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Abstract

Preliminary identities in the theory of basic hypergeometric series, or

‘q-series’, are proven. These include q-analogues of the exponential function,

which lead to a fairly simple proof of Jacobi’s celebrated triple product

identity due to Andrews. The Dedekind η function is introduced and a few

identities of it derived. Euler’s pentagonal number theorem is shown as a

special case of Ramanujan’s theta function and Watson’s quintuple product

identity is proved in a manner given by Carlitz and Subbarao. The Jacobian

theta functions are introduced as special kinds of basic hypergeometric series

and various relations between them derived using the triple product identity,

among other previously established results. A special quotient of theta

functions is introduced as the modular λ function. The Eisenstein series are

first defined through their Lambert series expansions and a series of

differential equations due to Ramanujan are developed. Modular forms and

functions and subsequently elliptic functions are introduced. The Weierstrass

℘ function is developed along other elliptic functions, those being defined as

certain quotients of theta functions. The first few Eisenstein series are then

shown to be expressible in terms of theta functions. Theta functions are

shown to be related to Gauss’ hypergeometric series 2F1(a, b; c; z) through the

Jacobi inversion theorem. This is shown to have use in relating modular

equations and hypergeometric series to π. The arithmetic-geometric mean

iteration of Gauss is developed and used in conjunction with other results

established in proofs of two iterative algorithms for π. Recent applications of

π algorithms using and not using the techniques developed here are then

discussed.
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0 Introduction

The fascination with calculating π = 3.14... to greater and greater accuracy using
whatever mathematical tools available has a history going back to antiquity[5], with
Archimedes’ estimation 223/71 < π < 22/7. The ancient methods were geometric in
character and rather slow, and until the advent of calculus only a few dozen digits of
π were known. With calculus and in particular the series expansion of the
arctangent function, the known digits of π surpassed 500; with the aid of computers
in the 20th century, this method using arctan gave π to over one million digits.

Soon after that million-digit mark however, the calculation methods of choice
shifted to the application of 19th century theories regarding elliptic integrals and
their inverses: elliptic functions. Related to elliptic functions are Jacobi’s theta
functions, and in the manipulation of these functions lies a large part of
Ramanujan’s work. In [20], Ramanujan investigates properties of almost-integers
such as eπ

√
58 = 24591257751.99999982... and, more importantly for the purpose of

calculating π, several rapidly convergent infinite series for 1/π. The investigation of
such series later in the 20th century, along with the rise in computing power and the
reduction in computational complexity by use of the fast Fourier transform, led to
several other rapid convergent series for π which are the main tool today for
calculating π to extraordinary precision.

Tangentially to these infinite series for π, another 19th century tool related to
elliptic integrals, the arithmetic-geometric mean, was appropriated by π computers
in the 1970s ([7],[21]) to derive some of the most rapidly convergent iterative
algorithms known today. It is along this line of thought we seek to compute π.
Rather than use the theory of elliptic integrals to derive these algorithms, which is
the usual way (for example, in [4]), we use the related theory of theta functions.
This way is done for example in [11] and extends itself more easily to possible
q-analogues of π algorithms.

1 Infinite Products

A q-analog of a theorem is a similar statement given in terms of a complex variable

|q| < 1, such that a limiting case as q → 1 reduces to a familiar statement. One

example of a q-analog is the q-binomial theorem, a generalization of the more

famous binomial theorem. Before proving that theorem some notation is introduced.
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Definition 1.1 (q-Pochhammer Symbol): Define (a; q)0 = 1 and for any

integer n > 0, let

(a; q)n = (1− a)(1− aq)(1− aq2) · · · (1− aqn−1). (1)

By L’Hôpital’s rule,

lim
q→1

(qa; q)n
(1− q)n

= lim
q→1

1− qa

1− q
· 1− qa+1

1− q
· · · 1− qa+n−1

1− q

= lim
q→1

d
dq
(1− qa)

d
dq
(1− q)

·
d
dq
(1− qa+1)
d
dq
(1− q)

· · ·
d
dq
(1− qa+n−1)
d
dq
(1− q)

= lim
q→1

−aqa−1

−1
· −(a+ 1)qa

−1
· · · −(a+ n− 1)qa+n

−1

= a(a+ 1) · · · (a+ n− 1)

(2)

so that the q-Pochhammer symbols are indeed q-analogs of the ordinary

Pochhammer symbols, defined as

(a)n := a(a+ 1) · · · (a+ n− 1). (3)

One can extend the q-Pochhammer symbols to an infinite product by defining

(a; q)∞ =
∏
n≥0

(1− aqn). (4)

Now, it is known from analysis[19] that an infinite product
∏

n≥0(1 + an) converges

and is not zero if and only if the sum
∑

n≥0 log(1 + an) converges and is not 0. A

stronger result states that the infinite product
∏

n≥0(1 + an) is absolutely

convergent if and only if
∑

n≥0 an is absolutely convergent. Since in the case of the

infinite q-Pochhammer symbols |q| < 1, by the ratio test we have

limn→∞ |(−aqn+1)/(−aqn)| = |q| < 1, and so the series and thus the product

converges absolutely. The special case (q; q)∞ will sometimes be denoted E(q), and
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more generally let

E(qk) := (qk; qk)∞. (5)

For brevity, let

(a1; q)k(a2; q)k · · · (an; q)k := (a1, a2, ..., an; q)k (6)

and more generally

(
a1, ..., ar

b1, ..., bs

; q

)
k

:= (a1, ..., ar; b1, ..., bs; q)k :=
(a1, ..., ar; q)k
(b1, ..., bs; q)k

(7)

These notations will apply to the infinite extensions as well. A polynomial in the

variable q can be viewed as a generating function of its coefficients. This take had

its genesis in Euler’s Pentagonal Number Theorem, and later found great use during

the 19th and 20th centuries in combinatorial arguments relating to partitions[1].

More recently, q-analogs have become popular as one can develop a calculus without

limits through them, and this has found some use in quantum mechanics[17].

Definition 1.2 (q-Hypergeometric Series): For z ̸= 0, define[17]

rϕs

[
a1, ..., ar

b1, ..., bs

; q; z

]
:=
∑
n≥0

(
a1, ..., ar

q, b1, ..., bs

; q

)
n

[
(−1)nq(

n
2
)
]1−r+s

zn. (8)

The name ‘q-hypergeometric series’ will henceforth be shortened to ‘q-series’. The

convergence of such an infinite series can be seen intuitively from that of the infinite

q-Pochhammer symbols above where for |q| < 1 and large n, the q-Pochhammer

terms approach multiplication by 1 and q(
n
2
) goes to 0 faster than zn grows. Taking
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the limit of 2ϕ1[q
a, qb; qc; q; z] as q → 1 results in

lim
q→1

2ϕ1[q
a, qb; qc; q; z] = lim

q→1

∑
n≥0

(
qa, qb

q, qc
; q

)
n

zn =
∑
n≥0

lim
q→1

(
qa, qb

q, qc
; q

)
n

zn

=
∑
n≥0

lim
q→1

(
qa, qb

q, qc
; q

)
n

(1− q)2n

(1− q)2n
zn =

∑
n≥0

(a)n(b)n
(1)n(c)n

zn

=
∑
n≥0

(a)n(b)n
(c)n

zn

n!

(9)

which is the standard hypergeometric series 2F1(a, b; c; z).

Theorem 1.3 (q-Binomial Theorem): With the notation above,

(
at

t
; q

)
∞

= 1ϕ0[a;−; q; t] (10)

where ‘-’ in a q-series denotes an absence of such terms.

Proof: First note that with |q| < 1 both sides do converge, so this expression

makes sense in that respect. Now[18],

(1− t)

(
at

t
; q

)
∞

= (1− at)

(
aqt

qt
; q

)
∞

(11)

since (
at

t
; q

)
∞

=
(1− at)

(1− t)

(
aqt

qt
; q

)
∞
. (12)

Then if (
at

t
; q

)
∞

=
∑
k≥0

ckt
k, (13)
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this implies

(1− t)
∑
k≥0

ckt
k = (1− at)

∑
k≥0

ckq
ktk. (14)

Comparing the coefficients of tk results in

ck − ck−1 = ckq
k − ack−1q

k−1, (15)

or by solving for ck,

ck =
(1− aqk−1)

(1− qk)
ck−1. (16)

A quick inspection of (at; t; q)∞ shows c0 = 1, and the result follows by induction. □

To justify the name of the theorem, let a = qa. Then as q → 1, the q-binomial

theorem implies

lim
q→1

1ϕ0[q
a;−; q; z] =

∑
n≥0

(a)n
n!

zn = lim
q→1

(zqa; z; q)∞ =
a−1∏
n=0

1

1− z
= (1− z)−a. (17)

The expression ∑
n≥0

(a)n
n!

zn = (1− z)−a (18)

is a form of the generalized binomial theorem, so the q-binomial theorem is a

q-analog of it.

Corollary 1.4:

(−a; q)∞ =
∑
n≥0

anq(
n
2
)

(q; q)n
. (19)

Proof: Replace a by −a/t in the q-binomial theorem to obtain

(−a
t
; q

)
∞

=
∑
n≥0

(−a/t
q

; q

)
n

tn. (20)
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Note that[18]

tn(1 + a/t)(1 + qa/t) · · · (1 + qn−1a/t) = (t+ a)(t+ aq) · · · (t+ aqn−1). (21)

Letting t→ 0 then gives

(−a; q)∞ =
∑
n≥0

a(aq)(aq2) · · · (aqn−1)

(q; q)n
=
∑
n≥0

anq1+2+···+(n−1)

(q; q)n
(22)

and the result follows. □

Corollary 1.5:
1

(a; q)∞
=
∑
n≥0

an

(q; q)n
. (23)

Proof: Take a = 0 and t = a in the q-binomial theorem so that

(
0

a
; q

)
∞

= 1ϕ0[0;−; q; a] =
∑
n≥0

an

(q; q)n
. □ (24)

The corollaries above were known to Euler, and can be used to give a proof of a

product-to-sum identity due to Jacobi. Upon taking the limit q → 1, the above

corollaries turn into the infinite series expansion for ex; thus they can be seen as

q-analogues of the exponential function[17].

Theorem 1.6 (Jacobi Triple Product): For x ̸= 0 and |q| < 1,

∞∑
n=−∞

qn
2

xn = (−xq,−q/x, q2; q2)∞. (25)

6



Proof: As in Andrews[1], we first prove the theorem for when |q| < |x|.

(−xq; q2)∞ =
∑
n≥0

(xq)n(q2)(
n
2
)

(q2; q2)n
=
∑
n≥0

xnqn
2

(q2; q2)n
=
∑
n≥0

qn
2

xn(q2; q2)−1
n

=
∑
n≥0

qn
2

xn(q2(n+1); q2; q2)∞ = (q2; q2)−1
∞

∑
n≥0

qn
2

xn(q2(n+1); q2)∞.

(26)

Notice that if n < 0, the whole term xn goes to zero because then the (−n− 1)-th

term of the product (q2(n+1); q2)∞ is

(1− q2n+2+2(−n−1)) = (1− q0) = 0. (27)

So continuing on,

(−xq; q2)∞ = (q2; q2)−1
∞

∞∑
n=−∞

qn
2

xn(q2(n+1); q2)∞

= (q2; q2)−1
∞

∞∑
n=−∞

qn
2

xn
∑
m≥0

(−1)mqm
2+2mn+m

(q2; q2)m

= (q2; q2)−1
∞

∑
m≥0

(−1)mqm

(q2; q2)m

∞∑
n=−∞

q(n+m)2xn · (xmx−m)

= (q2; q2)−1
∞

∑
m≥0

(−qx−1)m

(q2; q2)m

∞∑
n=−∞

q(n+m)2xn+m

= (q2; q2)−1
∞ (−q/x; q2)−1

∞

∞∑
n=−∞

q(n+m)2xn+m.

(28)

The theorem follows upon replacing n+m with n and rearranging. Upon replacing

x with x−1, the result stays the same due to qn2
xn = qn

2
x−n in the sum and the

symmetry between the −xq and −q/x terms in the product. However, the

restriction becomes |q| < |x−1| in this case. Since |q| < 1, either |q| < |x| or

|q| < |x−1| so we can take simply x ̸= 0. □

The Jacobi triple product can give useful corollaries upon changing the values of q

7



and x. For example, setting q to q1/2 and x to −xq−1/2 results in

∞∑
n=−∞

(q1/2)n
2

(−xq−1/2)n = (−(−xq−1/2)q1/2,−q1/2/(−xq−1/2), q; q)∞, (29)

which simplifies to

Corollary 1.7:
∞∑

n=−∞

(−1)nq(
n
2
)xn = (x, q/x, q; q)∞. (30)

The product form of this identity is simpler than that of Theorem 1.6, and the

symmetry between x and q/x a bit more obvious. We now give a couple of

definitions to set some more notation.

Definition 1.8 (Dedekind η Function): Let q∗ := e2πiτ , where τ is a complex

number with positive imaginary part so that |q∗| < 1. The Dedekind eta function

η(τ) is defined as:

η(τ) = (q∗)1/24E(q∗) = (q∗)1/24(q∗; q∗)∞. (31)

When there is no confusion, q∗ will be denoted q. Observe that η(τ) is defined in

terms of τ while E(q) is in terms of q, so that

η(kτ) = qk/24E(qk). (32)

Since η(τ) and E(q) are so closely related, proving an identity for either one

essentially proves it for both. Thus in what follows results proven in terms of E(qn)

will not separately be proven in terms of η(nτ), and vice versa.

8



Proposition 1.9[15]:
∞∑

n=−∞

(−1)nqn
2

=
η2(τ)

η(2τ)
. (33)

Proof: By the triple product with x = −1,

∞∑
n=−∞

(−1)nqn
2

= (q, q, q2; q2)∞ = (q; q)∞(q; q2)∞

=
(q; q)2∞
(q2; q2)∞

=
E2(q)

E(q2)
· q

1/12

q1/12
=
η2(τ)

η(2τ)
. □

(34)

Definition 1.10 (Ramanujan Theta Function): Let |ab| ̸= 0. Define[3]

f(a, b) =
∞∑

n=−∞

a(
n+1
2
)b(

n
2
). (35)

The explanation for the name will come later, but observe that many infinite series

can be represented in this form. Three in particular were important enough for

Ramanujan to distinguish:

ϕ(q) := f(q, q) =
∞∑

n=−∞

q(
n+1
2
)q(

n
2
) =

∞∑
n=−∞

qn
2 (36)

ψ(q) := f(q, q3) =
∞∑

n=−∞

qn(2n−1) =
∑
n≥0

q(
n+1
2
) (37)

f(−q) := f(−q,−q2) =
∞∑

n=−∞

(−1)nqn(3n−1)/2 (38)

The triple product identity can be used to give f(a, b) as an infinite product. Let

a = x and b = q/x. Then q = ab and Corollary 1.7 states

f(a, b) = (−a,−b, ab; ab)∞ (39)

9



This implies the functions ϕ(q), ψ(q) and f(−q) defined above each have infinite

product representations. They are:

ϕ(q) = (−q,−q, q2; q2)∞ = (−q; q2)2∞(q2; q2)∞ (40)

ψ(q) = (−q,−q3, q4; q4)∞ (41)

f(−q) = (q, q2, q3; q3)∞ = (q; q)∞ (42)

This last equation is Euler’s pentagonal number theorem, restated here:

Theorem 1.11 (Pentagonal Number Theorem):

E(q) = (q; q)∞ =
∞∏
n=1

(1− qn) =
∞∑

n=−∞

(−1)nqn(3n−1)/2 = f(−q). (43)

The products of ϕ(q) and ψ(q) can be simplified further through elementary

manipulations to quotients of E(q) and η(τ).

