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ABSTRACT

This thesis introduces the Farming Lightweight Protocol (FLP) optimized for energy-restricted
environments that depend upon secure communication, such as multi-robot information gathering
systems within the vision of “smart” agriculture. FLP uses a hash-based message authentication
code (HMAC) to achieve data integrity. HMAC implementations, resting upon repeated use of the
SHA256 hashing operator, impose additional resource requirements and thus also impact system
availability. We address this particular integrity/availability trade-off by proposing an energy-
saving algorithmic engineering method on the internal SHA256 hashing operator. The energy-
efficient hash is designed to maintain the original security benefits yet reduce the negative effects

on system availability.

A simulation environment was created to represent several FLPs of practical character, each uti-
lizing HMAC in a consistent manner assuming inputs of configurable size. We then conducted
simulation experiments to test our energy-saving algorithmic engineering method for HMAC com-
putations. Using the RAPL API from Intel, we measured computational energy for each input size
and FLP protocol variant under study. Our results show that our method reduces energy usage by
11% on average, while maintaining the core capabilities of the FLP protocol without compromising

security performance.

viii



Chapter 1

Introduction

1.1 Engineering Motivation

Quality control inspections are crucial in various industrial sectors such as manufacturing, trans-
portation, electricity, infrastructure, and agriculture to prevent the sale of defective products, lower
costs, and reduce waste. While automated inspections are necessary due to high production rates,
hazardous materials, and small part dimensions, some factories still rely on manual inspections
despite the risk of human errors. Additionally, quality control inspections are used to improve op-
erational value and resource efficiency through new automation technologies, but their implemen-
tation involves challenges such as new costs, redefined objectives, and redesigned data analytics,

known as “’smart inspection” in contemporary applications.

Modern “Internet-of-Things (IoT)” technologies, such as cutting-edge sensors, cameras, portable
drones, and digital communications, are a major component of ”smart inspection” solutions. These
technologies do, however, present a number of technical difficulties, including attacks from ene-
mies and failures due to different faults. To fully realize the advantages of the connected ecosystem
of smart inspection solutions (i.e.Figure 1.1), fault-tolerance and cybersecurity issues must also be
resolved. Based on how they affect the system’s general Confidentiality, Integrity, and Availability,

these threats are categorized. (CIA).



Figure 1.1: Diverse communicating robots in smart field operations

1.2 Technical Motivation

In Figure 1.2, a basic Smart Farming system is presented. The devices and main server are
connected in a logical star topology to a communication beacon through direct physical or logical

connections. When necessary, they can also connect to each other in a peer-to-peer fashion.

Due to the direct connections between the beacon and the ”smart” source devices, critical security
issues arise. For instance, an attacker may try to eavesdrop on the communication between actors
to obtain information about sensing measurements. Alternatively, an attacker may tamper with
control instructions to cause harm to a plantation, such as path disruption or avoidance of specific

sectors.

Encryption and digital signatures are well-established mitigations for such security communication
vulnerabilities. However, these measures incur additional communication and computation costs,

such as memory, processor, and power, particularly in a limited/fixed energy-budget application
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Figure 1.2: SmartFarming : Basic Block Diagram

environment like the IoT system that uses robots to inspect a crop farm’s fields. Addressing the
upcoming trade-off between performance, energy consumption, and the diverse security measures
implemented in the deployed devices becomes challenging in this setting, where energy is the

fundamental measure of resource consumption associated with any given implementation.

1.3 Thesis objectives

The key objective of this thesis is to investigate and consider viable strategies for reducing the en-
ergy consumption of Hash-based Message Authentication Code (HMAC) powered protocol while
maintaining the basic security features associated with message digest generation. The current re-
search will look specifically at these methods for applications with limited or fixed power budgets,

such as those related to smart inspection in the Internet of Things (IoT) systems context.

The current study suggests a Farming Lightweight Protocol (FLP) as a first step toward ensuring
the integrity and confidentiality of data exchange in bidirectional communication between two

entities. In order to further enhance the energy efficiency of the system, an established Energy



Complexity Model [27] will be employed to evaluate a key algorithmic component in the Hash-
based Message Authentication Code (HMAC) Message Digest generation, specifically the core
cryptographic hashing algorithm. This approach’s primary goal is to reduce energy consumption

while keeping the required degree of security and reliability in the data exchange process.

Subsequently, in order to measure and quantify the energy reduction achieved by the proposed
energy-efficient algorithmic engineering approach, a proprietary software energy measurement
tool interface, known as Running Average Power Limit (RAPL) [20], will be utilized to assess
the baseline and different implementations included that with the optimized hashing mechanism .
The goal of this analysis is to validate our proof-of-concept and the effectiveness of our method in

reducing energy consumption without compromising system functionality and security.

1.4 Thesis organization

This thesis consists of three chapters. Chapter 2 is a reproduction of a previously accepted pa-
per at the 2022 International Green and Sustainable Computing Conference (IGSCC) [8], which
analyzes the impact of energy savings in HMAC by conducting a synthetic run on a simulation
test-bed involving successive calculations. Chapter 3 presents a comparable approach and out-
comes for an ECM-optimized-HMAC Farming Lightweight Protocol (E-FLP) run and provides a
quantitative and qualitative evaluation. Finally, Chapter 4 concludes the document and provides

recommendations for future research in this area.



Chapter 2
Towards an Energy-Efficient Hash-based

Message Authentication Code (HMAC)

This chapter is a reproduction of Castellon et al. [8] accepted and presented in the 2023 IEEE
13th International Green and Sustainable Computing Conference. The article’s authors are Cesar

Castellon, Swapnoneel Roy, O. Patrick Kreidl, Ayan Dutta and Ladislau Boloni.

2.1 Introduction

Hashed-based Message Authentication Code (HMAC) is a well known machine authentication
code extensively used in different cybersecurity applications. Advocates for such uses cite the
HMACs ability to provide both integrity and authentication. [4, 30, 47, 24, 39]. One particularly
promoted use case is the Transport Layer Security (TLS) [4, 47, 28, 1, 34], which is the stan-
dard, widely deployed protocol for securing client-server communications over the Internet. The
Transport Layer Security (TLS) protocol, sometimes referred to, the Secure Sockets Layer (SSL)
protocol, is a stateful, connection-oriented, client-server protocol. TLS is the most widely de-
ployed communications security protocol on the Internet, providing confidentiality, integrity and

authentication for parties in communication.

