 − 𝑛 + 1), 𝑦𝑟 (𝑘 + 𝑑)
𝑢(𝑘 − 1), ..., 𝑢(𝑘 − 𝑚 + 1)] . (3.14)

One of the goals of this thesis is to build a neural controller. A neural network needs to be trained
with dynamic backpropagation to mimic the function 𝐺 in (3.14) [42]; using dynamic back-
propagation is a time consuming process, for this reason an approximation of the NARMA-L2
model is proposed in [43] by Narendra et al. The approximate NARMA-L2 model (companion
form) is

�̂�(𝑘 + 𝑑) = 𝑓 [𝑦(𝑘), 𝑦(𝑘 − 1), ...𝑦(𝑘 − 𝑛 + 1), 𝑢(𝑘 − 1), ..., 𝑢(𝑘 − 𝑚 + 1)]
+ 𝑔[𝑦(𝑘), 𝑦(𝑘 − 1), ..., 𝑦(𝑘 − 𝑛 + 1), 𝑢(𝑘 − 1), ..., 𝑢(𝑘 − 𝑚 + 1)]𝑢(𝑘). (3.15)

(3.15) can be solved for the control command 𝑢(𝑘) [44]. Then, the controller that follows the
reference 𝑦𝑟 (𝑘 + 𝑑) is described by (3.16).

𝑢(𝑘) = 𝑦𝑟 (𝑘 + 𝑑) − 𝑓 [𝑦(𝑘), 𝑦(𝑘 − 1), ..., 𝑦(𝑘 − 𝑛 + 1), 𝑢(𝑘 − 𝑛 + 1), 𝑢(𝑘 − 1), ..., 𝑢(𝑘 − 𝑛 + 1)]
𝑔[𝑦(𝑘), 𝑦(𝑘 − 1), ..., 𝑦(𝑘 − 𝑛 + 1), 𝑢(𝑘 − 1), ..., 𝑢(𝑘 − 𝑛 + 1)]

(3.16)

27

Figure 3.12. Plant output and reference after neural predictive control.

From (3.15) and (3.16), we can see that the NARMA-L2 controller requires two functions to be
computed: 𝑓 (𝑢, 𝑦) and 𝑔(𝑢, 𝑦). For this reason, a neural implementation of the NARMA-L2
controller requires in turn two neural networks to approximate both 𝑓 and 𝑔 functions. Imple-
mentation of NARMA-L2 controller is shown in Figure 3.13. Note that neural approximations
of both 𝑓 and 𝑔 functions are enclosed in dashed blue lines and they do not require a deep neural
network. Previous outputs of the plant (𝑌 (𝑡 + 1)), previous control commands (𝑢(𝑡 + 1)) and the
reference trajectory (𝑌𝑛) are used to compute the next control command 𝑢(𝑡 + 2) .

As demonstration, a magnetic levitation System was presented in [44] to test efficacy of neural
controllers. The goal of this system is to control the height of a magnet using an electromagnet.
The equation of motion is given by

𝑑2𝑦(𝑡)
𝑑𝑡2

= −𝑔 + 𝛼

𝑀

𝑖2(𝑡)sgn[𝑖(𝑡)]
𝑦(𝑡) − 𝛽

𝑀

𝑑𝑦(𝑡)
𝑑𝑡

, (3.17)

where 𝑦(𝑡) is the height of the magnet above the electromagnet, M is the mass of the magnet,
g is the gravity constant and i(t) is the current flowing into the electromagnet. 𝛽 is a friction
coefficient and 𝛼 is the field strength constant. The Simulink system model for simulation is
shown in Figure 3.14 and response of the example plant is shown in Figure 3.15.

3.4.3 Neural MRAC

Model Reference Adaptive Controllers were introduced in Section 3.3. In this section, a neural
implementation of MRAC will be showcased. For a neural MRAC system, two key elements are
needed; a neural plant replicating the real plant and a neural controller to produce the required
control input to achieve the desired reference output by the real plant. The block diagram for an
MRAC system is shown in Figure 3.16. A key feature of neural MRAC control systems is the
ability to model both the plant and the controller as neural networks. This is remarkably useful
for the purposes of this thesis since the neural plant can be used to predict future plant outputs

28

Figure 3.13. Neural implementation of NARMA-L2.

Figure 3.14. Simulink model for NARMA-L2 simulation

and therefore control commands can be prepared in advance.
Regarding the neural controller, a feedforward dynamic neural network can be used. To

model the plant, a NARX neural network is commonly utilized.
As an illustration example, a neural MRAC controller is used with a robot arm presented by

Hagan et al. in [44]. The equation that describes the motion of the arm is

𝑑2𝜙

𝑑𝑡2
= −10 sin 𝜙 − 2

𝑑𝜙

𝑑𝑡
+ 𝑢, (3.18)

where 𝑢 is the torque provided by the electric motor of the arm and 𝜙 is the angle of the arm.
The objective is to control the angle of the robot arm. The reference model in use is

𝑑2𝑦𝑟

𝑑𝑡2
= −9𝑦𝑟 − 6

𝑑𝑦𝑟

𝑑𝑡
+ 9𝑟, (3.19)

where 𝑟 is the reference signal and 𝑦𝑟 is the output of the reference model. This reference model
was also developed in [44].

29

Figure 3.15. Plant output and reference using NARMA-L2 controller.

Figure 3.16. Neural implementation of NARMA-L2.