Proposition 1.12:

ϕ(q) =
η5(2τ)

η2(τ)η2(4τ)
. (44)

Proof:

ϕ(q) = (−q; q2)2∞(q2; q2)∞ =
(q2; q4)2∞
(q; q2)2∞

(q2; q2)∞ =
(q2; q4)2∞(q2; q2)3∞

(q; q)2∞

=
(q2; q2)5∞

(q; q)2∞(q4; q4)2∞
=

E5(q2)

E2(q)E2(q4)
· q

5/12

q5/12
=

η5(2τ)

η2(τ)η2(4τ)
. □

(45)

If the relation (q2; q4)∞ = E(q2)/E(q4) is not obvious, observe that the powers of q

in E(q2) are the even numbers, which are simply all the numbers n ≡ 0, 2 mod 4.

Proposition 1.13:

ψ(q) =
E2(q2)

E(q)
. (46)
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Proof:

ψ(q) = (−q,−q3, q4; q4)∞ = (−q,−q3; q4)∞(−q2, q2; q2)∞

= (−q,−q2, q2; q2)∞ = (−q; q)∞(q2; q2)∞ =
(q2; q2)∞
(q; q)∞

=
E2(q2)

E(q)
. □

(47)

Similar to the Jacobi triple product, there is another useful product-to-sum formula

called the quintuple product identity.

Theorem 1.14 (Quintuple Product Identity): For x ̸= 0,

∞∑
n=−∞

qn(3n+1)/2(x3n − x−3n−1) = (q, xq, 1/x; q)∞(x2q, q/x2; q2)∞. (48)

Proof: Following Carlitz and Subbarao[9], first note that by the triple product

identity with x = −x gives

∞∑
n=−∞

(−1)nqn
2

xn = (xq, q/x, q2; q2)∞. (49)

Now taking q = q2, the statement of the quintuple product identity becomes

∞∑
n=−∞

qn(3n+1)(x3n − x−3n−1) = (q2, xq2, 1/x; q2)∞(x2q2, q2/x2; q4)∞. (50)

Let A(q, x) denote the product

A(q, x) = (q2, xq2, 1/x; q2)∞(x2q2, q2/x2, q4; q4)∞. (51)

11



By the triple product applied twice this becomes

A(q, x) = (q2, xq2, 1/x; q2)∞(x2q2, q2/x2, q4; q4)∞

=
∞∑

j=−∞

(−1)jqj
2+jxj

∞∑
k=−∞

(−1)kq2k
2

x2k

=
∞∑

j,k=−∞

(−1)j+kqj
2+2k2+jxj+2k.

(52)

Writing n = 2k + j, this becomes

A(q, x) =
∞∑

n=−∞

(−1)nxn
∞∑

k=−∞

(−1)−kq(n−2k)2+2k2+(n−2k)

=
∞∑

n=−∞

(−1)nqn
2+nxn

∞∑
k=−∞

(−1)kq6k
2−4kn−2k.

(53)

Now consider the sum
∞∑

k=−∞

(−1)kq6k
2+6k(2p+1) (54)

where p is some integer. Re-indexing k with −k − 2p− 1 gives

∞∑
k=−∞

(−1)kq6k
2+6k(2p+1) =

∞∑
k=−∞

(−1)−k−2p−1q6(−k−2p−1)2+6(−k−2p−1)(2p+1)

=
∞∑

k=−∞

(−1)k+1q6k
2+12kp+6k = −

∞∑
k=−∞

(−1)kq6k
2+6k(2p+1)

(55)

so the entire sum is 0 for any p. But this implies that the inner sum of A(q, x), and

thus A(q, x), is 0 except when 2n+ 1 ̸≡ 0 mod 3. Since

2(3n+ 1) + 1 = 6n+ 3 = 3(2n+ 1), while 2(3n) + 1 = 6n+ 1 = 3(2n+ 1/3) and

2(3n+ 2) + 1 = 6n+ 5 = 3(2n+ 5/3), we may assume n ≡ 0, 2 mod 3. Let A0(q, x)

denote that part of A(q, x) with n ≡ 0 mod 3 and A2(q, x) denote the part with

12



n ≡ 2 mod 3. Clearly A(q, x) = A0(q, x) + A2(q, x). For A0(q, x),

A0(q, x) =
∞∑

n=−∞

(−1)3nq(3n)
2+3nx3n

∞∑
k=−∞

(−1)kq6k
2−4k(3n)−2k

=
∞∑

n=−∞

(−1)nq9n
2+3nx3n

∞∑
k=−∞

(−1)kq6k
2−12kn−2k.

(56)

Setting m = k − n, this becomes

A0(q, x) =
∞∑

n=−∞

(−1)nq9n
2+3nx3n

∞∑
m=−∞

(−1)m+nq6(m+n)2−12(m+n)n−2(m+n)

=
∞∑

n=−∞

q3n
2+nx3n

∞∑
m=−∞

(−1)mq6m
2−2m.

(57)

By the pentagonal number theorem, the inner sum is equal to E(q4) and so

A0(q, x) = E(q4)
∞∑

n=−∞

qn(3n+1)x3n. (58)

Similarly for A2(q, x),

A2(q, x) =
∞∑

n=−∞

(−1)3n−1q(3n−1)2+(3n−1)x3n−1

∞∑
k=−∞

(−1)kq6k
2−4k(3n−1)−2k

=
∞∑

n=−∞

(−1)n−1q9n
2−3nx3n−1

∞∑
k=−∞

(−1)kq6k
2−12kn+2k.

(59)

Setting m = k − n gives

A2(q, x) =
∞∑

n=−∞

(−1)n−1q9n
2−3nx3n−1

∞∑
k=−∞

(−1)m+nq6(m+n)2−12(m+n)n+2(m+n)

=
∞∑

n=−∞

(−1)2n−1q3n
2−nx3n−1

∞∑
k=−∞

(−1)mq6m
2+2m

= −
∞∑

n=−∞

q3n
2−nx3n−1

∞∑
k=−∞

(−1)mq6m
2+2m.

(60)
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Upon replacing n and m with −n and −m respectively,

A2(q, x) = −
∞∑

n=−∞

q3n
2+nx−3n−1

∞∑
k=−∞

(−1)mq6m
2−2m = −E(q4)

∞∑
n=−∞

qn(3n+1)x−3n−1

(61)

and so

A(q, x) = A0(q, x) + A2(q, x) = E(q4)
∞∑

n=−∞

qn(3n+1)(x3n − x−3n−1). □ (62)

2 Theta Functions

Definition 2.1 (Jacobi Theta Functions): Let q† :=
√
q∗ = eπiτ with τ a

complex number in the upper half-plane so that |q†| < 1. For any x ∈ C, let[22]

θ1(q
†, x) = 2

∑
n≥0

(−1)n(q†)(n+1/2)2 sin(2n+ 1)x (63)

θ2(q
†, x) = 2

∑
n≥0

(q†)(n+1/2)2 cos(2n+ 1)x (64)

θ3(q
†, x) = 1 + 2

∑
n≥1

(q†)n
2

cos 2nx (65)

θ4(q
†, x) = 1 + 2

∑
n≥1

(−1)n(q†)n
2

cos 2nx (66)

The reasons why the Jacobi theta functions are in terms of q† = eπiτ while the

Dedekind eta function is in terms of q∗ = e2πiτ are mainly historical. Since they can

both be taken as arbitrary complex numbers with positive imaginary part, when

there is no confusion q†, like q∗, will be denoted simply as q. Notice that θ1(q, x) is

an odd function, while the others are all even functions. By Euler’s formula

(eiθ = cos θ + i sin θ), the theta functions can be written

θ1(q, x) = −i
∞∑

n=−∞

(−1)nq(n+1/2)2e(2n+1)ix (67)
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θ2(q, x) =
∞∑

n=−∞

q(n+1/2)2e(2n+1)ix (68)

θ3(q, x) =
∞∑

n=−∞

qn
2

e2nix (69)

θ4(q, x) =
∞∑

n=−∞

(−1)nqn
2

e2nix (70)

When x = 0 we write θi(q, 0) as θi(q). If the precise value of q is unimportant we

write θi(q, x) as θi(x). Now let z := e2ix. Then the theta functions can again be

rewritten, this time as

θ1(q, z) = −i
∞∑

n=−∞

(−1)nq(n+1/2)2zn+1/2 (71)

θ2(q, z) =
∞∑

n=−∞

q(n+1/2)2zn+1/2 (72)

θ3(q, z) =
∞∑

n=−∞

qn
2

zn (73)

θ4(q, z) =
∞∑

n=−∞

(−1)nqn
2

zn (74)

The naming of the Ramanujan theta function can now be explained as a

generalization of the Jacobi theta functions. A quick check shows that with q = q†

and z defined as above, the Jacobi theta functions can be written

θ1(q, z) = −iq1/4z1/2f(−q2z,−1/z) (75)

θ2(q, z) = q1/4z1/2f(q2z, 1/z) (76)

θ3(q, z) = f(qz, q/z) (77)

θ4(q, z) = f(−qz,−q/z) (78)

By the triple product identity, the theta functions can be presented as infinite

products. The cases θ3(q, x) and θ4(q, x) are clear from their definitions. For θ1(q, x)
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and θ2(q, x), one simply observes that

(±1/z; q2)∞ = (1∓ 1/z)(±q2/z; q2)∞. (79)

The four theta functions of Jacobi then become

θ1(q, z) = 2q1/4 sin(x)(q2z, q2/z, q2; q2)∞ (80)

θ2(q, z) = 2q1/4 cos(x)(−q2z,−q2/z, q2; q2)∞ (81)

θ3(q, z) = (−qz,−q/z, q2; q2)∞ (82)

θ4(q, z) = (qz, q/z, q2; q2)∞ (83)

Some very nice identities can be proved using these product forms of the theta

functions, such as the following:

Proposition 2.2[12]:

η(2τ)
θ1(q, 2x)

θ1(q, x)
= 2

∞∑
n=−∞

(−1)nq(6n+1)2/12 cos(6n+ 1)x. (84)

Proof: Recalling the basic identity sin 2x = 2 sin x cos x, observe that

θ1(q, 2x)

θ1(q, x)
=

sin 2x

sin x
· (q2z2, q2/z2; q2z, q2/z; q2)∞ = 2 cos x · (qz,−qz, q/z,−q/z; q)∞

(q2z2, q2/z2; q2)∞

= 2 cos x · (qz, q/z; q2)∞(−qz,−q/z; q)∞

= 2 cos x · (qz, q/z; q2)∞(−qz,−q/z; q)∞ · (−qz,−q/z;−qz,−q/z; q
2)∞

(−qz,−q/z; q2)∞

= 2 cos x · (q2z2, q2/z2; q4)∞ · (−qz,−q/z; q)∞
(−qz,−q/z; q2)∞

= 2 cos x · (q2z2, q2/z2; q4)∞(−q2z,−q2/z; q2)∞.

(85)
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Then by the quintuple product identity and the definition of E(q) (eq. 5),

E(q2)
θ1(q, 2x)

θ1(q, x)
= 2 cos x · (q2z2, q2/z2; q4)∞(−q2z,−q2/z, q2; q2)∞

= z1/2(q2z2, q2/z2; q4)∞(−q2z,−1/z, q2; q2)∞

= z1/2
∞∑

n=−∞

qn(3n+1)((−z)3n − (−z)−3n−1)

= z1/2
∞∑

n=−∞

(−1)nqn(3n+1)(z3n + z−3n−1).

(86)

Recalling the definition of z,

E(q2)
θ1(q, 2x)

θ1(q, x)
= eix

∞∑
n=−∞

(−1)nqn(3n+1)(e6nix + e−6nix−2ix)

=
∞∑

n=−∞

(−1)nq3n
2+n(e(6n+1)ix + e−(6n+1)ix)

= 2
∞∑

n=−∞

(−1)nq3n
2+n cos(6n+ 1)x.

(87)

Multiplying both sides by q1/12 finishes the proof. □

Now assume τ , and thus q, is fixed so that the theta functions depend only on x. As

functions of x, we would like to take their derivative with respect to x; the case

θ′1(x) will be particularly important. There are two ways two view θ1(x) of course,

as either an infinite product or an infinite series. Thus we will need to consider if

and when differentiating an infinite sum or product makes sense.

It is a known result in analysis that a series of functions
∑

n fn can be differentiated

term-wise, so (
∑

n fn)
′ =
∑

n f
′
n, only when

∑
n f

′
n converges uniformly. It is also

known[19] that an infinite product of functions
∏

n fn can be differentiated precisely

when both the product and its logarithmic derivative
∑

n f
′
n/fn converge locally
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uniformly. To recall, a sequence {an} converges locally uniformly in a metric space

X if for any x ∈ X, there exists a non-empty open ball B ⊂ X such that the

sequence converges uniformly in B[16]. Clearly, uniform convergence implies locally

uniform convergence. Now, since

lim
n→∞

∣∣∣∣f ′
n

fn

∣∣∣∣ = lim
n→∞

∣∣∣∣ qn

(1− aqn)

∣∣∣∣ = 0 (88)

when |q| < 1, the sum
∑

n f
′
n/fn converges locally uniformly in B(0, 1) ⊂ C with

fn = (1− aqn), and so the infinite product
∏

n≥0(1− aqn) is differentiable with

respect to a. Since the theta functions, and in particular θ1(x), are a product of

convergent infinite products, the theta functions are also differentiable with respect

to x. For the derivative of θ1(x) as a series to exist, we need
∑

n f
′
n to converge

uniformly. But

f ′
n = 2(−1)nq(n+1/2)2(2n+ 1) cos(2n+ 1)x (89)

and, upon observing | cos(2n+ 1)x| ≤ 1, this series converges uniformly when |q| < 1

and so its derivative exists. Looking at the derivative of θ1(x) from both views, using

either the product rule or linearity as appropriate, leads to an interesting identity.

Proposition 2.3:

E3(q) =
∑
n≥0

(−1)n(2n+ 1)q(
n+1
2
). (90)

Proof: Begin with the derivative of the product representation of θ1(x). Let

T (x) = (q2z, q2/z, q2; q2)∞ (91)
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By the product rule from calculus,

θ′1(x) = 2q1/4 cos(x)T (x) + 2q1/4 sin(x)T ′(x). (92)

By the discussion above, the differentiability of the three infinite products is

allowed. The differentiability of sin x is not of concern and the product of

differentiable functions is differentiable so the derivative here of θ1 with respect to x

is valid. Additionally, by the linearity of the derivative,

θ′1(x) = 2q1/4
∑
n≥0

(−1)nqn(n+1)(2n+ 1) cos(2n+ 1)x. (93)

Here, since the convergence of f ′
n = (−1)nq(n+1/2)2(2n+ 1) cos(2n+ 1)x is dominated

by the behavior of q(n+1/2)2 , for any ϵ > 0 there is a natural number N such that for

all n ≥ N , |fn| < ϵ. Thus uniform convergence of the series is established, and the

term-by-term differentiation done above is valid. Setting the above two expressions

equal to one another by uniqueness of the derivative leaves

cos(x)T (x) + sin(x)T ′(x) =
∑
n≥0

(−1)nqn(n+1)(2n+ 1) cos(2n+ 1)x. (94)

Now evaluating at x = 0:

T (0) =
∑
n≥0

(−1)n(2n+ 1)qn(n+1). (95)

But by the definition of T (x),

T (0) = (q2, q2, q2; q2)∞ = E3(q2). (96)
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Replacing q with q1/2 completes the proof. □

We now prove a series of identities relating the θi(q) to one another in ways that

will become useful when dealing with π.

Theorem 2.4:

θ24(q
2) = θ3(q)θ4(q). (97)

Proof:

θ3(q)θ4(q) = (q, q,−q,−q, q2, q2; q2)∞ = (q2, q2; q2)∞(q2, q2; q4)∞

= (q2, q4; q4)∞(q2, q4; q4)∞(q2, q2; q4)∞

= (q2, q2, q4; q4)2∞ = θ24(q
2). □

(98)

Proposition 2.5:

θ′1(q) = θ2(q)θ3(q)θ4(q), (99)

where the derivative is taken with respect to x.

