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Use of multi-source remotely sensed data in monitoring
the spatial distribution of pools and pool dynamics along
non-perennial rivers in semi-arid environments,
South Africa

S. E. Maswanganye, T. Dube , N. Jovanovic and D. Mazvimavi

Institute for Water Studies, University of the Western Cape, Bellville, South Africa

ABSTRACT
This study explored the use of multi-source remotely sensed data
in monitoring the spatial distribution of pools and pool dynamics
in two distinct semi-arid sites in South Africa. The factors that
control the pool dynamics were also examined. Three water
extraction indices were used, these included Normalised
Difference Water Index (NDWI), Modified NDWI and Normalised
Difference Vegetation Index. In addition, random forest classifier
and Sentinel-1 SAR data were used in mapping pools and pools
dynamics for both sites. Overall, the remotely-sensed methods
detected and mapped pools with acceptable accuracy, except for
small pools (<400m2). The results suggest that flow occurrences
and rainfall are key in controlling temporal changes in pools sizes,
and there was no interaction between pools and groundwater.
The study showed that remote sensing methods are essential for
filling ground monitoring gaps in non-perennial rivers and deter-
mining hydrological processes and water availability from pools in
semi-arid environments.
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1. Introduction

Non-perennial rivers (NPRs) are characterised by the lack of flows for varying periods
during the year. Some of these rivers will also have permanent or temporary pools not
connected by flows. These pools are one of the most distinguishing features of NPRs
(Hughes 2005; Datry et al. 2017), they are found worldwide and are expected to increase
as NPRs expand (Grenfell et al. 2021) due to climate change and increased socio-eco-
nomic uses. Zacharias and Zamparas (2010) defined pools as shallow water bodies that
vary in depth, shape, and size, and are usually flooded from time to time and last long
enough to sustain/support life.

Pools along NPRs are important water sources as they often provide water for livestock
and domestic purposes in rural areas (Zamxaka et al. 2004; Peden et al. 2012; Naidoo
et al. 2020). In addition, these resources provide ecohydrological services and indirectly
support the tourism sector and livelihoods. Besides, they also act as habitats, feeding and

CONTACT S. E. Maswanganye 3031049@myuwc.ac.za
� 2022 Informa UK Limited, trading as Taylor & Francis Group

GEOCARTO INTERNATIONAL
2022, VOL. 37, NO. 25, 10970–10989
https://doi.org/10.1080/10106049.2022.2043453

http://crossmark.crossref.org/dialog/?doi=10.1080/10106049.2022.2043453&domain=pdf&date_stamp=2023-01-16
http://orcid.org/0000-0003-3456-8991
http://www.tandfonline.com


spawning ground for various aquatics species (Makwinja et al. 2014). There is a significant
species-volume relationship in pools as species richness increases with size (Bonada et al.
2020). Species richness also depends on the physical-chemical properties of the pools.
Pools attenuate floods (Liu and Zhang 2017) as they store floodwater (Datry et al. 2017)
and are regarded as important zones of groundwater and surface water interactions (dis-
charge and recharge zones).

Despite being important, pools along the NPRs are perceived to be of low value
compared to perennial rivers (Rodr�ıguez-Lozano et al. 2020), as they are considered an
unreliable source of water. However, of late, pools along NPRs have received attention
because of their ecological significance (Sheldon et al. 2010; Marshall et al. 2016; Ilh�eu
et al. 2020), hence also referred to as refugia or refuge, indicating their ecological
importance as a habitat during the dry phase (Davis et al. 2013). Studies on the ecology
of pools have suggested that they should be incorporated in river and water manage-
ment. For instance, Groves et al. (2012) state that protecting these pools should be
included in climate change adaptation plans. Importance of these pools is also recog-
nised in most environmental flow assessments of NPRs as minimum water discharge is
often maintained to ensure the persistence of pools during the dry period
(Theodoropoulos et al. 2019).

Although pools are being recognised for their ecological importance, there is still lim-
ited scientific research on pools’ hydrological and geomorphological aspects (Bonada et al.
2020; Bourke et al. 2020; Shanafield et al. 2021) due to limited in-situ monitoring sites
along NPRs. Hence, monitoring is an essential step in understanding and managing pools
effectively. However, monitoring of these pools using in-situ methods can be challenging
as they can be sparsely distributed along the river (Maswanganye et al. 2021). The ability
of remote sensing to distinguish between water and bare surfaces provides unique oppor-
tunities to monitor these pools both individually and at catchment scale. Seaton et al.
(2020) demonstrated the potential of using multispectral remote sensing data (Sentinel-2
and Landsat 8) in monitoring the pool surface areas along NPRs with once-off validation.
However, the study indicated that the number of observations was limited due to cloud
cover over the study sites. Synthetic Aperture Radar (SAR) data such as Sentinel-1 can be
used to overcome issues of cloudiness.

