
Int. J. Computer Applications in Technology, Vol. 70, Nos. 3/4, 2022 225

Copyright © 2022 Inderscience Enterprises Ltd.

A concrete product derivation in software product
line engineering: a practical approach

Karam Mustafa Ignaim
Software Engineering Department,
Al-Balqa Applied University,
Al Salt, Jordan
Email: karam.ignaim@bau.edu.jo

Khalid Alkharabsheh*
Software Engineering Department,
Al-Balqa Applied University,
Al Salt, Jordan
Email: khalidkh@bau.edu.jo
*Corresponding author

André L. Ferreira
Bosch Car Multimedia Portugal,
Braga, Portugal
Email: Andre.Ferreira2@pt.bosch.com

João M. Fernandes
Universidade do Minho,
Braga, Portugal
Email: jmf@di.uminho.pt

Abstract: Software Product Lines enable the development of a perfect family of products by
reusing shared assets in a systematic manner. Product derivation is a critical activity in software
product line engineering and one of the most pressing issues that a software product line must
address. This work introduces an approach for automating the derivation of a product from a
software product line. The software product line is part of a product family that evolved from a
non-structured approach to managing variability. The automated derivation approach relies on
product configurations and the refactoring of feature models. The approach was deployed and
evaluated in the automotive domain using a real-world software product line. The outcome
demonstrates that the approach generates a product in an automated and successful manner.

Keywords: software product lines; product derivation; feature models; product configuration;
refactoring.

Reference to this paper should be made as follows: Ignaim, K.M., Alkharabsheh, K., Ferreira,
A.L. and Fernandes, J.M. (2022) ‘A concrete product derivation in software product line
engineering: a practical approach’, Int. J. Computer Applications in Technology, Vol. 70,
Nos. 3/4, pp.225–232.

Biographical notes: Karam Mustafa Ignaim received her BSc degree in Information Technology
from Al Balqa Applied University, Jordan, the MSc degree in Computer Science from Al Balqa
Applied University, Jordan and the PhD degree in Software Engineering from the University of
Minho, Portugal. Her research interests include Software Product Lines, Feature Modelling,
Software Reuse and Software Maintenance and Evolution.

Khalid Alkharabsheh is an Assistant Professor at Al-Balqa Applied University, Jordan. He
received his PhD degree in Software Engineering from the University of Santiago de Compostela
in Galicia, Spain. His research interests include machine learning, big data, software quality,
empirical software engineering, software validation and verification, design smell detection and
object-oriented language.

André L. Ferreira is a Senior Engineering Manager for Product Development at Cross-Domain
Computing Solutions. He received the PhD degree in Software Engineering. Also, he is an R&D
Engineer at Bosch Car Multimedia Portugal S.A. for the Automotive Segment. He is invited as an
Assistant Professor in the Department of Informatics at the University of Minho.

226 K.M. Ignaim et al.

João M. Fernandes is Full Professor at Universidade do Minho, Portugal. He conducts his
research activities in software engineering, with a special interest in software modelling,
requirements engineering and software business. He is the main author of the book
‘Requirements in Engineering Projects’, Springer in 2016. He has been involved in the
organisation of various international events, including ACSD 2003, DIPES 2006, GTTSE 2009,
PETRI NETS 2010, ACSD 2010, the MOMPES Workshops Series (2003–2012) and ICSOB 2015.

1 Introduction

Software Product Lines focus on supporting the processes
related to developing a full family of products (Clements and
Northrop, 2001; Deelstra et al., 2005). Corporations
consistently report a considerable refinement in terms of
amount of productivity, product quality, time required for
marketing and the client satisfaction due to using software
product lines (Ghanam and Maurer, 2009; Alkharabsheh et al.,
2018). A product is a single member of a product family with a
collection of artifacts that implement its features (Van der
Linden et al., 2007). During application engineering, an
individual product of a family is created based on software
product line assets to address a specific customer need within a
market segment (Ghanam and Maurer, 2009, AL-Msiédeen
et al., 2013; Alves et al., 2010).