Proof: First off, with x = 0,

θ2(q)θ3(q)θ4(q) = 2q1/4(−q2,−q2,−q,−q, q, q, q2, q2, q2; q2)∞

= 2q1/4(q2, q2, q4, q4; q4)∞(q2; q2)∞

= 2q1/4(q2, q2, q2; q2)∞

= 2q1/4E3(q2) = 2η3(2τ).

(100)

Now by Proposition 2.3,

θ′1(q, x) = 2q1/4 cos(x)(q2z, q2/z, q2; q2)∞ + 2q1/4 sin(x)
[
(q2z, q2/z, q2; q2)∞

]′
. (101)
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Then when x = 0,

θ′1(q) = 2q1/4(q2, q2, q2; q2)∞ = 2η3(2τ) (102)

and the equality holds. □

Proposition 2.6:

θ23(q) + θ24(q) = 2θ23(q
2). (103)

Proof: First note that[4]

θ3(q)+θ4(q) =
∞∑

n=−∞

qn
2

+
∞∑

n=−∞

(−1)nqn
2

= 2
∑
2|n

qn
2

= 2
∞∑

n=−∞

q(2n)
2

= 2θ3(q
4) (104)

Now let S(n) denote the number of distinct ways to express n as a sum of two

squares. Explicitly,

S(n) = #({(x, y) ∈ Z2 : x2 + y2 = n}) (105)

where #(X) denotes the cardinality of the set X. Then by definition:

θ23(q) =
∑
n≥0

S(n)qn (106)

θ24(q) =
∑
n≥0

S(n)(−1)nqn (107)

Lemma 2.7:

S(n) = S(2n). (108)

Proof: If n = a2 + b2, then

2n = 2a2 + 2b2 = (a+ b)2 + (a− b)2 (109)
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so S(n) ≤ S(2n). But if x2 + y2 = 2n, this implies x and y have the same parity and

so their median a := (x+ y)/2 and distance from the median b := a− x = y − a are

defined and are positive integers. But by (eq. 109) above this implies n = a2 + b2

and so S(2n) ≤ S(n), implying their equality.

The result then follows by the lemma:

θ23(q) + θ24(q) =
∑
n≥0

S(n)qn +
∑
n≥0

S(n)(−1)nqn

= 2
∑
2|n≥0

S(n)qn = 2
∑
n≥0

S(2n)q2n = 2θ23(q
2). □

(110)

Proposition 2.8:

θ22(q
4) + θ23(q

4) = θ23(q
2). (111)

Proof: By the last lemma with S(n) as defined in (eq. 105) we have:

θ23(q)− θ23(q
2) =

∑
n≥0

S(n)qn −
∑
n≥0

S(2n)q2n =
∑
n≥0

S(2n+ 1)q2n+1 =
∑
2∤k+m

qk
2+m2

.

(112)

Setting k = i− j and m = i+ j + 1, k +m = 2i+ 1 is odd and so:

∞∑
i,j=−∞

q(i−j)2+(i+j+1)2 =
∞∑

i,j=−∞

q2i
2+2j2+2i+2j+1 =

∞∑
i,j=−∞

(q2)(i+1/2)2+(j+1/2)2 = θ22(q
2).

(113)

Adding θ23(q2) to both sides and replacing q by q2 gives the desired identity. □

Corollary 2.9:

θ23(q
4)− θ22(q

4) = θ24(q
2). (114)
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Proof: By Proposition 2.8, θ22(q2) + θ23(q
2) = θ23(q). Plugging that value for θ23(q)

into the result of Proposition 2.6 gives

θ23(q
2) + θ22(q

2) + θ24(q) = 2θ23(q
2) (115)

and the result follows upon setting q to q2 and rearranging. □

Theorem 2.10:

θ42(q) + θ44(q) = θ43(q). (116)

Proof: Squaring Theorem 2.4 results in:

θ23(q)θ
2
4(q) = θ44(q

2). (117)

Plugging in the results for θ23(q) and θ24(q) from Proposition 2.8 and Corollary 2.9

respectively,

θ44(q
2) = [θ23(q

2) + θ22(q
2)] · [θ23(q2)− θ22(q

2)] = θ43(q
2)− θ42(q

2). (118)

The theorem is complete after rearranging and letting q2 be q. □

Definition 2.11 (Modular Lambda Function): Let λ(q) be defined as:

λ(q) =
θ42(q)

θ43(q)
. (119)

Theorem 2.12

λ(q2) =

(
1−

√
1− λ(q)

1 +
√

1− λ(q)

)2

. (120)
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Proof: Divide Corollary 2.9 by Proposition 2.8[12]:

θ23(q
2)− θ22(q

2)

θ23(q
2) + θ22(q

2)
=
θ24(q)

θ23(q)
(121)

Dividing the left side by 1 = θ23(q
2)/θ23(q

2) and squaring both sides and simplifying

using the identities above imply that

(
1−

√
λ(q2)

1 +
√
λ(q2)

)2

=
θ44(q)

θ43(q)
=
θ43(q)− θ42(q)

θ43(q)
= 1− λ(q). (122)

Taking the square root of both sides and solving for λ(q2) finishes the proof. □

An identity for λ(qn) in terms of λ(q) such as above is called a modular equation,

and such equations play a role in the theory of hypergeometric functions.

3 Eisenstein Series

Recall the Taylor series expansion of ex:

ex =
∑
n≥0

xn

n!
= 1 +

∑
n≥1

xn

n!
(123)

This implies the Taylor expansion of ex − 1 is
∑

n≥1
xn

n!
. Manipulating this further

by dividing both sides by x, we have:

ex − 1

x
=
∑
n≥1

xn−1

n!
=
∑
n≥0

xn

(n+ 1)!
(124)

Now however, since there is an x in the denominator, so we exclude x = 0 from the

radius of convergence. From analysis we know that the reciprocal of a function with
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a power series expansion also has a power series expansion; that is,

x

ex − 1
=
∑
n≥0

anx
n. (125)

The coefficients of this power series turn out to be related to the Bernoulli numbers,

and often the Bernoulli numbers are defined to be the coefficients of this power

series, so that it becomes a generating function for the Bernoulli numbers.

Definition 3.1 (Bernoulli Numbers): The Bernoulli numbers Bn are given by

the generating function:
x

ex − 1
=
∑
n≥0

Bn
xn

n!
. (126)

The Bernoulli numbers can be computed from the power series for ex − 1 and

comparing coefficients. In particular, the powers series expansions derived above

imply

(ex − 1) ·
(

x

ex − 1

)
=

(∑
n≥1

xn

n!

)(∑
m≥0

Bm

m!
xm
)

= x. (127)

It was shown by Mertens[8] that if two infinite series converge to A and B,

respectively, with at least one series converging absolutely, then their Cauchy

product converges to AB. The Cauchy product of two series is simply the product

taken where like powers of x are summed together, exactly like a multiplication of

two polynomials. By the absolute convergence of ex, the power series of ex − 1

converges absolutely and so we are valid in assuming the Cauchy product of the two

Taylor series above converges to x.

To illustrate, comparing the coefficients of x gives xB0 = x, or B0 = 1. Continuing

further, 1/2 ·B0 +B1 = 0 and so B1 = −1/2. One also gets B0/6 +B1/2 +B2/2 = 0
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resulting in B2 = 1/6. Note however that for B3,

B0

4!
+
B1

3!
+

B2

2!2!
+
B3

3!
=

1

24
− 1

12
+

1

24
+
B3

6
=
B3

6
= 0 (128)

so B3 = 0. In fact, for odd n > 1, Bn = 0. To see this, we can use the power series

expansion of cot x about 0 with a disk of radius < π. Note that

cot x =
cos x

sin x
=
eix + e−ix

2

2i

eix − e−ix
= i

(
eix + e−ix

eix − e−ix

)
= i

(
e2ix + 1

e2ix − 1

)
= i

(
1 +

2

e2ix − 1

)
.

(129)

By the generating function for the Bernoulli numbers (Definition 3.1) it follows that

cot x = i+
1

x

∑
n≥0

Bn
(2i)n

n!
xn = i+

1

x
− i+

1

x

∑
n≥2

Bn
(2i)n

n!
xn =

1

x
+

1

x

∑
n≥2

Bn
(2i)n

n!
xn.

(130)

Clearly cot x has a simple pole at x = 0 with a−1 = 1 in its Laurent series, and so

x cot x = 1 +
∑
n≥2

Bn
(2i)n

n!
xn (131)

is analytic within the annulus about zero of radius given above for cot x, and so the

function and its power series agree. Since x cot x is an even function, Bn is indeed 0

for odd n ≥ 3. With this in mind, replace n by 2n to get:

cot x =
1

x
+

1

x

∑
n≥1

B2n
(2i)2n

(2n)!
x2n =

1

x
+
∑
n≥1

(−1)n22n
B2n

(2n)!
x2n−1 =

∑
n≥0

(−4)n

(2n)!
B2nx

2n−1.

(132)
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Definition 3.2 (Eisenstein Series): With q = q∗ and k > 0 an integer, the

Eisenstein series G2k are defined as:

G2k = 2ζ(2k)

(
1− 4k

B2k

∑
n≥1

n2k−1qn

1− qn

)
. (133)

It is often helpful to work with what are called the normalized Eisenstein series,

E2k =
G2k

2ζ(2k)
= 1− 4k

B2k

∑
n≥1

n2k−1qn

1− qn
. (134)

Recalling the Riemann zeta function,

ζ(s) =
∑
n≥1

1

ns
, (135)

where ℜ(s) > 1, it is clear ζ(2k) > 0 for any positive integer k so this division is

valid. Additionally there is an expression relating the Bernoulli numbers B2k to

ζ(2k) stated here as:

B2k =
(−1)k+12(2k)!

(2π)2k
ζ(2k). (136)

By this it is clear also that division by B2k is permitted.

Theorem 3.3 (The ζ Function at Even Positive Integers): For all positive

integers k,

B2k =
(−1)k+12(2k)!

(2π)2k
ζ(2k). (137)

Proof: Observe from (eq. 132) the expansion of πx cot(πx) about 0 for |x| < 1 is:

πx cot πx =
∑
n≥0

(−4)n

(2n)!
B2nπ

2nx2n. (138)
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Alternatively, since cot(πx) = cos(πx)/ sin(πx), it is clear that since sin(πx) = 0

only when x is an integer, cot(πx) is meromorphic and so can be written as a partial

fraction expansion

cot(πx) =
a

x
+
∑
n≥1

(
bn

x− n
+

cn
x+ n

)
(139)

where a, bn, cn are undetermined coefficients. Multiplying both sides by x and then

letting x = 1/4 so that cot(πx) = 1, we see:

1/4 = a− b1/3 + c1/5− b2/7 + c2/9− · · · (140)

Comparing this with the well-known formula π/4 = 1− 1/3 + 1/5− 1/7 + · · ·, it

becomes obvious that a = bn = cn = 1/π. Then, upon multiplying both sides by π,

π cot(πx) =
1

x
+ 2

∑
n≥1

x

x2 − n2
. (141)

Take |x| < 1. Now by factoring out −1/n2 from the terms in the summation,

π cot(πx) =
1

x
− 2

∑
n≥1

(
x

n2

)(
1

1− (x2/n2)

)
=

1

x
− 2

∑
n≥1

(
x

n2

)∑
k≥1

(
x2

n2

)k−1

(142)

where for the last equality we used a geometric series, which since |x| < 1 does not

affect the convergence. Combining this all into a double sum,

π cot(πx) =
1

x
− 2

∑
n≥1

∑
k≥1

(
1

n2k

)
x2k−1. (143)

Since n ≥ 1, k ≥ 1 and |x| < 1, we have absolute convergence and thus can switch

the order of summation. By the definition of ζ(s) (eq. 135),

π cot(πx) =
1

x
− 2

∑
n≥1

ζ(2n)x2n−1. (144)
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This function has a simple pole at x = 0 and so πx cot(πx) is analytic and thus

agrees with its power series expansion about x = 0 in the annulus 0 < |x| < 1, which

is:

πx cot(πx) = 1− 2
∑
n≥1

ζ(2n)x2n. (145)

But we now have two power series expansions for the same function in the same

radius of convergence, and thus they must be identical. So like terms must agree,

and this implies:

−2ζ(2n) =
(−4)n

(2n)!
B2nπ

2n (146)

(−1)2ζ(2n) =
(−1)n(2π)2n

(2n)!
B2n (147)

2(2n)!

(−1)n−1(2π)2n
ζ(2n) = B2n (148)

which is equivalent to the desired result. □

Proposition 3.4:
θ′1(x)

θ1(x)
=
∑
n≥0

(−4)n

(2n)!
B2nE2nx

2n−1. (149)

Proof: In Proposition 2.3 the validity of differentiation here ofr θ1(x) was

established. Let T (x) be as in Proposition 2.3 so that[12]

θ1(x) = 2q1/4 sin(x)T (x). (150)

By the same proposition, it follows that the logarithmic derivative of θ1(x) is

θ′1(x)

θ1(x)
=

2q1/4 cos(x)T (x) + 2q1/4 sin(x)T ′(x)

2q1/4 sin(x)T (x)
= cot x+

T ′(x)

T (x)
. (151)
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By use of the product rule, T ′(x)/T (x) is

T ′(x)

T (x)
=

−2izq2

(1− zq2)
+

2iz−1q2

(1− z−1q2)
+

−2izq4

(1− zq4)
+

2iz−1q4

(1− z−1q4)
+ · · ·

= 2i

(∑
n≥1

z−1q2n

1− z−1q2n
−
∑
n≥1

zq2n

1− zq2n

)
.

(152)

The differentiability of T (x) is a result of the differentiability of the infinite products

involved, which was established in the previous section. By the summation of a

geometric series,

T ′(x)

T (x)
= 2i

∑
n≥1

∑
m≥1

q2nm(z−m − zm) = 4
∑
m≥1

q2m

1− q2m
sin 2mx. (153)

Using the series expansion of sin x,

θ′1(x)

θ1(x)
=
∑
n≥0

(−4)n

(2n)!
B2nx

2n−1 + 4
∑
m≥1

q2m

1− q2m

(∑
n≥0

(−1)n

(2n+ 1)!
(2mx)2n+1

)
=

1

x
+
∑
n≥1

(−4)n

(2n)!
B2nx

2n−1 + 4
∑
n≥0

(∑
m≥1

q2m

1− q2m

)
(−1)n

(2n+ 1)!
(2mx)2n+1

=
1

x
+
∑
n≥1

(−4)n

(2n)!
B2nx

2n−1 + 4
∑
n≥1

(∑
m≥1

m2n−1q2m

1− q2m

)
(−1)n−1

(2n− 1)!
22n−1x2n−1

=
1

x
+
∑
n≥1

(−4)n

(2n)!
B2nx

2n−1 + 4
∑
n≥1

B2n

4n
(1− E2n)

(−1)n−1

(2n− 1)!
22n−1x2n−1

=
1

x
+
∑
n≥1

(−4)n

(2n)!
B2nx

2n−1 −
∑
n≥1

B2n(1− E2n)
(−1)n22n

(2n)(2n− 1)!
x2n−1

=
1

x
+
∑
n≥1

(−4)n

(2n)!
B2nx

2n−1 −
∑
n≥1

(−4)n

(2n)!
B2n(1− E2n)x

2n−1

=
1

x
+
∑
n≥1

(−4)n

(2n)!
B2nE2nx

2n−1 =
∑
n≥0

(−4)n

(2n)!
B2nE2nx

2n−1. □

(154)

We are now in a position to prove a series of important differential equations

attributed to Ramanujan involving the first few Eisenstein series.
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Theorem 3.5 (Ramanujan’s Differential Equations):

q
dE2

dq
=
E2

2 − E4

12
(155)

q
dE4

dq
=
E2E4 − E6

3
(156)

q
dE6

dq
=
E2E6 − E2

4

2
(157)

Proof: First note that term-by-term differentiation of E2k with respect to q is

allowed, since the terms of such a derivative

f ′
n =

n2kqn−1

(qn − 1)2
→ 0 (158)

as n→ ∞ and converge uniformly where |q| < 1. Since the q in E2n is q∗ while the q

in θ1(q, x) is q†, in accordance with Chan[10] we now give θ1(q, x) with q = q∗ so

that the two expressions of q are compatible. This results in

θ1(q, x) = 2
∑
n≥0

(−1)nq(n+1/2)2/2 sin(2n+ 1)x. (159)

Noticing that (n+ 1/2)2/2 = (2n+ 1)2/8, and expanding sine as a power series

results in:

θ1(q, x) = 2
∑
n≥0

(−1)nq(2n+1)2/8

(∑
m≥0

(−1)m

(2m+ 1)!
(2m+ 1)2m+1x2m+1

)
. (160)

Letting

S2n+1 = 2
∑
k≥0

(−1)k(2k + 1)2n+1q(2k+1)2/8, (161)

θ1(q, x) becomes

θ1(q, x) =
∑
n≥0

(−1)n

(2n+ 1)!
S2n+1x

2n+1. (162)
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Using this and Proposition 3.4,

θ′1(x) =
∑
n≥0

(−1)n(2n+ 1)

(2n+ 1)!
S2n+1x

2n =
∑
n≥0

(−1)n

(2n)!
S2n+1x

2n

=

(∑
n≥0

(−1)n

(2n+ 1)!
S2n+1x

2n+1

)(∑
n≥0

(−4)n

(2n)!
B2nE2nx

2n−1

)
.