However, monitoring of pools without understanding factors influencing their distribu-
tion and occurrences remains inadequate for the sustainable management of these sys-
tems. So far, few studies have assessed controlling factors of pool storage dynamics across
varying landscapes. For instance, Hamilton et al. (2005) investigated the persistency of
pools using stable isotopes and major ions. The results showed that evaporative losses
explained the changes in the pool’s sizes between the flows, and there was no evidence of
groundwater inputs into the pools. Using radon, Lamontagne et al. (2021) found that
most pools were perennial and groundwater-fed in South Austria. Bestland et al. (2017)
also made a similar observation in South Austria, however they added that the interaction
between pools and groundwater may be seasonal, not a continuous water supply from
groundwater to pools.

This study aimed at determining the spatial and temporal distribution of pools in
two contrasting non-perennial rivers located in semi-arid environments (Touws and
Molototsi Rivers in South Africa). This was done through (i) detection of pools along
reaches of non-perennial rivers, (ii) accuracy assessment of remotely-sensed pool’s sur-
face area, (iii) determination of changes in pool sizes and factors that control
these changes.
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2. Study sites

The study was conducted in two NPRs found in two different catchments in South
Africa. The two NPRs included the Touws and Molototsi River systems, located in the
Western Cape and in the Limpopo Provinces in South Africa, respectively. The Touws
river (Figure 1) is sandy-gravel above Adolpaspoot formation shale. The majority of the
pools in this non-perennial river are associated with bedrock outcrop (Hattingh 2020)
(Figure 2). Grenfell et al. (2021) and Hattingh (2020) provided the geomorphological
account of how the pools form. The catchment is mainly covered with natural vegetation,
predominantly shrubland and fynbos, with some parts of the riparian zone used for agri-
culture purposes. The catchment has a mean annual rainfall of 244mm/year (Grenfell
et al. 2021). The catchment received 112, 91 and 182mm/year in 2018, 2019 and 2020
respectively, without a seasonal pattern (Figure 3). Most rainy days received less than
5mm/d of rainfall. There were only two events that exceeded 30mm/d. These major rain-
fall events produced localised flows, with some of the flows not reaching the flow station
at the catchment outlet (Department of Water and Sanitation Station J1H018). According
to Petersen et al. (2017), the catchment has a mean annual runoff (MAR) of 16.32Mm3.

The geology of the Molototsi study site (Figure 1) is predominantly characterized by
the Letaba Gneiss lithostratigraphic unit, although the upper part of the catchment
includes Duiwelskloof Leucogranite. The substrate of the river is sandy (Figure 2). The
river is surrounded by communities (human settlements), with agriculture taking place in
the riparian zone along the river. The upper catchment has a mean annual rainfall of
1219mm/year (1998–2017) measured close to the Modjadji dam (Walker et al. 2018).
However, the flood plain receives around 305mm/yr. The catchment receives rainfall
mainly during the southern hemisphere summer season between December and March
(Figure 2). The upper quaternary catchment (B81G) and lower quaternary catchment
(B81H) have a mean annual runoff of 16.72 and 25.84Mm3, respectively. Molototsi falls

Figure 1. Location of the monitored pools along the Molototsi and Touws River catchments.
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within the 2000–2500mm/year evaporation zone (Water Research Commission (WRC)
2012) .

3. Material and methods

3.1. Remote sensing data description and collection

This study made use of open and freely available remote sensing data. The choice and
selection of these data were informed by lack of high-resolution spatial data in many
developing countries that cannot afford commercial satellite data sets. Sentinel-2 images

Figure 2. Field photographs showing typical pools along the Molototsi (top) and Touws River (bottom).

Figure 3. Rainfall data collected for Molototsi (left) and Touws River (right) catchments.
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were therefore used. Sentinel-2 comprises twin polar-orbiting satellites in the same orbit,
phased at 180� to each other. The combination of these satellites reduces the revisit time
from 10 days of each satellite to 5 days at the equator and 2–3 days at mid-latitudes.
Sentinel-2 has 13 spectral bands in total, four bands at 10, six at 20m and three at 60m
spatial resolution. Sentinel-2 data are provided at different pre-processed level (1B, 1 C
and 2A) products for users. The data were acquired from USGS earth explorer (http://
earthexplorer.usgs.gov/ accessed on 8 August 2020) and the Copernicus (https://scihub.
copernicus.eu/ accessed on 8 August 2020) website. The level 1 C data were downloaded
from the USGS website throughout the study duration.