Other usages of HMAC include error correction codes [23], remote attestation [46], VANETSs [39,

11,29, 31], security and privacy in systems [19], and Internet of Things (IoT) [43].
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A balance exists in the amount of security, performance, and energy consumption one wants to
achieve. In general, increasing security generally causes additional energy consumption while
decreasing performance. Finding perfect balance between energy consumption, performance and
security level — becomes a challenge in HMAC based applications, where supply of energy is

often very limited [25].

To be viable for an application that values autonomy for greater lengths of time, any system must
be configured to make more efficient use of energy. Disabling HMAC integrity and authentication
will certainly save energy, but also weaken security: it is in such contexts that the exploration of

ways to reduce energy consumption of HMAC alone can be of tremendous practical significance.

2.1.1 Related Work

Energy efficiency in computation is a widely studied topic, with numerous points of view: hard-
ware specific platforms, operating systems, hypervisors and containers [45]; software develop-
ment and security [14]; and algorithms [36, 37]. Energy measurements are sometimes obtained by
uniquely instrumented equipment [35], while other times can leverage hardware providers’ Appli-
cation Programmer Interfaces (APIs) in which firmware counters are recalled to provide near re-
altime information e.g., Running Average Power Limit (RAPL) technology [40]. Energy-efficient
(greener) HMAC implementations have been actively researched as a means to improve over-
all energy efficiency in secured systems [32]. These research have mostly focused to optimize
energy efficiency of HMAC in a variety of scenarios (e.g., scheduling [2, 13, 48], system soft-
ware [3, 18, 44], hardware implementation [17, 12], and hypervisors [16]). However, all of these
works treat HMAC as a black box and to the best of our knowledge, no research exist in the litera-
ture that deals directlywith the hash algorithms of HMAC and attempts to engineer them to reduce

energy consumption in HMAC.



2.1.2 Our Scope and Contributions

We study the extent to which the underlying hash function (SHA256), a principal element of
HMAC, can be made more energy efficient. Our approach employs an energy-reducing algo-
rithmic engineering technique, based upon an Energy Complexity Model (ECM) proposed by Roy

et al. [36, 37], on the SHA256 encryption algorithm, which is central to HMAC.

Using pyRAPL, a python library to measure an executable’s Runtime Average Power Limit, we
experiment with both the standard and energy-reduced implementations of HMAC for input sizes
(in bytes) that are commonly seen within applications using HMAC. Our results show significant
reductions in energy consumption, up to 13.5% but on average around 12.7% across the tested input
sizes. At present, it is only a conjecture that reduced energy consumption in the HMAC module
itself extrapolates to comparable reduction of an application using HMAC on the whole. In any
case, to the best of our knowledge our work is the first to address energy optimization of HMAC
by engineering the implementation of one of its component algorithms (SHA256). Moreover, the
proposed energy-reducing technique is similarly applicable to other key elements of a secured
system, potentially affording even “greener” secured application systems than implied by only the

HMAC results obtained thus far.

This paper builds on top of research done in [9]. While [9] experiments on energy efficiency of
Merkle Trees in Blockchain, this work experiments on energy efficiency of HMAC, a different
algorithm. Also, part of this work was done while the first author pursued his Masters in EE as

presented in this M.S thesis [7].

2.2 Methodology

An Energy Complexity Model (ECM) [36, 37] has been applied to the underlying SHA256 func-
tion of HMAC. We first describe how the general HMAC function works, followed by a brief

discussion of the ECM and its application to the underlying SHA256 of HMAC.



2.2.1 HMAC Message Digest Generation

As mentioned before, HMAC implements both integrity checking and authentication of messages
using cryptographic hash functions. Any hash function (e.g. MDS5, SHA128, SHA256, etc.) can
be used in HMAC combined with a shared secret key. HMAC’s strength cryptography-wise is

dependent on the strength of its underlying hash function [21, 6].

Fig. 2.1 shows a graphic representation of a simple HMAC message digest generation. The input
to HMAC is a message M containing ¢ — 1 blocks (Y (1)---Y (£ — 1)), each of size b. A signature
S; is concatenated to the left of M before it is input to the underlying hash function (e.g. SHA256)
to produce a temporary message digest MD'. MD' is further concatenated with output signature
S, = K™ @ PAD, which is then hashed again using the underlying hash (e.g. SHA256) to produce

MD, the final message digest.

K+ ipad
Si Y(1) Y(2) cooa Y(L-1)
K+ opad l
\Y
HASH [——
kj 1 SHA256 1|
- — )
So MD’
[\
r—-—=-
] SHA256 |
- — )
MD

Figure 2.1: Basic HMAC generation



For a recap, in Fig. 2.1, HASH stands for the hash function function (SHA256), M is the input
message, S; and S, are respectively the input and output signatures, Y (i) is the i block of M, i
ranges from [1,¢), ¢ is the number of blocks in M. K is the secret key used for the hash. IV is an

initial vector (constant values used by SHA256).

2.2.2 The Energy Complexity Model (ECM)

The Double Data Rate Synchronous Dynamic Random Access Memory (DDR SDRAM) is the
reference architecture for the energy complexity model (ECM) [36], which has applied to HMAC
in this work. As illustrated in Fig. 2.2, the main memory of DDR is divided into banks, containing

a fixed number of chunks'.

Allocation of data happens in each bank over chunks. Additionally, every bank contains a special
chunk called the sense amplifier. For any data access, the chunk containing the data to be accessed
has to be brought inside the corresponding bank’s sense amplifier. Each sense amplifier can house
one chunk at a given time, so the present chunk has to be returned to its bank before a new one can
be brought in for the next access. At a given time, therefore, only one chunk of a given bank can
be accessed; however, chunks of different banks can be accessed in parallel (within each bank’s
own sense amplifier). Hence, for a P bank DDR memory (e.g., P = 4 in Fig. 2.2), at any point of
time we can access P chunks. The sense amplifier is called per-bank cache in DDR3 version of the

DDR architecture.

