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ABSTRACT

Breast density screenings are an accepted means to determine a patient’s predis-

posed risk of breast cancer development. Although the direct correlation is not

fully understood, breast cancer risk increases with higher levels of mammographic

breast density. Radiologists visually assess a patient’s breast density using mam-

mogram images and assign a density score based on four breast density categories

outlined by the Breast Imaging and Reporting Data Systems (BI-RADS). There

have been efforts to develop automated tools that assist radiologists with increasing

workloads and to help reduce the intra- and inter-rater variability between radi-

ologists. In this thesis, I explored two deep-learning-based approaches on breast

density classification. First, I developed and experimented with algorithms using

deep learning models (such as Inception V3 and ViT) to classify patients according

to BI-RADS using various types of digital mammograms. Second, with the need to

provide not only such classification but also a quantitative measure of breast den-

sity to help standardize assessments across radiologists, I applied a deep learning

based semantic segmentation model, DeepLabV3, to predict density percentages

which then were used to provide a linear and probability scale.

xii



CHAPTER 1

Introduction

Breast cancer is the most common form of cancer in women globally[38, 34]. Similar

to other forms of cancer, earlier diagnosis and treatment can result in improved

clinical outcomes for the patient. Breast density screenings are among the tools

used to determine a patient’s predisposed risk for breast cancer development. In a

breast density screening, Radiologists visually assess patient mammogram images

and visually assess the ratio of fibroglandular soft tissue to fatty tissue within the

patient’s breast. Based on their assessment, the Radiologist will then assign the

patient to one of the four breast density categories outlined by the Breast Imaging

Reporting and Data Systems (BI-RADS) [16] (Figure 1.1).

Figure 1.1: The four breast density categories outlined by BI-RADS in order of increasing breast density.

BI-RADS has subdivided breast density into a four-category scale according to

the increasing relative contributions of dense fibroglandular tissue to the overall
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breast tissue[16]. Most states in the United States have enacted breast density

notification guidelines[2]. Many of these states further combine BI-RADS classes

A and B into a non-dense category and BI-RADS C and D into a dense category.

These guidelines legally require that radiologists notify patients within dense cat-

egories of increased levels of breast density of their anticipated increase in the risk

for breast cancer development. These requirements to notification procedures also

impact the recommended care plan for patients in these elevated breast density

categories.

While BI-RADS is the most widely adopted breast-density assessment guideline

[12], it is categorized as a subjective pattern based method for assessing patient

breast density. The 5th edition of BI-RADS[14] has emphasized the removal of

the quantitative assessed breast density quartiles present in the 4th edition of BI-

RADS[16]. With this removal, BI-RADS has placed increased emphasis on the

subjective text descriptions of the assessed density. BI-RADS explains that the

change comes from the increased need to allow radiologists to assess density based

on masking effect alongside the amount of dense tissue present [14]. However, this

increased emphasis on subjective assessments does provide some drawbacks. Re-

search has shown that the use of these subjective assessments for breast density

can increase the inter-reviewer variability among radiologists [27, 11, 29] . This

variability can have a significant impact on the patient’s determined breast den-

sity and the provided treatment plan. Patient’s laying on the thresholds between

BI-RADS classes can have varying assessments that are dependent on the radi-

ologist reviewing their mammogram images. The American College of Radiology

has issued a statement in regard to this variability in subjective breast density

assessments among providers, claiming that the use of subjective pattern-based

breast density assessment guidelines can result in a significant reduction in the

reproducibility of assessment results[1].
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To help standardize assessment results alongside the increasing world popula-

tion and the increasing breast cancer incidence rates [34], there has been a growing

interest in the development of automated tools to assist radiologists with breast

density screenings. The use of deep learning approaches to assist radiologists with

the classification of patients into one of the four BI-RADS classes has seen growth

in recent years [6]. Convolutional Neural Networks (CNN) are the most common

deep learning architecture used to accomplish this classification task [39]. CNNs

have been applied to both image classification and object detection tasks and have

experienced widespread utilization since the 1990s[23]. The use of CNNs as a deep

learning breast density classifier has the opportunity to assist radiologists with

increasing workloads as well as to help standardize the results between different

radiologists.

While CNNs are extremely useful for breast density classification, I argue that

the assessment of breast density is not solely a classification task and relies on the

subconscious segmentation of dense breast tissue from fatty breast tissue. The use

of deep neural networks for breast density classification acts as a black box and

the classifier uses any number of features to make its classification. This makes

it difficult to extract the exact metric or feature used by the algorithm to make

the assessment. Previous research has investigated the use of segmentation al-

gorithms as a means to extract a quantitative density metric from mammogram

images and utilize this metric to more objectively assist radiologists in breast

density assessment. One such method is Cumulus[9], a semi-automated quantita-

tive breast density assessment tool developed by researchers at the University of

Toronto. This method utilizes a threshold set by a trained observer at the time of

assessment to "segment" the dense pixels from the non-dense pixels and output a

quantitative metric. While Cumulus provides radiologists with the means to reduce

inter-reviewer variability between breast density assessments, its semi-automated
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nature that requires trained users makes it much more challenging to work into

radiological workflows. There have been efforts to develop fully automated quan-

titative breast density tools that aim to reduce the amount of human interaction

necessary in outputing a density metric. Some fully automated tools, such as the

tool developed by researchers at the Karolinska Institute, utilize ImageJ to output

density as a continuous percentage [24] while other fully automated methods (e.g.,

LIBRA) utilize a fuzzy c-means based approach to provide a continuous breast

density percentage[21]. Machine learning has also been used by STRATUS to pro-

vide comparative performance to the semi-automated Cumulus and provides both

a continuous breast density percentage along with a corresponding BI-RADS class

based on predefined cut-off points[17]. The few commercially available quantita-

tive area-based breast density tools such as iCAD’s PowerLook[4] and Densitas[3]

possess limited publicly available information on the actual methodologies used in

their development.