Further, this study included SAR data obtained by Sentinel-1 to overcome the
cloud-induced challenges of optical remote sensing. Sentinel-1 has C-band imaging
operating in 4 modes (strip map, interferometric-wide swath, extra-wide swath and
wave modes). This band can reach down to 5m and coverage swath up to 400 km.
Each satellite has a 12-day revisit time at the equator, the revisit time is bettered by
the two satellites (Sentinel-1A and Sentinel-1B) orbiting in the same plane (�700 km
above the earth), resulting in a revisit time of 6 days. For the Sentinel-1, SAR data
under interferometric wide-swath (IW) mode were downloaded from the National
Aeronautics and Space Administration Alaska Satellite Facility (NASA/ASF) (https://
search.asf.alaska.edu/#/). In total, eight images with dates closest to the field surveys
were used for accuracy assessment (Table 1). The use of Sentinel was informed by its
performance in water resources and other related environmental applications (Kwang
et al. 2017; Seaton et al. 2020). Literature has shown that Sentinel-2 performs better
than Landsat 8 and has a better spatial and temporal resolution. For example, Seaton
et al. (2020) highlighted that clouds are problematic for extraction of water areas using
Sentinel-2 (optical remote sensing), as they reduce the number of observations, hence
the need to use Sentinel-1 data (Seaton and Dube 2021).

3.2. Field data collection

During field visits, global positioning system (GPS) measurements were collected along
the edges of the pools (boundary of water and non-water) in the study areas using a
hand-held GPS. The accuracy level was within five metres for all collected points and
approximately three metres apart (Figure 4). To assess the factors that control the
changes in pool sizes, additional hydrometeorological data were needed. A few datasets
including rainfall and flow occurrence obtained from the local community were used.
Weather station data were obtained from the Agricultural Research Council. Landcover
data were obtained from the National Geographic Institute (NGI) of South Africa.
Groundwater levels were continuously measured using dataloggers in the vicinity of the
pools and river.

Table 1. Field visits and image acquisition dates.

Site Field visit Sentinel-1 image Sentinel-2 image

Touws River 2019/07/31 2019/07/27 2019/08/01
2020/12/14 2020/12/16 2020/12/12
2021/03/30 2021/03/30 2021/03/28

Molototsi River 2020/01/08 a a

2021/06/30 2021/06/28 2021/06/30
aNot used because of clouds on Sentinel-2.
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3.3. Pool extraction from satellite data

Two methods were used to derive the spatial distribution of pools along NPRs. Field sur-
veys and satellite images were used to identify and determine the locations of pools and
pool sizes. Various remote sensing derivates were tested; these included the MNDWI,
NDWI, NDVI and random forest classification derived from Sentinel-2 images and
Sentinel-1 SAR data. To understand pools and pool dynamics, rainfall, flow occurrence,
groundwater levels and evaporation rates were integrated. A detailed summary of the
methods is summarised in Figure 5.

3.3.1. Sentinel-2 pre-processing and analyses
Pre-processing and analysis of satellite images were conducted to detect water bodies/fea-
tures. Seaton et al. (2020) compared atmospheric correction methods (Sen2Cor, DOS1,
TOA), and concluded that the Top of the Atmosphere (TOA) reflectance images are the
most suitable methods for Sentinel-2. Similar conclusion was made by Rumora et al.
(2019). Seaton et al. (2020) further indicated that the incorporation of atmospheric correc-
tion can eliminate some of the significant water surface areas. Therefore, the TOA images
were used for this study. The downloaded Sentinel-2 images were first resampled to 10m
using Sentinel Application Platform (SNAP) with Band 3 as the reference band. Water
indices were used to extract water areas from the images because the method is reliable,
user-friendly, efficient, and with low computation cost (Du et al. 2016). The processing
was done using SNAP and ESRI ArcGIS 10.3 software.

Water indices are used to distinguish between water and non-water features. This
study used the most commonly used water indices, including Normalized Difference
Water Index (NDWI) (McFeeters 1996) (Eq. (1)), Modified Normalized Difference Water
Index (MNDWI) by Xu (2006) (Eq. (2)), and the Normalised Differential Vegetation
Index (NDVI) by Trucker (1979) (Eq. (3)).

NDWI ¼ ðGreen� NIRÞ⁄ ðGreen þ NIRÞ (1)

where Green is the green band and NIR is the near infra-red band. Pixels of water have
positive values.