Plant identification has to be performed before training the controller. For this example, the
plant inputs and outputs were obtained by sending random reference signals to the real plant and
recording both for the neural plant training. The set of random inputs of the real plant and their
corresponding plant responses are plotted in Figure 3.17.

To train the controller, the trained neural plant is used once the plant identification has been
completed. It is also needed to generate data with the reference model using random inputs and
their plant responses. The combined operation of neural controller and neural plant has to be
considered, both should be combined in series as depicted in Figure 3.18. The actual controller
consists of the first 2 layers which correspond to a feedforward neural network while the neural
plant comprises the 2 subsequent layers. Note that the neural plant segment should be kept intact
during training, learning for this segment must be disabled. After successful training, the neural
controller and neural plant must be separated. In normal scenarios only the neural controller is
used, but for the purposes of this thesis, the neural plant will be re-used to obtain predictions of
the future plant states. Figure 3.19 shows the plant output after neural control. Note the absence
of spikes and oscillatory behavior; the MRAC controller was chosen for the final design due to
its smooth plant responses and the fact that its training process delivers neural networks for both
controller and plant.

30

Figure 3.17. Random plant inputs and real plant response.

Figure 3.18. MRAC system structure for training in MATLAB.

Figure 3.19. Plant output after neural control.

31

4 AI-BASED PROPOSED SOLUTION AND RESULTS

This chapter presents the core structure of the proposed solution at the system level and the
description of its components. The interaction and working principle of these blocks are also
explored.

4.1 System Model Description

Consider the Figure 4.1, there is a controller, a plant, and a sensor in a widely known feedback
control configuration. Although, there is a difference with the classical configuration: a wireless
link is used instead of a wire to interface the controller and the plant. This wireless link is
represented by dashed lines. In this proposal, the controller-plant communication is considered
to be unreliable due to its wireless nature. On the other hand, the plant-sensor communication
is wired and therefore it is reliable. The wireless channel is Rayleigh-faded with 𝑁 interferers
and to keep the latency as low as possible, a single-shot transmission scheme is used.

The purpose of this thesis is to design a system capable of wireless control with two key
features: ensuring plant stability in the presence of interference and maximizing energy effi-
ciency. These targets cannot be reached with a classical PID controller, to tackle the challenges
imposed by the interference in the wireless channel, an innovative system based on deep learning
is presented. An MRAC neural controller, a neural plant and a neural interference predictor
comprise the proposal for a wireless channel interference predictor and wireless remote control.
These neural components were gathered as a replacement of a classical controller. The pro-
posed system is shown in Figure 4.2; note that wireless sensing capabilities are also present at
the controller.

The neural plant consists of a nonlinear autoregressive neural network with exogenous input,
its function is to mimic behaviour of the real plant. It is used to make predictions of future
plant responses based on the current plant state and latest control signal fed into the real plant.
The neural plant only predicts one-step ahead, that is, it produces one prediction per time
step. It might seem inconvenient to get only 1 prediction per time step, but this is rather
advantageous because every plant response must have a corresponding control command; after
a plant response prediction is completed, the corresponding control command is computed at
the neural controller, this control command is saved in cache and sent as input to the neural plant
which produces a forecast and the process starts over again. Using a neural network for the neural
plant requires historical data but allows the designer to avoid approximations, linearization, or
complex mathematical modelling for nonlinear plants. The neural controller replaces the normal
function of a controller by tracking a reference signal, the advantage of using a neural version

Figure 4.1. System Model.

32

Figure 4.2. System Model.

that is also an MRAC is that input and outputs required for training are defined by the desired
behaviour of the plant, i.e., the reference model of the plant. Regarding the wireless capabilities,
a neural network based on LSTM cells in an encoder-decoder architecture was used to predict
the future interference power. These predictions depend on 5 past interference power values to
predict the interference for the next 10 samples; for this reason, wireless sensing is needed. This
neural network is referred as neural interference predictor. The module formed by the neural
interference predictor and wireless sensing is called the neural wireless module. The neural
controller and neural plant comprise the neural control module. Both the neural wireless module
and neural control module compose a bigger system, the Neural Engine (NE).

4.2 Setting up simulation

There are two main stages related to the simulation: energy optimization and Simulink model.
The first stage consists of optimizing energy consumption by choosing the future control com-
mands that are transmitted at the beginning of the prediction window. Future control commands
are computed by the neural controller as functions of neural plant predictions. Recall that this
design utilizes a 10-step ahead prediction window for both control and interference forecasts;
choosing the future control commands requires solving an optimization problem that takes fore-
casts in the window as input. The optimization problem is further discussed in Subsection
4.2.1.