The P banks of a given DDR3 SDRAM resource is denoted by M1, M, ...,Mp by the ECM. There
are multiple chunks of size-B (in bytes) and a cache C; respectively in each bank M;. Fig. 2.3
illustrates an example with P = 4 banks similar to the case in Fig. 2.2 with each bank having only
four chunks. Labels in numbers 1,2,...,16 were assigned to the chunks. Given the constraint in

DDR that a single chunk may be put inside a given cache C; at any time, examples of completely

IThe term “block” is used in DDR specifications, but we use the term “chunk” to avoid confusion within our
HMAC context.
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Figure 2.2: Internal DDR SDRAM memory chip block diagram.

serial execution are the access patterns (1,2,3,4) or (5,6,7,8), while (1,5,9,13) or (3,8,10,13)
are examples of completely parallel execution. The authors of [36] discovered (1) accessing same
number of chunks (sequentially or in parallel) account for very similar amount of power consump-
tion and (2) execution time of an algorithm is reduced significantly when chunks are accessed in
parallel than when chunks are accessed sequentially. Since energy consumption of an algorithm
is dependent on both time and power, it was implied that energy consumption in any algorithm is
potentially reduced by parallelizing chunk accesses during the execution of that algorithm. For-
mally, as derived by Roy et al. [36], the energy consumption (in Joules) of an algorithm o7 with

execution time 7, assuming a P-bank DDR3 architecture with B bytes per chunk, is given by

E()=1+(PxB)/I 2.1)

where the so-called parallelization index is denoted by /, which is essentially the number of parallel

10



block accesses across memory banks per P block accesses made by <7 on the whole. In other
words, an algorithm’s potential for energy reduction is inversely proportional to the degree it can

be engineered for parallelization of its memory accesses, according to ECM.

11519 |13
2 || 6|10 14
3|7 | 1|15
4 || 8

12 |16
c1/c2

Figure 2.3: ECM for DDR3 Resource with P = 4 Banks

2.2.3 Engineering Hash Calculations Using ECM

The energy consumption of the underlying hash algorithm (SHA256) of HMAC has been reduced
by engineering it based on ECM in this work. First, how any algorithm .2/ can be parallelized
based on ECM is described. Then we illustrate how SHA256, the underlying hash algorithm for

HMAC is engineered for parallelization based on ECM.

Parallelizing any algorithm

For algorithm .27, the most common access sequence of .7 on execution for a given input is first
identified. The vector formed by this access sequence is then engineered to achieve the desired
level of parallelism by framing a logical mapping over chunks of memory that store data accessed
by . Physical location of the input (chunks) is static in the memory and is controlled by the
memory controller of DDR. But order of access over chunks is different for different levels of
parallelization. Different page table vectors V is framed each time for implementing different
levels of parallelization of access over physical chunks. V defines the ordering of access among

chunks (Fig. 2.4).

11
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Figure 2.4: Memory Layout (P = 4) and Role of Page Tables

For 1-way access, the page table vector V has the pattern (1,2,3,4,...) and for 4-way access it has
the pattern (1,5,9,13,...). A function is then created to map the pattern of the page table vector V
to the original physical locations of the input. Algorithm 1 shows the function to create an ordering
among the chunks. The ordering is based on the way we want to access the chunks (P-way would
mean full parallel access). The page table is populated by picking chunks with jumps. For P-way
access, jumps of P are selected that ensure the consecutive chunk accesses lie in P different banks.
Going by the above example, for P = 1, jumps of 1 ensure that 4 consecutive chunk accesses lie
in the same bank (bank 1 of Fig. 2.3). On the other hand, for P = 4, jumps of 4 ensures that 4

consecutive chunk access lie in 4 different banks (banks 1 through 4 of Fig. 2.3).

Algorithm 1: Create a Page Table for N Chunks
Input: Page table vector V, jump amount jump.
factor = 0;
fori=010 % —1do
ifi > 1 and (i x jump) mod % = 0 then
| factor = factor +1;
end

V; = (i X jump + factor) mod %/;
end

12



Parallelizing SHA256

As illustrated in Fig. 2.1, HMAC generates the final message digest (MD) by applying SHA256
twice. The SHA256 algorithm partitions its input into fixed size message blocks, presented in se-
quence to separate compression functions, as shown in Fig. 2.5. This block sequence is identified in
correspondence with the access pattern of the SHA256 algorithm, which we subject to engineering
based on the ECM. The SHA256 input vector (see Fig. 2.5), is pre-processed into another vector
by applying Algorithm 1. The mapping is then stored in a page table to be used in subsequent hash
calculations. An example of this operation for 16 blocks and a parallelization index (jump) of 4 is

shown in Fig. 2.3.

Fig. 2.6 shows the outcome of engineering the SHA256 algorithm based on ECM. In our exper-
imentation, an 8-bank DDR3 SDRAM is used and the parallelization index is set to / = 8. This
essentially means that for any set of eight consecutive block access in SHA256, we created a vir-
tual mapping using techniques described in [37] to ensure that each size-8 access occurs across all

eight banks.

INPUT MESSAGE

MSG

[ HASH |

Figure 2.5: The SHA256 Algorithm
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Figure 2.6: ECM-Enhanced SHA256

Theorem 1. The engineered SHA256 algorithm has the same computational complexity as the

original SHA256 algorithm.

Proof. SHA256 has a computational complexity of ®(N), where N is the number of blocks in
Fig. 2.5 [33]. Algorithm 1 has a computational complexity of ®@(N) since the for loop of line 2
executes exactly % times. Therefore applying Algorithm 1 to SHA256 as illustrated in Fig. 2.4

does not change the overall computational complexity of SHA256. O

2.3 Experiments

This section describes experiments performed to measure energy efficiency of HMAC out of the
engineering illustrated in the previous section. The ECM required a hardware with a DDR RAM

architecture. According to the ECM, maximum energy efficiency is attained by the parallelization

14



index set to the number of memory banks, which depends upon the DDR version: 4 for DDR2,
8 for DDR3 and 16 for DDR4 and higher. We used a machine with a 64-bit dual-core processor
(Intel 15-2410M @ 2900MHz with cache size L2 256KB and L3 3072KB), running Linux Mint
version 19.3 with a 8GB DD3 RAM and 500GB SSD storage. Also, pyRAPL, a software toolkit,
was used to measure the host machine’s energy footprint along the execution of Python code for
comparing energy consumption between HMAC with standard and ECM-enhanced of the underly-
ing SHA256. pyRAPL is built upon Intel’s Running Average Power Limit (RAPL) technology that
estimates a CPU’s power consumption; depending on the hardware and operating system config-
urations, pyRAPL can measure energy consumption of the following CPU domains: CPU socket,

GPU, and DRAM [40].