(163)

Comparing the coefficients of x2n gives

(−1)n

(2n)!
S2n+1 = S1

(−4)n

(2n)!
B2nE2n −

1

3!
S3

(−4)n−1

(2n− 2)!
B2n−2E2n−2 + · · ·+ (−1)n

(2n+ 1)!
S2n+1.

(164)

Dividing both sides by (−1)n/(2n)! leads to a recurrence relation for S2n+1:

S2n+1 = 4nS1B2nE2n +
4n−1(2n)!

3!(2n− 2)!
S3B2n−2E2n−2 + · · ·+ (2n)!

(2n+ 1)!
S2n+1 (165)

and so

S2n+1

(
1− 1

2n+ 1

)
= 4nS1B2nE2n+

4n−1(2n)!

3!(2n− 2)!
S3B2n−2E2n−2+ · · ·+ 4(2n)!

(2n− 1)!
S2n−1,

(166)

resulting in

S2n+1 =

(
2n+ 1

2n

) n−1∑
k=0

4n−k

2k + 1

(
2n

2(n− k)

)
S2k+1B2(n−k)E2(n−k). (167)

For n = 1, 2, 3, 4 we have, in terms of S1:

S3 = 6S1B2E2 = S1E2 (168)

S5 = (5/4)[16S1B4E4 + 8S3B2E2] = S1
(5E2

2 − 2E4)

3
(169)

S7 = (7/6)[(32/21)S1E6 − (8/3)S3E4 + 2S5E2] = S1
(35E3

2 − 42E2E4 + 16E6)

9
(170)

S9 = S1[(−48/5)E8 + (64/3)E2E6 + (28/5)E2
4 − 28E2

2E4 + (35/3)E4
2 ] (171)
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Observe by the definition of S2n+1,

8q
dS2n+1

dq
= 8q · 2

∞∑
k=0

(−1)k(2k + 1)2n+1 (2k + 1)2

8
q

(2k+1)2

8
−1

= 2
∞∑
k=0

(−1)k(2k + 1)2n+3q(2k+1)2/8 = S2n+3.

(172)

Applying 8q d
dq

to S3 gives

8q
dS3

dq
= S5 = 8q

dE2

dq
S1 + E2S3. (173)

Comparing that with S5 = S1(5E
2
2 − 2E4)/3 and S3 = S1E2,

S1
(5E2

2 − 2E4)

3
= 8q

dE2

dq
S1 + E2

2S1, (174)

or equivalently

q
dE2

dq
=

2E2
2 − 2E4

24
=
E2

2 − E4

12
, (175)

proving the first equation. In the same way,

8q
dS5

dq
= S7 = S3(5E

2
2 − 2E4)/3 + S1

8q

3

d(5E2
2 − 2E4)

dq

= S1E2(5E
2
2 − 2E4)/3 + S1

40q

3

d(E2
2)

dq
− S1

16q

3

dE4

dq
.

(176)

Since
40q

3

d(E2
2)

dq
=

80E2

3

E2
2 − E4

12
, (177)

it follows that

S1(35E
3
2 − 42E2E4 + 16E6)

9
=
S1E2(5E

2
2 − 2E4)

3
+ S1

40q

3

d(E2
2)

dq
− S1

16q

3

dE4

dq
(178)

35

9
E3

2 −
14

3
E2E4 +

16

9
E6 =

5

3
E3

2 −
2

3
E2E4 +

20

9
E3

2 −
20

9
E2E4 −

16

3
q
dE4

dq
(179)
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16

9
E6 −

16

9
E2E4 = −16

3
q
dE4

dq
(180)

E2E4 − E6

3
= q

dE4

dq
(181)

so the second equation is proved as well. Moving on,

8q
dS7

dq
= S9 = S1[(−48/5)E8 + (64/3)E2E6 + (28/5)E2

4 − 28E2
2E4 + (35/3)E4

2 ]

= 8q
d

dq

(
S1

35E3
2 − 42E2E4 + 16E6

9

)
= S1

[
(35/9)E4

2 − (42/9)E2
2E4 + (16/9)E2E6 + (280/9)q

d

dq
(E3

2)

− (336/9)q
d

dq
(E2E4) + (128/9)q

dE6

dq

]
(182)

Using the product rule and plugging in the previous two results yields, after some

lengthy simplification,

40q
dE6

dq
+ 27E8 − 20E2E6 − 7E2

4 = 0. (183)

In order to get the desired result, another recurrence relation is needed. With the

series expansion of cosine, Proposition 2.2 with q = q∗ becomes

η(2τ)
θ1(2x)

θ1(x)
= 2

∞∑
n=−∞

(−1)nq(6n+1)2/24
∑
m≥0

(−1)m

(2m)!
(6n+ 1)2mx2m (184)

and with

T2m = 2
∞∑

n=−∞

(−1)n(6n+ 1)2mq(6n+1)2/24, (185)

we get

η(2τ)
θ1(2x)

θ1(x)
=
∑
m≥0

(−1)m
T2m
(2m)!

x2m. (186)
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Logarithmically differentiating both sides with respect to x gives

2 · θ
′
1(2x)

θ1(2x)
− θ′1(x)

θ1(x)
=

(∑
m≥0(−1)m T2m

(2m−1)!
x2m−1∑

m≥0(−1)m T2m

(2m)!
x2m

)
(187)

which, after using Proposition 3.4 and re-indexing m with j + 1 in the numerator of

the above equation, simplifies to:

(∑
n≥0

(−4)n

(2n)!
B2nE2nx

2n−1(4n − 1)

)(∑
m≥0

(−1)m

(2m)!
T2mx

2m

)
=
∑
j≥0

(−1)j+1

(2j + 1)!
T2j+2x

2j+1.

(188)

Comparing the coefficients of x2n+1 results in the equation

(−1)n+1

(2n+ 1)!
T2n+2 =

(−4)

(2)!
B2E2(4− 1)

(−1)n

(2n)!
T2n +

(−4)2

(4)!
B4E4(4

2 − 1)
(−1)n−1

(2n− 2)!
T2n−2 + · · ·

+
(−4)n

(2n)!
B2nE2n(4

n − 1)
(−1)

(2)!
T2 +

(−4)n+1

(2n+ 2)!
B2n+2E2n+2(4

n+1 − 1)T0.

(189)

Solving for T2n+2, one gets

T2n+2 =
4(4− 1)

2!
(2n+ 1)B2E2T2n +

42(42 − 1)

4!
(2n+ 1)(2n)(2n− 1)B4E4T2n−2 + · · ·

+
4n(4n − 1)

2!
(2n+ 1)B2nE2nT2 +

4n+1(4n+1 − 1)

2n+ 2
B2n+2E2n+2T0.

(190)

Multiplying everything by 1 in the form of (2n+ 2)/(2n+ 2), we at last get the

recurrence relation:

T2n+2 =
1

2n+ 2

n∑
k=0

(
2n+ 2

2k

)
4n−k+1(4n−k+1 − 1)B2(n−k+1)E2(n−k+1)T2k. (191)

For n = 0, 1, 2, 3 we have, in terms of T0:

T2 = (1/2)(1)4(3)B2E2T0 = T0E2 (192)
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T4 = [4(15)B4E4T0 + 6(3)B2E2T2] = T0[3E
2
2 − 2E4] (193)

T6 = 16E6T0 − 20E4T2 + 5E2T4 = T0[15E
3
2 − 30E2E4 + 16E6] (194)

T8 = T0[105E
4
2 − 420E2

2E4 + 448E2E6 + 140E2
4 − 272E8] (195)

Similar to the S2n+1, by definition:

24q
dT2m
dq

= 24q · 2
∞∑

n=−∞

(−1)n(6n+ 1)2m
(6n+ 1)2

24
q

(6n+1)2

24
−1 = T2m+2. (196)

Then, one has

24q
d

dq
(T0[15E

3
2−30E2E4+16E6]) = T0[105E

4
2−420E2

2E4+448E2E6+140E2
4−272E8]

(197)

which expands to:

15E4
2 − 30E2

2E4 + 16E2E6 + 1080E2
2q
dE2

dq
− 720E2q

dE4

dq
− 720E4q

dE2

dq
+ 384q

dE6

dq

= 105E4
2 − 420E2

2E4 + 448E2E6 + 140E2
4 − 272E8.

(198)

Using the previous results for E2 and E4, one obtains after some simplification:

24q
dE6

dq
+ 17E8 − 12E2E6 − 5E2

4 = 0. (199)

With this and the similar result from the S2n+1 recurrence, the E8 term can be

removed from the system, resulting in:

24q
dE6

dq
+ (17/27)

(
20E2E6 + 7E2

4 − 40q
dE6

dq

)
− 12E2E6 − 5E2

4 = 0 (200)

−(32/27)q
dE6

dq
+ (16/27)E2E6 − (16/27)E2

4 = 0 (201)

q
dE6

dq
=
E2E6 − E2

4

2
(202)
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which proves the last equation and therefore the theorem. □

One thing to note is that we could also remove the E2
4 term, and solving for the

derivative then shows in fact E2
4 = E8.

Corollary 3.6:

1728η24(τ) = E3
4 − E2

6 . (203)

Proof: By Theorem 3.5,

q
d

dq
(E3

4 − E2
6) = 3E2

4 ·
E2E4 − E6

3
− 2E6 ·

E2E6 − E2
4

2
= E2(E

3
4 − E2

6). (204)

This implies
d

dq
log(E3

4 − E2
6) = E2/q = q−1 − 24

∑
n≥1

nqn−1

1− qn
. (205)

Integrating both sides with respect to q,

log(E3
4 − E2

6) = log q + 24
∑
n≥1

log(1− qn) + logC (206)

for some constant C, which implies

E3
4 − E2

6 = Cη24(τ). (207)

Using the geometric series for q/(1− q) and comparing the coefficients of q shows:

[3(240)− 2(−504)]q = 1728q = Cq. □ (208)

The Taylor series expansions of n2k−1qn/(1− qn) actually lead to another, equivalent

definition of the normalized Eisenstein series. For observe that
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1/(1− qn) = 1 + qn + q2n + · · · and so

∑
n≥1

n2k−1qn

1− qn
=
∑
n≥1

(
n2k−1qn + n2k−1q2n + n2k−1q3n + · · ·

)
. (209)

Combining powers of q leads to:

∑
n≥1

n2k−1qn

1− qn
= q + (1 + 22k−1)q2 + (1 + 32k−1)q3 + (1 + 22k−1 + 42k−1)q4 + · · · (210)

which, upon recalling the divisor sum function σk(n) from elementary number

theory, shows the Eisenstein series can be defined as:

E2k = 1− 4k

B2k

∑
n≥1

σ2k−1(n)q
n. (211)

4 Modular Forms

Let H = {z ∈ C : ℑ(z) > 0} denote the upper half-plane of C and let Γ denote

PSL2(Z) = SL2(Z)/{I,−I}; call it the modular group. Consider the group action

Γ×H −→ H defined by

gz =

a b

c d

 z =
az + b

cz + d
. (212)

To begin we show this is in fact a group action. First,

Iz =

1 0

0 1

 z =
1z + 0

0z + 1
= z. (213)
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Next let g =

a b

c d

 and h =

e f

g h

 . Then,

(gh)z =

ae+ bg af + bh

ce+ dg cf + dh

 z =
(ae+ bg)z + af + bh

(ce+ dg)z + cf + dh
=
a(ez + f) + b(gz + h)

c(ez + f) + d(gz + h)

=
a( ez+f

gz+h
) + b

c( ez+f
gz+h

) + d
=

a b

c d

 ez + f

gz + h
= g(hz).

(214)

Finally, let z = x+ iy. We have

ℑ(gz) = ℑ
(az + b

cz + d

)
= ℑ

(
(az + b)(cz + d)

(cz + d)(cz + d)

)
= ℑ

((ax+ b+ iay)(cx+ d− icy)

(cz + d)(cz + d)

)
=

ℑ(ac(x2 + y2) + x(ad+ bc) + bd+ iy(ad− bc))

|cz + d|2
=
y(ad− bc)

|cz + d|2
=

y

|cz + d|2
> 0.

(215)

Definition 4.1 (Modular Function): A modular function f : H −→ C is one

meromorphic in H where for any g ∈ Γ, f(gz) = f(z).

More generally, we define a modular form for Γ of weight k to be a function

f : H −→ C holomorphic in H with f bounded as ℑ(z) → ∞, where for any g ∈ Γ,

f(gz) = (cz + d)kf(z). In this respect a modular function can be viewed as a

modular form of weight 0 with the holomorphic restriction slightly relaxed.

The first example of a modular form is η(τ), and is especially important as many

other modular forms can be defined in terms of it.

Theorem 4.2: η(τ) is a modular form of weight 1/2.
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Proof: Recall a function is holomorphic if in its domain it can be written as a

convergent power series. But this is obvious for η by the pentagonal number

theorem so holomorphicity is not a concern. As well, η is bounded as ℑ(τ) → ∞

due to q = e2πiτ being in the unit circle.

In order to show η has weight 1
2
, we will prove a useful lemma and then show that

η24 is a modular form of weight 12. By the definition, taking the 24th root of

everything then results in k = 1/2.

Lemma 4.3: The condition on a modular form of weight k that

f(gz) = (cz + d)kf(z) is equivalent to the following:

f(z + 1) = f(z) (216)

f
(
− 1

z

)
= zkf(z). (217)

Proof: Let

S =

0 −1

1 0

 , T =

1 1

0 1

 . (218)

Both are in PSL2(Z), and we have

Tz =

1 1

0 1

 z = z + 1 (219)

Sz =

0 −1

1 0

 z = −1/z (220)

Now if S, T generate Γ, then any g ∈ Γ can be represented by a finite product of S’s

and T ’s. Thus the condition that f(gz) = (cz + d)kf(z) would be the same as
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requiring

f(Tz) = f(z + 1) = (0z + 1)kf(z) = f(z) (221)

f(Sz) = f(−1/z) = (1z + 0)kf(z) = zkf(z). (222)

From algebra[2] it is known the group presentation of Γ = PSL2(Z) is

⟨a, b : a2 = b3 = e⟩. Then it is enough to show that S and ST satisfy a, b. The

relation can be shown by doing the matrix multiplication, and recalling that in

Γ,−A = A:

S2 =

0 −1

1 0


0 −1

1 0

 =

−1 0

0 −1

 = I

(ST )3 =

(0 −1

1 0


1 1

0 1

)3

=

0 −1

1 1


3

=

0 −1

1 1


0 −1

1 1


0 −1

1 1


=

−1 −1

1 0


0 −1

1 1

 =

−1 0

0 −1

 = I.