For the second stage, Simulink is used due to its capacity for modelling neural networks,
controllers and plants. The Simulink model encompasses the neural control system depicted
in Figure 4.2, real and predicted interference and the results of optimization of the first stage.
Details of the Simulink model are further explored in Subsection 4.2.2

4.2.1 Optimization Problem

Consider a prediction window of interference values I = 𝑖1, 𝑖2, ..., 𝑖𝑁 , predicted control com-
mands C = 𝑐1, 𝑐2, ..., 𝑐𝑁 and time steps T = 𝑡1, 𝑡2, ..., 𝑡𝑁 , where 𝑁 is the length of the window;
also the transmission of a control command is considered to be successful if the target SINR

33

is reached. The set of transmission power values required to achieve the target SINR in an
entire prediction window is represented by P = 𝑃1, 𝑃2, ..., 𝑃𝑁 . Energy efficiency is guaranteed
by minimizing the total power needed for successful transmissions 𝑃𝑇 =

∑𝑁
1 𝑃𝑛. Interference

predictions allow computation of P at time 𝑡0. The ED-LSTM neural network that composes
the interference predictor produces forecasts for 10 time steps, i.e 𝑁 = 10 for this design (see
Subsection 4.3.4 for a technical justification of this value). The set of commands that ensure
minimal power consumption is Cs and it is transmitted at 𝑡1. Cs is calculated as

Cs = C𝑇Y, (4.1)

where Y is a vector with elements 0 ≤ 𝑌𝑛 ≤ 1. If 𝑌3 and 𝑌10 are equal to 1 then the third and
tenth elements of C are transmitted at 𝑡1, in other words, only the non-zero elements of Cs are
transmitted at 𝑡1. The remaining elements of C are transmitted in real time, if 𝑌4 = 0 the fourth
element in C is transmitted at 𝑡4. The vector C in (4.1) is computed at the neural controller; the
remaining question is how to compute Y. Calculating Y requires an optimization problem that
considers the power needed to compute the control commands in addition to transmission power,
for this reason the vector X is defined where the 𝑛-th element of X is called 𝑋𝑛. If 𝑋6 is equal to
1, that implies the sixth element of C is computed. Control commands are calculated recursively
at the neural controller, this has a very important implication; a control command 𝐶𝑛, requires
previous commands 𝐶𝑛−𝑘 , 𝐶𝑛−𝑘+1, ..., 𝐶𝑛−2, 𝐶𝑛−1 to be computed. All these considerations are
presented in the optimization problem

min
𝑋𝑛,𝑌𝑛

(𝑃𝑠1)𝑇X + (𝑃11)𝑇Y + Pn
𝑇 (1 − Y)

s.t. 0 ≤ 𝑋𝑛 ≤ 1
0 ≤ 𝑌𝑛 ≤ 1
𝑌𝑛 ≤ 𝑋𝑛

𝑋𝑛+1 ≤ 𝑋𝑛

(4.2)

where,
𝑋𝑛: Value of 1 to enable computation of n-th plant state (and n-th control command)
X: Sequence of 𝑋𝑛 values. Length of this vector is 10.
𝑌𝑛: Value of 1 to transmit the 𝑛-th control command. This vector is telling us which control
commands are going to be transmitted to reduce power consumption.
𝑃𝑠: Power needed to make a neural plant prediction (One Step).
𝑃1: Power needed to transmit a message at time step 1 (First Prediction). This value is obtained
taking in consideration the SINR needed to achieve the target rate.
𝑃𝑛: Power needed to transmit a message at time step n. This value is obtained taking in consider-
ation the SINR needed to achieve the target rate. To calculate this, wireless channel predictions
(ED-LSTM) are used.

This problem is a linear program, due to the amount of constraints it is recommended to
solve it using numerical methods. In this work, the solution to the problem was found using
MATLAB linprog command.

34

Figure 4.3. Simulink model for neural predictor.

4.2.2 Simulink Model

The Simulink model is composed of 3 main building blocks: a predictive control block, a neural
controller for real time control and the real plant. These elements are bonded by MATLAB
script blocks that handle switching operations between the real and neural plant and inter-block
communication.

The predictive control block is shown in Figure 4.3, it consists of a switch, a neural controller
(prediction) and the neural plant. The switch is implemented by the fcn block which is a custom-
made script inside a Simulink block. The switch is used to select either the output of the real
or the neural plant as input of the neural controller. Real plant responses are selected by the
switch during real time control to get updated information on the current state of the plant; when
computing future control commands, the neural plant is used instead for recursive calculations
of control commands. Note that the real plant is not inside this block. The real and neural
plant responses are captured through the ports real_plant_output and u respectively. The choice
depends on the boolean variable prediction_mode3, if true, then the output of the neural plant
is fed as input for the neural controller and the output of the real plant is used otherwise. Note
that the fcn block also considers prediction saturation (Predictor_saturated). The predictor is
considered to be saturated if the prediction horizon (countHorizon) is reached. Experimentally,
this prediction horizon has been found to be 60, in other words, 60 control commands can be
predicted without causing considerable deviation of the plant output with respect to the reference
signal. Exceeding the threshold of 60 caused severe prediction errors at the neural plant, this
finding is further discussed in Subsection 4.3.4. Regarding the neural controller, the MRAC
type is used. Its structure was demonstrated at the functional block level in Figure 3.18. In
addition, the neural plant uses the NAR architecture.

For the real plant, the dynamics for a ship steering system are given by

¤𝑦 = 9𝑢(𝑡) − 𝑦3 − 0.8𝑦, (4.3)

where 𝑦(𝑡) is the output signal of the plant and 𝑢(𝑡) is the input signal of the plant. These
dynamics can be represented in a Simulink model as depicted in Figure 4.4.

According to [45], for this ship-steering system, it is recommended to use the reference model

35

Figure 4.4. Simulink model for the real plant.

¤𝑦𝑚 + 2𝑦𝑚 (𝑡) = 2𝑟 (𝑡), (4.4)

where 𝑟 (𝑡) is a reference input signal between [−1, 1] and 𝑦𝑚 is the output of the plant.

4.3 Results

This section is divided in two subsections. In the first one, the performance of the wireless
interference predictor will be explored. In the latter one the combined performance of the
wireless module and the control system will be showcased.