2.3.1 Implementation Details and Setup

Standard and ECM-enhanced versions of the SHA256 algorithm have been implemented in two
different C language programs, these are called from a master Python program via the ctypes
module) as an external command. This permits the use of Python pyRAPL to measure energy
events having at the same time the low-level memory control to implement the ECM-enhanced

SHA256 functionality.

Our experiments simulated the HMAC calculation with Python code that runs one complete round
of Message Digest generation having pyRAPL methods invoked yielding in a single energy mea-
surement per event. Since measurement implementation is subject to noise we have invoked 1000
repetitions for the process and report the average energy (mean and deviation). Our experiments
also vary the input size (i.e., the message size) to the HMAC calculations, choosing 64, 128, 256,
384, 512, 768, and 1024 bytes motivated by having standard message’s not to exceed traditional

MTU limit of 1500 bytes and selecting standard steps of size increase.
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2.3.2 Results and Discussion

Our experimental setup features two implementations of HMAC calculations, the standard one
(which we label by “O” as it uses the standard SHA256) and the engineered one using ECM
(which we label by “E” as it uses the energy efficient SHA256), as well as seven different input

sizes.

Per implementation and per input size, our experimental Python script leverages the pyRAPL
toolkit to measure the average energy (mean and deviation over 1000 trials) of simulated HMAC
calculations. Fig. 2.7 summarizes the seven average energy measurements in a bar chart, per in-
put size comparing the Standard HMAC (O) and the Enhanced HMAC (E) average energy (in
uJoules). We observe that the ECM-enhanced implementation consistently consumes less energy

that the standard implementation.

The first set (Fig. 2.7) compares average energy measurements between the energy efficient (‘E”)
and the original (‘O’) HMAC implementations, starting from input size 64 byte to 1024 bytes.
To summarize, the ECM-engineered HMAC shows an average energy consumption increment of

around 100% with increase in input size from 64 byte to 1024 bytes.

The standard (‘O’, non-enhanced) model in comparison showed an average energy consumption
increment of around 75% over the same input sizes. For example, with input sizes of 64,128, and
256 bytes, the average energy consumption are 8380 and 9600 uJoules for ‘E’ and ‘O’ respec-
tively, while for input size 1024 bytes, they are 14866 and 17213 uJoules respectively. It can be
concluded that memory parallelism implementation in SHA256 based on ECM has an overhead

impact on energy consumption of HMAC. This is in line with the ECM model proposed in [36].

Fig. 2.8 presents average energy savings on more relative terms, namely as a percent reduction
achieved by the ECM-enhanced implementation over the standard implementation of HMAC over

all seven input sizes. The energy savings for the smaller input sizes range between 12 — 13%, while
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Figure 2.8: Percentage of Energy Saving per process in HMAC per Message Size

the energy savings for the larger input sizes range between 13% and 14%,. As observed, the 768B
input renders a savings lower than the average, yet it is still around the margins over 10% for single

operation.
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Chapter 3

Energy considerations in HMAC secured

communications

3.1 Peer to Peer communications

Wireless peer-to-peer (P2P) communication is a type of wireless communication that allows de-
vices to share data without the use of an intermediary network infrastructure [42]. Unlike tradi-
tional wireless communication, which relies on a central hub or base station to relay data between
devices, peer-to-peer communication enables devices to connect directly to one another and share

data in a decentralized way.

Client-Server Peer to Peer

Figure 3.1: Client-Server vs. Peer to Peer

The proliferation of mobile devices with wireless networking capabilities, such as cellphones and
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tablets, has fueled the rise of wireless P2P communication. In today’s society, these devices have
become ubiquitous, and users increasingly expect them to be able to interact with one another
seamlessly and without interruption. Wireless P2P communication helps to meet these expecta-

tions by allowing devices to share information, cooperate on tasks, and communicate in real time.

There are numerous advantages to wireless P2P transmission. For one thing, it eliminates the need
for a centralized network infrastructure, which can be costly and challenging to implement in some
environments. Furthermore, P2P communication is more resilient and reliable than traditional
wireless communication because devices can interact with one another even in the absence of a
central hub or base station. Furthermore, because data is not routed through a central intermediary
who could possibly intercept or eavesdrop on the communication, P2P communication can be more

secure and private than conventional wireless communication.

Despite these advantages, wireless P2P communication poses a number of obstacles. One major
issue is device compatibility, which arises when devices use different wireless communication
protocols or are unable to establish a direct link with one another. Another issue is scalability, as
P2P communication becomes more complex and challenging to manage as the number of devices

increases.

This section offers an overview of important topics related to the implementation of peer-to-peer
information exchange. The discussion starts with an examination of raw socket communications
as a fundamental component of peer-to-peer communications schema. Following that, the section
goes into a discussion of the widely used cryptographic mechanism, HMAC, which is used to
verify message authenticity and integrity. In addition, a breakdown of the widely used secure
communication scheme, TLS/SSL, is provided. Finally, the section ends with an explanation of

the proposed Farming Lightweight Protocol’s fundamentals.
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3.1.1 Raw socket communications

Raw socket communication is a type of network communication that provides direct access to
the network stack, allowing applications to send and receive packets at the raw protocol level.
Raw socket communication is often used for network monitoring and debugging, as well as for
implementing custom network protocols. This paper provides an overview of raw socket commu-

nication, its basic principles, and its practical applications. [15]

Raw socket communication allows applications to bypass the transport layer protocols (See Fig
3.2 below), such as TCP and UDP, and interact directly with the network layer protocols, such as
IP and ICMP. This provides applications with fine-grained control over network traffic and enables

the implementation of custom network protocols.

Application

APPLICATION |  Process |

4 T
socket

TCP

I PV4 Kernel

DEVICE Communiatir
DRIVER &
HARDWARE

UDP

Figure 3.2: RAW socket communications

Raw socket communication is implemented using the socket API, which provides a set of system
calls for creating, binding, and communicating with sockets. To create a raw socket, an application
specifies the protocol family as AFPACKET and the protocol as ETHPALL, which indicates that

the socket should capture all packets, regardless of their protocol type.
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Once a raw socket is created, an application can send and receive packets using the sendto() and
recvfrom() functions, respectively. When sending a packet, the application specifies the destination
address and protocol type. When receiving a packet, the application receives the raw packet data,

including the protocol header and payload.

Raw socket communication has a wide range of practical applications, including network moni-
toring, packet capture, and custom protocol implementation. Raw socket communication is often
used by network administrators to monitor network traffic and detect anomalies, such as packet

loss or excessive latency.

