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Abstract: Soft robotics is an expanding area with multiple applications; however, building low-cost,
soft, and flexible robots requires the development of sensors that can be directly integrated into the
soft robotics fabrication process. Thus, the motivation for this work was the design of a low-cost
fabrication process of flexible sensors that can detect touch and deformation. The fabrication process
proposed uses a flexible polymer nanocomposite with permanent magnets strategically placed where
the conductive electrodes should be. The nanocomposite is based on poly(dimethylsiloxane) (PDMS)
and multi-walled carbon nanotubes (MWCNTs). The MWCNT contains ferromagnetic impurities
remaining from the synthesis process, which can be used for magnetic manipulation. Several electrode
geometries were successfully simulated and tested. The magnetic patterning was simulated, allowing
the fabrication of conductive patterns within the composite. This fabrication process allowed the
reduction of the electrical resistivity of the nanocomposites as compared to the composites with
homogeneous MWCNT dispersion. It also allowed the fabrication of piezoresistive and triboelectric
sensors at MWCNT concentration as low as 0.5 wt.%. The fabrication process proposed is flexible,
allows the development of sensors for soft robotics, as well as monitoring large and unconventional
areas, and may be adapted to different mould shapes and polymers at low cost.

Keywords: MWCNT; ferromagnetic; flexible sensors; smart composites; self-sensing

1. Introduction

The fabrication of low electrical percolation threshold polymer nanocomposites aims
to reduce the weight fraction of electrically conductive nanomaterial necessary to achieve a
given level of electrical resistivity of the nanocomposite [1]. There are several strategies
to achieve a lower electrical percolation threshold in nanocomposites [2]. Most methods
consist of aligning the conductive nanoparticles [3] or constraining the location of carbon
nanotubes (CNTs), such as the utilisation of polymer beads during in situ polymeriza-
tion, forcing the contact between CNTs [4] or the migration to the interface of immiscible
polymers [5]. Concerning nanocomposites with aligned nanoparticles, McNally et al. [6]
demonstrated that mechanical deformation induced a decrease in nanoparticle contacts,
thus decreasing the electrical conductivity of the composite. The use of immiscible poly-
mers to force the nanoparticle’s location at the interface does not allow the control of their
position within the nanocomposite. Conversely, magnetic forces may induce the contact
between conductive nanoparticles with a ferromagnetic response, making it possible to
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control their location in the polymer matrix, thus allowing the fabrication of conductive
patterns that can be used as sensor electrodes.

The magnetic field can be generated using electromagnets or permanent magnets.
During the fabrication process, the strong magnetic field can lead to coil overheating
problems that may damage the electromagnets [7], thus making the use of permanent
magnets more attractive. The latter is more straightforward to use, but the magnetic
field density can be lower. The effective use of lower magnetic fields may be possible by
functionalising CNTs with magnetic nanoparticles or using metal plating techniques, as
reported by Ariu et al. [8]. Several metal plating methodologies were investigated in their
work, including nickel, cobalt, and nickel-iron plating. Still, this is an unnecessary extra
step when the MWCNTs can already provide a magnetic response.

The magnetic response of CNTs has been interpreted using different theories. M.
Fujiwara et al. [9] interpret it as resulting from the movement of the electrons circling the
circumference of the CNTs producing a significant orbital magnetic moment, explaining
the anisotropic susceptibility. Other theories are related to vacancies in the CNT structure
that induce ferromagnetic behaviour [10]. CNTs produced by the Catalytic Chemical Vapor
Deposition (CCVD) method present significant contamination by the catalyst materials
used in their fabrication process, which are typically encapsulated in the CNTs, and will
undoubtedly be the primary source of their magnetic response [11].

The precise control of the location of the MWCNTs in the polymer matrix may lower
the electrical percolation threshold and help sensor fabrication. This technique can be used
for the application of piezoresistive sensors [12], triboelectric sensors and generators [13–15],
capacitive sensors [16], temperature sensors [17], heating bands [18], etc. The present work
explores the use of permanent magnets to fabricate low electrical percolation threshold
samples by controlling the position of the MWCNTs inside PDMS. The nanocomposites
were tested for application as triboelectric and piezoresistive sensors to detect physical
contact and mechanical deformation. In the future, this fabrication technique can produce
multisensory devices in the same substrate, which may be applicable in soft robotics and
wearables [19].