4.3.1 Interference Prediction Results

Recall that the interference predictor takes five past samples of measured interference power
as inputs to forecast up to ten upcoming interference values. Figure 4.5 provides an insight of
the real and predicted values using a prediction horizon of 10. The performance of the neural
interference predictor was evaluated by measuring accuracy of predicted interference power
using mean squared error (MSE) and mean absolute percentage error (MAPE). Mean square
error is given by

MSE =
1
𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − �̂�𝑖)2, (4.5)

and mean absolute percentage error is calculated as

36

Figure 4.5. Real and predicted interference.

MAPE =
1
𝑛

𝑛∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖 |
𝑦𝑖

× 100, (4.6)

where 𝑦𝑖 and �̂�𝑖 represent the real and predicted interference values respectively [8].
The MSE and MAPE for different prediction horizons are shown in Table 4.1. Note that

higher prediction horizons lead to increased prediction errors. This behavior is expected since
predicting farther in the future is more effortful than predicting immediate events. To realize
the positive impact of reducing the prediction horizon in the prediction errors see the forecasts
made with a prediction horizon of 1 in Figure 4.6. While there is a noticeable improvement in
performance when using a small prediction horizon, it is preferable to have a large prediction
horizon as will be demonstrated in Subsection 4.3.4. Predicting interference farther in the future
allows the controller to compute and send future control commands; this is crucial to achieve
power savings and to ensure plant stability amidst interference.

For the final version of the wireless-control system a neural interference predictor with ED-
LSTM architecture and a prediction horizon of 10 steps was used. The sampling period of the
simulation is 0.05 seconds, which for a prediction horizon of 10 is equivalent to 0.5 seconds
available for computation and transmission of future control commands; this period of time
makes the transmission feasible but fast computations and short delays are needed.

4.3.2 Performance of Alternative Interference predictors

The neural interference predictors presented in this subsection are not part of the final design.
However, they have many potential applications in the wireless communication domain that
might be of interest for the reader. The first architecture that was evaluated is the NAR presented
in Section 2.4. This architecture was utilized in [8] as a novel method for interference prediction.

37

Figure 4.6. Real and predicted interference with a prediction horizon of 1.

Results in [8] were replicated as part of the selection process of the neural predictor for the final
design. Figure 4.7 depicts the real interference power and predictions made by a NAR neural
network. These results were achieved with a prediction horizon of 1 step. The MAPE for this
experiment was 7.83% which makes the NAR performance very close to the 7.07% obtained
by ED-LSTM in Subsection 4.3.1 for the case of one-step ahead prediction. Although both
architectures have similar performances, the NAR architecture is far less complex. The NAR
neural network consists of a shallow neural network with 17 neurons while the ED-LSTM has
many dozens of neurons making the NARNN the least computationally expensive prediction
method. The NAR arquitecture was abandoned for the reason that there is no use for NAR
model in the context of multi step ahead prediction of interference; this model only produces
one output which is ahead in time 𝑛 steps. In contrast, the ED-LSTM produces predictions for
every 𝑛𝑖 step in the prediction horizon, which is a richer set of information that allows scheduling
transmission of control commands for maximum energy efficiency.

To evaluate the performance of the wireless predictor, instantaneous error 𝐸𝑖 (𝑛) is used with
the definition

𝐸𝑖 (𝑛) =
|𝐼𝑝 (𝑛) − 𝐼𝑟 (𝑛) |

|𝐼𝑟 |
× 100, (4.7)

Table 4.1. MSE and MAPE for different number of prediction steps

Metric 1 2 3 4 5 6 7 8 9 10
MSE 0.09 0.54 0.82 0.9161 1.66 2.26 2.75 3.13 3.41 3.57
MAPE 7.07 9.31 11.96 16.95 19.82 23.22 25.96 27.57 28.57 29.32

38

Figure 4.7. Real and predicted interference with a NAR model.

where 𝐼𝑝 (𝑛) is the predicted interference power and 𝐼𝑟 (𝑛) is the real interference. Figure 4.8
illustrates the CDF of the prediction errors. It can be noted that 90% of samples have a percentage
error 𝐸𝑖 of 7.5% or less for a control horizon of 1 and 𝐸𝑖 of up to 50% for a control horizon of
10. In addition, the highest values for 𝐸𝑖 are 242% and 550% for control horizons of 1 and 10
respectively.

Another relevant prediction architecture is a variant of the NAR model, the Nonlinear Au-
toregressive with Exogenous input model (NARX). In this model, a time series is used for one
of the inputs and the output; but the exogenous input should be selected to be a variable related
to the time series. For this experiment, the output of the neural network was fed back to the
exogenous input. This might seem counter intuitive to the norm but doing this ensures that the
neural network uses information of both past and new samples. The NARX predictor achieved
a MAPE of 7.28% for one-step ahead prediction which is on par with the 7.83% of the NAR
predictor. Experiments showed that the NARX predictor produced forecasts with MAPE of
29.6% for 2-step ahead prediction. For this reason, the NARX architecture is not suitable for
the final version of the system.