In this thesis I aim to explore 1. the development and comparison of an

Inception-V3[36] based breast density classifier with and without AdaBoost to

a Vision Transformer (ViT)[15] based breast density classifier using a novel image

pre-processing technique; and 2. The use of the DeepLabV3[10] semantic segmen-

tation architecture for the development of a quantitative breast density assessment

tool.
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CHAPTER 2

Background and Related Work

2.1 Mammography

Figure 2.1: Each of a patient’s breasts are imaged from both the Mediolateral Oblique (MLO) and Craniocaudal
(CC) orientations.

This thesis utilized mammogram images to develop deep learning breast den-

sity classification and segmentation algorithms. Mammography is an x-ray imaging

technique used in the screening and detection of breast cancer and other diseases

associated with the breast. The images produced by a mammogram show the

internal tissues of the breast with darker shades of grey indicating lower density

tissues and white or whiter shades of grey indicating higher density tissues. Mam-
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mograms are typically taken from the Craniocaudal (CC) and the Mediolateral

Oblique (MLO) orientations (Figure 2.1). Radiologists will use CC and MLO

mammograms from both a patient’s left and right breast to make a breast density

assessment.

Figure 2.2: Visual example of the different mammogram image types.

The Mayo Clinic mammogram data set used for this thesis consisted of mam-

mogram images from both the CC and MLO orientations for the right and left

breast. The CC orientation is taken from a top-down perspective of the breast

while the MLO orientation is taken from a side-to-side perspective. This thesis

work has placed emphasis on the use of the CC mammogram images for the devel-

opment of both classification and segmentation algorithms. The pectoral muscle

present in the upper left or right quadrant of MLO mammogram images possesses

a similar opacity to the dense tissue that is of interest [30, 28, 26]. By excluding

MLO images, the avoidance of error introduced by pectoral muscle removal algo-

rithms can be accomplished. MLO images also often fail to include the deeper

tissues of the medial portion of the breast [8], resulting in more breast tissue being

present in CC mammogram images.
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2.1.1 Imaging Process and Techniques

During the imaging process, a patient’s breasts are compressed and an x-ray ma-

chine is then used to send x-rays through the breast to a detector on the opposite

side. This detector converts the x-rays to signals that a computer uses to develop

an image. The resulting 2D image is known as a Full Field Digital Mammogram.

The development of newer technologies has provided patients with both C-View

(Hologic, Marlborough, MA, https://www.hologic.com/) mammogram images and

Tomosynthesis Projection images (Figure 2.2). Both C-View and Tomosynthesis

Projection formats are becoming increasingly popular in routine mammographic

examinations due to the reduction of both the breast compression time and the

administered radiation dose[5].

2.2 Transfer Learning

All models used in this thesis utilized a technique known as transfer learning

when available. In transfer learning, the weights of a publicly available model

pre-trained on an exceptionally large and general data set like ImageNet[22], Mi-

crosoft COCO[25], or ILSVC[32] to a model used on a smaller and more specific

data set. Transfer learning is particularly useful in data-constrained situations

with smaller data sets as it helps to train the neural network on limited data,

while often achieving higher accuracy with less training time[37]. The models of

Inception-V3[36] and ViT[15] were pre-trained on the ImageNet[22] data set while

the DeepLabV3[10] models used were pre-trained on a subset of the Microsoft

COCO[25] data set.
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2.3 Data

All the data sets used in this thesis were created using Mayo Clinic data. A total

of 118,459 mammogram images from 9899 patients were sampled across multiple

Mayo Clinic enterprise locations. The data was split based on the patient when

creating the development, validation, and testing data sets. This was done to

ensure that patients that were trained or validated on would not have samples

present in the testing set.

2.4 Deep Learning Algorithms

For this thesis, the focus was primarily on the deep learning approaches used to

develop breast density classification and segmentation algorithms. For classifica-

tion, two different types of deep learning architectures were used: Convolutional

Neural Networks (CNNs) and Vision Transformers (ViT). For segmentation, the

DeepLabV3[10] semantic segmentation architecture was used.

2.4.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are deep learning algorithms that focus

on images. They are feed-forward neural networks that consist of input, hidden,

and output layers. CNNs are unique in that some of their hidden layers perform

convolutions. Convolutional layers convolve over their receptive field of the input

image passing the results to the next layer. The layers produce activation or feature

maps of the input image. CNNs also possess pooling layers which aim to reduce the

dimensions of the data output from multiple neurons of one layer into one neuron

in the following layer. The two forms of pooling are known as max pooling and

average pooling. Max pooling takes the max value of the outputs in the feature

map while average pooling takes the average value. CNNs are often the go to deep
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learning algorithm for image classification.

2.4.1.1 Inception V3

Inception-v3, a CNN developed by Google, is an updated version of GoogLeNet

which was introduced in 2014 [35, 36]. The initial Inception model aims to avoid

overfitting data from deep layers of convolutions by using an inception module.

Multiple filters of differing sizes are used within an inception module. Each module

consists of 1x1, 3x3, and 5x5 convolutions along with 3x3 max pooling. Inception-

v1 introduced 1x1 convolutions before the 3x3 and 5x5 convolutions and a 1x1 con-

volutions after the 3x3 max pooling within the inception module. This was done

to reduce the computationally expensive nature of the 5x5 convolution. These

inception modules have undergone optimization over time resulting in higher ef-

ficiency, a deeper network without compromising speed, and the use of auxiliary

classifiers to regularize. The use of inception modules also promotes the extraction

of features of varying scales due to the differing convolutional filter sizes. Due

to this, Inception-v3 could be useful in the extraction of the dense regions of the

breast while also identifying the whole breast and providing better performance

regarding accuracy metrics.