Raw socket communication is also used for packet capture, which is the process of intercepting and
analyzing network traffic. Packet capture is often used for debugging network issues, analyzing

network performance, and detecting security threats.

In addition, raw socket communication is used for implementing custom network protocols. For
example, an application might use raw sockets to implement a custom protocol for transferring
data between two systems, bypassing the standard transport layer protocols and providing greater
control over the transmission process. Yet, it may result in additional complexity when resolving
logical multiplexing with concurrent applications and sequencing operations for flow and error

control.

3.1.2 TCP/UDP Communications

Solving some of the complexity that a raw socket communication may involve, there exists two
protocols used in Layer4(Transport) fur such purpose , those are User Datagram Protocol (UDP)

and Transmission Control Protocol (TCP).

The User Datagram Protocol (UDP) is a connectionless protocol for transmitting data across a
network. Unlike TCP, UDP does not guarantee error checking or data integrity, making it a less

reliable but faster choice for data transmission. Instead, UDP prioritizes speed and efficiency,
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making it perfect for real-time communication in applications such as video conferencing and

online gaming.

UDP transmits data in the form of packets to a particular IP address and port number. In contrast
to TCP, there is no connection establishment procedure, so data can be sent immediately without
any initial delay. However, there is no way to guarantee that the data was received correctly or in

the right order.

While UDP is faster than TCP, it has some drawbacks. Because it lacks error checking and reli-
ability assurances, it is vulnerable to packet loss and data corruption, which can degrade the user
experience. As a consequence, to ensure that data is transmitted quickly and reliably, UDP is usu-
ally used in conjunction with other protocols that provide these guarantees, such as TCP or the

Real-time Transport Protocol (RTP).

TCP is a basic protocol of the Internet Protocol Suite that serves as a dependable, connection-
oriented mechanism for transmitting data over the internet. Its main function is to divide data into
packets and ensure that these packets are transmitted and received correctly, ensuring end-to-end

data integrity [42].

TCP uses a three-way handshake procedure to establish a connection between two endpoints, send-
ing and receiving SYN, SYN-ACK, and ACK packets to ensure that both endpoints are ready to
communicate. TCP uses a sliding window method to transmit data once the connection is estab-
lished. This method includes sending a specified amount of data, or a "window,” and then waiting

for the receiver to acknowledge before sending the next window, preventing data overload.

TCP’s congestion control mechanism, which monitors the network for signs of congestion and
dynamically adjusts the transmission rate to avoid network congestion, is one of its most important
characteristics. TCP helps to keep the stability and reliability of the communication’s flow, by
utilizing algorithms such as slow start and congestion avoidance; along with the congestion control

mechanism of the protocol , the system ensures that packet loss and degraded performance are
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minimized.

3.1.3 Hash-based Message Authentication Code (HMAC)

Hash-based Message Authentication Code (HMAC) [22] is a widely used cryptographic mech-
anism for verifying the integrity and authenticity of messages. HMAC provides a way for two
parties to ensure that a message has not been tampered with or altered during transmission. This

paper provides an overview of HMAC, its basic principles, and its practical applications.

HMAC is a mechanism for generating a message authentication code using a cryptographic hash
function and a secret key. HMAC works by combining the message with a secret key, and then
hashing the result using a cryptographic hash function, such as SHA-256 or SHA-512. The re-
sulting hash value is the HMAC, which can be used to verify the integrity and authenticity of the
message. HMAC is designed to be a computationally secure mechanism for verifying message in-
tegrity and authenticity. The security of HMAC is based on the assumption that the cryptographic
hash function is secure and that the secret key is kept secret. HMAC is widely used for mes-
sage authentication in a variety of applications, including secure communication protocols, such
as SSL/TLS, and digital signature schemes, such as RSA. HMAC is also used for data integrity

checks in file transfer protocols, such as FTP and SCP.
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Figure 3.3: TLS/SSL DATA with HMAC [41]

In secure communication protocols, such as SSL/TLS (Figure 3.3), HMAC is used to ensure the
integrity and authenticity of the data transmitted between the client and server. When a message is

sent, the sender generates an HMAC using a secret key and a hash function.
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The receiver then generates an HMAC using the same key and hash function, and compares it
with the HMAC received from the sender. If the HMACs match, the receiver can be sure that the

message has not been tampered with during transmission.

In digital signature schemes, such as RSA, HMAC is used to ensure the authenticity of the sig-
nature. When a message is signed, the sender generates an HMAC using a secret key and a hash
function, and then encrypts the HMAC using the sender’s private key. The receiver can then verify
the signature by decrypting the HMAC using the sender’s public key, and comparing it with the

HMAC generated from the message using the same key and hash function.

3.1.4 Secure communications over IP - SSL/TLS

The Secure Socket Layer (SSL) and its successor, Transport Layer Security (TLS), are crypto-
graphic protocols used for securing internet communication. SSL and TLS are used to encrypt
data between two entities, such as a web server and a client, to prevent third-party eavesdropping

or tampering. [10]

SSL was first introduced by Netscape in the 1990s as a way to secure internet communication. In
1999, SSL was updated to version 3.0, which was later standardized as TLS. TLS has since been

updated several times, with the latest version being TLS 1.3, which was released in 2018.

SSL/TLS works by encrypting data that is transmitted over the internet. The encryption process is
initiated when a client requests a secure connection to a server. The server responds by sending a
digital certificate that contains a public key. The client then uses the public key to encrypt a session

key, which is used to encrypt all subsequent communication between the client and server.

SSL/TLS uses a combination of symmetric and asymmetric encryption. Symmetric encryption is
used to encrypt data using the session key, while asymmetric encryption is used to encrypt the

session key itself.
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This two-step process provides an additional layer of security, as it ensures that even if the session
key is intercepted, the encrypted data cannot be decrypted without the private key associated with

the public key used to encrypt the session key.

SSL/TLS is widely used to secure online transactions, such as those performed on e-commerce
websites. SSL/TLS is also used to secure other types of communication, such as email and instant
messaging. In addition, SSL/TLS is used to secure connections between web servers and web

browsers, as well as connections between servers in a distributed system.