4.3.3 Comparison of Interference Predictors

Three neural architectures were analyzed to find the most suitable model for interference pre-
diction. ED-LSTM, NAR and NARX architectures were compared based on their prediction
accuracy, complexity and maximum acceptable prediction horizon. Table 4.2 sets these archi-
tectures side by side. Regarding the prediction accuracy of these architectures, the ED-LSTM
exhibited the best performance of the three with a MAPE of 7.07% for one-step ahead prediction,
NAR and NARX displayed a MAPE of 7.83% and 7.28% which are nearly as low as ED-LSTM
errors. In addition, NAR and NARX are less complex than ED-LSTM; they were designed to
have 14 and 16 neurons respectively while the ED-LSTM was devised with 150 neurons. Up to
this point, NAR and NARX seem to be a more suitable choice for interference prediction but
there is a key advantage of ED-LSTM over NAR/NARX. The ED-LSTM model used as interfer-

39

Figure 4.8. Cumulative distribution function for interference prediction errors.

ence predictor in this thesis produces forecasts 𝑓 (𝑡1), 𝑓 (𝑡2), ... 𝑓 (𝑡𝑁) with a prediction horizon 𝑁
at time 𝑡0 while the NAR/NARX models are capable of providing only 𝑓 (𝑡1). Autoregresssive
models produce only 1 output regardless of the number of delays used at the input nodes, this
is a disadvantage since forecasts for the complete horizon are essential for optimizing energy
consumption.

The ED-LSTM was selected as the ultimate choice for the neural interference predictor
because of its accuracy and ability to produce forecasts for the complete prediction window. In
addition, it is capable of providing outputs with a different size than the input (in this design 5
inputs produce 10 outputs). Nevertheless, it is important to mention that both NAR and NARX
models might be suitable in other scenarios, if low processing power or a prediction horizon of
1 are needed, nonlinear autoregressive models should be preferred, their low complexity makes
them very appealing for such applications.

Table 4.2. Comparison of interference predictors

Architecture NAR NARX ED-LSTM
of Neurons 14 16 15 cells /150 neurons
of layers 2 2 4
Complexity Low (shallow NN) Low (shallow NN) High (Deep NN)
Past samples 3 3 5
Prediction Horizon 1 step 1 step 10 steps
MAPE 7.83% 7.28% 7.07 %(1 step)/ 29.32% (10 steps)

40

Figure 4.9. Reference and response of real plant.

4.3.4 Neural Engine Results

Wireless and control predictors were tested using Simulink. The response of the real plant in the
simulated system can be seen in Figure 4.9. The plant is able to follow the reference trajectory
when the neural controller is in use, it takes around two seconds to reach the reference signal, this
period of time is reasonable considering the plant model corresponds to a ship steering system.
Faster convergence in other applications is possible, it all depends on the reference model and
limitations imposed by the plant dynamics. Note the plant response has no oscillatory behavior
but there is a slight deviation from the reference when the reference signal reaches its top value
(0.5). These results demonstrate effective switching between the real and neural plant since
there isn’t any considerable deviation from the reference.

Regarding power consumption of the system, to measure the reduction in energy consumption
after optimization, a metric called 𝜂 has been defined and it is given by

𝜂 = 1 −
(𝑃11)𝑇Y + P𝑇𝑛Y + P𝑇𝑛Y

P𝑇𝑛1
, (4.8)

where 𝑃1 is the power needed to transmit a message at time step 1 (first prediction), 𝑃𝑛 is the
power needed to transmit a message at time step 𝑛, Y is a vector of length 10, same as the
prediction horizon of the system. Every element is actually an element of 𝑌𝑛, which needs
to be 1 in order to transmit the 𝑛-th control command at time step 1. 𝜂 values range from 0
to 1 and provide information on the percentage of improvement in energy consumption using
optimization compared to not using any optimization that is, if a value of 0.3 is obtained, that
means 30% improvement in energy usage achieved with optimization. This metric verifies
performance in a per-window basis. The experiments revealed an average 𝜂 of 0.8322 which
implies that power consumption has been reduced in roughly 17%.

It is also important to consider the impact of wireless communications failure on control

41

and plant states. Loss of control messages is equivalent to not providing a control signal in a
wired controller-plant system, this can cause the plant output to deviate from the reference. To
quantify deviation of the plant response with respect to the reference, a metric that stores the
accumulated difference between the reference and the real plant response has been defined as

𝐸𝑐 =

𝑁∑︁
𝑛=0

|𝑌𝑚 (𝑛) − 𝑌𝑟 (𝑛) |, (4.9)

where 𝐸𝑐 is the accumulated error, 𝑌𝑚 (𝑛) is the actual output of the plant, 𝑌𝑟 (𝑛) is the reference
and 𝑁 is the total number of time steps considered in the experiment. The lower the 𝐸𝑐, the
better the controller is. Every experiment in the final design was executed under different channel
conditions and using the same neural controller; the controller effectiveness can be impacted
by an abrasive wireless environment, the accumulated error 𝐸𝑐 might increase if there is low
transmission power available or if there is a high number of interferers.

The first set of results show the impact of the transmission power in the accumulated er-
ror,these results are presented in Figure 4.10. Note that different curves for predictive control
horizons have been considered; it is observed that the higher the control horizon window, the
lower the accumulated control error 𝐸𝑐. This is explained by the fact that some control messages
might not be delivered correctly specially in situations where the interference reaches peak
values, increasing the control horizon has one key implication: a higher number of control mes-
sages is sent in advance (at time step 𝑡1) this messages act as a backup in case of communication
failure. Note that not all control messages are sent at 𝑡1 and interference predictions are not
perfect, there is also the possibility of loss of communication for some time steps for which
corresponding commands were not sent at 𝑡1, when this happens, 𝐸𝑐 increases. Although this
design was targeted at energy efficiency, predictions have an additional benefit, they mitigate the
effects of the unreliable wireless channel in transmission of control commands.

