
Universidade do Minho
Escola de Engenharia

Jorge Fernando Alves Cruz

Vulnerabilities Preservation Using
Code Mutation

November, 2022

Universidade do Minho
Escola de Engenharia

Jorge Fernando Alves Cruz

Vulnerabilities Preservation Using
Code Mutation

Master’s Dissertation

Integrated Master’s in Informatics Engineering

Work supervised by

Jorge Sousa Pinto

Daniela da Cruz

November, 2022

i

COPYRIGHT AND TERMS OF USE OF THIS WORK BY A THIRD PARTY

This is academic work that can be used by third parties as long as internationally accepted rules and

good practices regarding copyright and related rights are respected.

Accordingly, this work may be used under the license provided below.

If the user needs permission to make use of the work under conditions not provided for in the indicated

licensing, they should contact the author through the RepositóriUM of Universidade do Minho.

License granted to the users of this work

Creative Commons Atribuição-NãoComercial-CompartilhaIgual 4.0 Internacional

CC BY-NC-SA 4.0

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.pt

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.pt
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.pt

ii

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have not used

plagiarism or any form of undue use of information or falsification of results along the process leading to

its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the Universidade do Minho.

,

(Location) (Date)

(Jorge Fernando Alves Cruz)

Acknowledgements

I would like to express my deepest gratitude to my supervisor Jorge Sousa Pinto and co-supervisor Daniela

da Cruz for sticking with me during the course of this project. I could not have undertaken this journey

without their invaluable patience and feedback. A big thank you to both.

Likewise, I would also like to thank my family and friends for supporting me and for insisting on asking

me when this dissertation would be finished. Special thanks to my brother João for all his help and review

of the document.

iii

Abstract

The main goal of software security testing is to assess the security risks of an application so that

programmers can eliminate all vulnerabilities, as early as possible, before they are exploited by attackers.

There are several tools on the market that allow to perform these tests during the software development

life cycle to ensure that there are no security flaws in the final product. However, like all tools, these can

also have imperfections, one of them being unable to detect weaknesses in vulnerable software.

The project of this dissertation aims to tackle this problem, so that it is possible to find and correct

flaws in security tests in order to, consequently, increase the effectiveness of the tools that intend to

certify the security of applications. For this, the solution studied in this document is to apply syntactic

transformations in vulnerable code samples without interfering in the presence of the vulnerabilities that

should later be detected. This process is based on: 𝑖) code refactoring techniques that allow improving

the internal quality of the software; 𝑖𝑖) the mutation testing system used to evaluate the quality of software

testing.

To implement this idea, a tool called VSG was developed with the functionality of producing new

code samples with security flaws. This document describes the whole development process, from the

architecture to the implementation of the tool. In the end, there is an analysis with the results obtained

when trying to detect the vulnerabilities present in the samples produced through the CxSAST application

of the company Checkmarx, from which this dissertation emerged.

Keywords: application security testing, code mutation, code refactoring

iv

Resumo

O objetivo principal de testes de segurança de software consiste em avaliar os riscos de segurança de

uma aplicação para que os programadores possam eliminar todas as vulnerabilidades o mais cedo pos-

sível, antes que sejam exploradas por atacantes. Existem várias ferramentas no mercado que permitem

realizar estes testes durante o processo de desenvolvimento de software para garantir que não existam

falhas de segurança no produto final. Porém, tal como todas as ferramentas, estas também podem apre-

sentar imperfeições, sendo uma delas não conseguir detetar fraquezas em software vulnerável.

O projeto desta dissertação pretende combater este problema, de modo a que seja possível encontrar

e corrigir falhas nos testes de segurança para, consequentemente, aumentar a eficácia das ferramentas

que pretendem certificar a segurança das aplicações. Para isto, a solução estudada neste documento

passa por aplicar transformações sintáticas em amostras de código vulneráveis sem interferir na presença

das vulnerabilidades que deverão, posteriormente, ser detetadas. Este processo baseia-se: 𝑖) nas técnicas

de refatoração de código que permitem melhorar a qualidade interna do software; 𝑖𝑖) no sistema de testes

de mutação usado para avaliar a qualidade de testes de software.

Para implementar esta ideia, uma ferramenta chamada VSG foi desenvolvida com a funcionalidade

de produzir novas amostras de código com falhas de segurança. Neste documento é descrito todo o

processo de desenvolvimento, desde a arquitetura até à implementação da ferramenta. No final, existe

uma análise com os resultados obtidos ao tentar detetar as vulnerabilidades presentes nas amostras

produzidas através da aplicação CxSAST da empresa Checkmarx, da qual esta dissertação surgiu.