However, it is popular industrial practice to extract the
initial product from a software product line, then add and adapt
features to meet the needs of individual customers (Gao and
Gu, 2021; Azar et al., 2020). These modifications are then
incorporated back into the original software product line (Van
der Linden et al., 2007; Hinterreiter et al., 2018). Companies
like Philips, Bosch and Nokia can now build customer-specific
functionality with minimal effort, resulting in important
enhancements in marketing time, cost, productivity and quality
(Clements and Northrop, 2001; Abbasi et al., 2022). The
variability feature, which is explicitly addressed during the
development process, distinguishes software product line
engineering from single product development. Products are
created by resolving variability to implement the functionality
of customer-specific, which is typically accomplished through
the use of a product derivation process.

Many businesses attempt to leverage software product line
engineering while maintaining a large number of product
variants in their product lines. These huge product lines include
a lot of products (hundreds) with a high degree of variation and
numerous configurations, particularly in the automotive
domain (Steger et al., 2004; Maccari and Heie, 2005). Because
the majority of product development work is done by hand, the
systematic derivation of products is considerably difficult,
time-consuming and error-prone (Deelstra et al., 2005). Several
studies (Alkharabsheh et al., 2018; Botterweck et al., 2009;
Monestel et al., 2002; Thao et al., 2008; Rabiser et al., 2011;
Camacho et al., 2021) and tools (Van Ommering et al., 2000;
Tryggeseth et al., 1995; Pohl et al., 2005; Sinnema et al., 2006)
for software product line product derivation are focused on
variability management, offering assistance to describe and
represent variability between software products. Almost none
of them provide a real-world solution, and they do not consider
industrial case studies when developing and evaluating product

derivation approaches. Although there have been studies in the
literature that address automatic product derivation in software
product line, there is a dearth of studies that address industrial
case studies in the automotive domain. The significance of this
work is summed up by applying the automatic product
derivation technique to a real-world case study in the
automotive domain.

We present in this paper a practical approach and research
tool for assisting automated product derivation in software
product lines. The specific technique is a subset of a larger
one described in our previous work, which supports feature
modelling and traceability of software product lines (Ignaim,
2021). Our approach is based on the feature model refactoring
notations presented in Alves et al. (2006), which allow us to
automatically derive a given product from a set of all possible
products and then specify its code. Product configurations are
used in the derivation (i.e., combinations of features).

The following are the main contributions of this work:

 Based on the feature model, we propose a novel practical
approach for automated product derivation in software
product line.

 We develop a research tool called ‘FriendlyMapper’,
which allow software engineers to choose product
feature combinations.

 In a real-world case study in the automotive domain, we
evaluate the proposed approach.

The remainder of the paper is organised as: Section 2
describes related studies. Section 3 presents the proposed
approach that was followed to achieve the main objective of
the paper. Section 4 explains the evaluation process of the
practical approach while the conclusions and future works are
discussed in Section 5.

2 Related work

This section discusses software product line studies related
to concrete product derivation. Monestel et al. (2002)
proposed architectural constraints for the software product
line to determine the association among various software
architecture factors. They used OCL constraints in the context
of UML to create design patterns. These constraints are
employed in the software product line to represent
architectural variability. A case study from the Mercure
project was used to evaluate the approach. In O’Leary et al.
(2002), a novel framework for the process was developed,
which includes significant tasks that stakeholders of software
product lines should perform during product development.