2. Materials and Methods

The workflow adopted in this work is shown in Figure 1, covering three main top-
ics: the characterisation of the MWCNT and its nanocomposites, numerical simulations
of the magnetic interactions, and sensor fabrication and testing. The characterisation of
the MWCNT and its nanocomposites focused on the study of the MWCNT’s magnetic
properties and the influence of the application of magnetic fields upon the electrical perco-
lation threshold of MWCNT/PDMS nanocomposites prepared at different concentrations.
Then, the numerical simulations helped to select the best magnet configurations to create
linear patterns. The evaluation of the interactions between individual magnets allowed
the simulation of more complex sensor electrode patterns. Linear and zig-zag patterns
were simulated; however other designs may be simulated according to the application
requirements. Finally, the performance of the fabricated sensors was evaluated both as a
piezoresistive sensor to detect deformation and as a triboelectric sensor to detect contact
and release.
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Figure 1. Overview of the workflow carried out.

2.1. Materials

The MWCNTs were supplied by Nanocyl (NC7000, Sambreville, Belgium). The
nanotubes were analysed by scanning electron microscopy/energy dispersive spectroscopy
(SEM/EDS) (FEI, Quanta 400FEG, Hillsboro, Oregon, USA) to observe the morphology
and obtain the elemental analysis to identify the catalyst attached to the MWCNTs. The
PDMS and the curing agent (SYLGARD™ 184 Silicone Elastomer Kit) were supplied by
Dow Corning Co. Ltd Midland, Michigan, USA. The neodymium magnets were bought
at K&J Magnetics, Pipersville, USA. The magnets used for the rectangular pattern were
N42SH magnets with dimensions of 25.2 × 19.1 × 19.1 cm3, and for the other patterns, N42
magnets were used with dimensions of 0.5 × 0.5 × 0.5 cm3.

2.2. Numerical Simulation and Fabrication Processes

The fabricated patterns were simulated using Ansys Maxwell software to study the
magnetic interactions between permanent magnets. In the first stage, three different
patterns were studied. The first pattern consisted of the use of permanent magnets in
an alternating configuration; the second pattern consisted of the utilisation of permanent
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magnets in a design where the surface of the magnets had the same polarity; and finally,
the third pattern consisted of a Halbach array.

After observing that the MWCNT response under a static magnetic field compares
to the ANSYS simulation, the three different electrode patterns were simulated (rectan-
gle, zig-zag shape, and parallel lines). These three patterns were implemented using
permanent magnets in a configuration of alternating polarity to allow the formation of
continuous patterns.

The magnetic patterns were fabricated in the laboratory to confirm the simulation
results. Tests were carried out to characterise: (1) the electrical percolation threshold
of the nanocomposites, (2) the magnetic patterns produced, and (3) the fabrication of
the sensor’s electrodes. The samples prepared for each study were rectangular with the
following dimensions and MWCNT concentrations: for test (1) 2 × 1 × 0.5 cm3, with
MWCNT concentration in the range 0.01–5 wt.%; for test (2) 2 × 1 × 0.5 cm3 and MWCNT
concentration of 0.1 wt.%; for test (3) 4 × 2 × 0.2 cm3 with MWCNT concentration of 0.5
and 1 wt.%.

The fabrication process of all the MWCNT/PDMS nanocomposites is schematically
illustrated in Figure 2. First, the MWCNTs were dispersed into the PDMS under constant
manual stirring for 2 min. Then, the curing agent, in a 1:10 ratio, was added to the
MWCNT/PDMS mixture and manually stirred for another 2 min. Then, the mixtures
obtained were placed in rectangular laser-cut acrylic moulds, on top of the magnetic
patterns, for 15 h. The samples were cured during the 15 h to make sure that the PDMS
was solid enough to prevent the movement of the MWCNTs before the final curing process.
The final curing process was done in an oven at 110 ◦C for 30 min without magnetic fields.
If the curing process is too fast, there is not enough time for the particles to settle in the
right position, affecting the patterning quality.
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Figure 2. Fabrication process of the composite sensors under magnetic field.

The electrical contacts were fabricated by cutting a thin layer of MWCNT/PDMS on
opposite sides of the sample and by placing silver conductive epoxy (MG Chemicals 8331S
Silver Conductive Epoxy) on the MWCNTs’ surface. After curing the conductive epoxy,
the electrical contacts were covered with copper tape to facilitate the connection to the
measurement equipment.