SSL/TLS has become the most deployed protocols for secure communications over data networks;
the evolution of such protocols now comprehensively addresses several facets of communica-
tion that need to be authenticated, encrypted, and authenticated encryption. One of the under-
lying records of TLS is the MAC record, generated by a cryptographic hash function (nominally
SHA256, although SHA-1 and MDS5 can also be used) and is used to create an SSL payload,
showing a promise of energy savings if modifying the underlying SHA library for the E-SHA [8]

version would permit us to have robust and secure communications for our devices.

Nevertheless, after examining the SSL/TLS handshaking operation portrayed in Figure 3.4, it
became evident that the phased handshake consisting of three distinct stages would add complexity
to the working code of the robots. The first stage involves Establishing Security Capabilities, with

a decision process implemented at each node to determine which parameters to accept.

The next stage is Server Authentication and Key Exchange, which requires validation by a central-
ized Certification Authority. Finally, there is Client Authentication, which necessitates a unique

process of certificate exchange and verification.

As a result, this elaborate protocol would require more communication resources, resulting in
higher energy consumption. Therefore there is an evident need of a simpler yet secure approach

detailed in the following section.

25



Client Server

Client Hello Phase 1
Establish Sec.Capabilities
SEI'\-’F'.I' HEU.D Version / Random Number
Session 1D / Cypher Suite
Server Auth, and Key Exchange Compression Techniques
Phase 2

lient Auth and Key Exchange Server Auth and Key
Exchange

Server Cert & Key Exchange

Change Cipher Spec Client Cert.Request
Cipher Suite - Server Done

M—\_—. Phase 3
Client Auth and Key
Change Cipher Spec Exchange
Client Key Exchange
. Client Certificate
Server Finished Client Certificate Verify
Phase 4

Finish
Client Change Cipher Spec
Client Finished
Server Change Cipher Spec
Server Finished

Message Exchange

Figure 3.4: SSL/TLS handshaking protocol operation [41]

3.1.5 Farming Lightweight Protocol (FLP)

The current project introduces the Farming Lightweight Protocol (FLP) as a potential solution to
address the need for message integrity validation in a multi-robot collaboration environment as
presented in the work of Samman et al. in [38]. The scenario involves multiple surveying robots
collecting information and sharing it to improve the prediction accuracy. The proposed FLP aims

to secure the exchanged messages between the robots and enhance the authenticity of the data.
For this implementation we assume the following conditions :

* Authentication will be leveraged to other mechanisms already present in the solution (ei-
ther passcode, timestamp, temporary one-time password (OTP), or even a message from an

authentication blockchain),

* For communication’s security, we let Layerl and/or Layer2 address it with any appropriate

mechanism (e.g., scrambling, modulation ) while transmitting.
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* Authorization will depend on the robot’s resident program , the data reading and valida-
tion; within a successful authentication and a correctly resolved challenge, incoming data is

processed, and only then data is transmitted outbound.

The designed FLP is depicted in Figure 3.5 below, this is a data-sharing scenario where at first

Robotl senses the vicinity of Robot2 (condition to transmit):

Set Tx Mode
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—— LodeofTheD
Al Me&surements, HMAECR/TbC}ha”en(JEReq' .
\ [HMAC-MD,
"QBCH VER]
* " Set Tx Mode
[HMAC-MD, -
BCHVER.] ,
[MEASUREMENTS
ﬂ A STORAGE]

ROBOT 2
" Set IDLE Mode

[MEASUREMENTS
STORAGE]

Set IDLE Mode]

Figure 3.5: Basic FLP message flow

The process after the initial sensing is as follows:

1. Robotl sends a datagram containing RobotID, CodeofTheDay, ChallengeReq, ChallengeRe-
ply,Measurements, HMAC-MD.

2. Robot?2 receives the message, calculates the HMAC-MD of the message received, and im-

mediately verifies the information against its own BlockChainLedger.

If successful, it processes the Measurements and sends a reply datagram containing the
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following information: RobotID, CodeofTheDay, ChallengeReply, Measurements, HMAC-
MD.

If it is not verified, Robot2 drops the message and sets itself in IDLE mode.

3. Robot 1 receives Robot 2’s message, performs the same verification and storage tasks, and

sets itself in IDLE mode.

If there is no answer within a timer, having that Robot2 is still in the vicinity, Robotl will

send a new message with updated information after a contention timer ends.

Message Fields

The information exchanged between the two devices are comprised of the following fields.

1. RobotID : The Device’s Network identification in Hexadecimal Format (16 Bytes)

2. Code of the Day : Random Code Generation for Daily operation in Hexadecimal Format (16

Bytes)

3. Challenge Request : Input Datal + OperatorCode + InputData2 (16Bytes + 16 Bytes + 16
Bytes) . OperatorCode specifies type of operation to be performed (loaded at start of daily

operations)

4. Challenge Reply : Result of operation (16 Bytes long)

5. Measurements : All the measurements information available (padded to 128Bytes)

6. HMAC-MD : Overall Message Digest (32 Bytes)

Architecture

Figure 3.6, shows the communication layers for a data transmission between two peers (in the

figure Robots 1 and 2):
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Figure 3.6: FLP Protocol Architecture

We see that at Physical and Link layer we could implement various technologies such as WiFi or
Bluetooth, although other technologies like RFID could also be implemented we are sticking to

the mostly deployed ones.

The decision to keep IPv4 in the network layer provides both with flexibility on addressing the
nodes and in addition means of securing the access to other network instances by means of a

stateful firewall.

While transport would support s both the option of a RAW socket or a TCP managed communi-
cation, it would depend on the type of connection we require to implement any of those, for our
study we will keep TCP. Finally we implemented the FLP on top of this layer , the FLP protocol
can be hardenized using HMAC or left as is for the insecure version.

Work development phases

FLP simulation implementation went through the following phases :

* Implemented a SSL/TLS version (Secure FLP / S-FLP).
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* Replaced SSL/TLS for a TCP-socket version with HMAC running a standard SHA256 C li-
brary (Original FLP / O-FLP).Compared to Figure 3.3, modification occur in the data trans-

mitted format, as shown in Figure 3.7 below

“Coded” data — Not Ciphered

FLP_/ \_SHA256
\_Y_/ \_Y__}
HASH BASED

MESSAGE AUTH
CODE

Figure 3.7: FLP DATA with HMAC

* Replaced the standard SHA256 C library with the ECM enhanced SHA256 (Enhanced FLP
/ E-FLP).

3.2 Experiment Setup

This subsection describes experiments where we measured the energy required for each one of the

implementations proposed in the previous subsection.