(223)

With the lemma established, Consider now η24. This is simply

η24(τ) = q
∏
n≥1

(1− qn)24. (224)

Notice that

e2πi(τ+1) = e2πiτe2πi = e2πiτ (225)

and it is clear now that η24(τ + 1) = η24(τ). For η24(−1/τ), we show now that

η(−1/τ) =
√
−iτη(τ). Taking that to the 24th power then yields
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η24(−1/τ) = τ 12η(τ). First recall the definition given of E2k in terms of the divisor

sum function σk. Note |q| < 1 so E2(τ) and thus G2(τ) is analytic in H, and also by

the discussion above G2(τ + 1) = G2(τ). By use of the product rule, the logarithmic

derivative of η(τ) is

η′(τ)

η(τ)
=

(
q1/24(1− q)(1− q2)(1− q3) · · ·

)′
q1/24(1− q)(1− q2)(1− q3) · ··

=
2πi

24
− 2πiq

1− q
− 4πiq2

1− q2
− 6πiq3

1− q3
− · · ·

=
2πi

24

(
1− 24

∑
n≥1

nqn

1− qn

)
=
πi

12
E2(τ) =

i

4π
G2(τ).

(226)

From this it is clear that

(√
−iτη(τ)

)′
√
−iτη(τ)

=
1

2τ
+
η′(τ)

η(τ)
=

1

2τ
+

i

4π
G2(τ). (227)

Now by the chain rule, the logarithmic derivative of η(−1/τ) is

η′(−1/τ)

η(−1/τ)
=

1

τ 2
η(−1/τ)′

η(−1/τ)
. (228)

If η(−1/τ) and
√
−iτη(τ) have the same logarithmic derivative, then they must

differ only by some constant factor. In fact taking τ = i we see that constant factor

is 1, by √
−i(i)e2nπi(i) = e−2nπ = e−2nπi/i. (229)

So all that remains to show that η is a modular form of weight 1
2

is to prove:

1

τ 2
η(−1/τ)′

η(−1/τ)
=

1

2τ
+

i

4π
G2(τ) (230)

or equivalently that
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Lemma 4.4:

G2(−1/τ) = τ 2G2(τ)− 2πiτ. (231)

Proof: There is another way to define the Eisenstein series G2n than given

previously. However for n = 1 this definition is only conditionally convergent, so

care must be taken when re-indexing terms. Let

G2n(τ) =
∑

(c,d)̸=(0,0)

(cτ + d)−2n (232)

for integers c, d. The equality of this definition with the one given before will be

shown in the next section. Assuming this for now, and observing that the series is

not defined when c = d = 0, for n = 1 we have[16]:

G2

(
− 1

τ

)
=

∞∑
c=−∞

∞∑
d=−∞

(
− c

τ
+ d
)−2

=
∞∑

c=−∞

∞∑
d=−∞

1

c2/τ 2 − 2cd/τ + d2

=
∞∑

c=−∞

∞∑
d=−∞

τ 2

c2 − 2cdτ + d2τ 2
= τ 2

∞∑
c=−∞

∞∑
d=−∞

(dτ − c)−2.

(233)

Replacing d with −d,

G2(−1/τ) = τ 2
∞∑

c=−∞

∞∑
d=−∞

(dτ + c)−2 (234)

and re-indexing by switching c and d,

G2

(
− 1

τ

)
= τ 2

∞∑
d=−∞

∞∑
c=−∞

(cτ + d)−2. (235)

Denote that last double sum by G′
2(τ), so G2

(
− 1

τ

)
= τ 2G′

2(τ). Note that if

G′
2(τ) = G2(τ)− 2πi

τ
, then

G2

(
− 1

τ

)
= τ 2G′

2(τ) = τ 2G2 − 2πiτ (236)
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as desired. To this end, define[16]

H(τ) =
∞∑

c=−∞

∞∑
d=−∞

1

(cτ + d)(cτ + d− 1)

H ′(τ) =
∞∑

d=−∞

∞∑
c=−∞

1

(cτ + d)(cτ + d− 1)

(237)

Note that in H(τ) if c = 0, d cannot be 0 or 1, and vice versa in H ′(τ). Now,

H(τ)−G2(τ) =
∞∑

c=−∞

∞∑
d=−∞

(
1

(cτ + d)(cτ + d− 1)
− 1

(cτ + d)2

)
− 1

=
∞∑

c=−∞

∞∑
d=−∞

(
(cτ + d)2 − (cτ + d)(cτ + d− 1)

(cτ + d)3(cτ + d− 1)

)
− 1

=
∞∑

c=−∞

∞∑
d=−∞

(
(cτ + d)− (cτ + d− 1)

(cτ + d)2(cτ + d− 1)

)
− 1

=
∞∑

c=−∞

∞∑
d=−∞

(
1

(cτ + d)2(cτ + d− 1)

)
− 1

(238)

where the double sum has d ̸= 0, 1 when c = 0. H(τ)−G2(τ) converges

unconditionally, so re-indexing c and d will not change the sum and we have

H(τ)−G2(τ) = H ′(τ)−G′
2(τ), (239)

or

G2(τ)−G′
2(τ) = H(τ)−H ′(τ). (240)
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It then remains to show that H(τ)−H ′(τ) = 2πi
τ

. To start with,

H(τ) =
∞∑

c=−∞

∞∑
d=−∞

1

(cτ + d)(cτ + d− 1)
=

∞∑
c=−∞

∞∑
d=−∞

(
1

cτ + d− 1
− 1

cτ + d

)

=
∞∑

d=−∞

( 1

d− 1
− 1

d

)
= lim

N→∞

−1∑
d=−N+1

( 1

d− 1
− 1

d

)
+ lim

N→∞

N∑
d=2

( 1

d− 1
− 1

d

)
= lim

N→∞

( 1

−N
− 1

−N + 1

)
+
( 1

−N + 1
− 1

−N + 2

)
+ · · ·+

( 1

−2
− 1

−1

)
+
(1
1
− 1

2

)
+
(1
2
− 1

3

)
+ · · ·+

( 1

N − 1
− 1

N

)
= lim

N→∞

( 1

−N
− 1

−1

)
+
(1
1
− 1

N

)
= 1 + 1 = 2

(241)

where all the other terms cancel out by the ‘telescoping series’ trick. H ′(τ) is

slightly more complicated, but using the same technique:

H ′(τ) =
∞∑

d=−∞

∞∑
c=−∞

(
1

cτ + d− 1
− 1

cτ + d

)
= lim

N→∞

N∑
d=−N+1

∞∑
c=−∞

(
1

cτ + d− 1
− 1

cτ + d

)

= lim
N→∞

[
−1∑

d=−N+1

∞∑
c=−∞

( 1

cτ + d− 1
− 1

cτ + d

)
+

N∑
d=2

∞∑
c=−∞

( 1

cτ + d− 1
− 1

cτ + d

)
+

∞∑
c=−∞

( 1

cτ − 1
− 1

cτ

)
+

∞∑
c=−∞

( 1

cτ
− 1

cτ + 1

)]

= lim
N→∞

[
∞∑

c=−∞

( 1

cτ −N
− 1

cτ −N + 1

)
+

∞∑
c=−∞

( 1

cτ −N + 1
− 1

cτ −N + 2

)
+ · · ·

+
∞∑

c=−∞

( 1

cτ − 2
− 1

cτ − 1

)
+

∞∑
c=−∞

( 1

cτ + 1
− 1

cτ + 2

)
+

+ · · ·+
∞∑

c=−∞

( 1

cτ +N − 1
− 1

cτ +N

)
+

∞∑
c=−∞

( 1

cτ − 1
− 1

cτ + 1

)]

= lim
N→∞

[
∞∑

c=−∞

( 1

cτ −N
− 1

cτ − 1

)
+

∞∑
c=−∞

( 1

cτ + 1
− 1

cτ +N

)
(242)
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+
∞∑

c=−∞

( 1

cτ − 1
− 1

cτ + 1

)]

= lim
N→∞

[
∞∑

c=−∞

( 1

cτ −N
− 1

cτ +N

)]
+
(
− 1

−1

)
+
(1
1

)
= lim

N→∞

[
∞∑

c=−∞

( 1

cτ −N
− 1

cτ +N

)]
+ 2

where if one was keeping track of where the series were and weren’t defined, this last

sum takes values c ̸= 0. Now, it was proved in the previous section that the partial

fraction expansion of π cot(πx) is

π cot(πx) =
1

x
+ 2x

∑
n≥1

1

x2 − n2
. (243)

With that in mind[16],

lim
N→∞

∞∑
c=−∞

( 1

cτ −N
− 1

cτ +N

)
=

2

τ
lim

N→∞

∑
c≥1

( 1

c−N/τ
− 1

c+N/τ

)
=

2

τ
lim

N→∞

∑
c≥1

2N/τ

c2 −N2/τ 2
=

2

τ
lim

N→∞

[
π cot

(
− π

N

τ

)
+
τ

N

]

=
2π

τ
lim

N→∞
cot
(
− π

N

τ

)
+ lim

N→∞

τ

N
=

2π

τ
lim

N→∞
i
e−iπN/τ + eiπN/τ

e−iπN/τ − eiπN/τ

=
2πi

τ
lim

N→∞

e−2πiN/τ + 1

e−2πiN/τ − 1
= −2πi

τ
.

(244)

Hence H(τ)−H ′(τ) = 2− (2− 2πi
τ
) = 2πi

τ
, and so the lemma and consequently the

claim that η(τ) is a modular form of weight 1
2

is proved. □

Since G2(−1/τ) ̸= τ 2G2(τ), G2 is not a modular form of weight 2. For k ≥ 2

however, to show G2k is a modular form of weight 2k it suffices to show

G2k(−1/τ) = τ 2kG2k(τ). (245)
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But this is obvious by the same argument that showed G2(−1/τ) = τ 2G′
2(τ), and

noting that because for k ≥ 2 , the double sum G2k is absolutely convergent, so

G2k(τ) = G′
2k(τ). Therefore G2k is a modular form of weight 2k for k > 1. Note this

also means E2k is a modular form in the same vein.

Although we will not discuss this further, one of the first modular functions studied

intensely was elliptic modular function, or the j-invariant, which is defined as

follows:

j(τ) =
E3

4(τ)

η24(τ)
= 1728

E3
4

E3
4 − E2

6

. (246)

Being a quotient of two holomorphic functions, j is meromorphic in H. As E3
4 and

η24 are both modular forms of weight 12, j is of weight 0, and j is a well-defined

modular function. When expanded out in powers of q, it has the form[2]:

j(τ) = q−1 + 744 + 196884q + · · · (247)

This function is related to invariants of classes of elliptic curves and also to the

Weierstrass elliptic function, which we introduce shortly.

From the equation η(−1/τ) =
√
−iτη(τ), some transformation formulas for certain

eta quotients can be proven. One example is the following[12]:

Proposition 4.5: Writing θ3(q) in terms of τ ,

θ3(−1/τ) =
√
−iτθ3(τ). (248)

Proof: By Proposition 1.12, observe that

θ3(τ) = ϕ(q1/2) =
η5(τ)

η2(2τ)η2(τ/2)
(249)
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Then, by the formula proven in Lemma 4.4:

θ3(−1/τ) =
η5(−1/τ)

η2(−2/τ)η2(−1/(2τ))
=

√
−iτ 5

√
−iτ 4

η5(τ)

η2(2τ)η2(τ/2)
=

√
−iτθ3(τ). □ (250)

5 Elliptic Functions

Definition 5.1 (Elliptic Function): For two complex numbers ω1, ω2 with

ℑ(ω1/ω2) > 0, a function f with f(z) = f(z + ω1) = f(z + ω2) is called a

doubly-periodic function. An elliptic function is a meromorphic

doubly-periodic function.

If every period of f is of the form xω1 + yω2 for x, y integers, then the set

P (ω1, ω2) = {xω1 + yω2 | 0 ≤ x, y < 1} (251)

is called a fundamental parallelogram of f .

Theorem 5.2: If an elliptic function f has no poles in some P (ω1, ω2) of f , then

f is a constant.

Proof: Being an elliptic function f is continuous, and by the assumption of having

no poles in P (ω1, ω2), f is bounded on the closure of the parallelogram. By the

periodicity of f its values everywhere are determined by its values in the

fundamental parallelogram and hence f is entire. But By Liouville’s Theorem[19] a

bounded entire function is constant. □

We now prove some transformation formulas for θ1(q, x) that will be useful later.

Similar results for the other theta functions can be proven in the same manner and

48



will be stated as needed.

Proposition 5.3:

θ1(q, x+ π) = −θ1(q, x). (252)

Proof: By definition,

θ1(q, x+ π) = −i
∞∑

n=−∞

(−1)nq(n+1/2)2e(2n+1)i(x+π) = −θ1(q, x). □ (253)

Proposition 5.4:

θ1(q, x+ πτ) = −q−1e−2ixθ1(q, x). (254)

Proof:

θ1(q, x+ πτ) = −i
∞∑

n=−∞

(−1)nq(n+1/2)2e(2n+1)ixe(2n+1)iπτ

= −i
∞∑

n=−∞

(−1)nq(n+1/2)2e(2n+1)ixq2n+1

= q−1e−2ix(−i)
∞∑

n=−∞

(−1)nq(n+3/2)2e(2n+3)ix

(255)

Setting m = n+ 1 and simplifying finishes the proof. □

Proposition 5.5:

θ1(q, x+ π/2) = θ2(q, x). (256)
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Proof:

θ1(q, x+ π/2) = −i
∞∑

n=−∞

(−1)nq(n+1/2)2e(2n+1)ixeniπeiπ/2 = −i(i)
∞∑

n=−∞

(−1)2nq(n+1/2)2

=
∞∑

n=−∞

q(n+1/2)2e(2n+1)ix = θ2(q, x). □

(257)

Proposition 5.6

θ1(q, x+ πτ/2) = iq−1/4e−ixθ4(q, x). (258)

Proof:

θ1(q, x+ πτ/2) = −i
∞∑

n=−∞

(−1)nq(n+1/2)2e(2n+1)ixeniπτeiπτ/2

= −i
∞∑

n=−∞

(−1)nqn
2+2n+3/4e2nixeix

= iq−1/4e−ix

∞∑
n=−∞

(−1)n+1q(n+1)2e2(n+1)ix

(259)

Re-index n+ 1 by n and the result follows. □

Theorem 5.7: Let C = P (π, πτ ) denote the fundamental parallelogram with

vertices t, t+ π, t+ πτ , and t+ π + πτ where the θi(q, x) have no zeroes in ∂C.

Then there is exactly one zero in C for each of θi(q, x).

Proof[12]: By the product form of θ1(q, x) it is clear a zero occurs when x = 0.

For a parallelogram with dimensions described in C with 0 in the interior, by the

properties of the sine function that is the only zero in C. By Propositions 5.3 and

5.5 this implies the only fundamental zero of θ2(q, x) is π/2. Similarly Propositions

5.4 and 5.6 show the only zero of θ4(q, x) to be πτ/2. Finally, it can be shown in the
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same way as Proposition 5.5 that

θ4(q, x+ π/2) = θ3(q, x) (260)

and thus the only zero in C for θ3(q, x) is (πτ + π)/2. □

Definition 5.8 (Weierstrass ℘-Function): Let ω1, ω2 ∈ C with ω1/ω2 = ci ̸= 0

and let [ω1, ω2] denote the lattice generated by ω1, ω2 Also let L = [ω1, ω2]\{0}.