2.4.2 Vision Transformer

Transformers have seen successful growth and usage in the area of Natural Lan-

guage Processing (NLP). Transformers utilize a concept known as attention which

mimics cognitive attention. Some parts of input data are enhanced while others

are diminished allowing for the algorithm to learn the part of the data that is more

important than the others. Only recently has the concept of using Transformers on

2D image data been proposed in the form of Vision Transformers (ViTs) [15]. ViTs

work by first splitting an input image into patches of equal size. These patches
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are then flattened and positional embeddings are added to the linear embeddings

of these flattened patches. The Transformer Encoder is then fed the sequence of

patches. Following the Transformer Encoder, a Multi-Layer Perceptron head is

used to classify the resulting output from the Transformer Encoder (Figure 2.3).

While ViTs require an immense amount of data, they have been shown to out-

perform traditional CNNs on datasets such as ImageNet. Therefore, due to the

characteristics of the ViT framework, the use of ViT for breast density classification

may provide and increase in performance over a CNN.

Figure 2.3: General overview of the transformer architecture
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2.4.3 DeepLabV3

DeepLabV3 is an image semantic segmentation algorithm developed by Google

[10]. DeepLabV3 works by extracting features from the backbone convolutional

neural network. The size of the feature map is controlled using atrous convolutions

in the last few layers of the backbone network to increase the dilation rate at

each layer. Atrous Spatial Pyramid Pooling (ASPP) is then used to classify each

pixel as corresponding to an individual class. A 1x1 convolution is applied to

the final output from the ASPP network resulting in the final segmented mask

from the algorithm. The filter’s field of view becomes larger which in turn allows

for better semantic segmentation. The characteristics of the atrous convolutions

could provide a higher quality segmentation of the dense tissue of the breast.

Due to its use of atrous convolutions and ASPP along with pretrained public

availability through PyTorch, DeepLabV3 was selected over similar algorithms

such as FCN[33], UNet[31], and SegNet[7].

2.5 AdaBoost

AdaBoost is a popular boosting algorithm in machine learning. Most implemen-

tations of AdaBoost focus on traditional machine learning algorithms rather than

deep learning algorithms. Pseudocode outlining the AdaBoost algorithm, as de-

scribed in [18] is displayed below:

At the start of the algorithm all the samples in the training set are weighted

equally. The classifier is fit with the training set and the weighted error is cal-

culated. An update parameter known as αj is calculated and used to update the

weights of the samples in the training data. The weights of the misclassified sam-

ples are increased while the weights of correctly classified samples are decreased.

process continues until an optimal error is achieved or a specified number of itera-
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Algorithm 1 AdaBoost Algorithm
1. Initialize initial weights wi = 1/n, i = 1, 2, ..., n.
2. For m = 1 to M :

(a) Fit classifier T (m)(x) with training set using weights wi.
(b) Compute:

errm =
∑n

i=1 wiII(ci ̸=Tm(xi))

(
∑n

i=1 wi)

(c) Compute:

α(m) = log 1−err(m)

err(m) + log(K − 1)

(d) Set wi ← wi · exp[α(m) · II(ci ̸= Tm(xi))], i = 1, 2, ..., n.
(e) Re-normalize wi

3. Output C(x) = argmax[
∑M

m=1 α
(m) · II(T (m)(x) = k)].

tions is reached. The trained classifiers form an ensemble, each of these classifiers

are known as weak classifiers which have learned their respective weak hypotheses.

This ensemble of classifiers is then used to perform classification with the notion

that the ensemble of weak classifiers will outperform a single strong classifier with-

out AdaBoost. It should also be noted that the accuracy of each classifier needs to

be better than random guessing for α(m) to be positive. Therefore, (1−err(m) > 1
K
)

must hold true where K is the number of classes.
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CHAPTER 3

Breast Density Classification Using Inception V3 and

Vision Transformer

With ViT being a newer technology that boasts exceptional performance results

[15], the comparison of a ViT-based breast density classification algorithm to an

Inception-V3 based breast density classification algorithm was carried out. While

performing this comparative study, the identification of a novel mammogram im-

age pre-processing technique that concatenated a patient’s left and right breast

image was identified. Use of this technique in this comparison provided patient-

based results for more objective comparison of the algorithms. The exploration

of AdaBoosting and inception-based algorithm was also performed to determine if

this boosting technique provides any benefits over the use of a ViT.

3.1 Training Exclusively on Craniocaudal Mammograms

Prior to comparing Inception-V3 to ViT it was necessary to ensure that training

on only the CC image orientation would provide comparative results to training

on both CC and MLO images. Excluding the MLO image orientation from the

set of mammogram images used to train reduces the size of the resulting data

set. While excluding the MLO images would reduce the size of the data set used

to develop the algorithm, it would aid in the reduction of introduced error from

pectoral muscle removal algorithms. The use of the solely the CC images could

also provide a more objective breast density assessment as MLO images lack the

deep tissues of the medial portion of the breast that is included in the CC image

orientation [8]

– 13 –



Figure 3.1: AUC/ROC curve for Inception V3 trained on CC image orientation
only and the AUC/ROC curve for Inception V3 trained on both CC and MLO
image orientations

3.1.1 Inception V3 CC/MLO vs Inception V3 CC Only

Using Inception V3 as a baseline, experiments were run to determine if training on

exclusively CC images would achieve comparable results to Inception V3 trained

on both CC and MLO images. The performance was compared using accuracy

metrics (Table 3.1) and Area Under the Receiver Operator Characteristic Curve

(AUC/ROC) (Figure 3.1). Both models were trained on their respective training

sets and evaluated on the same test set which consisted of 4555 CC and MLO

images.