From Figure 4.10 can also be seen that 𝐸𝑐 is reduced as the transmission power available
is increased. This behavior can be explained by the fact that the transmitter is able to send
successfully a higher number of control commands when the target SINR is easier to achieve.
Another important finding is that the control horizon is more relevant for low power regime.
While there is a difference of 20 units in error between control horizons 10 and 1 at around 8
mW power, at 35 mW this difference is almost negligible. Experiments presented in Figure 4.10
consider 5 interferers.

Next, the impact of the number of interferers in the plant output was explored using the same
metric 𝐸𝑐 as reference. Consider Figure 4.11, curves for three different control horizons have
been drawn in a plot that depicts increase of 𝐸𝑐 when there is a high number of interferers.
For this experiment, transmission power was fixed; this implies reduction in SINR values as the
amount of interferers is increased. As a consequence of reduced SINR, the amount of control
commands that are sent succesfully is reduced and the accumulated error is increased. It is
clear that a higher control horizon has a smaller 𝐸𝑐. Also note that the error difference between
control horizons 5 and 10 are not considerable until interferers population reaches 12. Based on
these results, If the target is to optimize computational resources, limiting the control horizon
to 5 could help to save computational resources while keeping a similar control error.

Limitations of the neural controller-plant system were also studied by making control pre-
dictions at the neural plant without feedback from the real plant. The same controller interacts
with each of the plants (real and neural) and for that reason, the difference lies in how good is
the neural plant at replicating the real plant behavior. Responses of both the real and neural
plant were compared computing the MSE for different prediction horizons. See Figure 4.12, it
was observed that the MSE is almost zero for every prediction horizon that is smaller than 60

42

Figure 4.10. Accumulated Control Error vs Transmission Power.

time steps. The errors increase almost linearly for horizon higher than 60; this is an outstanding
finding since this horizon represents 3 seconds in real time for a simulation with sampling time
of 0.05 seconds. Also note that the wireless prediction horizon of the predictor presented in this
work is 10; the neural controller-plant system exceeds by far the wireless prediction capabilities.
It might seem counter intuitive to predict control commands for 60 time steps if the highest
horizon for interference prediction is 10, but having these prediction capabilities opens the door
for future work; for example, in a wireless scenario with very high uncertainty regarding the
channel state, it might be better to compute 60 predictions and send them all if accurate wireless
channel predictions are not available; also, communication might take longer than predicted to
be recovered because of interference not dropping to acceptable levels before all the predicted
control commands have been used. In other words, for very harsh environments it is better to use
the full capacity of the control predictor. Note that the scenario presented in this thesis does not
require the use of the full capacity of the neural control predictor, its limitations were presented
for illustration purposes. Control predictions were limited to 10 time steps to align with wireless
predictions. Using the same prediction horizon for interference and control prediction is needed
for energy consumption optimization.

43

Figure 4.11. Accumulated Control Error vs Number of Interferers.

Figure 4.12. Control error (MSE) vs control horizon.

44

5 CONCLUSIONS AND FUTURE DIRECTIONS

The use of wired connections for transmission of control commands impose some technical
difficulties and limitations when it comes to repairs, safety and scalability; these constraints
make wireless connections very appealing, but wireless control faces other challenges that come
with the unreliable nature of a wireless channel. This thesis work focused on finding and
implementing effective neural architectures for prediction of the interference and control of a
plant in a wireless environment. The goal of this design consists of overcoming drawbacks of
wireless links in controller-plant communication while ensuring plant stability and transmission
power efficiency. The final design comprises two main building blocks, the neural interference
predictor and the neural controller/plant.

Simulation results demonstrated that the best architecture for the neural interference predictor
is the ED-LSTM with a MAPE of 7.07%; other architectures like the NAR and NARX were
also tested. It was found that NAR and NARX models are very effective in scenarios that
require one-step ahead prediction; forecasts of interference had a MAPE of 7.83% for NAR
and 7.28% for NARX. The autoregressive architectures comprise shallow neural networks, their
low complexity makes them convenient for applications that require low computational power.
Although the ED-LSTM architecture is complex and requires high computational resources,
it has a key advantage over the NAR/NARX models: It is capable of multiple-step ahead
prediction. The ED-LSTM model produces predictions 𝑓 (𝑡1), 𝑓 (𝑡2), ... 𝑓 (𝑡10) at time 𝑡0 whereas
the NAR/NARX models will produce only 𝑓 (𝑡1). The multiple-step ahead prediction was the
primary factor for selecting the ED-LSTM architecture for the neural interference predictor.
Having multiple interference forecasts enables power optimization and allows the system to
compute future control commands.

Regarding the controller, a neural implementation was chosen due to the potential of neu-
ral networks of predicting future behavior, forecasting responses of the real plant is key for
computation and transmission of future control commands. There were three controller archi-
tectures evaluated in this thesis work: predictive controller, L2-NARMA controller and MRAC.
The predictive controller consisted of a neural plant with an optimization algorithm that acted
as a controller. The algorithm was used to find the optimal control inputs recursively which
makes the computation of future control commands very strenuous in addition to requiring high
computational power. The L2-NARMA consisted of a rearrangement of the neural plant, this
architecture is not convenient for the final design because it lacks the neural controller-plant
structure required for computation and caching of future control commands; in addition, exper-
iments showed that plants under L2-NARMA control exhibited an oscillatory response. Having
oscillatory behavior is inconvenient from the stability point of view since the goal was to reduce
the accumulated control error. The MRAC consists of a neural plant and a neural controller,
this split structure is optimal for the final design because it allows the controller to compute and
store future control commands.