The application of ECM, simmilarly to the setup mentioned section 2.2, uses as well a DDR
RAM hardware. The simulations were run on a Linux Mint 20.1 machine with Python 3.8 and
the PyRAPL module installed, and C code compiled with GCC 8.3.1 20190507. The simulation
hardware included a 64-bit dual-core CPU (Intel i5-2410M @ 2900MHz) with L2 256KB and L3
3072KB caches, 8GB of DD3 RAM, and a 500GB SSD for storage.

The basic operation of the wrapper program is depicted in Figure 3.8. The program controlling
the experiments is shown as the Python block on the left, it then calls the C program block on
the right for running the hashing mechanism(e.g., either O or E - SHA256), and then records the

measurements.
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(2) Input

(3) HASH

Figure 3.8: Python wrapper for PYRAPL energy measurements [8]

Since energy measurement implementation is subject to noise, we have invoked 100 repetitions for

each process and reported the average energy (mean and deviation).

3.3 Evaluation and Results

We have defined possible metrics we will gather for evaluating measurement results; those are the

average and standard deviation of :

* Process duration in pseconds. Obtained from PyRAPL as an internal calculation of times-

tamps (time elapsed since the epoch).
* Energy consumed in process in tJoules. List of the CPU energy consumption (per socket).
* Computed Power consumed in Watts . Calculated value Energy per Unit of time.

Given the close relationship between the metrics, we focused our data processing and interpretation

efforts on the energy use dataset.

Phases of experiments

Recalling Section 3.2 we prepared following measurements scenarios

e Basic HMAC with [Standard hash function] (O-HMAC). vs. item Enhanced HMAC with
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[ECM optimized hash function](E-HMAC). [8]
» Secured FLP with [TLS/SSL] Robotl-Robot2 Data Exchange (S-FLP).
* Original FLP with standard [HMAC256] Robot1-Robot2 Data Exchange (0-FLP).

* Enhanced FLP with ECM optimized [HMAC256] Robot1-Robot2 Data Exchange(E-FLP).

Results
e O-HMAC and E-HMAC

Recalling the results by Castellon et al. [8] with input sizes of 64,128, and 256 bytes, the
average energy consumption were 8380 and 9600 ptJoules for ‘E’ and ‘O’ respectively, while
for input size 1024 bytes, they were 14866 and 17213 uJoules respectively. In these tests

the energy savings for the smaller input sizes ranged between 12 — 13%, while the energy

* S-FLP, O-FLP and E-FLP
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savings for the larger input sizes ranged between 13% and 14%,
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Figure 3.9: Average Energy Consumption in S-FLP , O-FLP and E-FLP per Message Size (with
1-sigma standard deviation over 100 trials)

32



The Secured FLP (‘S, secured) protocol, in comparison showed an average energy con-
sumption increment of around 20% over the exact input sizes as it can be seen in Figure 3.9.
The implementation of TLS/SSL for inter-robot communications has an overhead impact
on energy consumption per communication cycle. Figure 3.9 shows the measurements for
the SHA256 HMAC-powered FLP. It can be seen that the O-FLP (‘O’, Original) protocol,
in comparison, showed an average energy consumption increment of around 26% over the

exact input sizes, whereas the E-FLP showed a constant 23% increment.

Concerning one another, E-FLP has proven to be more energy efficient in a 10% average
than O-FLP ; therefore, we can conclude that implementation of E-SHA256 for secure inter-
robot communications has an overhead impact on energy optimization per communication

cycle as shown in Figure 3.10 below.
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Figure 3.10: Average Savings E-FLP vs. O-FLP and S-FLP per Message Size

* Statistical Analysis of measurements

E-FLP vs. O-FLP dataset were selected for further statistical analysis. For the statistical
analysis, energy in pJoules was measured for 100 runs of a communication algorithm with

8-way parallelism. Each test runs the algorithm with different inputs of the same size to
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avoid caching of results in order to make results independent for statistical analysis.

Since it is not feasible to determine if the measurements are uniformly distributed, we found
it suitable to use the Mann-Whitney U-Test for the statistical analysis. The Mann-Whitney
U Test is a non-parametric test of the null hypothesis that ” for randomly selected values X
and Y from two populations, the probability of X being more significant than Y is equal to

the probability of Y being more significant than X.” [36]

OFLP/EFLP Descriptive Statistics
Runs Mean STD.DEV
Energy 100 181.32 2.12
Consumed MIN MAX VARIANCE
175.38 186.36 4.51

Table 3.1: OFLP and EFLP Measurement’s Statistical Indicators

In Table 3.1, it can be observed that the variance of range (maximum—minimum) is lower
than the mean value. Thus, the standard deviation shows a higher spread as it is nearly half
the variance value. This shows that the data is not uniformly distributed and confirms that
we could not conduct a t-test. Minitab Statistics software was used to generate the rank table
shown in the following Table 3.2. A higher mean value in this Table indicates higher energy

consumption.

The results show that O-FLP consumes higher energy than E-FLP and the difference is sta-

tistically significant.

OFLP/EFLP RANKS

Mean |Sum of

Energy | GROUP ] Rank | Ranks
Consumed | EFLP 100 8.5 136
OFLP 100 24.5 392

Table 3.2: OFLP and EFLP Ranks
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3.3.1 Energy Savings Extrapolation over Real-World Systems

McNulty et. al in [26] establishes the energy consumption for unmanned vehicle devices (UVD)
to be divided into three subsystems: (1) Navigation, (2) Sensing, and (3) Locomotion as shown in

Fig. 3.11.

Figure 3.11: Block diagram of energy consumption sources for Unmanned devices.

In our work, the communications module is part of the navigation subsystem. The total energy

consumption of an unmanned device can be therefore expressed by the following equation.

ET =EL+EP+EN (3.1)

where ET stands for the total energy consumption, EL, EP, and EN stands for the energy con-
sumption respectively by the Locomotion, Sensing, and Navigation. Furthermore, EN can be
expressed as follows.