Inception V3 CC/MLO vs Inception V3 CC Only
Model Validation Accuracy Test Accuracy Macro F1 Weighted F1

CC and MLO 0.73 0.72 0.70 0.72
CC Only 0.74 0.72 0.68 0.71

Table 3.1: The results for accuracy metrics of Inception V3 trained on CC and MLO image orientations vs.
Inception V3 trained on only the CC image orientation.
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Results from the experimentation show that training Inception V3 on exclu-

sively the CC image orientation provides comparable results to training Inception

V3 on both CC and MLO image orientations. Validation accuracy saw a 1 per-

cent increase when using only C images while the test accuracy saw no change

between using exclusively CC images or using both CC and MLO images. Macro

F1 saw a 2 percent decrease and weighted F1 saw a 1 percent decrease when using

exclusively CC images. Inception V3 trained exclusively on CC images showed a

notable increase to the AUC for classes B and C, 2 and 5 percent respectively.

Training with both CC and MLO images provided a 1 percent increase to AUC in

classes A and D over training exclusively on CC images.

3.1.2 Inception V3 CC Only vs ViT CC Only

After ensuring that developing the classifier on solely CC images provides compar-

ative performance to using both CC and MLO images, comparison of the perfor-

mance of Inception-V3 and ViT using only CC images was performed. 5-fold cross

validation was carried out for the following tests in order to compare both models

more completely. Both models used an image size of 299 x 299 and ViT used a

patch size of 32 x 32. The average accuracy, F1 scores, and AUC were recorded

using the 5 folds of the data set.

Inception V3 CC Only vs ViT CC Only
Model Validation Accuracy Test Accuracy Macro F1 Weighted F1

Inception V3 0.74 0.73 0.70 0.73
ViT 0.75 0.74 0.71 0.74

Table 3.2: The results for accuracy metrics of Inception V3 trained on CC images vs. ViT trained on only CC
images

The results for Vit against Inception V3 for training exclusively on the CC

image orientation are shown in Table 3.2 and Figure 3.2. Using ViT provided on
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Figure 3.2: AUC/ROC curve for Inception V3 trained on CC image orientation
only and the AUC/ROC curve for Inception V3 trained on both CC and MLO
image orientations

average a 1 percent increase to all accuracy metrics tested. However, this increase

was not determined to be significant. The AUC/ROC for ViT did show a signifi-

cant result of a 3 percent increase for class B AUC (p = 0.0499) and a 1 percent

increase to class C AUC (p = 0.0372) over Inception V3 on average. This result

shows that ViT was significantly better at distinguishing between classes B and C.

3.2 LCC and RCC image Concatenation

Patients are assigned a breast density classification after a breast density screening

by a radiologist. This classification serves as the ground truth label when training

deep learning breast density classifiers. While carrying out the previous experi-

ments, it was observed that there was a difference in the amount of dense tissue

between a patient’s breasts. This discrepancy is due to natural asymmetry that is

exhibited by biological systems such as the human body[19]. There are cases where

one of a patient’s breasts can be classified as lower on the BI-RADS scale while

the other breast could be classified as higher on the BI-RADS scale. When this

situation occurs, the radiologist will assign a density classification to the patient
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based on the breast with the higher density. This poses a challenge when training

deep learning breast density classifiers on individual mammogram images. Due to

the ground truth label being patient based, training on this label with individual

images can introduce a degree of error into the development of these classifiers. For

this reason we propose an image technique where we concatenate a patient’s left

CC image (LCC) and right CC image (RCC) together. The below image displays

a sample concatenated image.

Figure 3.3: Resulting image after concatenation of a patient’s LCC and RCC mammogram images

The resulting image contains both breasts back-to-back in the center of view.

To our knowledge, this image pre-processing technique has not been performed

prior. We developed data sets of concatenated images and performed tests to de-

termine if using this image pre-processing technique will increase the performance

of our breast density classifiers. The data set of concatenated images consisted of

9899 images from 9899 patients. Tests were carried out using both Inception V3

and ViT.
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Figure 3.4: AUC/ROC curve for Inception V3 trained on CC image orientation
only and the AUC/ROC curve for Inception V3 trained on concatenated CC images

3.2.1 Inception V3 CC Only vs. Inception V3 CC Concatenated

Initial tests using concatenated CC mammogram images were carried out using

Inception V3. Using 5-fold cross-validation, models were trained on either exclu-

sively images from the CC orientation or concatenated images. All images were

resized to the 299 x 299 image size required by Inception V3.

Inception V3 CC Only vs Inception V3 Concatenated
Model Validation Accuracy Test Accuracy Macro F1 Weighted F1

Inception V3 CC Only 0.74 0.73 0.70 0.73
Inception V3 Concatenated 0.76 0.75 0.72 0.75

Table 3.3: The results for accuracy metrics of Inception V3 trained on CC images vs. Inception V3 trained on
concatenated images

The results comparing Inception V3 using concatenated CC images and indi-

vidual CC images are shown in table 3.3 and figure 3.4. Training an Inception V3

breast density classifier using concatenated CC images provided a significant in-

crease of 2 percent to validation accuracy (p = 0.0144), test accuracy (p = 0.0150),

macro F1 (p = 0.0234), and weighted F1 (p = 0.0170). The AUC/ROC for In-

ception V3 using concatenated images shows a decrease of 1 percent to class A
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AUC and an increase of 2 percent to class B AUC. The changes to the AUC for

Inception-V3 with concatenated images were not significant.

3.2.2 ViT CC Only vs. ViT CC Concatenated

Experiments using ViT and concatenated images were run following the experi-

ments using Inception-V3. Tests utilized ViT models using a patch size of 32 x 32

and 5-fold cross-validation. Initial testing with a patch size of 32 x 32 appeared

to provide more consistent results. All images were resized to 299 x 299 to ensure

that a fair comparison of ViT to Inception-V3 could be conducted. We also ran

tests of ViT with the image size increased to 768 x 768. One of the benefits of

using a ViT is that we can more easily update the size of the image required by

the network. It was hypothesized that increasing the image resolution closer to

native resolution could provide an increase in algorithm performance.