MNDWI ¼ ðGreen� SWIR2Þ=ðGreen� SWIR2Þ (2)

where Green is the green band and SWIR is short wave infra-red band. Pixels of water
have positive values.

Figure 4. Example of the field-collected points using a GPS in the Touws River on a Google Earth map.
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NDVI ¼ ðNIR� RedÞ=ðNIR� RedÞ (3)

where NIR is the Near-infrared band, Red is the red band. Pixels of the water body have
negative values.

The random forest classification as proposed by Breiman (2001), was also used as it is
one of the commonly used methods and has been proven to produce higher accuracy in
the extraction of water areas than other supervised classifiers (Ko et al. 2015;
Acharya et al. 2018; Kalaivani et al. 2019). Random forest classification is an ensemble
classification that produces multiple decision trees using a randomly selected subset of
training images. In this case, the pools that were assessed were excluded from the
training set.

Figure 5. A flow diagram illustrating the methodological procedure used in this study.
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3.3.2. Shadow removal
Mountain shadows can be easily confused with water areas as they have similar spectral
signatures as noted by Xu (2006). The random forest was also used to classify the areas of
shadows, and an outcome raster was used to clip out areas that the indices might have
confused to improve the classification accuracies.

3.3.3. Sentinel-1 pre-processing and analyses
Sentinel Application Platform (SNAP) was used for pre-processing the Sentinel-1 images.
Firstly, the images were calibrated to convert raw digital numbers to the RADAR back-
scatter coefficient. To reduce speckle noise, the lee filter was used with a 3� 3 kernel
width and height. The images were aligned and corrected for elevation interference using
the STRM 3 sec DEM which is auto-downloaded by the SNAP tool. Water surfaces act as
mirrors and reflect almost all incoming radiation; they cause very low backscatter.
Therefore, surface water detection using SAR data is often based on applying a threshold
of the SAR backscatter coefficient, with low backscatter values attributed to surface water
(Pham-Duc et al. 2017; Seaton and Dube 2021). Therefore, a thresholding method was
used to separate water and non-water features from Sentinel-1 data. A threshold was
determined for each scene, as the accuracy of Sentinel-1 in distinguishing water from
other features is affected by wind-induced roughness effects, poor image quality (speckle
noise) and incidence angle variance (Bioresita et al. 2018). However, based on multiple
trails, the threshold used for this study was ��22 dB on the VH polarisation.

3.4. Accuracy assessments

3.4.1. General classification accuracy at catchment scale
Accuracy assessment was done in two folds, the one to focus on the location of the pools
along the rivers and the other focused on the pool size. Random points were created and
labelled based on expert knowledge of the area and high-resolution images from Google
Earth Pro to obtain reference points for accuracy assessment at the catchment level. The
location of the field-observed pools were also added to the random points; this was done
to avoid having the random points exclusively in one class (non-water), as water bodies
cover a small portion of the catchment. Pixel values were then extracted for the created
points. The extracted values were then compared to the field observations. User’s accur-
acy, producer’s accuracy and overall accuracy were computed, derived from Table 2. True
Positive is the number of correctly extracted water pixels, False Negative is the number of
undetected water pixels, False Positive is the number of incorrectly extracted water pixels,
and True Negative is the number of correctly rejected non-water pixels derived.

3.4.2. Accuracy assessment of remotely-sensed pool’s surface area
The accuracy of the detection of pools was examined to determine the method to be used
for pool dynamics (time series). Two representative pools were selected at each of the
study catchments. The pools were selected based on the feasibility to monitor using satel-
lite images, determined by pre-inspection. The variation in the riverbed material (bedrock,

Table 2. Confusion matrix used for accuracy assessment.

Reference data
Water Non-water

Classified data Water True positive False positive
Non-water False negative True negative
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sand, gravel) was taken into account in order to determine how the underlying material
affects the pool’s storage. Proximity to hydrometeorological monitoring stations was also
considered in the selection of pools. Accessibility, in terms of roads and permission, was
considered. The digitised field boundary of the pools was used as reference data. The buf-
fer technique proposed by Brovelli et al. (2015) was applied to develop a confusion matrix
(Table 2) for the accuracy assessments. All pixels within the boundaries of the surface
water bodies digitised were known to be water pixels. All pixels within the area of the
buffer were known to be non-water pixels.