 A concrete product derivation in software product line engineering 227

The framework’s foundation is built on academia and
industry. In academic circles, the framework identifies areas
of uncertainty and assists in determining the remaining
challenges. As a result, we prioritise the addition of missing
parts or additional detail that may be required for a specific
purpose. In industry, on the other hand, the proposed
framework will provide corporations and organisations with a
structured approach to product derivation, making the process
more manageable and controlled. In Botterweck et al. (2009),
a novel approach to architecture product derivation based on
selectively copying elements from software product lines
using a specific product feature structure was also introduced.
The approach focuses on determining a product’s high-level
architecture. Following that, O’Leary et al. (2010) and
O’Leary et al. (2012) presented a blueprint for software
product line derivation based on the agile process model. The
proposed approach is known as ‘Pro-PD’, and it is
appropriate for both small and large organisations in terms of
upfront investment and balancing formality and agility. The
approach’s focal point is the fundamental tasks and roles
required to derive the product from software product line. An
industry case study was used to evaluate the model. Another
piece of work done by Lee and Kang (2010) was to extract
important information from the product context in order to
assist software engineers in the process of feature selection
during the software development process. As a result, this
data will be used to determine the best product configuration.
The useful data will be formulated as constraints or criteria
imposed on the selected features.

The OntoAD framework, which is an automatic ontology-
based approach for product architecture derivation from
software product line architecture, has been introduced in
Duran-Limon et al. (2015). For specifying the product
architecture and derivation activities, respectively, a
language-independent model and model-driven engineering
are used to generate the product architecture and derivation
activities. Another study conducted by Lahiani and Bennouar
(2017) presented a method based on feature-architecture
mapping to automate feature derivation based on the source
code of a specific transformation language implemented in
Java. The proposed framework represents the software
product line with a collection of joint models and
automatically derives the applicable products from the model.
Particle Swarm Optimisation was recently used by Afzal et al.
(2020) to minimise disagreements in the designed software
product line. The work being done is aimed at generating a
consistent configuration from the available feature model.
The proposed approach, called o-SPLIT, was evaluated using
three cases that involved software product lines, an online
tool for Benchmarking and Testing the analysis (BeTTy) and
standard ERP. The results show that the technique optimises
the software product line’s configuration. Furthermore,
particle swarm optimisation has been turned into a tool.

3 Proposed approach

The practical approach is based on real-world limitations that
were determined in the automotive product family that the

authors investigated at Bosch Car Multimedia S.A. The issue
is related to a lengthy, repetitive, unstructured process for
managing variability. Furthermore, it is based on the ideas,
conclusions and results of the previously published review
study in Rabiser et al. (2011). The process of creating a
software product from the efficient fundamental set of core
properties that comprise the architecture is known as product
derivation (i.e., sub-systems and components in our case),
design (i.e., features in our case), and reusable code (i.e.,
feature-related code fragments in our case), is a central
practice in software product line engineering (Van Gurp and
Prehofer, 2006; Bolander and Clements, 2021). The product
derivation process proposed by our approach entails selecting,
eliminating, extending, and, in some cases, even modifying
the current feature model and traceability links (from the
features to the code). Both have been described previously
(Ignaim and Fernandes, 2019; Ignaim, 2021) and are used in
the derived products.

The steps followed for deriving a product from the
software product line based on its configurations are
described in the next few paragraphs (i.e., features that are a
combination of the product or a set of features of the
product). A set of features defines a concrete product of the
‘Classical Sensor Variants Family’ (CSVF) software product
line. These features are chosen and removed from the current
feature model based on the product’s feature combinations
and a feature mapping of each feature to the feature-related
code fragments [16].

Table 1 displays the feature sets (the optional features) of
each CSVF resulting software product line product. We
propose that common features such as {‘diagnosis’,
‘monitoring’, ‘message’, ‘transmit’, ‘receive’, ‘value_1’,
‘value_2’ and signals (_1,_2,_3,_5,_6,_7,_8,_11,_12)} be
included in the feature set of each product for reasons. It is
assumed that a new customer requests a product called
ProductDerived, and the Classical Sensor Development Team
(CSDT) writes the requirement document for this product
according to the sensor requirements and the client’s needs.
Using our approach, we perform a product derivation from
the CSVF resulting software product line (see Table 1) by
going through the following three steps:

Table 1 Products of the CSVF

product no. product configurations

Product 1 layoutR_1, layoutT_1, flag_1, algorithm_1

Product 2
layoutR_2, layoutT_2, flag_2, algorithm_2,
signal_4, signal_9

Product 3
calculation, layoutR_2, layoutT_2, flag_2,
algorithm_2, value_3, signal_13, signal_9,
signal_10

Product 4
identification, flag_1, layoutR_1, layoutT_1,
algorithm_1, value_3, signal_10

In step 1, the project technical manager selects the required
ProductDerived features from the current feature model
(derived from our previous work (Ignaim and Fernandes,
2019)). ‘diagnosis’, ‘monitoring’, ‘calculation’, ‘message’,

228 K.M. Ignaim et al.

‘transmit’ with the layoutT_1 feature, and ‘receive’ with the
layoutR_1 feature are all supported by the ProductDerived. It
also supports signals (_1, _2, _3, _5, _6, _7, _8, _11, _12) as
well as the optional signals (_4,_9,_10,_13) and it supports
‘flag_1’ from the alternative group flags (_1,_2,_3).
Algorithm_1 is used by the ProductDerived. Ultimately,
signal_12 of the product will be a group feature involves the
mutual features value_1 and value_2, as well as value_3
feature which is the optional one. In this section, we always
consider the ‘signal_transmit’ and ‘signal_ receive’ features
to be label features, and they are included by default in
feature sets if their parents are present. Figure 1 depicts the
ongoing feature model as identified by the project director
with the ProductDerived needed features (black filled circles
in the left-upper of the rectangles).

Step 2 focuses on defining the product that will be derived
through choosing and removing features from the current

feature model. Figure 2 depicts the feature combination
of a single product (i.e., ProductDerived). Step 2 uses the
feature model refactoring technique (Ignaim and Fernandes,
2019) to eliminate (remove), add or modify features
of the current feature model, which propagates features
change from the feature modelling level to the software
product line level.

Finally, in step 3, in order to acquire the
(ProductDerived), which is the resulting product
implementation, we have used a tool named friendlyMapper
tool1 (Ignaim, 2021). The derivation process is based on
mapping every feature of the feature combination of the
ProductDerived to feature-related-code routines in the
implementation code. As can be seen in Figure 3, the
selection of variant derivation is made from the menu
mapping context when clicking (right clicking) the ‘CSVF’
second level item of the traceability tree. This selection will
lead to the variant derivation screen as shown in Figure 4.

Figure 1 The required features of the derived product are highlighted in the current feature model

Figure 2 The derived product’s feature combination

 A concrete product derivation in software product line engineering 229

Figure 3 The ‘variant derivation’ selection from the context menu

Figure 4 The FriendlyMapper tool’s ‘variant derivation’ screen

Figure 4 depicts the FriendlyMapper tool’s ‘variant
derivation’ screen, which allows software engineers to select
a product’s feature combinations. Other screens that perform
additional software product line-related functionalities are
presented in the Ignaim (2021). Figure 4 presents the chosen
features (i.e., the ProductDerived features combination) and
eliminated features from the traceability tree’s features list
and the ’Get routine’ button. Once software engineers click

‘this button’, the tool automatically presents the resulting
product implementation. Figure 5 depicts an example for
derivation process of the ProductDerived. It was created by
mapping each feature of the ProductDerived feature
combination to feature-related-code fragments of the code,
which define the ProductDerived implementation as a whole.
For readability reasons, Figure 5 presents a partial view of
each feature and its related routines in the ProductDerived.

230 K.M. Ignaim et al.

Figure 5 A summary of each feature and its associated routines in the ProductDerived

4 Evaluation

To evaluate the proposed approach, we used a product
(Product 4) chosen from the CSVF’s available products,
resulting in the software product line shown in Table 1. The
suggested method is then used to derive the selected product,
which is referred to as ‘ProductDerivedEval’. Following that,
we compared the ProductDerivedEval feature combination to
the feature combination of each product in the CSVF
resulting software product line (see Table 1). Finally, we

examined the derived product’s feature combination
ProductDerivedEval in the following cases:

 Case 1: A match between the ‘ProductDerivedEval’
feature combinations and the feature combinations of one
CSVF product, resulting in the software product line
(Product 4; see Table 1).