ViT CC Only vs ViT Concatenated
Model Validation Accuracy Test Accuracy Macro F1 Weighted F1

ViT CC Only 0.75 0.74 0.71 0.74
ViT 299x299 Concatenated 0.76 0.76 0.73 0.76
ViT 768x768 Concatenated 0.76 0.76 0.72 0.76

Table 3.4: The results for accuracy metrics of ViT trained on CC images vs. ViT trained on concatenated images
of size 299 x 299 and 768 x 768

The results comparing ViT using concatenated CC images and individual CC

images are shown in table 3.4 and figure 3.5. Using a ViT with concatenated images

provided on average a 1 percent increase to the validation accuracy but a 2 percent

increase to the test accuracy, macro F1, and weighted F1. Of these increases to the

performance metrics only the increase to test accuracy (p = 0.0431) and weighted

F1 (p = 0.0431) were significant. When we increased the size of the concatenated

images from 299x 299 to 768 x 768 and compare the performance between both
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Figure 3.5: AUC/ROC curve for ViT trained on CC image orientation only and
the AUC/ROC curves for ViT trained on concatenated CC images at size 299 x
299 and 768 x 768

ViTs, we see that there is no notable change in the performance outside of a 1

percent decrease to the macro F1 when using the larger image resolution. The

AUC/ROC for the ViT trained on concatenated images of size 299 x 299 shows 2

percent increases to both class B and C AUC along with a 1 percent increase in

class D AUC over individual CC images. Of these increases the change to class C (p

= 0.0064) and class D (0.0161) AUC were the only significant changes. Increasing

the concatenated image size to 768 x 768, the AUC for classes B and C were 1

percent lower than when using concatenated images at size 299 x 299.
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3.2.3 Inception V3 Concatenated vs. ViT CC Concatenated

Following the aforementioned experimentation we then compared the use of con-

catenated images and Inception-V3 to ViT. Both networks used image sizes of 299

x 299 and 5 fold cross-validation for a fair comparison.

Inception V3 Concatenated vs ViT Concatenated
Model Validation Accuracy Test Accuracy Macro F1 Weighted F1

Inception V3 Concatenated 0.76 0.75 0.72 0.75
ViT Concatenated 0.76 0.76 0.73 0.76

Table 3.5: The results for accuracy metrics of Inception V3 trained on concatenated images vs. ViT trained on
concatenated images.

Figure 3.6: AUC/ROC curve for Inception V3 trained on concatenated CC images
and the AUC/ROC curve for ViT trained on concatenated CC images

The results comparing Inception-V3 to ViT when using concatenated CC im-

ages shown in table 3.5 and figure 3.6. Using ViT with concatenated images pro-

vides on average a 1 percent increase to the test accuracy, macro F1, and weighted

F1. The AUC/ROCs show that using ViT provided on average a 1 percent in-

crease to the AUC of classes A and D, a 3 percent increase to class B AUC, and a

2 percent increase to class C AUC. Of all the changes to the performance metrics

and AUCs, only the change to class C AUC was significant (p = 0.0095).
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3.2.4 AdaBoosting Inception-V3 for Comparison to ViT

There was interest in the impact of the AdaBoost algorithm on the performance of

a deep learning breast density classifier. Utilizing Skorch a PyTorch wrapper that

allows for compatibility with sci-kit learn functions, a breast density classifier was

developed using both an inception-based weak classifier (LIC) and AdaBoost. The

LIC algorithm was modeled after Inception-V3, utilizing only 3 of the 9 inception

modules that are present in Inception V3. This removal of inception modules was

performed to "weaken" the classifier. The AdaBoost ensemble used with the LIC

algorithm consisted of 15 classifiers. 5-fold cross-validation was performed using

Inception V3 and the LIC algorithm. All tests used concatenated CC mammo-

grams and training lasted for 100 epochs. The results from 5-fold cross-validation

comparing the performance between Inception V3 and AdaBoosting of the LIC

classifier are displayed below.

Inception-V3 vs LIC AdaBoost Algorithm
Model Test Accuracy Macro F1 Weighted F1

Inception V3 0.75 0.72 0.75
ViT 0.76 0.73 0.76
AdaBoosting LIC 0.75 0.72 0.75

Table 3.6: The results for Inception V3 vs. AdaBoosting of the LIC classifier

Table 3.6 and figure 3.7 outline the 5-fold cross-validation results for AdaBoost-

ing the LIC classifier compared to Inception-V3 without AdaBoost. Using Ad-

aBoost with the inception-based weak classifier (LIC) did not provide any change

to the test accuracy, macro F1, or weighted F1. The figure above shows the

AUC/ROC for AdaBoosting the LIC classifier compared to the AUC/ROC for

Inception V3. AdaBoosting the LIC classifier on average provided a decrease of 1

percent in the AUC for class A but a 3 percent increase in the AUC for class B and

– 22 –



Figure 3.7: AUC/ROC curves for Inception V3, ViT, and the AdaBoosted LIC
Classifier

a 2 percent increase in the AUC for class C. Of these increases, only the increase

to class C AUC was considered significant (p = 0.0095). Comparing the results

between LIC and ViT showed no statistically significant differences between the

performance metrics evaluated.