Palavras-chave: teste de segurança de aplicações, mutação de código, refatoração de código

v

Contents

List of Figures viii

List of Tables ix

Listings x

1 Introduction 1

1.1 The Goal . 2

1.2 A Proposed Solution . 2

1.3 Document Structure . 2

2 Background 3

2.1 Checkmarx SAST . 4

3 State of The Art: Refactoring 6

3.1 Definition of Refactoring . 6

3.2 Refactoring Example . 7

3.3 Refactoring Techniques . 8

3.4 Automated Refactoring . 11

4 State of The Art: Mutation Testing 14

4.1 The Process of Mutation Analysis . 15

4.2 Mutation Operators . 17

4.2.1 Operators for Specific Programming Languages 17

4.2.2 Operators for Specific Categories of Programming Languages 18

4.2.3 Operators for Specific Categories of Applications 18

4.2.4 Operators for Specific Categories of Bugs 19

5 VSG - Vulnerable Samples Generator 21

5.1 A Samples Generation Tool . 21

vi

CONTENTS

5.2 VSG Architecture . 23

5.3 Parsing with ANTLR . 24

5.4 Symbol Table . 26

5.4.1 Symbol Table in VSG . 27

5.5 Vulnerability Flow . 30

5.6 Code Transformation . 32

5.6.1 Implementing a Mutation Rule . 33

5.6.2 Applying the Mutations and Rules Composition 37

6 VSG Tests 40

6.1 Original code sample vs Generated samples . 40

6.2 Testing VSG against Checkmarx SAST . 42

7 Conclusion 45

7.1 Future Work . 46

Bibliography 47

vii

List of Figures

2.1 Screenshot of CxSAST scan results, showing an SQL Injection vulnerability detected in a

C# project. The Queries pane (bottom left) shows that 27 instances of the SQL Injection

vulnerability were found. 5

3.1 A Stream class hierarchy in java.io before and after applying Tease Apart Inheritance

refactoring. The gray boxes represent the changes needed in each version to add the same

functionality. 8

4.1 Mutation Testing in Software Development . 14

4.2 Modern process of mutation analysis [39]. Bold boxes represent steps where human inter-

vention is mandatory . 16

5.1 The inputs and the outputs of the VSG Tool . 22

5.2 The internal structure of the VSG Tool . 23

5.3 The process of a language recognizer . 24

5.4 The sequence of visit method calls in a parse tree . 25

5.5 Example of the symbol table constructed from the listing 5.3 28

5.6 Example of how the vulnerability flow will be updated after applying a transformation . . . 32

5.7 Rules Composition Schema. In this example, a list of 3 rules is applied to an original sample

generating 11 different versions at the end . 39

viii

List of Tables

3.1 List of primitive refactorings identified by Bill Opdyke 9

4.1 The Coupling Effect with a weaker test case set [34] 15

4.2 An Example of Mutation Operation . 17

4.3 20 mutation operators proposed by Kim et al. [16] for the Java programming language . . 18

4.4 15 security-aware mutation operators proposed by Loise et al. [21] for Java 20

5.1 Attributes for each entry in the Symbol Table . 27

5.2 Operations provided by the Symbol Table . 29

6.1 Mutation rules used for the test . 43

6.2 Results after using Checkmarx SAST to detect in the generated samples the same vulnera-

bility present in the original . 44

ix

Listings

3.1 Code snippet before the Extract Method transformation 7

3.2 Code snippet after the Extract Method transformation 7

5.1 Grammar for traditional arithmetic expressions written in ANTLRv4 25

5.2 Example of a variable declaration . 27

5.3 Example of a code sample to build the symbol table 28

5.4 Symbol Table construction when visiting a method declaration 29

5.5 Structure of the XML file with the vulnerability flow 31

5.6 Creating the Visitor for the SeparateVariableDeclarationFromAssign rule 34

5.7 The final result of the Visitor for the SeparateVariableDeclarationFromAssign rule . . . 35

5.8 The definition of the FindAllMutations method for the Rule class. The Visitor variable is

the visitor created for the rule. 36

5.9 The definition of the Apply method for the Rule class 37

5.10 Creating the SeparateVariableDeclarationFromAssign rule 37

6.1 Original code sample . 41

6.2 Generated code sample . 42

6.3 Main program of VSG using the list of transformations in table 6.1 43

x

C
h
a
p
te

r

1
Introduction

Most of today’s applications are available across multiple networks and platforms and handle a lot of sen-

sitive information, whether business or consumer. An attack on these applications can be overwhelming

to the privacy of this information. A ’hacker’ who manages to get into the system can not only steal pass-

words, financial details and other personal information, but also block users from accessing an application.