2.3. Experimental Tests

The magnetic properties of the MWCNTs were analysed using a SQUID magnetometer
(Quantum Design at IFIMUP-IN). The magnetisation as a function of the applied magnetic
field (M(H)) was performed at temperatures 300, 320, 340, 360, and 380 K for a maximum
applied magnetic field of 50 kOe.

The electrical resistivity of the fabricated nanocomposite samples was measured by the
two-point electrical resistance measurement technique (Keithley Instruments 6487, Solon,
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Ohio). Seven samples were analysed for each nanocomposite prepared. The morphological
characterisation of the samples was performed using a Digital Microscope (Leica DVM6).
The three-point bending tests were carried out on a Shimadzu AGX-V at 150 mm/min
speed and with applied forces between 6 and 9 N.

The nanocomposite samples prepared with different magnetic patterning were charac-
terised as piezoresistive and triboelectric sensors using a setup similar to the three-point
bending test, as shown in Figure 3.
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The piezoresistive sensors were characterised using a Keithley DMM7510 7 1
2 Digital

Multimeter, where both sample electrodes were connected to the multimeter terminals.
For the triboelectric characterisation, an exact high-speed digital multimeter was used;
however, the open circuit output voltage was measured instead of electrical resistance. The
triboelectric effect was measured in single electrode configuration mode. One probe was
connected to the sample, and the other was connected to the electrical ground, measuring
the flow of the accumulated charge between the sample and the electrical ground.

3. Results
3.1. Characterization of the Magnetic Properties of MWCNTs and MWCNT/
PDMS Nanocomposite

To better understand the magnetic properties of the MWCNT particles, SEM/EDS was
performed on the MWCNTs. This test was useful to analyse the elemental composition
and search for contaminants remaining from the fabrication process. Figure 4 presents
an SEM-backscattered electron image of the MWCNT, showing contrasting particles iden-
tified by EDS as based on aluminium. The fabrication of the NC7000 MWCNT uses
alumina substrate for the iron catalyst, which under the MWCNT synthesis conditions
(high-temperature environment with carbon-rich gas) may reduce to aluminium carbide,
Al4C3 [20].

The SQUID analysis presented in Figure 5 showed that the MWCNTs and the MWCNT/
PDMS present both ferromagnetism and diamagnetism. By analysing the magnetisation
curve for the MWCNTs, it is noticeable that the ferromagnetic properties dominate at lower
fields (between −6000 and 6000 Oe), and the diamagnetism dominates at higher fields.
This behaviour could be associated with the ferromagnetic saturation since the diamag-
netism keeps changing linearly with the magnetic field. The diamagnetic property could
be associated with the different materials; it could be due to the magnetic properties of
MWCNTs or the catalysts (alumina or Al4C3). The ferromagnetic response could be related
to the presence of iron, a ferromagnetic material that was also identified by SEM/EDS.
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Similar behaviour was also reported by Ellis et al. [21], where the authors measured
the magnetic properties of MWCNTs and concluded that in their specific case, the particles
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showed a combination of diamagnetism and ferromagnetism. They concluded that the
diamagnetism arose from the multi-walled nanotubes, and the ferromagnetism was due to
the presence of iron nanoparticles derived from the fabrication process.

Another example is the work of Zoladz et al., 2020 [22], which reported that CNTs
grown from alumina by CVD show significant ferromagnetic properties, even though the
catalyst materials showed diamagnetic properties.

By analysing Figure 5b in detail, it is possible to notice a dominant ferromagnetic
effect [23]. The measured coercivity (Hc), retentivity (Mr), and saturation magnetisation
(Ms) of the MWCNT particles at 300 K were 84.81 Oe, 0.13 emu/g, and 1.07 emu/g,
respectively. The results demonstrate that the magnetic properties of the MWCNTs are
invariant in the temperature range studied, from 300 to 380 K.