3.2.5 Use of AdaBoost to Identify Noisy Labels

While AdaBoosting the LIC algorithm did not provide any statistically significant

benefit to the performance of the classifier, it was hypothesized that the use of the

AdaBoost algorithm could be used to identify and clean the noisey labels in the

data set. Due to the subjective nature of breast density classification by a radiolo-
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gist, there can be a degree of noise introduced into the data set. AdaBoosting has

the tendency to overfit the noisy labels in a data set due to misclassified images

possessing more weight than correctly classified images. If these images are those

that possess noisy ground truth labels, one may be able to use AdaBoost to iden-

tify these images. During the training of the LIC algorithm using AdaBoost, the

weights of the each the samples in the training set were recorded. The expectation

is that samples with the highest weights at the end of training all of the weak

classifiers in the ensemble will be images that are misclassified the most over the

entire training procedure. After training, the final sample weights over 5 folds of

the concatenated mammogram data set were sorted and list of the 100 patients

with the highest sample weights at the end of the training procedure over these 5

folds was compiled. An expert radiologist (RWM) then reviewed the images from

these 100 patients to determine the degree of noise of noise contained within these

100 patients. If the AdaBoost algorithm is increasing the weights of the noisy la-

bels there should be a significant amount of relabeled images. The class transition

counts and percentages are displayed in table 3.7.

Class Transition Count
Revised

Initial A B C D
A 13 11 0 0
B 2 4 18 2
C 9 15 4 5
D 2 2 6 7

Class Transition Percentage
Revised

Initial A B C D
A 54.17 45.83 0.0 0.0
B 7.69 15.38 69.23 7.69
C 27.27 45.45 12.12 15.15
D 11.76 11.76 35.29 41.18

Table 3.7: Class transition count and class transition percentage after radiologist re-evaluation of 100 "hard"
images

Of the 100 patients, 72 (0.73% of the total 9899 patients) were assigned a new

ground truth label after revision by the expert radiologist. After adjusting the

data sets to account for the change in labels, another model of Inception V3 was

trained using 5-fold cross-validation to determine if revision of these labels would

provide any impact. The expectation was that the impact of this revision would

not be enough to significantly impact the performance of the classifier due to the
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small number of patients used in this experiment. The results of this test with

the data set with relabeled patients against the initial patient labels is outlined in

table 3.8.

Inception V3 Initial Labels vs Inception V3 Revised Labels
Model Validation Accuracy Test Accuracy Macro F1 Weighted F1

Inception V3 Initial 0.76 0.75 0.72 0.76
Inception V3 Revised 0.77 0.76 0.73 0.76

Table 3.8: The results for accuracy metrics of Inception V3 trained on concatenated images vs. ViT trained on
concatenated images.

Adjusting the labels resulted in a 1 percent increase to the validation accuracy,

test accuracy, and macro F1 scores. There was no change to the weighted F1 score.

While there was no change, the fact that 72% of the 100 patients selected using

AdaBoost shows that tracking the weights of samples while using the AdaBoost

algorithm could allow for more efficient artificial intelligence assisted data cleaning.

While this data cleaning could serve as an efficient means to identify samples in

the dataset that may be noisy, too much of this cleaning could align the thresholds

to the radiologist revising the labels.
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CHAPTER 4

Breast Density Segmentation Using DeepLabV3

While the use of neural networks for classification of mammogram images has

been shown to be a viable solution for automated approaches seeking to reduce

inter-reviewer variability between radiologists, one could argue that breast density

classification performed by a radiologist is not solely a classification task but also

a segmentation task. Radiologist’s will either intentionally or subconsciously seg-

ment the dense tissue from the fatty tissue of the breast while performing their

breast density assessment. It is for this reason that there was interest in the devel-

opment of a deep-learning-based breast density segmentation algorithm that would

not only provide visual dense tissue segmentation but also provide radiologists with

a scaling a class probability system. In this chapter of my thesis, I explore the use

of DeepLabV3 for semantic segmentation of dense breast tissue to assist in the

standardization of radiologist assessment of breast density.

4.1 Imaging Data

Similar to previous experiments performed, the segmentation experiments in this

thesis utilized mammogram images from only the CC image orientation. The use

of exclusively the CC mammogram images from the C-View imaging format was

also done, as per recommendation by an expert radiologist (RWM), to reduce

the amount of error in the development of the segmentation algorithm. These two

characteristics resulted in the identification of 37,284 CC/C-View images belonging

to 17,625 patients from the larger data set of Mayo Clinic mammogram images.

This subset of 37,284 images was then used to develop the data used in the creation
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of the segmentation algorithm.

Figure 4.1: MeVisLab GUI as it was presented to the radiologist for segmentation
mask development. The GUI utilized a threshold based slider to highlight the
pixels to be included in the mask. These pixels were highlighted in red.

Figure 4.2: The use of a threshold-based slider has the tendency to include unde-
sired regions of the mammogram in the mask. Regions of the mammogram that
were undesired such as the radiographic labels and regions of high exposure from
the curvature of the breast were manually removed.
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4.2 Segmentation Development Set

Using MeVisLab (Fraunhofer MeVisLab medical Solutions AG, Bremer, Germany

https://www.mevislab.de/), a Graphical User Interface (GUI) was used to present

a patient’s mammogram images to an expert radiologist (RWM) (Figure 4.1).

This radiologist then screened the mammogram images for proper breast position-

ing, proper exposure, and a lack of any unwanted artifacts. On images that met

the radiologist’s screening criteria, a slider was used to adjust the pixel intensity

threshold used to segment the dense pixels from the non-dense pixels. Once the

radiologist was satisfied with the visual coverage of the segmented pixels, they then

saved the segmented pixel information as a segmentation mask. While this method

allowed for an acceptable segmentation of the dense tissue of the breast, pixels that

are of similar intensity values to the dense tissue pixels are commonly included in

the mask. Due to this coarse segmentation process, the masks were further refined

using a script written using Python and OpenCV[20], a library consisting of hun-

dreds of computer vision algorithms. This script was used to manually remove any

included radiographic labels as well as high intensity pixels along the curvature of

the breast. This process resulted in a data set of 688 expert verified images from

329 patients. Each patient possessed at least one left CC image (LCC) and one

right CC image (RCC). To ensure that there is proper coverage of the breast tis-

sue, some patients did possess more that one image for either one or both breasts.