3.4.3. Assessing the difference between the observed and remotely-sensed surface
area of pools
The surface water areas of the selected pools were measured during the field visits. These
were then compared to the sizes obtained from the remote sensing using the Differential
Area Index (DAI) also referred to as the deviation. DAI is a dimensionless index used to
compare true area and estimates (Sawunyama et al. 2006; Acharya et al. 2018). In this
study, DAI was used to get standardised differences between the observed area and the
estimated area of pools by remote sensing approaches (Eq. (4)). The DAI values range
from �1 to 1, with 0 being the perfect score indicating total agreement and �1 and 1
being the worst scores, negative indicates underestimation and positive indicates overesti-
mation (Acharya et al. 2018). In this study, we multiplied the DAI by 100 to obtain
Percentage DAI, which allows for a standardised comparison.

DAI ¼ Ao� Aeð Þ=Ao � 100 (4)

where Ao is the observed area and Ae is the estimated area.

3.4.4. Changes in the sizes of the selected pools
Based on the performance of the methods, the most suitable methods were used to esti-
mate the changes in surface area of the pools from 2019 to 2021. A total of 27 images

Table 3. Detection of pools along the Touws (A) and Molototsi River (B).

Touws River (A)
Pool name Surface Area Depth MNDWI NDWI NDVI RF S1

Touwsberg Farm 1 237.8 0.41 UD UD UD UD UD
Touwsberg Farm 2 9694.5 0.94 Detected Detected Detected Detected Detected
Sean 697.2 0.3 Detected Detected UD UD UD
Wolverfontein 1 (WW1) 4403.5 0.76 Detected Detected Detected Detected Detected
Wolverfontein 2 (WW2) 7198 1.3 Detected Detected as one Detected Detected Detected
Touwsberg Office 1 158.4 0.4 UD UD UD UD
Touwsberg Office 2 27,500 0.9 Detected Detected Detected Detected
R62Bridge 413 0.46 UD Detected Detected UD UD
JJ1 680 1.4 Detected Detected UD UD UD
JJ2 1640 0.75 Detected Detected UD UD UD
Die sand 166.4 0.17 UD Detected UD UD UD
Molototsi River (B)
Pool name Surface Area Depth MNDWI NDWI NDVI RF S1
Mol_pool 1 127 0.28 UD UD UD UD UD
Mol_pool 2 578 0.3 UD UD UD UD UD
Mol_pool 3 3448 0.46 Detected Detected Detected Detected UD
Mol_pool 4 2880 0.43 Detected Detected Detected Detected UD
Mol_pool 5 337 0.35 UD UD UD UD UD
Mol_pool 6 590 0.52 UD Detected UD UD UD
Mol_pool 7 111 0.29 UD UD UD UD UD
Mol_pool 8 190 0.28 UD UD UD UD UD
�UD¼ undetected.
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Figure 6. Performance of the methods in detection water surfaces along the Touws (A) and Molototsi River (B). Green
dots indicate detected pools, red dots show undetected pools, and orange dots show two or more pools that were
detected as one.
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were used, these were selected to represent different phases, from when the pool is full to
its driest state. Rainfall, flows occurrence, evaporation rates and groundwater levels were
used to explain the factors that affected the changes in pools sizes.

4. Results

4.1. Detection of pools along Touws and Molototsi Rivers at catchment scale

Remote sensing methods were able to detect the pools along NPRs, although the accuracy
of the results varied with methods and site. In the Touws River, when the MNDWI was
applied on the Sentinel-2 image, 7 out of 11 pools were detected (Table 3). All pools that
were not detected were relatively small (>400m2) in size. The NDWI detected 10 of the
11 pools, however, it detected most parts of the river as water (Figure 6).This is evident
from the high producer’s accuracy and the poor user’s accuracy (Figure 6). NDVI was
able to detect the five largest pools. Random forest classification and the Sentinel-1(S1)
thresholding correctly detected four of largest pools. Along the Molototsi River, the eight
surveyed pools had an average size of 1033m2 and an average depth of 0.3m. NDWI
detected 3 out of 8 pools. MNDWI, NDVI and supervised classification (RF) detected 2
of the 8 pools, whereas the thresholded-Sentinel-1 did not detect any of the pools. The

Figure 7. Accuracy of the methods in distinguishing water and non-water features at catchment scale in the Touws
(A) and Molototsi River (B).
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poor detection of pools in this study site can be attributed to the size of pools, the major-
ity of which were fairly small. The methods failed to detect the smaller pools as it was the
case for the Touws River. The estimates in the Molototsi study area did not show an
overestimation (noise) of water surface areas (Figure 5).