As expected, when compared with the particles, the lower concentration of the MWC-
NTs (5 wt.%) and the polymeric nature of PDMS decrease the overall ferromagnetic prop-
erties in the nanocomposite. Analysing Figure 5d, it is presented a ferromagnetic curve.
The measured coercivity (Hc), retentivity (Mr), and saturation magnetisation (Ms) of the
nanocomposite at 300 K were 93.02 Oe, 0.004 emu/g, and 0.03 emu/g, respectively. Similar
to the MWCNT particles, the 5 wt.% MWCNT/PDMS also shows a dominant ferromagnetic
effect at lower fields (between −6000 and 6000 Oe) and a dominant diamagnetic behaviour
at fields between 6000 and 50,000 Oe.

It is also noticeable that the nanocomposite has a stronger diamagnetic behaviour than
the MWCNT particles. This increase in the diamagnetic behaviour could be associated
with the PDMS matrix. In the work of Hamidi et al. [24], it was possible to observe a
similar behaviour. When the authors tested samples with and without the PDMS matrix, a
dominant diamagnetism was also present for higher fields.

3.2. Electrical Percolation Threshold of MWCNT/PDMS under Magnetic Forces

MWCNT/PDMS nanocomposites were prepared with MWCNT concentrations rang-
ing from 0.01 to 5 wt%. The impact of applying a magnetic field upon the MWCNT
distribution in the nanocomposite, and thus on the nanocomposite’s electrical conductivity,
was evaluated. The electrical resistivity of the samples was determined using Equation (1):

ρ = R × A/l (1)

where ρ is the electrical resistivity of the nanocomposite sample, R is the electrical resistance
between electrodes, A is the cross-sectional area of the sample, and l is the distance between
the electrodes.

The nanocomposites’ electrical resistivity, prepared with the magnetic field (magnetic
orientation) and without magnetic field (random distribution), is presented in Figure 6,
defining the electrical percolation threshold obtained in each case.

Figure 6 depicts the impact of the magnetic field’s application on the nanocomposites’
electrical resistance. The magnetic field application reduces the MWCNT concentration
at the electrical percolation threshold from 0.85–1 wt.% to 0.01–0.1 wt.% MWCNT. The
longitudinal images of the nanocomposites obtained by digital microscopy show the effect
of the magnetic field on the nanocomposite morphology, as illustrated in Figure 7a,b. The
magnetic field forces the localisation of the nanoparticles near the magnet, increasing the
contact between conductive particles. A numerical simulation was performed to predict
the localisation of the MWCNTs relative to the magnet. The simulation was performed
using ANSYS Maxwell software to illustrate the effect of the magnetic field on two stacked
permanent magnets. Figure 7c,d show that magnetic flux density is predicted to be greater
at the magnet’s edges.
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To confirm the magnetic flux variation between the edges and centre of the magnet,
the magnetic flux density along the black line drawn in Figure 7c was calculated and
represented in Figure 7d. The magnetic flux density is observed to decrease from the edges
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to the centre of the magnet, which coincides with the MWCNT localisation on the PDMS
matrix, showing that the MWCNT are attracted to the locations with higher magnetic flux.

The curves depicting the electrical percolation threshold for the nanocomposites
in Figure 6 show that at 5 wt.% MWCNTs, the nanocomposite’s electrical resistivity is
similar with and without applying a magnetic field. At this concentration and above, the
conductivity of the nanomaterial is so high that its distribution in the nanocomposite does
not affect the overall electrical resistivity.

3.3. Numerical Simulations and MWCNT/PDMS Magnetic Patterning

To propose low electrical percolation threshold designs for the fabrication of sensors,
MWCNT interaction with more than one magnet was simulated. Three different config-
urations of permanent magnets were studied. The first pattern consisted of the use of
permanent magnets in an alternating configuration; the second pattern consisted of a Hal-
bach array; and finally, the third pattern consisted of the utilisation of permanent magnets
in a design where the surface of the magnets had the same polarity. The configurations
were first simulated using ANSYS software and then replicated in the laboratory. The
magnets were placed under MWCNT/PDMS nanocomposites with a concentration of
0.1 wt.% before the cure of the polymer. Figure 8 represents the simulation results for the
magnetic field distribution and the magnetic flux lines for the three different configurations.
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Figure 9 shows the magnetic patterns achieved using the three magnetic configurations
(Figure 8a–c), compared with a randomly distributed nanocomposite (Figure 9a). The top
line of Figure 9 represents the 3D image obtained in the micrographs, while the bottom
line shows optical micrographs of the nanocomposites prepared. The 3D images reinforce
the location of the MWCNT agglomerates on the polymeric matrix. A comparison of the
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simulation and experimental results shows the similarity between the MWCNT location
and the simulation predictions, the latter showing the density of the magnetic field of
permanent neodymium magnets in the air.
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pattern with the same polarity.