These situations happen when an application has vulnerabilities. A vulnerability is a flaw in application

code that can be exploited by a malicious actor and lead to a security breach.

One of the measures to avoid security flaws in a software system is to find and eliminate the vulnerabil-

ities present in a given application. While the second part can be, in most cases, easily applied, the same

cannot be said of the first part. In this context, application security testing aims to tackle the challenge

of identifying security vulnerabilities. One of the techniques to perform this search is using static code

analysis, which evaluates the source code of a system, without the need to execute it. On the other hand,

there is dynamic analysis that takes place while the application is running and has no knowledge of how

the system works internally.

Using these procedures and other techniques, it becomes possible to collect all the possibilities of

attacks occurring within a project. However, one of the limitations of every searching tool is false negatives

results, which in this case means results in which the vulnerability exists, but it is not detected by the

analysis. This problem concerns, not only this dissertation, but also Checkmarx and other security testing

solutions.

1

CHAPTER 1. INTRODUCTION

1.1 The Goal

Starting from a code sample in which it was previously confirmed to be vulnerable, it should be possible

to apply mutations to the code and preserve a given vulnerability. This way, it will be possible to obtain

several samples with a confirmed vulnerability. These samples will be essential to test the ability of static

code analysis to detect vulnerabilities because, for each sample, a given vulnerability present in the initial

code sample must be recognized. It is important that all samples produced are as diverse as possible in

order to cover all possible cases of vulnerable code. This will help Checkmarx identify problems with their

tool and increase their test coverage for cases where the syntax changes but the semantics remain the

same.

1.2 A Proposed Solution

To achieve this goal, it’s necessary to devise a tool in which the input is composed of a sample of code and

a path of code elements representing the behaviour of the present vulnerability. As a result, it is expected

to produce a set of mutants sharing the same security vulnerabilities from the introduced code. This tool

shares features characteristic of an automated refactoring tool, but does not have rules as strict as to

preserve the program’s external behaviour. In addition, while a refactoring tool aims to improve software,

this tool is only concerned with making transformations in any sense.

1.3 Document Structure

In addition to the introduction, which explains the context of the dissertation, this document has four more

chapters. The second chapter provides a background for Checkmarx and their static analysis tool CxSAST.

The reader gets to know about the company behind this project and its main tool in security testing. The

next two chapters present two topics closely related to what this thesis aims to achieve. The first explains

the refactoring process and its techniques, very similar to what the tool intends to do. The second topic

is related to the Mutation Testing technique, which presents interesting ideas for the development. In the

fifth chapter, we can find the steps taken in the development of the tool. All the details are presented from

the initial parsing stage till the actual code transformation phase. From that, we get to test the tool in the

sixth chapter by mutating vulnerable code samples and checking if the Checkmarx SAST tool can detect

all vulnerabilities in the generated code samples. The conclusion constitutes the last chapter, together

with improves and other ideas to be implemented in the future.

2

C
h
a
p
te

r

2
Background

Founded in 2006, Checkmarx is a software security company headquartered in Israel. Their primary

product is a platform with components of software security solutions that cover every stage of the software

development life cycle, and can be easily integrated in every organization’s software development process.

Although their main component is the static application security testing tool (SAST), they also have open

source analysis (SCA and SCS), dynamic application security testing (DAST), and other security tools

related with APIs, infrastructure as code (IaC) and containers.

According to Checkmarx, the key benefits of using its software security platform are:

• Full visibility into security issues in code for both custom and open source components and better

business decisions through the use of reports, customizable dashboards and APIs

• A unified central management layer for managing both organization application policies and the

definition and management of all user profiles across the entire Checkmarx portfolio

• Optimization of vulnerability remediation efforts at scale by using machine learning algorithms,

correlations, policy turning and custom weights to automate the scan results prioritization

• A full scope of implementation options to help customers securing their code immediately rather

than going through long processes of adapting their infrastructure to a single implementation

method.