Define the Weierstrass ℘-Function as:

℘(z, ω1, ω2) =
1

z2
+
∑
u∈L

(
1

(z − u)2
− 1

u2

)
. (261)

For short we write ℘(z) when the ωi are clear. By its definition as a series, ℘(z) is

meromorphic, having double poles at points in L. It can be shown that the

℘-function converges absolutely, and with that property that ℘(z) is an even

function. For with the capability to rearrange terms in the lattice sum,

℘(−z) = 1/(−z)2 +
∑
u∈L

(1/(−z − u)2 − 1/u2) = 1/z2 +
∑
u∈L

(1/(z + u)2 − 1/u2)

= 1/z2 +
∑
u∈L

(1/(z − u)2 − 1/u2) = ℘(z).

(262)

We now explain our current interest in ℘(z):

Theorem 5.9: ℘(z, ω1, ω2) is an elliptic function with periods ω1 and ω2.

Proof: We show ℘(z + ω1) = ℘(z). The process can be repeated to show

℘(z + ω2) = ℘(z). As before L = [ω1, ω2]\{0}. Additionally set
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Lω = [ω1, ω2]\{0, ω1}. Then,

℘(z + ω1) = 1/(z + ω1)
2 +

∑
u∈L

(1/(z + ω1 − u)2 − 1/u2)

= 1/(z + ω1)
2 +

∑
u∈Lω

(1/(z + ω1 − u)2 − 1/u2) + 1/z2 − 1/ω2
1

= 1/(z + ω1)
2 +

∑
u∈Lω

(1/(z + ω1 − u)2 − 1/(u− ω1)
2)

−
∑
u∈Lω

(1/u2 − 1/(u− ω1)
2) + 1/z2 − 1/ω2

1.

(263)

But now observe that

∑
u∈Lω

(1/u2 − 1/(u− ω1)
2) =

∑
u′=ω1−u∈Lω

(1/(ω1 − u′)2 − 1/(−u′)2)

= −
∑
u′∈Lω

(1/(u′)2 − 1/((u′)− ω1)
2)

(264)

so the whole sum is zero and

℘(z + ω1) = 1/(z + ω1)
2 +

∑
u∈Lω

(1/(z + ω1 − u)2 − 1/(u− ω1)
2) + 1/z2 − 1/ω2

1

= 1/z2 +
∑

u′=u−ω1∈Lω

(1/(z − u′)2 − 1/(u′)2) + 1/(z + ω1)
2 − 1/ω2

1

= 1/z2 +
∑
u′∈L

(1/(z − u′)2 − 1/(u′)2) = ℘(z). □

(265)

Definition 5.10: Define the Eisenstein series G2n with respect to a lattice [ω1, ω2]

as:

G2n([ω1, ω2]) =
∑
u∈L

u−2n. (266)

When the lattice is clear we omit it and just write G2n.
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Theorem 5.11:

℘′(z)2 = 4℘3(z)− 60G4℘(z)− 140G6. (267)

Proof: Recall the geometric series (1− x)−1 =
∑

n≥0 x
n. Differentiate both sides

to obtain (1− x)−2 = 1 +
∑

n≥1(n+ 1)xn. Now let x = z/u where |z| < |u|. Then

upon dividing both sides of the equation by 1/u2 we get

1/(z − u)2 − 1/u2 =
∑
n≥1

(n+ 1)zn/un+2. (268)

Summing over all u ∈ L gives:

℘(z) = 1/z2 +
∑
n≥1

(n+ 1)Gn+2z
n (269)

But since ℘(z) is an even function,

℘(z) = 1/z2 +
∑
n≥1

(2n+ 1)G2n+2z
2n. (270)

Differentiating term by term results in:

℘′(z) = −2/z3 +
∑
n≥1

2n(2n+ 1)G2n+2z
2n−1. (271)

With these expressions we can compute the first few terms of ℘′(z)2, 4℘3(z), and

60G4℘(z)[19]:

℘′(z)2 = 4/z6 − 24G4/z
2 − 80G6 − · · · (272)

4℘3(z) = 4/z6 + 36G4/z
2 + 60G6 + · · · (273)

60G4℘(z) = 60G4/z
2 + 180G4z

2 + 300G6z
4 + · · · (274)
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From this it is clear that

℘′(z)2 − 4℘3(z) + 60G4℘(z) = −140G6 + · · · (275)

but the equation on the right is an elliptic function with no poles so by Theorem 5.2

is the constant −140G6 and the result follows. □

Definition 5.12: Define a new function J(q, x) by[12]

J(q, x) = (θ′1(q, x)/θ1(q, x))
′. (276)

Recall from Proposition 3.4 the expression found for θ′1(q, x)/θ1(q, x).

Differentiating term by term with respect to x gives

J(q, x) =
∑
n≥0

(2n− 1)
(−4)n

(2n)!
B2nE2nx

2n−2. (277)

Then clearly J(q, x) is an even function with a double pole at x = 0.

Theorem 5.13: J(q, x) is an elliptic function with periods π, πτ .

Proof: Differentiating Propositions 5.3 and 5.4 result in:

θ′1(q, x+ π) = −θ′1(q, x) (278)

θ′1(q, x+ πτ) = q−1e−2ix(2iθ1(q, x)− θ′1(q, x)) (279)

The first expression implies

θ′1(q, x+ π)/θ1(q, x+ π) = θ′1(q, x)/θ1(q, x) (280)
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and taking the derivative of both sides shows J(q, x+ π) = J(q, x). Similarly, the

second equation implies:

θ′1(q, x+ πτ)/θ1(q, x+ πτ) = q−1e−2ix(2iθ1(q, x)− θ′1(q, x))/(−q−1e−2ixθ1(q, x))

= θ′1(q, x)/θ1(q, x)− 2i

(281)

and likewise differentiating both sides with respect to x leads to

J(q, x+ πτ) = J(q, x). □

With these results we see that J(q, x) is an even elliptic function that has a double

pole at x = 0 in the fundamental parallelogram P (π, πτ ). But ℘(z, πτ, π) is also an

even elliptic function with a double pole at z = 0 and the same periods. So then

J(q, x)− C℘(z) for some C is an entire elliptic function and so a constant by

Theorem 5.2. So we have that

J(q, x) = C℘(z) + d (282)

Using the expansions derived above for J(q, x) and ℘(x) and comparing powers of x,

the coefficients are clear and we have:

Theorem 5.14

J(q, x) = −℘(x)− E2/3 (283)

where E2 is as given in Section 3.

The above result also enables a proof of the assumption earlier that the definitions

of G2n given in Definition 3.2 and Lemma 4.4 are equivalent. Let G∗
2n denote the

G2n given in Definition 5.10 to distinguish from the G2n in Definition 3.2.
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Comparing the x2n terms in J(q, x) and ℘(x) gives:

−G∗
2n+2 =

(−4)n+1

(2n+ 2)!
B2n+2E2n+2, (284)

or

G∗
2n = (−1)n−1 (−4)n

(2n)!
B2nE2n. (285)

Recalling the relation between G2n and E2n and that between ζ(2n) and B2n, we get

G∗
2n = (−1)n−1 (−4)n

(2n)!
B2n(−1)n+1 (2n)!

B2n(2π)2n
G2n (286)

which upon simplifying is:

G∗
2n = G2n/π

2n. (287)

Now observe that since G∗
2n as given has periods πτ, π, it can be written as:

G∗
2n =

∑
(c,d)̸=(0,0)

(cπτ + dπ)−2n (288)

where as before (c, d) ∈ Z2. Pulling out the π−2n from the sum and cancelling

completes the desired equivalence.

Definition 5.15: Define a new function B(q, x) as[12]:

B(q, x) = (θ4(q, x)/θ1(q, x))
2. (289)

Similar to Proposition 5.3, it can be shown that θ4(q, x+ π) = θ4(q, x). By this and

Proposition 5.3 then it is clear B(q, x+ π) = B(q, x). In a similar vein it can be

shown like Proposition 5.4 that θ4(q, x+ πτ) = −q−1e−2ixθ4(q, x). Then

B(q, x+ πτ) = B(q, x) and so B(q, x) is an elliptic function with periods π, πτ . By

how everything is squared B(q, x) is also an even function, and because from
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Theorem 5.7 we know θ1(q, x) has a zero at x = 0 in P (πτ, π), it follows that B(q, x)

has a double pole at x = 0.

Since θ4(q, x)/θ1(q, x) has a pole of order 1 at x = 0, suppose its expansion is of the

form

θ4(q, x)/θ1(q, x) = c−1/x+ c0 + · · · (290)

Multiplying both sides by x and taking the limit as x→ 0,

c−1 = lim
x→0

x(θ4(q, x)/θ1(q, x)) = θ4(q) lim
x→0

x/θ1(q, x) = θ4(q)/θ
′
1(q). (291)

By Proposition 2.5 this simplifies to c−1 = 1/(θ2(q)θ3(q)). Now for notation let

ζ = θ23(q). Then in the expansion of θ4(q, x/ζ)/θ1(q, x/ζ) we find the 1/x coefficient

to be:

c−1ζ = θ3(q)/θ2(q). (292)

From this then the function

(θ2(q)θ4(q, x/ζ))/(θ3(q)θ1(q, x/ζ)) (293)

has c−1 = 1.

Definition 5.16: Define a new function S(q, x) in the following way[12]:

S(q, x) =
√
λ(q)B(q, x/ζ). (294)

By the discussion above, S(q, x) is an even function with a double pole at x = 0, and

this 1/x2 term has coefficient 1. Also, in exactly the same manner that B(q, x) was

shown to be a elliptic function, S(q, x) is an elliptic function with periods πζ, πζτ .

57



Just like J(q, x), the properties of S(q, x) indicate that it relates to ℘(x, πτζ, πζ) as

S(q, x) = ℘(x, πτζ, πζ) + C. (295)

Plugging in x = πτζ/2 reveals the constant C, for see that:

S(q, πτζ/2) =
√
λ(q)(θ24(q, πτ/2))/(θ

2
1(q, πτ/2)). (296)

It can be proven in the same way as Proposition 5.6 that

θ4(q, x+ πτ/2) = iq−1/4e−ixθ1(q, x). But θ1(q, 0) = 0 and so S(q, πτζ/2) = 0. From

this we conclude that, with ℘(x) = ℘(x, πτζ, πζ),

S(q, x) = ℘(x)− ℘(πτζ/2). (297)

Now from Definition 5.8 and the above discussion involving G2n, it is clear that

℘(x, πτζ, πζ) = ζ−2℘(x/ζ, πτ, π) (298)

and so with ℘(x) = ℘(x, πτ, π):

ζ2S(q, x) = ℘(x/ζ)− ℘(πτ/2). (299)

Theorem 5.17:

S ′(q, x)2 = 4S(q, x)(S(q, x)− 1)(S(q, x)− λ(q)). (300)

Proof: When τ is fixed write S(x) for S(q, x). Since S(x) is an even elliptic

function, differentiating term by term implies S ′(x) is an odd elliptic function. Now
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for either period ω of S ′(x),

S ′(ω/2) = S ′(ω/2− ω) = S ′(−ω/2) = −S(ω/2) (301)

and so S ′(ω/2) = 0. This implies the zeros in P (πζτ, πζ) are πζ/2, πζτ/2, and

π(τ +1)ζ/2. By the fundamental theorem of algebra then, we have, in terms of S(x):

S ′(x)2 = C(S(x)− S(πζ/2))(S(x)− S(πζτ/2))(S(x)− S(π(τ + 1)ζ/2)). (302)

Now for some lemmas to simplify the above equation.

Lemma 5.18:

S(q, πζ/2) = 1. (303)

Proof:

S(q, πζ/2) =
√
λ(q)θ24(q, π/2)/θ

2
1(q, π/2) =

√
λ(q)θ23(q)/θ

2
2(q) = 1. □ (304)

Lemma 5.19:

S(q, π(τ + 1)ζ/2) = λ(q). (305)

Proof:

S(q, π(τ + 1)ζ/2) =
√
λ(q)θ24(q, π/2 + πτ/2)/θ21(q, π/2 + πτ/2)

=
√
λ(q)θ1(q, π/2)/θ4(q, π/2) =

√
λ(q)θ22(q)/θ

2
3(q). □

(306)

Putting it all together, we have

S ′(x)2 = CS(x)(S(x)− 1)(S(x)− λ(q)). (307)
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To obtain the constant C, observe that since S ′(x) = ℘′(x) and so S ′(x)2 = ℘′(x)2,

from Theorem 5.11 it is clear that the x−6 term of ℘′(x)2 has coefficient 4 and thus

by equating powers of x so must the x−6 term of S ′(x)2 have coefficient 4. □

Theorem 5.17 can be used to give an expansion of S(x). From now on when the

value of q is clear we denote λ = λ(q). Now differentiating both sides of Theorem

5.17 leads to

2S ′(x)S ′′(x) = 4S ′(x)(S(x)−1)(S(x)−λ)+4S(x)S ′(x)(S(x)−λ)+4S(x)(S(x)−1)S ′(x)

(308)

or upon simplifying:

S ′′(x) = 2(S(x)− 1)(S(x)− λ) + 2S(x)(S(x)− λ) + 2S(x)(S(x)− 1). (309)

Assuming S(x) = 1/x2 + c0 + c2x
2 + c4x

4 + · · ·, differentiating term by term twice

gives

S ′′(x) = 6/x4 + 2c2 + 12c4x
2 + · · · (310)

Plugging in these expansions to the expression for S ′′(x) reveals:

6/x4 + 2c2 + 12c4x
2 + · · ·

= 2(1/x2 + c0 − 1 + c2x
2 + c4x

4 + · · ·)(1/x2 + c0 − λ+ c2x
2 + c4x

4 + · · ·)

+ 2(1/x2 + c0 + c2x
2 + c4x

4 + · · ·)(1/x2 + c0 − λ+ c2x
2 + c4x

4 + · · ·)

+ 2(1/x2 + c0 + c2x
2 + c4x

4 + · · ·)(1/x2 + c0 − 1 + c2x
2 + c4x

4 + · · ·)

(311)

Comparing powers of x can lead to the solution of the ci. For instance, comparing

the coefficients of x−2 on both sides of the equation one gets 0 = 12c0 − 4(λ+ 1),

which upon simplifying leads to c0 = (λ+ 1)/3. Similarly, comparing the constant
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terms shows

2c2 = 12c2 + 6c20 − 4c0(λ+ 1) + 2λ (312)

which implies c2 = (λ2 − λ+ 1)/15. One is unable to find c4 in the same manner,

however by using Theorem 5.17 the same method can be applied. The expansion

becomes:

(−2/x3 + 2c2x+ 4c4x
3 + · · ·)2 = 4(1/x2 + c0 + c2x

2 + c4x
4 + · · ·)

× (1/x2 + c0 − 1 + c2x
2 + c4x

4 + · · ·)(1/x2 + c0 − λ+ c2x
2 + c4x

4 + · · ·)

(313)

Equating the constant terms on both sides gives

−16c4 = 4(3c4 + 6c0c2 − (2c2 + c20)(λ+ 1) + c30 + c0λ) (314)

and solving for c4 results in c4 = (λ+ 1)(λ− 2)(2λ− 1)/189.

From the relation between S(q, x) and ℘(x, πτ, π) derived earlier, the expansions for

both functions and thus their coefficients of powers of x can be equated. For

example, comparing the x2 terms of ζ2S(q, x) = ℘(x/ζ)− ℘(πτ/2)[12]:

ζ2(λ2 − λ+ 1)/15 = 3G4/ζ
2 = −2E4B4/ζ

2 = E4/(15ζ
2). (315)

This implies E4 can be written in terms of theta functions θi(q) as

E4 = ζ4(λ2 − λ+ 1). Likewise for the x4 terms we have:

ζ2(λ+ 1)(λ− 2)(2λ− 1)/189 = 5G6/ζ
4 = 4E6B6/(9ζ

4) = 10E6/(945ζ
4) (316)
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and solving for E6 gives E6 = ζ6(λ+ 1)(λ− 1/2)(λ− 2).