As demonstrated in Figures 8 and 9, the MWCNT localisation replicates the magnetic
pattern of the permanent magnets, accumulating in the regions of higher magnetic flux
and following the magnetic field patterns of the interaction between multiple permanent
magnets. Figure 9b illustrates the effect of using alternate polarity magnets, showing that it
generates a continuous pattern, such as continuous lines. Using magnets aligned with the
same polarity (Figure 9d) creates discontinuities due to the low magnetic field in the region
between the magnets. Finally, the utilisation of Halbach arrays (Figure 9c) also creates
discontinuities due to the non-uniform field at the surface of the magnets.

Lastly, sensor electrodes were developed using MWCNT patterns in PDMS generated
with permanent magnets. The first step consisted in simulating the patterns using ANSYS
software and then replicating the patterns in the laboratory, as shown in Figure 10.

Figure 10 illustrates that, as demonstrated before, the pattern generated by the simu-
lation for the magnetic field intensity is replicated by the MWCNT localisation inside the
PDMS matrix. While analysing the electrical resistivity of the nanocomposites prepared
with different magnetic patterning, shown in Figure 11, it is observed that the random
distribution nanocomposite with 0.5 wt.% MWCNTs has a high electrical resistivity due to
a lack of contact between conductive particles. The nanocomposites prepared with mag-
netic patterning presented lower electrical resistivity compared with randomly distributed
nanocomposites, either for 0.5 or 1 wt.% MWCNT concentration. The zig-zag pattern
produced higher electrical resistivity nanocomposites than the other patterns, probably
due to the increase in length of the electrically conductive path. This increase in resistivity
may help to adjust the electrical resistance of a sensor if needed.
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3.4. Low Electrical Percolation Threshold Piezoresistive Sensors

The piezoresistive effect can be used to detect different stimuli. When compression,
tension, or bending is applied to these flexible sensors, the location and morphology of the
fillers in the sensors change, causing a change in electrical resistance. The magnitude of the
piezoresistive effect and the electrical properties vary depending on the filler’s dimensions,
content, and morphology [18]. The resistance change rate for the piezoresistive sensors is
defined in Equation (2):

∆R/R0 = (R − R0)/R0 (2)

where R is the measured electrical resistance and R0 is its initial resistance before the
application of force [25].

All the samples were tested during 30 cycles of 3-point bending to evaluate the piezore-
sistive effect,. The piezoresistive effect was measured for 0.5 and 1 wt.% concentrations of
MWCNTs, all the magnetic patterns, and random distribution nanocomposites. Figure 12
shows that the nanocomposites with a random distribution for 0.5 wt.% of MWCNTs did
not present a piezoresistive response due to their high electrical resistance. Conversely, all
the nanocomposites prepared with magnetic patterning presented a piezoresistive response.
It was observed that, for an MWCNT concentration of 1 wt.%, the random distribution
provides a more unstable response than the magnetically patterned nanocomposites. After
analysis of the piezoelectric response obtained for all the magnetically-induced patterns,
the parallel line pattern was selected for dynamic tests.
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Figure 12. Piezoresistive effect for samples with (a) 0.5 and (b) 1 wt.% of MWCNTs with different
magnetic patterns, from top to bottom: random, zig-zag, rectangular and parallel lines.

As shown in Figure 13, both concentrations are adequate to develop piezoresistive
sensors and offer good stability under the application of decreasing and increasing forces.
The nanocomposites respond when the force is applied instantaneously, as well as when it
is maintained for 10 s before release. The samples show good stability since the electrical
resistance is similar during the application of decreasing and increasing force. In the future,
a deeper analysis of the sensor performance can be carried out, including the evaluation
of the use of pre-strain since the first deformation appears to have a different response
compared to the deformations that follow.
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3.5. Low Electrical Percolation Threshold Triboelectric Sensors