The interference predictor and the controller had to be interfaced together; this was achieved
by proposing and solving an optimization problem depicted in Section 4.2.1; the problem
consisted in a linear program, its solution is comprised of vectors indicating the best time
step for transmitting control commands. The design presented in this thesis reduced energy
consumption in 17% after optimization.

To test effectiveness of the final design in an unreliable wireless channel, changes in the
amount of interferers and maximum transmission power for different control horizons were
introduced in simulations. It was observed that the number of interferers had impact in the
wireless control causing deviations of the plant output from the reference; the higher the number
of interferers, the higher the accumulated control error; for the same experiments, control
horizons of 5 and 10 exhibited similar accumulated control errors for 10 or less interferers;

45

if the goal is to save computational resources and the amount of interferers is considerably
small (10 or less), it is worth considering to reduce control horizon to reduce computational
load. Regarding the transmission power, it was observed that increasing the transmission power
reduces the accumulated control error and it also makes the choice for a control horizon less
relevant. In other words, larger control horizons are more beneficial when power available for
transmission is low.

Limitations in control predictions were also studied; feedback from the real plant response
to the neural plant was interrupted to deduce the maximum control horizon. Experiments
revealed that the neural plant is capable of predicting plant responses for 60 future time steps,
this is equivalent to 3 seconds in simulation, which make neural plants (and controllers) a very
enticing approach for controlling a system where communication outage can last for hundreds of
miliseconds. This is feasible if the predictions of the maximum control horizon of 60 are used
during outage. In this work the control horizon has been limited to 10 to match the prediction
horizon of the interference predictor.

For future works, exploiting the full prediction capacity of the neural plant is intended, a
system with increased robustness due to the use of the maximum attainable prediction horizon.
Results also brought to light that there is a lot of potential for predictive control using nonlinear
autoregressive neural networks; their low complexity implies low computational resources are
required and therefore are suitable for IoT applications.

The interference predictor can be further improved with adaptive capabilities, the models
developed for this thesis are better suited for scenarios where mean interference does not vary
in time, in a real life this might not be the case and more sophisticated techniques like deep
reinforcement learning should be considered.

46

6 BIBLIOGRAPHY

[1] De Beelde B., Plets D. & Joseph W. (2021) Wireless sensor networks for enabling smart
production lines in industry 4.0. Applied Sciences 11.

[2] Candell R. & Kashef M. (09 2017) Industrial wireless: Problem space, success consider-
ations, technologies, and future direction. pp. 133–139.

[3] Gogolák L. & Fürstner I. (2021) Wireless sensor network aided assembly line monitoring
according to expectations of industry 4.0. Applied Sciences 11.

[4] Orfanus D., Indergaard R., Prytz G. & Wien T. (09 2013) Ethercat-based platform for
distributed control in high-performance industrial applications. pp. 1–8.

[5] Kim H. (2020) Design and Optimization for 5G Wireless Communications, John Wiley
and Sons, Ltd, pp. 397–400.

[6] Demuth H.B., Beale M.H., De Jess O. & Hagan M.T. (2014) Neural Network Design.
Martin Hagan, Stillwater, OK, USA, second edition.

[7] Kim P. (2017) MATLAB Deep Learning: With Machine Learning, Neural Networks and
Artificial Intelligence. Apress, USA, first edition.

[8] Padilla C., Hashemi R., Mahmood N.H. & Latva-Aho M. (2021) A nonlinear autoregres-
sive neural network for interference prediction and resource allocation in urllc scenarios.
In: 2021 International Conference on Information and Communication Technology Con-
vergence (ICTC), pp. 184–189.

[9] Haenggi M. (2011) Mean interference in hard-core wireless networks. IEEE Communica-
tions Letters 15, pp. 792–794.

[10] Lv C., Xing Y., Zhang J., Na X., Li Y., Liu T. & Cao D. (11 2017) Levenberg-marquardt
backpropagation training of multilayer neural networks for state estimation of a safety
critical cyber-physical system. IEEE Transactions on Industrial Informatics PP, pp. 1–1.

[11] Hagan M. & Menhaj M. (1994) Training feedforward networks with the marquardt algo-
rithm. IEEE Transactions on Neural Networks 5, pp. 989–993.

[12] Bishop C.M. (2006) Pattern Recognition and Machine Learning (Information Science and
Statistics). Springer-Verlag, Berlin, Heidelberg.

[13] Dreyfus G. (01 2005) Neural Networks: Methodology and Applications.

[14] Zheng G., Krikidis I., Masouros C., Timotheou S., Toumpakaris D.A. & Ding Z. (nov
2014) Rethinking the role of interference in wireless networks. IEEE Communications
Magazine 52, pp. 152–158.

[15] Schmidt J.F., Schilcher U., Atiq M.K. & Bettstetter C. (2021) Interference prediction in
wireless networks: Stochastic geometry meets recursive filtering. IEEE Transactions on
Vehicular Technology 70, pp. 2783–2793.