 Case 2: The ProductDerivedEval set of features is a
subset of the set of current feature models derived by our
approach.

 A concrete product derivation in software product line engineering 231

Given that the result matches one of the cases (Case 1 and
Case 2) or both, we can add evidence to the correctness of the
product derivation solution presented in this work.

Results: We successfully derived one specific product
(see Figure 4) of the CSVF resulting software product line
that was not previously supported by the family
(ProductDerived) as a result of matching one of the cases or
both, during the steps of the approach presented in the
preceding section, using product configurations and
refactoring of the feature model. Moreover, we have derived
another particular product (productDerivedEval) that is
already a member of the CSVF resulting software product
line (Product 4) as a side effect of evaluating our approach.

Figure 6 presents the result of the survey, which was
performed as a small case study for the software developers
of CSDT at Bosch Car Multimedia S.A. The developers used
our approach to derive a product upon a new customer
request, and then they were asked questions referring to the
CSDT feedback regarding the proposed approach. The chart
shows the average of the positive feedback for the questions
presented for each developer on the target team. The CSDT
was made up of eight software developers. The graph in the
figure shows that seven of them had different levels of
experience. Approximately 0.88% (7 out of 8) of the team,
including the project manager, highly recommended adopting
the proposed approach, which represents 92%. Those
software developers have a ‘medium, significant and
professional level of experience’. Also, all the software
developers with a ‘little level of experience’ prefer to use our
approach. With a low percentage difference between them
and the software developers at other levels, they reach near
86%.

Figure 6 The relationships between each software developer’s
experience and the average of positive feedback

Threats to validity: The issues listed below summarise the
main threats to the validity: The first is a broadening of the
results. Only one product family in the automotive domain
was evaluated using the proposed method. Another risk is the
evaluation process, which uses only one type of product. To
counteract this risk, we intend to replicate the work using
additional automotive-related products.

5 Conclusion

This work introduces an approach for automatically deriving
a product from a software product line. The software product
line evolved from a family of products that began with a non-
structured approach to managing variability. The proposed
derivation technique is founded on the use of product
configurations and feature model refactoring. The method
was implemented and tested on a real-world software product
line in the automotive domain. The outcome demonstrates
that the approach generates a product in an automated and
successful manner. In recent decades, the future has required
the development of more software systems as a software
product line. Thus, the multi-layered architecture will be
more widely used. One of the major challenges in the domain
will be modelling the variability of existing software product
lines and automating configuration. In the future, we plan to
make the proposed method more general so that it can be
improved and used in more places. To do this, we will
include the recent feature models and apply the approach
using large case studies from different industry domains.

Acknowledgement

This work has been supported by FCT – Fundação para a
Ciência e Tecnologia within the R&D Units Project Scope:
UIDB/00319/2020.

References

Abbasi, T., Hafeez, Y., Asghar, S., Hussain, S., Yang, S. and Ali,
S. (2022) ‘Towards a component-based system model to
improve the quality of highly configurable systems’, PeerJ
Computer Science, Vol. 8.

Afzal, U., Mahmood, T., Khan, A.H., Jan, S., Ur Rasool, R.,
Qamar, A.M. and Khan, R.U. (2020) ‘Feature selection
optimization in software product lines’, IEEE Access, Vol. 8,
pp.160231–160250.

Alkharabsheh, K., Crespo, Y., Manso, E. and Taboada, J.A. (2018)
‘Software design smell detection: a systematic mapping
study’, Software Quality Journal. Doi: 10.1007/s11219-018-
9424-8.