Overall, the adopted remotely-sensed methods were able to distinguish between water
(pools) and non-water pixels (roads, buildings, mountainous shadows, vegetation, bare
land) for the two study sites. MNDWI outperformed other methods (Overall Accuracy ¼
89%), whereas NDWI had high score for user’s accuracy (Figure 6). The NDVI had the
ability to distinguish between water and non-water pixels. The thresholded Sentinel-1 (S1)
data had the worst performance with user’s and producer’s accuracy of less than 30%. For
pools in the Molototsi area, high user’s and overall accuracy were obtained; this shows
that water and non-water pixels could be mapped with high accuracy (Figure 7).
However, the low producer’s accuracy scores were recorded for all methods due to failure

Figure 8. Performance by MNDWI, NDWI, NDVI, RF and S1 in the classification of pools in Touws (A, WW1 and WW2-
Wolverfontein 1 and 2 pool) and Molototsi River (B, Pool 3 and 6).
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to detect the smaller pools, as these were predominant in this study area. The MNDWI
and NDVI performed better than the other methods, and Sentinel-1 was the worst.

4.2. Accuracy assessment of remotely sensed pools’ surface areas in the Touws and
Molototsi River

The surface areas obtained with MNDWI, NDWI, NDVI and RF applied to Sentinel-2
image and Sentinel-1 threshold (S1) were compared to the field obtained surface areas.
Random forest classification and thresholding of Sentinel-1 had the highest user’s accur-
acy (92%) for the WW1 and WW2 pool (described in Table 3), respectively. Overall,
MNDWI outperformed the other methods as it had acceptable accuracies for all three
accuracy measures for both pools, ranging from 74% to 80% (Figure 8). When comparing
the scores from the two pools, the WW1 pool size was better estimated. Field survey was
done from 30 June to 1 July 2021 along the Molototsi River. The MNDWI slightly out-
performed the other methods for Pool 3 (Figure 8), whereas NDWI was the only method
that detected Pool 6. S1 had the worst performance as it did not detect both pools.
Comparing the extraction of the two pools, Pool 3 was better extracted when all methods
are considered.

4.2.1. The difference in observed and estimated surface areas of pools
The pool areas estimated with remote sensing tended to be overestimated for both pools
(Table 4). Further, the MNDWI showed lower errors when estimating the surface water
area of pools, as it outperformed all other methods, in one instance the difference was
1.5%. The thresholded Sentinel-1 data and NDVI showed high differences/errors ranging
from 43% to 100%, although NDVI had the best estimate for the WW1 pool on one occa-
sion (PDAI ¼ �8.6%). When comparing the estimates for the two Touws pools, the
WW1 pool was better estimated. For the Molototsi pools, NDWI showed lower errors
when estimating the surface water area of pools, as it outperformed all other methods,
with PDAI of 5.9% and 33.3% for Pool 3 and Pool 6, respectively. The thresholded
Sentinel-1 data had the highest errors of 100% for both pools, indicating that pools were
not detected. When comparing the estimates for the two Molototsi pools, Pool 3 was bet-
ter estimated.

Table 4. Percent Differential Area Index for three surveys in Touws (A, pool WW1 and WW2) and one survey
Molototsi (B, pool 3 and 6).

Touws River (A)

WW1 pool
MNDWI NDWI NDVI RF S1
�25.7 �71.4 �8.6 �31.4 85.7
6.1 78.8 100.0 53.0 43.4
1.5 81.8 100.0 87.9 77.5
WW2 pool
MNDWI NDWI NDVI RF S1
�28.9 58.5 65.5 �31.7 96.2
26.2 74.6 93.1 50.0 71.0
�11.3 27.4 68.9 22.6 70.2
Molototsi River (B)
Mol_Pool 3
MNDWI NDWI NDVI RF S1
8.8 5.9 61.8 67.6 100.0
Mol_Pool 6
MNDWI NDWI NDVI RF S1
100.0 �33.3 100.0 100.0 100.0
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4.3. Changes in pool sizes and factors that control the changes in Touws and
Molototsi Rivers

There were four major flow events in Touws river from 2019 to May 2021. The maximum
surface water area estimated was 12,000m2 and 20,800m2 for WW1 and WW2 pools,
respectively (Figure 9). The maximum surface area was stable for WW1 but fluctuated for
the WW2 pool, possibly due to errors of WW2 detection. During the study period
(2019–2021), the pools were at the driest level in January 2019 with surface areas of 1600
and 400m2 for WW1 and WW2, respectively. This was after 2 years of no river flows.
This was followed by October 2020 when the pools had surface water areas of 3700 and
5200m2 for WW1 and WW2, respectively. This was after six months without significant
inflows. Compared to Touws, Molototsi had two major flow events during the summer
season of each year. The pools were present at the end of flow events in February/March
and dried out in June/July of each year (Figure 10). The maximum surface water area was
estimated to be 2900m2 and 1300m2 in Pools 3 and 6, respectively. Pool 3 was com-
pletely dry in 2020 and did not exist in 2019. Pool 6 dried up in June 2020, and it was
almost completely dry in June 2021 with a surface water area of 100m2.