5 folds of this set of 329 patients were created using and each fold was split in

a 3-1-1 ratio to ensure that any variations in the performance was noted. Using

dice scores to compare the algorithm output the radiologist’s (RWM) ground truth

segmentations I can ascertain the performance of the algorithm and quality of the

trained algorithm’s segmentations [13].
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Figure 4.3: Pipeline for the development and evaluation of the breast-density seg-
mentation algorithm. Segmentation training, validation, and test sets were created
using 688 images from 329 patients from a total data set of 37,284 images from
17,625 patients. The density metric thresholds were extracted from the Segmen-
tation Development Set. After training a segmentation model, the algorithm was
applied to a verified set of 3,205 images from 1,522 patients. Applying the ex-
tracted thresholds to the density metric output by the model on the verified trial
set, I determined the accuracy, a probability distribution, and a population dis-
tribution. The resulting data can then be used to display linear and probability
scales to the radiologist using the automated tool.
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4.3 Verified Trial Set

The creation of a “clean” Verified Trial Set (hold-out set) of 3,205 images from

1,522 patients was carried out. This was accomplished by examining both the

mammogram images and the overlaid corresponding algorithm-produced segmen-

tation mask for proper breast positioning, absence of artifacts, and adequate radio-

graphic exposure. The goal of using this set was to assess segmentation-algorithm

performance on a set of data resembling the training data. The resulting accuracy

of the algorithm’s performance would represent a ”best case” deployment scenario.

4.4 Calculation of Density Ratio from Segmentation Masks

The DeepLabV3 segmentation algorithm used in this study outputs a segmentation

mask of an input mammogram image. This segmentation mask consists of pixels

classified as one of three classes (background, fatty breast tissue, or dense breast

tissue). From each of these output segmentation masks, the number of pixels in

the fatty breast tissue and dense breast tissue classes was calculated. Adding these

two values together results in the total breast tissue. With the three-pixel counts,

calculation of the dense tissue to total tissue metric can be carried out. Figure 4.4

shows a sample CC mammogram image and its corresponding segmentation map.
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Figure 4.4: Original patient RCC mammogram image (left) with its correspond-
ing segmentation map overlaid (right). Segmented dense tissue (yellow) and the
segmented breast tissue (blue green) can be used to calculate the patients breast
density for each of their breasts. Using this value from both breasts, the patient
breast density can be determined. Segmentation maps can be displayed to the
radiologist along with their placement on the linear scale and probability charts.

4.5 Threshold Determination

The proposed approach seeks to provide a linear scale of the aforementioned breast

density metric. In order provide a scale with clear thresholds between each BI-

RADS class to the radiologist, the Segmentation Development Set was used to

determine the placement of these thresholds. Using a Python script, the best

placement of these thresholds optimizing for BI-RADS classification accuracy with

the radiologist created segmentation masks was performed. These thresholds can

then be applied to the verified trial set to visualize the population distributions

with thresholds along the linear scale of densities as well as determine a resulting

accuracy.
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4.6 Probability Distribution Methodology

The development of a distribution of BI-RADS class probabilities along the linear

density scale of the verified trail set has the potential to provide radiologists with

additional information during a breast density assessment. To develop this distri-

bution, the probability of each class at a given density value was calculated. Using

Sci-Kit Learn we can then use polynomial regression to develop a distribution of

the class probabilities for each density metric. This probability distribution is vi-

sualized in figure 4.6. This methodology can also be used to determine the percent

probability for each class and presented as an additional quantitative metric to the

radiologist.

4.7 Results

Results outlining the dice coefficients after training the DeepLabV3 breast density

segmentation algorithm on 5 folds of the segmentation data set are displayed in

Table 4.1. The average dice coefficient for breast segmentation across the 5 folds

was determined to 0.996 while the average dense segmentation dice coefficient was

determined to be 0.726. The breast dice refers to the dice coefficient for segmenting

the total breast tissue from the black background and radiographic labels. The

almost perfect dice scores for breast dice show that this is a simpler task for the

model to accomplish. The dense dice, which refers to the dice coefficient for the

segmentation of the dense tissue from the fatty tissue within the breast, shows that

the task of dense tissue segmentation is a more challenging task for the model. This

is due to the variation in the pixel intensities being the means in which the dense

tissue is segmented. There could be a number of factors that influence this pixel

intensity such as the breast position, tissue thickness, or the imaging device used.

Following the training and evaluation of the segmentation algorithm perfor-
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Table 4.1: Dice Coefficients Across 5-Folds of Segmentation Set

Dice Scores
Fold Breast Dice Dense Dice
CV1 0.994 0.732
CV2 0.996 0.730
CV3 0.997 0.712
CV4 0.996 0.713
CV5 0.997 0.744

Average 0.996 0.726

mance in regard to dice coefficients, the segmentation algorithm was applied to

each of the patient images in the verified trial set. The model outputs a segmen-

tation map of the input image. We calculated the density metric for each of the

output segmentation maps and saved the values to a separate file. This file was

then used to determine the average accuracy, linear kappa, and quadratic kappa

for BI-RADS classification when using the thresholds determined from the ground

truth segmentations.