Lemmas 5.18 and 5.19 in conjunction with the relation between S(x) and ℘(x) lead

to interesting additive results for ℘(x). With ℘(x) using the lattice [πτ, π], from

Lemma 5.18 we see that ζ2 = ℘(π/2)− ℘(πτ/2). Similarly, by subtracting Lemma

5.19 from Lemma 5.18 and the result obtained for S(πτζ/2),

℘(π/2)− ℘(π(τ + 1)/2) = ζ2(1− λ) (317)

℘(πτ/2)− ℘(π(τ + 1)/2) = −ζ2λ (318)

In the same way that ℘(x, πτζ, πζ) = ℘(x/ζ, πτ, π)/ζ2, one can pull out the τ and

obtain

℘(x, π, πτ ) = ℘(x/τ, π/τ, π)/τ 2. (319)

Also, since the summation in ℘(x) occurs over the whole lattice it is true that

[ω, ωτ ] = [−ω, ωτ ]. From these two observations and that ℘(x) is an even function it

follows that:

℘(πτ/2, πτ, π) = ℘(π/2, π,−π/τ)/τ 2 (320)

℘(π/2, πτ, π) = ℘(−π/(2τ), π,−π/τ)/τ 2 (321)

From this, observe that as ζ depends on τ we can write ζ = ζ(τ). Then see:

ζ2(τ) = ℘(π/2, πτ, π)− ℘(πτ/2, πτ, π)

= (1/τ 2)(℘(π(−1/τ)/2, π, π(−1/τ))− ℘(π/2, π, π(−1/τ)))

= (−1/τ 2)ζ2(−1/τ).

(322)
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Likewise,

(ζ2(1− λ))(τ) = ℘(π/2, πτ, π)− ℘(π(1 + τ)/2, πτ, π)

= ℘(−π/(2τ), π,−π/τ)/τ 2 − ℘((π/2)(−1− 1/τ) + π, π,−π/τ)/τ 2

= (1/τ 2)(−ζ2λ)(−1/τ).

(323)

By the definition of ζ it is clear that ζ2(τ) = θ3(q)
4 = θ3(τ)

4. This also implies

ζ2(1− λ)(τ) = θ44(τ) and ζ2λ(τ) = θ42(τ). Then the above results imply:

Proposition 5.20:

θ43(−1/τ) = −τ 2θ43(τ) (324)

θ42(−1/τ) = −τ 2θ44(τ) (325)

Here the θi are given in terms of τ instead of q to make the connection more obvious.

Corollary 5.21:

λ(e−iπ/τ ) = 1− λ(eiπτ ). (326)

Proof: By Proposition 5.20 and Theorem 2.10,

λ(e−iπ/τ ) = θ42(−1/τ)/θ43(−1/τ) = θ44(τ)/θ
4
3(τ) = 1− θ42(τ)/θ

4
3(τ) = 1− λ(eiπτ ). □

(327)

6 Hypergeometric Series

Recall the derivations of E4 and E6 in terms of λ, ζ. There is a slight issue in that

E2n is given in terms of q = q∗ = e2πiτ while ζ and λ are given in terms of
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q = q† = eπiτ . With this in mind, let q = q† and observe that:

(q2)
dE4(q

2)

d(q2)
= q

dE4

2dq
= 2ζ3(λ2 − λ+ 1)q

dζ

dq
+ (ζ4/2)(2λ− 1)q

dλ

dq
(328)

q
dE6

2dq
= 3ζ5(λ+ 1)(λ− 1/2)(λ− 2)q

dζ

dq
+ (3/2)ζ6(λ2 − λ− 1/2)q

dλ

dq
(329)

Theorem 6.1:

q
dλ

dq
= ζ2λ(1− λ). (330)

Proof: By Theorem 3.5 and the derivations of E4 and E6 in the previous section,

3E6q
dE4

2dq
− 2E4q

dE6

2dq
= E3

4 − E2
6 = ζ12(λ2 − λ+ 1)3 − ζ12(λ+ 1)2(λ− 1/2)2(λ− 2)2

= (27/4)ζ12λ2(λ− 1)2.

(331)

But by the derivatives given above now,

3E6q
dE4

2dq
− 2E4q

dE6

2dq
= 3ζ10(λ+ 1)(λ− 1/2)2(λ− 2)q

dλ

dq

− 3ζ10(λ2 − λ+ 1)(λ2 − λ− 1/2)q
dλ

dq

= (27/4)ζ10λ(1− λ)q
dλ

dq
.

(332)

Equating the two expressions and solving for q dλ
dq

completes the proof. □

Combining Theorems 6.1 and 3.5 lead to a differential equation relating ζ and λ

that will be useful later.

Theorem 6.2:

λ(1− λ)
d2ζ

dλ2
+ (1− 2λ)

dζ

dλ
− ζ/4 = 0. (333)
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Proof: Writing Theorem 6.1 as

(q2)
dλ

d(q2)
= ζ2λ(1− λ)/2, (334)

we see from Theorem 3.5 that:

(1/(q2))
d(q2)

dλ
(q2)

dE4

d(q2)
=

2

ζ2λ(1− λ)

E2E4 − E6

3
, (335)

or equivalently[12]

(ζ2λ(1− λ)/2)
dE4

dλ
= (E2E4 − E6)/3. (336)

By the definition of E4, it is clear that

dE4

dλ
= 4ζ3(λ2 − λ+ 1)

dζ

dλ
+ ζ4(2λ− 1). (337)

Plugging that into the above equation and solving for E2 yields

E2 = 6ζλ(1− λ)
dζ

dλ
+ ζ2(1− 2λ) (338)

and differentiating term by term:

dE2

dλ
= 6

(
dζ

dλ

)2

λ(1−λ)+6ζ(1−λ)dζ
dλ

−6ζλ
dζ

dλ
+6ζλ(1−λ)d

2ζ

dλ2
+2ζ

dζ

dλ
(1−2λ)−2ζ2.

(339)

Then the expression

(ζ2λ(1− λ)/2)
dE4

dλ
= (E2

2 − E4)/12 (340)
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can be written in terms of ζ, λ. First off,

ζ2λ(1− λ)

2

[
6

(
dζ

dλ

)2

λ(1− λ) + 6ζ(1− λ)
dζ

dλ
− 6ζλ

dζ

dλ
+ 6ζλ(1− λ)

d2ζ

dλ2

+ 2ζ
dζ

dλ
(1− 2λ)− 2ζ2

]

=

(
6ζλ(1− λ) dζ

dλ
+ ζ2(1− 2λ)

)2

− ζ4(λ2 − λ+ 1)

12

(341)

After factoring everything out and combining like terms, we get:

3ζ3λ(1− λ)(1− 2λ)
dζ

dλ
+ 3ζ3λ2(1− λ)2

d2ζ

dλ2
=

3ζ4λ(1− λ)

4
. (342)

Dividing both sides by 3ζ3λ(1− λ) obtains the result. □

If we define an operator Dλ = λ d
dλ

, then by the product rule

D2
λζ = Dλζ + λ2

d2ζ

dλ
. (343)

Then Theorem 6.2 can be written as:

(1− λ)(D2
λζ −Dλζ) + (1− 2λ)Dλζ − λζ/4 = 0. (344)

Distributing out and solving for D2
λζ gives:

D2
λζ = λ(Dλ + 1/2)2ζ. (345)

From this equation, a useful connection between theta functions and the

hypergeometric series 2F1(a, b; c; z) defined in Definition 1.2 can be established.
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Theorem 6.3 (Jacobi Inversion Theorem):

ζ = 2F1(1/2, 1/2; 1;λ). (346)

Proof: Dividing Theorem 2.10 through by ζ2 suggests that ζ can be written as a

polynomial in λ. Assuming this, Theorem 6.2 becomes

D2
λ

(∑
n≥0

anλ
n

)
= λ(Dλ + 1/2)2

(∑
n≥0

anλ
n

)
(347)

and comparing powers of λ shows:

n2an = (n− 1/2)2an−1. (348)

But after some consideration, it becomes clear that this implies

ζ = a0 · 2F1(1/2, 1/2; 1;λ). Comparing the expansion of ζ as given in Proposition 2.6

with the expansion of 2F1(1/2, 1/2; 1;λ) shows a0 = 1. □

To make things less cumbersome, some notation is useful. Let 2F1(1/2, 1/2; 1;λ) be

denoted as simply F (λ). Also, by F ′(x) is meant dF (x)
dx

. Now we prove an interesting

identity between λ and F (λ) = ζ.

Proposition 6.4: Let λ = λ(q) and λ∗ = λ(q2). Then[11],

2λ(1−λ)F ′(λ)(1+
√
1− λ)−λ

√
1− λF (λ) = 2λ∗(1−λ∗)F ′(λ∗)(1+

√
1− λ)2. (349)

Proof: Note that ζ2 = θ43(q) and ζ2λ = θ42(q). Then by Theorem 2.10,

θ44(q) = ζ2(1− λ). (350)
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By Theorem 6.3, Proposition 2.8 can be written:

2F (λ∗) = F (λ)(1 +
√
1− λ). (351)

Taking the derivative of both sides respect to λ results in

2F ′(λ∗)
dλ∗

dλ
= F ′(λ)(1 +

√
1− λ)− F (λ)/(2

√
1− λ). (352)

Now Theorem 6.1 implies

q
dλ∗

dq
= 2F 2(λ∗)λ∗(1− λ∗) (353)

and dividing this by Theorem 6.1 gives:

dλ∗

dλ
= 2

F 2(λ∗)λ∗(1− λ∗)

F 2(λ)λ(1− λ)
. (354)

Plugging this in above, we see:

2F ′(λ∗)

(
2
F 2(λ∗)λ∗(1− λ∗)(1 +

√
1− λ)2

4F 2(λ∗)λ(1− λ)

)
= F ′(λ)(1 +

√
1− λ)− F (λ)/(2

√
1− λ)

2F ′(λ∗)λ∗(1− λ∗)(1 +
√
1− λ)2 = 2F ′(λ)(1 +

√
1− λ)λ(1− λ)− F (λ)λ(1− λ)/

√
1− λ

2λ∗(1− λ∗)F ′(λ∗)(1 +
√
1− λ)2 = 2λ(1− λ)F ′(λ)(1 +

√
1− λ)− λ

√
1− λF (λ). □

(355)

We are now able to begin to relate theta and hypergeometric functions to π. Letting

τ = ir for some positive real number r, eiπτ becomes e−πr. Note that τ ∈ H so this

is still < 1, and calling it q leaves things convergent thus previous results hold.

Denote λ(e−πr) as λr for short.
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Theorem 6.5: For any r ∈ R+,

1/π = λr(1− λr)(F
′(1− λr)F (λr) + F ′(λr)F (1− λr)). (356)

Proof: From Corollary 5.21 and Theorem 6.3, it is clear that

θ23(e
−π/r) = F (1− λr). By Proposition 4.5, it is also true that θ23(e−1/(ir)) = rF (λr).

It follows then that r = F (1− λr)/F (λr). Differentiating both sides with respect to

λr gives:

dr

dλr
= −F

′(1− λr)

F (λr)
− F (1− λr)F

′(λr)

F 2(λr)
. (357)

With q = e−πr, note dr
dλr

= dr
dq

dq
dλr

. But dr
dq

=
(
dq
dr

)−1
= −1/(qπ), and thus:

1

qπ

dq

dλr
=
F ′(1− λr)

F (λr)
+
F (1− λr)F

′(λr)

F 2(λr)
. (358)

Multiplying both sides by q dλr

dq
, which by Theorem 6.1 is F 2(λr)λr(1− λr), gives the

result after simplifying[12]:

1/π =

(
F ′(1− λr)

F (λr)
+
F (1− λr)F

′(λr)

F 2(λr)

)(
F 2(λr)λr(1− λr)

)
= λr(1− λr)(F

′(1− λr)F (λr) + F (1− λr)F
′(λr)). □

(359)

7 The AGM and π

For a, b ∈ R+, recall the arithmetic mean (a+ b)/2 and the geometric mean
√
ab.

Define two sequences {an} and {bn} by:

an+1 = (an + bn)/2 (360)

bn+1 =
√
anbn (361)
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where n ≥ 0.

Proposition 7.1: For n > 0,

bn ≤ bn+1 ≤ an+1 ≤ an. (362)

Proof: bn+1 ≤ an+1 is simply the arithmetic-geometric inequality. Now even

though it may not be true that b0 ≤ a0, by that same inequality it is true b1 ≤ a1.

With this in mind, for n ≥ 1:

an+1 = (an + bn)/2 ≤ (an + an)/2 = an (363)

bn+1 =
√
anbn ≥

√
bnbn = bn (364)

and the result follows. □.

Proposition 7.1 implies {an} is a monotone decreasing sequence bounded below by

b1 and that {bn} is a monotone increasing sequence bounded above by a1. By the

monotone convergence theorem then both sequences have limits, say

limn→∞{an} = A and limn→∞{bn} = B. But by taking the limit for either of the

two sequences defined above, it is clear that A = B.

Definition 7.2 (The AGM): The arithmetic-geometric mean, or AGM, is the

common limit of {an} and {bn} described above. For a0 = a and b0 = b, the AGM is

denoted M(a, b).

Proposition 7.3: For r ∈ R+,

M(ra, rb) = rM(a, b). (365)
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Proof: Let {an} ({bn}) denote the arithmetic (geometric) sequence with a0 = ra

and b0 = rb. In addition, let {a′n} ({b′n}) denote the arithmetic (geometric) sequence

with a0 = a and b0 = b. Observe that a1 = (ra+ rb)/2 = r(a+ b)/2 = ra′1 and

b1 =
√
rarb = r

√
ab = rb′1. By induction this holds for an and so

lim
n→∞

an = lim
n→∞

ra′n = r lim
n→∞

a′n = rM(a, b). □ (366)

Proposition 7.4:

M(a, b) = ((a+ b)/2)M(1, (2
√
ab)/(a+ b)). (367)

Proof: Note that {an}∞n=0 and {an}∞n=1 converge to the same limit, and similarly

for {bn}. Then by this and Proposition 7.3,

M(a, b) =M((a+ b)/2,
√
ab) = ((a+ b)/2)M(1, (2

√
ab)/(a+ b)). □ (368)

As an interesting example of two sequences satisfying the AGM requirements, let

r ∈ R+ and let q = e−πr. Set

an = θ23(q
2n) (369)

bn = θ24(q
2n) (370)

By Proposition 2.6 we have, for n ≥ 1, an+1 = (an + bn)/2 and by Theorem 2.4 we

have bn+1 =
√
anbn. Thus {an} and {bn} satisfy the AGM and converge to a

common limit. Additionally, M(a0, b0) =M(a1, b1) =M(an, bn). These sequences

lead to another proof of a transformation formula for F (λ).
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Theorem 7.5: With λ∗ = λ(q2) and q = e−πr,

F (λ) = 2F (λ∗)/(1 +
√
1− λ). (371)

Proof: Since M(a0, b0) =M(an, bn), Proposition 7.3 implies

θ23(q)M(1, θ24(q)/θ
2
3(q)) = θ23(q

2n)M(1, θ24(q
2n)/θ23(q

2n)). (372)

Since limn→∞ θ23(q
2n) = 1 by q tending to 0, we have

θ23(q) = 1/M(1, θ24(q)/θ
2
3(q)). (373)

In the proof of Theorem 2.12 it was observed that θ24(q)/θ23(q) =
√
1− λ. Then it

follows that:

F (λ) =
1

M(1,
√
1− λ)

=
1

M((1 +
√
1− λ)/2, 4

√
1− λ)

=
2

1 +
√
1− λ

1

M(1, 2 4
√
1− λ/(1 +

√
1− λ))

=
2

1 +
√
1− λ

F (x)

(374)

where
√
1− x = 2 4

√
1− λ/(1 +

√
1− λ). But this implies

1− x = 4
√
1− λ/(1 +

√
1− λ)2, or upon solving for x[12],

x =
(1 +

√
1− λ)2 − 4

√
1− λ

(1 +
√
1− λ)2

=
1 + (1− λ)− 2

√
1− λ

(1 +
√
1− λ)2

=

(
1−

√
1− λ

1 +
√
1− λ

)2

= λ(q2)

(375)

by Theorem 2.12. □

With the relation between theta functions and the AGM established, an algorithm

for computing π can be proven. This algorithm is attributed to many

mathematicians, notably Gauss, Legendre, Brent and Salamin.
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Theorem 7.6 (Brent-Salamin Algorithm): Let a0 = 1, b0 = 1/
√
2. Let {an} be

the arithmetic mean sequence and {bn} the geometric mean sequence. Then, the

sequence

πn =
2a2n

1−
∑n

k=0 2
k(a2k − b2k)

(376)

converges to π.