The remotely sensed estimates of surface water area correlate well with rainfall and
flow occurrence for the Touws River (Figure 11). After flow events, the surface area of
the pools increased to maximum size. The flow event marked with red occurred down-
stream of the WW1 pool, therefore it did not affect the size of the WW1 pool. Rainfall
adds water that maintains the pools, delaying the drying up of pools. The surface area of
pools decreased after the major inflow; this means some losses occurred. Both shallow
and deep groundwater levels did not show any notable changes in relation to the surface
area of the pools, rainfall and the occurrence of flow. This suggests that there might be
no vertical interaction between the pools and the groundwater system. This indicates that
water is lost to the atmosphere through evaporation and to the unsaturated zone.
Potential evaporation at the site was 94 and 82% higher than rainfall in 2019 and 2020,
respectively. Evaporation, therefore, plays a significant role in water losses. These patterns
were observed for the two pools, although the maximum size of the WW2 pool fluctuated
and should have been affected by the event that occurred in October 2019, however, there
was no increase in the size of the pool (Figure 10).

In the Molototsi site, remotely sensed estimates of the surface water area correlated
well with rainfall and the occurrence of flow for Pool 6 (Figure 12). Rainfall added water

Figure 9. Changes of the surface water area of WW1 (green bars) and WW2 (red bars) in the Touws River when full,
at intermediate and dry stage.
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that maintained the pool, delaying the drying up of the pool. The surface area of pools
decreased after the major inflow; this means some losses occurred. Groundwater levels
did not show any notable changes in relation to the surface area of the pools, rainfall and

Figure 10. Changes of the surface water area of Pool 3 (green bars) and Pool 6 (red bars) in the Molototsi River
when full, at intermediate and dry stage.

Figure 11. Changes of the surface water area of WW1 (green bars), WW2 pool (red bars), with daily rainfall (blue
line), the occurrence of flow (purple dot), shallow (orange line) and deep (green line) groundwater levels, evaporation
(purple line).
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flow occurrence, suggesting that there might not be vertical interaction between the pools
and groundwater system. This suggests that water is lost to the atmosphere through evap-
oration and to the unsaturated zone. In this area, potential evaporation was 77 and 75%
more than rainfall received in 2019 and 2020, respectively. There was no evident relation
between rainfall and Pool 3. Other factors such as river sand mining and water with-
drawals from the river might have influenced its sizes.

5. Discussion

This study explored the use of remote sensing in monitoring the spatial distribution of
pools and pool dynamics along non-perennial rivers in two distinct areas. The results
showed that the pools in Touws River were bigger than pools in the Molototsi River. This
might be due to the Molototsi River having sandy bed material with high hydraulic con-
ductivity draining water after flash floods (Walker et al. 2018). In contrast, the Touws

Figure 12. Changes of the surface water area of Pool 3 (green bars) and Pool 6 (red bars), with daily rainfall (blue
line), the occurrence of flow (purple dot) and groundwater levels (orange line). The black dashed line indicates the
start of groundwater pumping on the site.
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River has bedrock that is not far from the river bed, hence it is classified as a mixed allu-
vial and bedrock river (Grenfell et al. 2021). Furthermore, Molototsi has a clear dry and
wet season, whereas the Touws River receives rainfall and flows at any time of year.
However, the use of remotely sensed data demonstrated the capability to detect pools at
both river and pool scale.

In both rivers, pools with shallow water (depth of approx. 0.3m) were detected, but
those that were small in surface area were not detected. The failure to detect pools with
small surface areas may be due to the satellite image resolution, where pixels including
small pools are detected as non-water. The MNDWI and NDWI detected pools better
than other methods in both Touws and Molototsi Rivers, respectively. However, the
MNDWI did not detect pools that were smaller than 400m2. This is due to the short
wave infrared band of Sentinel-2 having a slightly coarser spatial resolution (20m).
Resampling it to 10m did not make a difference, whereas the NDWI uses bands that
have a 10m spatial resolution and it was able to detect some pools that are less than
400m2. Li et al. (2021) made the same observation when mapping a small river. The
NDWI is known to have challenges in separating shallows and built-up areas (Bangira
et al. 2019). This might explain why the index did not outperform MNDWI on the
mountainous Touws River site as compared to the relatively flat Molototsi site. All this
also suggests that the small pools require better resolution imagery in order to
be detected.