Table 4.2: BI-RADS Classification Accuracy Using Thresholds

BI-RADS Classification Accuracy Using Thresholds
Accuracy 0.731

Linear Kappa 0.619
Quadratic Kappa 0.829

Table 4.2 displays the results for classification using the calculated density

metric and thresholds determined from the segmentation development set. The

accuracy achieved on BI-RADS classification using thresholds was 73.1%. The

linear kappa score for classification showed a substantial level of agreement at 0.619

between our algorithm and radiologists while the quadratic kappa score shows a

much higher agreement of 0.829. Using the calculated density metrics for each

patient, we can determine the distributions for each BI-RADS class. We also

used Sci-kit Learn to implement Polynomial Regression as a means to smooth the

curves for better visualization. Using these patient-based density distributions

(Figure 4.5), we can then derive probability curves (Figure 4.6) for each BI-RADS
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class corresponding to each density value. Both Figure 4.5 and Figure 4.6 show

the thresholds calculated from the Segmentation Development set placed along

the distributions as dashed black line. Both the distribution of patients and the

probability curves, along with the calculated thresholds (Table 4.3), can be used

to provide additional visual tools to the radiologist at the time of a breast density

screening.

Figure 4.5: Patient based breast density distributions. Black dashed lines show the
thresholds extracted from the segmentation development set. Clearer separation
is exhibited between classes B and C. Class A and B exhibit more overlap in their
distributions. This observation is maintained with classes C and D. Due to leg-
islative guidelines, the distribution lends some insight into radiologist adjudication
around BI-RADS class thresholds. Radiologists may be more confident or careful
around the B/C thresholds than around the A/B and C/D thresholds.

Table 4.3: Density Thresholds

Density Thresholds
Threshold Density Metric

A/B 0.04
B/C 0.14
C/D 0.30

Placing the thresholds calculated from the Segmentation Development Set

along the patient density distribution shows where the class thresholds lie. Us-
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Figure 4.6: BI-RADS class probabilities based on the patient breast density per-
centages calculated from segmentation maps. The probability curves are deter-
mined using a polynomial regression model developed using the patient density
distributions. Using this probability curve, we can output class probabilities for a
given patient density to the radiologist.

Figure 4.7: Sample display of the functionality of the semantic breast density
segmentation algorithm. Segmentation maps can be overlaid over the original
images and both quantitative metrics for each breast as well as a BI-RADS class
assignment and class probabilities can be displayed to the user.

ing the segmentation output, thresholds, the distribution, and the probabilities,

we can provide multiple visual tools to the radiologist at the time of the breast

density screening. Figure 4.7 shows a sample of the visual tools that can be used
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by the radiologist. Using the segmentation output we can overlay the segmenta-

tion mask over the original image to allow the radiologist to "approve" or "ignore"

the segmentation algorithm’s output. If the segmentation mask is satisfactory the

radiologist can choose to utilize the linear density metric bar (shown on the lower

left of Figure 4.7). The radiologist also has the option to visualize the class prob-

ability for that patient using the probability graph (shown on the lower right of

Figure 4.7).
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CHAPTER 5

Conclusions and Future Work

For this thesis, I explored the use of deep learning algorithms to assist in the

classification and segmentation of patient breast density. Work began with the de-

velopment of mammogram image pre-processing technique that concatenated two

mammogram images together. This concatenation resulted in better performance

of the deep learning algorithms trained using these images. While exploring the

impact of image concatenation, this thesis also investigated the implementation of

a ViT as the model architecture used as the breast density classifier and compared

the use of this architecture to the more mainstream CNN architecture. Following

this work, the exploration of AdaBoosting a deep learning breast density classifier

was explored. While this boosting technique did not result in any significant per-

formance improvements. However, this boosting technique did appear to provide

a means to identify and clean the noisy labels present in the large mammogram

data set used in this thesis. While useful in identifying the noisy labels in the

data set, revision of too many of the samples in the data set may just align the

samples in the data set to the revising radiologist. These noisy samples present

in radiological data set are a result of inter-rater variability due to the subjec-

tive assessment by individual radiologists. Rather than simply align the data and

thresholds to an individual radiologist, there is significance in the reduction of

the variability between radiologists to prevent noise in the data. To reduce this

variability between radiologists, I propose that the assessment of breast density is

inherently a segmentation task and that the development of a quantitative scoring

system using semantic segmentation could aid in standardizing radiologist assess-
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ments. The work performed using DeepLabV3 for semantic segmentation of breast

density shows that this architecture can be used to develop a quantitative scoring

system that also provides a linear and probability scale.

5.1 Future Work

It would be imprudent to believe that the work performed in this thesis is not

in need of future work. The most immediate area of improvement lies in the

inclusion of more image types and formats into the development of the breast den-

sity segmentation algorithm. The work performed in this thesis only considers the

C-View images from the CC image orientation in the development of the segmenta-

tion algorithm. While this constraint was imposed in the essence of preserving the

time spent by the expert radiologist creating ground truth segmentation masks,

it can be viewed as a limitation of the work performed. The inclusion of more

image types and formats would aid in the development of a more general model

that is not restricted by the format of the input images. Another area of future

work could investigate post deployment of the algorithm discussed in this thesis.

The statistical analysis of inter-rate variability before and after the deployment

of this algorithm in a hospital setting has the potential to expose the benefits of

using such a system for assessment standardization. Future work could also fo-

cus on comparing the performance of the weakened Inception model used in the

AdaBoost experiments against an AdaBoosted full Inception-V3 model trained for

less epochs. The cleaning of more samples could also be performed to determine

if the trend in class transitions is observed when more samples are present.
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APPENDIX A

Related Publications, Achievements, and Deliverables

C. Testagrose et al., "Impact of Concatenation of Digital Craniocaudal Mammog-

raphy Images on a Deep-Learning Breast-Density Classifier Using Inception-V3

and ViT," 2022 IEEE International Conference on Bioinformatics and Biomedicine

(BIBM), Las Vegas, NV, USA, 2022, pp. 3399-3406, doi: 10.1109/BIBM55620.2022.

9995206.

Placed 4th in the MICCAI Breast Density Federated Learning Challenge - Spon-

sored by NVIDIA

Code available at: https://github.com/ctestagrose/Breast-Density-Classification
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