Proof: An outline of this can be found in [12]. From Corollary 5.21 with τ = i,

λ(e−π) = 1− λ(e−π) and so λ1 = 1/2. By Theorem 6.5, this implies

1/π = (1/2)(1− 1/2)(F ′(1− 1/2)F (1/2) + F ′(1/2)F (1− 1/2)), (377)

or

2/π = F ′(1/2)F (1/2). (378)

Let G(λr) = 2λr(1− λr)F
′(λr) + (1− λr)F (λr). Subtracting both sides by

(1− λr)F (λr), Proposition 6.4 can be written as:

(
G(λr)− (1− λr)F (λr)

)
− λr

√
1− λr

1 +
√
1− λr

F (λr) =

(
G(λ∗r)− (1− λ∗r)F (λ

∗
r)

)
(1 +

√
1− λr)

G(λr)− F (λr)(1 +
√

1− λr − λr) = (1 +
√

1− λr)G(λ
∗
r)− 2F (λr)

√
1− λr

G(λr) = (1 +
√

1− λr)G(λ
∗
r) + F (λ)

(
1 +

√
1− λr − λr − 2

√
1− λr(1 +

√
1− λr)

1 +
√
1− λr

)

G(λr) = (1 +
√

1− λr)G(λ
∗
r)−

√
1− λrF (λr)

(379)

where λ∗r = λ(e−2πr).

Now, let An = θ23(q
2n) and Bn = θ24(q

2n) as before. Then by Theorem 6.3,

An = F (λ2n). In addition, by the proof of Proposition 6.4 we know that
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Bn/An =
√
1− λ2n . Putting this into the rewrite of Proposition 6.4 above,

G(λ2n) = (1 +Bn/An)G(λ2n+1)−BnF (λ2n)/An = (2An+1/An)G(λ2n+1)−Bn, (380)

or equivalently:

AnBn = 2An+1G(λ2n+1)− AnG(λ2n). (381)

Now, making use of the identity

ab = 2((a+ b)/2)2 − a2 + (a2 − b2)/2, (382)

The above equation becomes:

2A2
n+1 − A2

n + (A2
n − B2

n)/2 = 2An+1G(λ2n+1)− AnG(λ2n) (383)

which after multiplying both sides by 2n simplifies to

2n+1(An+1G(λ2n+1)− A2
n+1)− 2n(AnG(λ2n)− A2

n) = 2n−1(A2
n − B2

n). (384)

Summing both sides from 0 to N causes most of the terms on the left to telescope

and cancel out, leading to:

2N+1(AN+1G(λ2N+1)− A2
N+1)− (A0G(λ1)− A2

0) =
N∑

n=0

2n−1(A2
n − B2

n). (385)

By the product form of λ, it is clear that λ2n → 0 as n→ ∞. Then by the definition

of G(λr), G(λ2n) → F (0) = 1 as n→ ∞. Additionally, by the equation given for θ23

in Proposition 2.6, An → 1 as n→ ∞. Also observe that 2n grows more slowly than

e−2n falls to 0, so the limit is dominated by the behavior of An and G(λ2n). With
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this in mind, passing to limit reveals:

−A0G(λ1) + A2
0 =

∑
n≥0

2n−1(A2
n − B2

n) (386)

or equivalently

A0G(λ1) = A2
0

(
1−

∑
n≥0

2n−1((An/A0)
2 − (Bn/A0)

2)

)
. (387)

Let an = An/A0 and bn = Bn/A0. Then a0 = 1 and

b0 =
√
1− λ1 =

√
1− 1/2 = 1/

√
2. Since A0 = θ23(e

−π) = F (λ(e−π)) = F (1/2) and

G(λ1) = G(1/2) = F ′(1/2)/2 + F (1/2)/2, the equation can be written as:

F (1/2)(F ′(1/2)/2+F (1/2)/2) = 1/π+F 2(1/2)/2 = F (1/2)2

(
1−
∑
n≥0

2n−1(a2n−b2n)

)
.

(388)

Subtracting both sides by F 2(1/2)/2 and multiplying everything by 2 yields

2/π = F 2(1/2)

(
1−

∑
n≥0

2n(a2n − b2n)

)
. (389)

Since An = F (λ2n), it follows that an = F (λ2n)/F (1/2). This implies that as

n→ ∞, an → 1/F (1/2). From this the theorem follows, as

1/π = lim
N→∞

(1/(2a2N))

(
1−

N∑
n=0

2n(a2n − b2n)

)
. □ (390)

It is possible to perform two iterations of the above algorithm at once, creating a pi

algorithm that converges twice as fast. The following iteration leads to another such

algorithm.
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Theorem 7.7: Let a0 = 1, b0 = 1/ 4
√
2. Let {an} be the arithmetic mean sequence

and let

bn+1 =
4

√
a3nbn + anb3n

2
. (391)

for all n ≥ 0. Then, the sequence[11]

πn =
4a4n

2−
∑n

k=0 4
k(a2k − b2k)(b

2
k + 3a2k)

(392)

converges to π.

The {bn} sequence is obtained by two iterations of the AGM, which has quadratic

convergence. This is further detailed in[6] and implies Theorem 7.7 converges to π

quartically.

As the proof of the Brent-Salamin algorithm made use of the relations between λ(q)

and λ(q2), before proving the theorem we will express λ(q4) in terms of λ(q) and

derive similar relations. By Theorem 2.12,

λ(q4) =

(
1−

√
1− λ(q2)

1 +
√

1− λ(q2)

)2

=

(1−
√

1−
(

1−
√

1−λ(q)

1+
√

1−λ(q)

)2
1 +

√
1−

(
1−
√

1−λ(q)

1+
√

1−λ(q)

)2
)2

=

(1−
√

4
√

1−λ(q)(
1+
√

1−λ(q)
)2

1 +

√
4
√

1−λ(q)(
1+
√

1−λ(q)
)2
)2

=

(1− 2 4
√

1−λ(q)

1+
√

1−λ(q)

1 +
2 4
√

1−λ(q)

1+
√

1−λ(q)

)2

=

( (1− 4
√

1−λ(q)
)2

1+
√

1−λ(q)(
1+ 4

√
1−λ(q)

)2
1+
√

1−λ(q)

)2

=

(
1− 4

√
1− λ(q)

1 + 4
√
1− λ(q)

)4

.

(393)
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Now let λ denote λ(q) and λ∗ denote λ(q2) as before, and λ† denote λ(q4). Recalling

(eq. 351), we have:

(1 +
√
1− λ∗)F (λ∗) = 2F (λ†) (394)

(1 +
√
1− λ∗)F (λ)(1 +

√
1− λ) = 4F (λ†) (395)

(1 +
4
√
1− λ)2F (λ) = 4F (λ†) (396)

where the last equality follows from (eq. 393). As in Proposition 6.4, we can take

the derivative of both sides with respect to λ. This results in

F ′(λ)(1 +
4
√
1− λ)2 − F (λ)

(1 + 4
√
1− λ)

2 4
√
1− λ

3 = 4F ′(λ†)
dλ†

dλ
. (397)

Proposition 7.8:

dλ(qn)

dλ(q)
= n · F

2(λ(qn))λ(qn)(1− λ(qn))

F 2(λ(q))λ(q)(1− λ(q))
(398)

Proof: By Theorems 6.1 and 6.3, q dλ
dq

= F 2(λ)λ(1− λ). Now,

dλ(qn)

dλ(q)
= q

dλ(qn)

dq
· q−1 dq

dλ(q)
=
dλ(qn)

dq
· dq

dλ(q)
(399)

Additionally,

(qn)
dλ(qn)

d(qn)
= qn

dλ(qn)

nqn−1dq
= q

dλ(qn)

ndq
(400)

implies

q
dλ(qn)

dq
= n · F 2(λ(qn))λ(qn)(1− λ(qn)). (401)

Dividing these results completes the proof. □
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With this Proposition established, (eq. 397) becomes

F ′(λ)(1 +
4
√
1− λ)2 − F (λ)

(1 + 4
√
1− λ)

2 4
√
1− λ

3 = 4F ′(λ†) · 4F
2(λ†)λ†(1− λ†)

F 2(λ)λ(1− λ)
. (402)

But by (eq. 396) F 2(λ†) = F 2(λ)(1 + 4
√
1− λ)4/16 and so:

F ′(λ)(1 +
4
√
1− λ)2 − F (λ)

(1 + 4
√
1− λ)

2 4
√
1− λ

3 = F ′(λ†)
λ†(1− λ†)

λ(1− λ)
(1 +

4
√
1− λ)4. (403)

This equation is a direct analogue of Proposition 6.4. Using

G(λr) = 2λr(1− λr)F
′(λr) + (1− λr)F (λr) as in Theorem 7.6, the above analogue

can be written:

F ′(λ)(1 +
4
√
1− λ)2 − F (λ)

(1 + 4
√
1− λ)

2 4
√
1− λ

3 = F ′(λ†)
λ†(1− λ†)

λ(1− λ)
(1 +

4
√
1− λ)4 (404)

G(λ)−F (λ)(1−λ)−F (λ) λ(1− λ)
4
√
1− λ

3
(1 + 4

√
1− λ)

=

[
G(λ†)−F (λ†)(1−λ†)

]
(1+

4
√
1− λ)2

(405)

G(λ)− F (λ)(1− λ)− F (λ)
λ 4
√
1− λ

(1 + 4
√
1− λ)

+ F (λ)
(1 + 4

√
1− λ)4 − (1− 4

√
1− λ)4

4

= G(λ†)(1 +
4
√
1− λ)2

(406)

G(λ)− F (λ)(1− λ)− F (λ)
λ 4
√
1− λ

(1 + 4
√
1− λ)

+ F (λ) · 2 4
√
1− λ(1 +

√
1− λ)

= G(λ†)(1 +
4
√
1− λ)2

(407)

G(λ)+F (λ)
4
√
1− λ

[
2(1+

√
1− λ)− 4

√
1− λ

3− λ

(1 + 4
√
1− λ)

]
= G(λ†)(1+

4
√
1− λ)2

(408)

G(λ) + F (λ)
4
√
1− λ

[(1 + 4
√
1− λ)2 +

√
1− λ+ 4

√
1− λ

3

(1 + 4
√
1− λ)

]
= G(λ†)(1 +

4
√
1− λ)2

(409)

G(λ) + F (λ)
4
√
1− λ(1 +

4
√
1− λ+

√
1− λ) = G(λ†)(1 +

4
√
1− λ)2 (410)
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With this result we are able to prove a second π-algorithm.

Proof of Theorem 7.7: In a similar manner to the proof of Theorem 7.6, let

An = θ3(e
−4nπ), Bn = θ4(e

−4nπ) and λr = λ(e−πr). Then

λ4n = 1−
(
Bn

An

)4

(411)

and so Bn/An = 4
√
1− λ4n . Plugging this in to (eq. 410),

G(λ4n) + F (λ4n)
Bn

An

(1 + Bn/An +B2
n/A

2
n) = G(λ4n+1)(1 + Bn/An)

2. (412)

Multiplying both sides by A3
n/An = A2

n and noticing that by definition F (λ4n) = A2
n,

this simplifies to:

4G(λ4n+1)A2
n+1 = G(λ4n)A

2
n + AnBn(A

2
n + AnBn +B2

n). (413)

Now, by expanding and combining terms we see that

AnBn(A
2
n + AnBn +B2

n) = (An +Bn)
4/4− A4

n/4− An2B2
n/2− B4

n/4

= 4A4
n+1 − A4

n +
1

4
(A2

n − B2
n)(B

2
n + 2A2

n)
(414)

and so (eq. 413) is equivalent to

4G(λ4n+1)A2
n+1 = G(λ4n)A

2
n + 4A4

n+1 − A4
n +

1

4
(A2

n − B2
n)(B

2
n + 3A2

n) (415)

4(G(λ4n+1)A2
n+1 − A4

n+1)− (G(λ4n)A
2
n − A4

n) =
1

4
(A2

n − B2
n)(B

2
n + 3A2

n) (416)

Multiply all terms by 4n,

4n+1(G(λ4n+1)A2
n+1−A4

n+1)−4n(G(λ4n)A
2
n−A4

n) = 4n−1(A2
n−B2

n)(B
2
n+3A2

n), (417)
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and then sum both sides from 0 to N as was done in Theorem 7.6:

4N+1(G(λ4N+1)A2
N+1−A4

N+1)−(G(λ1)A
2
0−A4

0) =
N∑

n=0

4n−1(A2
n−B2

n)(B
2
n+3A2

n) (418)

Taking limN→∞ and recalling the values obtained in the proof of Theorem 7.6,

−G(λ1)A2
0 + A4

0 =
∞∑
n=0

4n−1(A2
n − B2

n)(B
2
n + 3A2

n), (419)

or:

G(λ1)A
2
0 = A4

0 −
∞∑
n=0

4n−1(A2
n − B2

n)(B
2
n + 3A2

n) (420)

G(λ1)A
2
0 − A4

0/2 = A4
0

(
1

2
−

∞∑
n=0

4n−1(a2n − b2n)(b
2
n + 3a2n)

)
(421)

where an = An/A0 and bn = Bn/B0. Note a0 = 1 and b0 =
4
√
1− λ1 = 1/ 4

√
2.

Continuing on by multiplying everything by 4,

4G(λ1)A
2
0 − 2A4

0 = A4
0

(
2−

∞∑
n=0

4n(a2n − b2n)(b
2
n + 3a2n)

)
(422)

Using the values for G(λ1) and A2
0 obtained earlier, this simplifies to[11]

4

π
= A4

0

(
2−

∞∑
n=0

4n(a2n − b2n)(b
2
n + 3a2n)

)
(423)

1

π
= lim

N→∞

1

4a4N

(
2−

N∑
n=0

4n(a2n − b2n)(b
2
n + 3a2n)

)
(424)

which upon truncating is the reciprocal of the desired result. □
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8 Concluding Remarks

We conclude with a couple of comments on a few directions the theories developed

here have gone recently. In the introduction it was remarked that most calculations

for π involve the use of a Ramanujan-esque infinite series. This is not due to such

series converging faster than the iterative techniques developed here, but rather

because iterative algorithms need to store the previous information and this leads to

inordinate computer memory usage. The most impressive of such series discovered

so far is due to the Chudnovskys[14],

1

π
= 12

∑
n≥0

(−1)n(6n)!(545140134n+ 13591409)

(3n)!(n!)3(640320)3n+3/2
(425)

and yields 14 more digits correct per term added. This formula has been the basis

for all record calculations of π since 2010. In 2022 an algorithm for this formula was

used to calculate π to 100 trillion digits, the current record. On the theoretical side,

recently q-analogues of such series to π have been discovered[13]; the derivation of

such formulae use transformation and inversion identities belonging firmly in the

realm of basic hypergeometric series.

The Borweins developed analogues of Ramanujan’s theta functions ϕ(q), ψ(q) and

used them along with elliptic integral theory to create several iterative algorithms

for π of a different nature than Theorems 7.6 and 7.7. Their algorithms have various

convergence rates that range from quadratic to nonic (9th order) convergence. A

discussion of these π algorithms and their bit complexity can be found in [4],[6].
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