The random forest classification detected the pools with acceptable accuracy; however
it did not meet expectations at both catchment and pool scale. This might be because
pools tend to have different characteristics that affect the training of the classifier, such as
the presence of algae, vegetation, sediments in the pools, and the size and shape of the
pool. Even parts of pools can have different spectral signatures. All these might have lim-
ited the detection of pools by the random forest classifier as there are usually few water
bodies that can be used to train the classifier in these dry areas. As a result, the training
might not be diverse enough to capture the differences found in pools. Bangira et al.
(2019) state that this is the disadvantage of machine learning classifiers. Sentinel-1did not
perform well compared to results obtained from Sentinel-2. This is similar to results
obtained by Bangira et al. (2019). Although Sentinel-1 had been applied to mapping
floods over large areas, it was not suitable for detecting pools at both study sites. For an
index that was produced to detect vegetation, NDVI performed well in both catchments.

When comparing the accuracy at the pool’s size scale in Touws River, the WW1 pool
was estimated better than the WW2 pool. All methods had difficulty in classifying the
pixels around the WW2 pool due to the shadow in the morning, the time of day when
Sentinel-2 captures images. To reduce this misclassification, the random forest classifier
was trained for the hill shadows, thereafter, some misclassified pixels were removed. Pool
3, which was the largest pool in the Molototsi River, was also detected better than Pool 6.
However, only the NDWI was able to detect Pool 6.

In both catchments, the surface area of the pools generally correlated well with the
occurrence of flows and rainfall with the exception of one flow event that did not match
the change in surface area of the WW2 pool. The results showed no notable responses of
groundwater levels to surface water area of the pools, nor to rainfall and river flows. This
can be attributed to the nature of the underlying geology of the study sites, shale for
Touws and gneiss rock for Molototsi. This suggests that the pools are not losing water to
the groundwater system. These findings differ from many studies that have indicated that
groundwater sustains the pools (Bestland et al. 2017; Lamontagne et al. 2021). However,
Walker et al. (2018) made the same finding in the Molototsi catchment using water levels
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and geochemical analyses. Hamilton et al. (2005) reported similar findings for pools in
Australia, adding that clay found at the bottom of pools can also contribute in reducing
the interaction between groundwater and pools.

The results imply that altering the flow regime will significantly affect the spatial distri-
bution of pools and pool dynamics. The pools are not only important water sources for
the surrounding communities but they also provide habitat and maintain the aquatic life
of the river (Bonada et al. 2020). Further, they improve food security in the surrounding
communities (Sustainable Development Goal 2) as complete drying of pools may result in
total loss of aquatic life, including fish (Marshall et al. 2016). The results also showed that
pools at the study sites might not be sensitive to groundwater abstraction.

6. Conclusion

The study demonstrated the potential of using remote sensing methods to determine the
spatial distribution and dynamics of pools in two contrasting non-perennial rivers, the one
characterized by sandy-gravel bed with pools associated with bedrock outcrops (Touws
River) and the other exhibiting a sandy alluvium with pools migrating following flow events
(Molototsi River). Remotely-sensed methods detected pools with acceptable accuracy in
both rivers, except for small pools (<400m2). Overall, MNDWI performed better than
other methods in the mountainous Touws River, whereas NDWI performed better in the
relatively flat Molototsi flood plain. The pools in the Touws River showed a perennial pat-
tern, whereas pools in the Molototsi River showed ephemeral behaviour persisting only for
a few months after flows. Rainfall and flow occurrences are key in controlling temporal
changes in pools sizes, and there was no evidence of interaction between pools and ground-
water in both rivers. Water balance analysis, however, may be able to clarify, to a greater
extent, how these fluxes are responsible for the changes over time in pools.

Remote sensing proved be a useful approach to record water occurrence and availability
in poorly monitored non-perennial rivers. It is suggested that this approach could be used
to fill ground monitoring gaps in non-perennial rivers and it could be incorporated in
national hydrological monitoring networks. Water available in non-perennial river pools
can be considered an important water resource in semi-arid environments. If properly man-
aged, this additional water resource could serve to provide water for livestock and domestic
purposes in rural communities. It also provides ecohydrological services such as flood
attenuation and storage of floodwaters, as well as habitats, feeding and spawning ground for
various aquatics species, thereby indirectly supporting the tourism sector and livelihoods.
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