[16] Varma S. (2015) A machine learning algorithm for interference removal from a signal.
In: 2015 National Conference on Recent Advances in Electronics Computer Engineering
(RAECE), pp. 211–215.

47

[17] da Costa Lopes F., Watanabe E.H. & Rolim L.G.B. (2015) A control-oriented model of a
pem fuel cell stack based on narx and noe neural networks. IEEE Transactions on Industrial
Electronics 62, pp. 5155–5163.

[18] Nyanteh Y.D., Srivastava S.K., Edrington C.S. & Cartes D.A. (2013) Application of
artificial intelligence to stator winding fault diagnosis in permanent magnet synchronous
machines. Electric Power Systems Research 103, pp. 201–213.

[19] Taherdangkoo R., Tatomir A., Taherdangkoo M., Qiu P. & Sauter M. (2020) Nonlinear
autoregressive neural networks to predict hydraulic fracturing fluid leakage into shallow
groundwater. Water 12.

[20] Ruiz L.G.B., Cuéllar M.P., Calvo-Flores M.D. & Jiménez M.D.C.P. (2016) An application
of non-linear autoregressive neural networks to predict energy consumption in public
buildings. Energies 9.

[21] Marquardt D.W. (1963) An algorithm for least-squares estimation of nonlinear parameters.
Journal of the Society for Industrial and Applied Mathematics 11, pp. 431–441.

[22] Chandra R., Goyal S. & Gupta R. (2021) Evaluation of deep learning models for multi-step
ahead time series prediction. IEEE Access 9, pp. 83105–83123.

[23] Kolen J.F. & Kremer S.C. (2001) Gradient Flow in Recurrent Nets: The Difficulty of
Learning LongTerm Dependencies, pp. 237–243.

[24] Hochreiter S. & Schmidhuber J. (1997) Lstm can solve hard long time lag problems. In:
Advances in Neural Information Processing Systems 9, MIT Press, pp. 473–479.

[25] Hochreiter S. & Schmidhuber J. (11 1997) Long Short-Term Memory. Neural Computation
9, pp. 1735–1780.

[26] Van Houdt G., Mosquera C. & Nápoles G. (12 2020) A review on the long short-term
memory model. Artificial Intelligence Review 53.

[27] Gers F.A., Schmidhuber J. & Cummins F. (10 2000) Learning to Forget: Continual
Prediction with LSTM. Neural Computation 12, pp. 2451–2471.

[28] Sutskever I., Vinyals O. & Le Q.V. (2014), Sequence to sequence learning with neural
networks.

[29] Canete J., Galindo C. & Moral I. (01 2011) Introduction to Control Systems, pp. 137–165.

[30] Dorf R.C. & Bishop R.H. (2000) Modern Control Systems. Prentice-Hall, Inc., USA, 9th
edition.

[31] Gopi Krishna Rao P.V., Subramanyam M.V. & Satyaprasad K. (2014) Study on pid con-
troller design and performance based on tuning techniques. In: 2014 International Con-
ference on Control, Instrumentation, Communication and Computational Technologies
(ICCICCT), pp. 1411–1417.

[32] Desborough L. & Miller R. (01 2002) Increasing customer value of industrial control
performance monitoring -honeywell’s experience. AIChE Symposium Series 98.

48

[33] Shekhar A. & Sharma A. (2018) Review of model reference adaptive control. In: 2018
International Conference on Information , Communication, Engineering and Technology
(ICICET), pp. 1–5.

[34] jie Su S., yuan Zhu Y., rong Wang H. & Yun C. (2019) A method to construct a reference
model for model reference adaptive control. Advances in Mechanical Engineering 11,
pp. 1687814019890455.

[35] Nguyen N.T. (2018) Model-Reference Adaptive Contro. Springer Cham., USA, first edition.

[36] Jain P. & Nigam M.J. (2013) Design of a model reference adaptive controller using modified
mit rule for a second order system 1.

[37] Hagan M. & Demuth H. (1999) Neural networks for control. In: Proceedings of the 1999
American Control Conference (Cat. No. 99CH36251), volume 3, pp. 1642–1656 vol.3.

[38] Chidrawar S.K. & Patre B.M. (2008) Generalized predictive control and neural generalized
predictive control.

[39] Soloway D. & Haley P. (10 1996) Neural generalized predictive control. pp. 277 – 282.

[40] Srakaew K., Sangveraphunsiri V., Chantranuwathana S. & Chancharoen R. (02 2010)
Design of narma l2 neurocontroller for nonlinear dynamical system.

[41] Middleton R. & Goodwin G. (1988) Adaptive computed torque control for rigid link
manipulations. Systems Control Letters 10, pp. 9–16.

[42] Narendra K. & Parthasarathy K. (02 1991) Learning automata approach to hierarchical
multiobjective analysis. Systems, Man and Cybernetics, IEEE Transactions on 21, pp. 263
– 272.

[43] Narendra K. & Mukhopadhyay S. (1997) Adaptive control using neural networks and
approximate models. IEEE Transactions on Neural Networks 8, pp. 475–485.

[44] Hagan M., Demuth H. & Jesús O. (09 2002) An introduction to the use of neural networks
in control systems. International Journal of Robust and Nonlinear Control 12, pp. 959 –
985.

[45] Patiño H. & Liu D. (02 2000) Neural network-based model reference adaptive control
system. IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a
publication of the IEEE Systems, Man, and Cybernetics Society 30, pp. 198–204.