The triboelectric effect is a combination of contact electrification and electrostatic
induction; the static polarised charges, resulting from the contact between the two friction
surfaces with different charge affinities, are generated on the friction surfaces, causing
different surface potentials, inducing charges among the two attached electrodes [26–28].
In this specific case, the PDMS nanocomposites present a high triboelectric charge density.
When the mechanical testing equipment touches the surface of the PDMS, the flow of
electrons generates a measurable electrical voltage. The same happens at release, but the
output voltage measured has an opposite sign since the electrons are leaving the surface
of the PDMS [29]. When the materials are in contact, the output voltage is zero since
there is no significant exchange of electrons between the materials. Therefore, triboelectric
sensors help detect instantaneous contact and release. Even for applied forces lower than
6 N, a generated output voltage may be detected, indicating that these sensors have a fast
response and are relatively sensitive. Figure 14 shows that all the nanocomposites generate
output voltage under contact and release. The signal is low for the random distribution
nanocomposite with 0.5 wt.% due to the low electrical conductivity across the sample. The
magnetic-patterned nanocomposites and the randomly-distributed nanocomposite with
1 wt.% MWCNT, which have lower electrical resistance, generate a considerable output
voltage that may be used to detect instantaneous impact and release.

When analysing the triboelectric response of the nanocomposite produced with a
magnetic pattern of parallel lines, represented in Figure 15, it is observed that the contact
and release are detected within different applied force ranges. When the applied force is
maintained for 10 s, the output voltage is zero due to the lack of interaction between the
two surfaces; however, the output voltage is visible at the moment of release.
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loading delayed peaks. The top images represent the applied force by the testing machine.

The piezoresistive sensors detect the moment the force is applied to the material, as
shown in Figure 16; however, it does not detect the touch if the sensor contacts a surface
without deforming the sensor. The triboelectric effect, however, can detect contact without
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bending the sensor. Therefore, the two sensor types can complement each other by having
a high sensitivity to touch due to the triboelectric properties and stable monitoring of the
applied force or deformation due to the piezoresistive properties.
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prepared with the parallel lines magnetic pattern. (a) 0.5 wt%. of MWCNT/PDMS under a peak force
of 6.6 N (b) 1 wt%. Of MWCNT/PDMS sample under a force of 8.1 N for 10 s.

Figure 16 shows in detail the difference between the response of the sensors for fast
(Figure 16a) and slow movements (Figure 16b). When analysing the presented results, it
is possible to confirm that the triboelectric sensors work well to detect the contact and
release of objects on the sensor’s surface, independently of the time frame and applied
force. The piezoresistive effect works better for monitoring the deformation of the sensor,
being capable of monitoring both fast and slow deformations.

4. Discussion

This work reports a new low-cost fabrication technique for developing low electrical
percolation threshold sensors based on magnetically oriented MWCNT/PDMS nanocom-
posites. Compared with randomly distributed MWCNT composites, these sensors originate
electrodes with low electrical resistance, suitable for developing flexible piezoresistive and
triboelectric sensors.

The MWCNTs were observed to present a magnetic response due to impurities remain-
ing from their fabrication process. SEM/EDS analysis detected the presence of aluminium
and iron. SQUID analysis confirmed the ferroelectric properties of the MWCNT powder.
The magnetic response of the MWCNTs was used to control their localisation inside a
polymer matrix, PDMS, using magnetic fields. The use of magnetic fields to localise the
MWCNTs decreased the electrical percolation threshold compared to the nanocomposites
prepared with a random distribution of the MWCNTs, thus reducing the concentration of
conductive nanomaterial necessary while creating patterned electrodes that can be used for
the fabrication of flexible sensors.

The different interactions between permanent magnets were simulated and tested in
the lab, showing that the use of an alternating polarity configuration allowed the fabrication
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of continuous conductive lines of MWCNTs. Finally, nanocomposites with three different
electrode designs were simulated and fabricated. Although all designs produced electrodes
with an adequate response, the pattern obtained with parallel lines was produced and
tested for piezoelectric and triboelectric properties. The nanocomposites were tested
under bending forces between 6 and 9 N, showing a stable response under fast and
slow deformation. The developed sensors proved to be stable for touch detection and
deformation under the range of forces.

Future work can include the scale-up of this fabrication technique and its extension
using different polymer matrices. A detailed analysis of the stability of the sensors and their
application as multi-sensors will be carried out. The fabrication process presented may be
used in the near future to develop sensors for soft robotics applications. It may be applied
to monitor large and unconventional areas; it can be adapted to different moulds and
polymer matrices since it is an adaptable, low-cost solution that does not require expensive
equipment or materials.
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