EN = Egps+ Ecomm 3.2)

where Egps stands for energy consumed by the global positioning system, and Ecomm for the

energy consumed by the communications . Finally Ecomm can be expressed as

Ecomm = Etrx+ Esec 3.3)

where Etrx stands for energy consumed by the Transmission/Reception process, and Esec stands

for energy consumed by the security tools implemented. Esec in Equation 3.3, will be 0Joules
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for a system with no security. On the other hand, Esec adds to the total energy consumption for
security applications implemented in the system. For our estimation process we will use as input

some important values contained in the specifications sheet of any UVD. Those values are:

Battery Power Capacity (BWh) expresed in [wh]

Current Output (I) expressed in [mA]

Operating Voltage (V) expressed in [V]

Maximum Distance Autonomy (Dmax) expressed in [m]

We can now calculate the Total Energy (T E) Stored at the battery as follows [5]

TE[Joules} = I[mA] X V(V) x 3600 (34)

Then the Energy needed by the robot to cover one meter (REL) is :

REL[J{)ules/m] = TE[J{)ules]/Dmax[m] (3.5)

Dmax for any UVD has a direct relation to TE, if it is affected by any source of energy drain, then
the maximun distance the device will cover will be lesser than the specified Dmax value, we will

refer to this affected distance as Dmin.

Dmin < Dmax (3.6)

We can then calculate the effect any power drainage has in Distance (Dcost) by dividing the total

amount of energy drained by other sources(Ecost) over the REL coefficient

DCOSt[m] = ECOSI[JouleS] /REL[Joules/m] 3.7
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Given that the current scenario involves the use of a blockchain as a security mechanism, Ecost will
have a component of energy used in the generation of every blockchain block, that is a complete
operation of mining (Merkle Tree generation and Proof of Work calculation). We assume that
every time a UVD robot communicates with other robot a block is generated consuming a certain

amount of energy (Eblock).

In [8] the authors measured the energy needed for a HMAC Message Digest generation for both
scenarios ,that is with the inner SHA256 ECM optimized (EFLP) or with the original SHA256 li-
brary (OFLP). Additionally ,the energy consumption for a SSLTLS operation (SFLP) is presented.

All of this values are for a 256 Bytes input size.

OFLP =1,916
EFLP =1,672
SFLP =2,128

Resulting Ecost as a function of number of blocks (Bnum) generated can be calculated as follows:

ECOSt[J{)ules] = EblOCk[J()ules] X Bnum[units] (3.8)

Brnum will depend in how many times throughout Dmax displacement the UVD exchanges infor-
mation with other device in the vicinity, this value depends inversely to the average distance (step)

displaced between one and the subsequent information exchange.

Bnumyis) = Dmax(,) X stepj,) (3.9

We will then calculate Ecost using O — SHA first, and later E — SHA to generate values using
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previous equations and then calculate Dmin by using

szn[m] = Dmax[m] — DCOSt[m] (3.10)

Following Table 3.3.1 shows the calculations of Dmax and Dmin labeled as "D-OFLP” when using
the O-FLP for Ecost , ’D-EFLP” when using the E-FLP for Ecost , and ”D-SFLP” when using
the TLS for Ecost for a single round of a Field Survey; we also assumed that one communication

takes place every Sm (step = 5) the robot traveled.

| Type Name Dmax D-OFLP D-EFLP D-SFLP |
Drone DIJI3 14,000 13,652 13,697 13,614
Drone Anafi Ai 32,640 28,850 29,332 28,430
Drone Bebop 3 9,900 8,161 8,383 7,969
Drone Matrice RTK 75,900 58,866 61,036 56,982
Robot TurtleBot4 7,200 5,667 5,862 5,498
Robot Jackal 28,800 28,064 28,158 27,983
Robot Husky 10,800 10,593 10,619 10,570
Robot TurtleBot Waffle Pi 1,872 1,804 1,813 1,797

Table 3.3: UVD Distance autonomy

The ”Unsecured” Dmax version may have a longer distance autonomy than any of the ”Secured”
(D—SFLP,D— OFLP,D — EFLP) implementations. Nevertheless, it is still the E — FLP secured
version that has a better distance autonomy than the other two secured implementations as it can

be seen in Figure 3.12.

The variation in distance autonomy, i.e., Dmax — Dmin, indicates the compromise between re-
sources and capabilities involved in securing a system. To determine the cost-benefit ratio of
preventing a security breach that could potentially affect a node (e.g., a robot), revenue assurance
calculations are necessary. However, this preliminary analysis does not consider such an assess-

ment, as other factors may also be relevant for a comprehensive security evaluation.
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Figure 3.12: Estimated distance autonomy per implementation
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Chapter 4

Recommendations and Conclusion

This study considers implementing an energy-optimized lightweight communication protocol for
energy-constrained environments, such as smart farming robot applications. We label this concept

the Farming Lightweight Protocol, or FLP for short.

For this purpose, we proposed a low-load protocol for information sharing among robots, lever-
aging tasks such as authentication and authorization to other components of the overall solution.
The first step implemented a standard SSL/TLS protocol for communication security having FLP
embedded into the ciphered payload. Furtherly, we took out FLP and combined it with HMAC for
message authentication moving away from SSL/TLS. Lastly we implemented an energy-optimized

HMAC for FLP integration.

This optimized HMAC reduces the energy consumption of the HMAC by engineering the un-
derlying hashing algorithm (SHA256) based on the Energy Complexity Model (ECM) [36]. We
measured and evaluated the HMAC ECM-enhanced implementation compared with the standard
implementation via experimental energy measurements with various input sizes of practical signif-

icance. These results show approximately 12% energy savings.

In the next step, we measured and evaluated the different simulation implementations, demonstrat-
ing that a) there is a statistical correlation between measurements, and we could rule out noise that

may have induced some bias in measurement, b) the ECM applied to the SHA256 integrated on the
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HMAC proved to be more energy efficient than the standard implementation, and c) the operation

of E-FLP represents less energy consumption compared to the other options.

For future work, there are two primary paths to follow. One is related to the swarms of robots
and the energy simulation per process. This simulation can be run in a different hardware scenario
(e.g., High-Performance Computers), where each processor can be set as one robot and emulate an
entire survey cycle. The second path is to test E-SHA256 in IoT devices, keeping in mind that the
memory architecture is DIMM4 compatible, but also considering that RAPL as a means for energy
measurement is not available for processors other than Intel. However, these measurements could
be addressed using a different kind of tool, such as a hardware-based or by means of establishing
a correlation with elapsed time. Moreover, for any of the previous scenarios it would also be

interesting to test and implement a RAW communication version of the FLP.

Lastly, other important challenges are to assess possible energy savings in other applications of
HMAC (e.g., Key Derivation Functions, Secure Data Transfer Protocols, One Time Password gen-
eration, Secure Routing Protocols) and evaluate their respective trade-offs between security and

resource usage.
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