AL-Msiédeen, R.F., Seriai, A., Huchard, M., Urtado, C., Vauttier,
S. and Salman, H.E. (2013) ‘Feature location in a collection
of software product variants using formal concept analysis’,
Proceedings of the 13th International Conference on Software
Reuse (ICSR’13), Springer, pp.302–307. Doi: 10.1007/978-3-
642-38977-1.

Alves, V., Gheyi, R., Massoni, T., Kulesza, U., Borba, P. and
Lucena, C. (2006) ‘Refactoring product lines. (2006)
‘Proceedings of the 5th International Conference on
Generative Programming and Component Engineering
(GPCE’06), pp.201–210. Doi: 10.1145/1173706.1173737.

Alves, V., Niu, N., Alves, C. and Valença, G. (2010)
‘Requirements engineering for software product lines: a
systematic literature review’, Information and Software
Technology, Vol. 52, No. 8, pp.806–820. Doi:
10.1016/j.infsof.2010.03.014.

232 K.M. Ignaim et al.

Azar, A.T., Anter, A.M. and Fouad, K.M. (2020) ‘Intelligent system
for feature selection based on rough set and chaotic binary grey
wolf optimisation’, International Journal of Computer
Applications in Technology, Vol. 63, Nos. 1/2, pp.4–24.

Bolander, W.J. and Clements, P.C. (2021) ‘Key issues of
organizational structure and processes with feature-based
product line engineering’, INSIGHT, Vol. 24, No. 1,
pp.42–46.

Botterweck, G., Lee, K. and Thiel, S. (2009) ‘Automating product
derivation in software product line engineering’, Software
Engineering, pp.177–182.

Camacho, M.C., Álvarez, F., Collazos, C., Leger, P., Bermúdez,
J.D. and Hurtado, J.A. (2021) ‘A collaborative method for
scoping software product lines: a case study in a small
software company’, Applied Sciences, Vol. 11, No. 15.
Doi: 10.3390/app11156820.

Clements, P.C. and Northrop, L. (2001) Software Product Lines:
Practices and Patterns, Addison-Wesley.

Deelstra, S., Sinnema, M. and Bosch, J. (2005) ‘Product derivation
in software product families: a case study’, Journal of
Systems and Software, Vol. 74, No. 2, pp.173–194. Doi:
10.1016/j.jss.2003.11.012.

Duran-Limon, H.A., Garcia-Rios, C.A., Castillo-Barrera, F.E. and
Capilla, R. (2015) ‘An ontology-based product architecture
derivation approach’, IEEE Transactions on Software
Engineering, Vol. 41, No. 12, pp.1153–1168.

Gao, J. and Gu, Y. (2021) ‘Feature matching for multi-beam sonar
image sequence using KD-tree and knn search’, International
Journal of Computer Applications in Technology, Vol. 67,
Nos. 2/3, pp.168–175.

Ghanam, Y. and Maurer, F. (2009) ‘Extreme product line
engineering: managing variability and traceability via
executable specifications’, Agile Conference, IEEE,
pp.41–48. Doi: 10.1109/AGILE.2009.12.

Hinterreiter, D., Prähofer, H., Linsbauer, L., Grünbacher, P., Reisinger,
F. and Egyed, A. (2018) ‘Feature-oriented evolution of
automation software systems in industrial software ecosystems’,
Proceedings of the 23rd IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA’18),
IEEE, Vol. 1, pp.107–114. Doi: 10.1109/ETFA.2018.8502557.

Ignaim, K. (2021) ‘EvoSPL: An Evolutionary Approach for
Adopting Software Product Lines in the Automotive Industry,
PhD Thesis, Escola de Engenharia, Universidade do Minho,
Braga, Portugal.

Ignaim, K. and Fernandes, J.M. (2019) ‘An industrial case study
for adopting software product lines in automotive industry: an
evolution-based approach for software product lines (EVOA-
SPL)’, Proceedings of the 23rd International Systems and
Software Product Line Conference, Vol. B, pp.183–190. Doi:
10.1145/3307630.3342409.

Lahiani, N. and Bennouar, D. et al. (2017) ‘A DSL-based approach
to product derivation for software product line’, Acta
Informatica Pragensia, Vol. 5, No. 2, pp.138–143.

Lee, K. and Kang, K.C. (2010) ‘Usage context as key driver for
feature selection’, International Conference on Software
Product Lines, Springer, pp.32–46.

Maccari, A. and Heie, A. (2005) ‘Managing infinite variability in
mobile terminal software’, Software: Practice and Experience,
Vol. 35, No. 6, pp.513–537 Lindohf. Doi: 10.1002/spe.645.

Monestel, L., Ziadi, T. and Jézéquel, J-M. (2002) ‘Product line
engineering: product derivation’, Workshop on Model Driven
Architecture and Product Line Engineering, pp.1–5.

O’Leary, P., McCaffery, F., Thiel, S. and Richardson, I. (2012)
‘An agile process model for product derivation in software
product line engineering’, Journal of Software: Evolution and
Process, Vol. 24, No. 5, pp.561–571.

O’Leary, P., Richardson, I. and Thiel, S. (2008) ‘Developing a
product derivation process framework for software product
line organisataions’, Conference Proceedings, Ireland.

O’Leary, P., Richardson, I. and Thiel, S. (2010) ‘Improving
product derivation in software product line engineering’,
Informatik Journal, pp.65–69.

Pohl, K., Böckle, G. and Van Der Linden, F.J. (2005) ‘Software
product line engineering: foundations, principles and
techniques’, Management for Professionals, Springer. Doi:
10.1007/3-540-28901-1.

Rabiser, R., Oâ’Leary, P. and Richardson, I. (2011) ‘Key activities
for product derivation in software product lines’, Journal of
Systems and Software, Vol. 84, No. 2, pp.285–300. Doi:
10.1016/j.jss.2010.09.042.

Sinnema, M., Deelstra, S., Nijhuis, J. and Bosch, J. (2006)
‘Modeling dependencies in product families with COVAMOF’,
Proceedings of the 13th Annual IEEE International Symposium
and Workshop on Engineering of Computer-Based Systems
(ECBS’06). Doi: 10.1109/ECBS.2006.49.

Steger, M., Tischer, C., Boss, B., Müller, A., Pertler, O., Stolz, W.
and Ferber, S. (2004) ‘Introducing PLA at Bosch gasoline
systems: experiences and practices’, Proceedings of the 3rd
International Conference on Software Product Lines
(SPLC’04), Springer, pp.34–50. Doi: 10.1007/978-3-540-
28630-1_3.

Thao, C., Munson, E.V. and Nguyen, T.N. (2008) ‘Software
configuration management for product derivation in software
product families’, Proceedings of the 15th Annual IEEE
International Conference and Workshop on the Engineering
of Computer Based Systems (ECBS’08), IEEE, pp.265–274.
Doi: 10.1109/ECBS.2008.53.

Tryggeseth, E., Gulla, B. and Conradi, R. (1995) ‘Modelling
systems with variability using the PROTEUS configuration
language’, Selected papers from the ICSE SCM-4 and SCM-5
Workshops on Software Configuration Management,
pp.216–240.

Van der Linden, F., Schmid, K. and Rommes, E. (2007) ‘The
product line engineering approach’, Software Product Lines
in Action, Springer, pp.3–20.

Van Gurp, J. and Prehofer, C. (2006) ‘Version management tools
as a basis for integrating product derivation and software
product families’, Proceedings of VaMoS, Vol. 6, pp.48–58.

Van Ommering, R., Van Der Linden, F., Kramer, J. and Magee, J.
(2000) ‘The Koala component model for consumer
electronics software’, Computer, Vol. 33, No. 3, pp.78–85.
Doi: 10.1109/2.825699.

Note

1 The tool and its documentation are available online at:
https://github.com/it-karam/friendlyMapper