3

CHAPTER 2. BACKGROUND

2.1 Checkmarx SAST

Although the objective may also be useful for other types of security analysis, it’s in the static code analysis

domain that this dissertation is concerned. In this context, Checkmark SAST is a static analysis solution

used to identify security vulnerabilities in custom code that can be fixed early in the software development

life cycle. Supports more than 25 coding and scripting languages (Java, Kotlin, Python, JavaScript, Scala,

Ruby, Swift, TypeScript, Pearl, iOS, Android, COBOL, VBScript, among others) and its frameworks without

the need of extra configurations to scan any language.

Without building or compiling the source code of a software project, CxSAST works by building a logical

graph of the elements and flows in the code. Against this structure, CxSAST offers an extensive list of pre-

configured queries that are executed to detect known security vulnerabilities in the internal code graph for

each programming language.

Using the CxSAST Auditor tool, the user can configure additional queries for security, best coding

practices, QA, and business logic purposes. It can run scans and generate security reports at any given

point in a software project’s development life cycle.

Scan results can be obtained in CxSAST either by static reports or by an interactive interface that

allows the user to observe the behavior of each vulnerability through the code. Figure 2.1 is an example

of the scan results (for CxSAST v8.9.0 and up) showing an SQL Injection vulnerability.

When the user selects a specific instance of the vulnerability in the Results pane (bottom, center and

right), CxSAST displays the instance’s code details at the top of the pane and a path of code elements in

the Path pane (top right). This path shows the flow of code elements leading from the user input to the

SQL query. The user can select each element in the path which in turn CxSAST displays the element in

the code context in the Source Code pane (top, left and center). The vulnerability needs to be eliminated

somewhere along the path.

More information about Checkmarx and their SAST product can be found at their website [2].

4

CHAPTER 2. BACKGROUND

Figure 2.1: Screenshot of CxSAST scan results, showing an SQL Injection vulnerability detected in a C#
project. The Queries pane (bottom left) shows that 27 instances of the SQL Injection vulnerability were
found.

5

C
h
a
p
te

r

3
State of The Art: Refactoring

3.1 Definition of Refactoring

In his book [11], Martin Fowler defines refactoring as a process of modifying a software system in such a

way that the source code is improved but the external behaviour is not changed. This term was originally

introduced in 1990 by William Opdyke and Ralph Johnson [38], but it was through Martin Fowler’s book

that it was most represented. As a system’s software evolves according to new requirements, the code

becomes more and more complex and, with this, more susceptible to the introduction of bugs by pro-

grammers. According to Fowler, refactoring is the opposite of this practice. During the development of a

program, its design remains firm through transformations that increase the internal quality of the software

and keep the same external behaviour.

Refactoring works essentially by looking for bad smells in the code. According to Sandeep Kaur [15],

bad smells represent potential problems in the code that make it difficult to understand and modify.

Duplicate code is an example of a bad smell that can be solved by replacing all occurrences of the

code for a function with the same functionality. Not only is the code easier to understand but also more

sustainable and with better quality. Furthermore, refactored code reduces the code maintenance cost and

the chance of introducing bugs [14].

Other definitions of refactoring are more abstract. In his dissertation [41], Donald Roberts defines refac-

toring as a pair (𝑝𝑟𝑒,𝑇), where 𝑝𝑟𝑒 is the set of pre-conditions that a program must satisfy to perform a

transformation, and𝑇 corresponds to the transformation. This definition emerged so that transformations

that do not preserve external behaviour were also included.

6

CHAPTER 3. STATE OF THE ART: REFACTORING

3.2 Refactoring Example

The impact of a transformation on the program differs from the type of refactoring applied. While some

refactorings make localized changes to the code, others operate at higher levels and in a larger scale [31].

A common example of a localized transformation is the extraction of a code snippet to its own method.

Listing 3.1: Code snippet before the Extract Method transformation

public void printNumberOfLines(String filePath) {

int noOfLines = 0;

LineIterator lineIterator = FileUtils.lineIterator(new File(filePath));

while (lineIterator.hasNext()) {

lineIterator.nextLine();

noOfLines++;

}

System.out.println(”Number of lines: ” + noOfLines);

}

When applying the Extract Method refactoring to the code fragment corresponding to the function-

ality of calculating the number of lines in a file, the final result is:

Listing 3.2: Code snippet after the Extract Method transformation

public void printNumberOfLines(String filePath) {

int noOfLines = numberOfLines(filePath);

System.out.println(”Number of lines: ” + noOfLines);

}

public int numberOfLines(String filePath) {

int noOfLines = 0;

LineIterator lineIterator = FileUtils.lineIterator(new File(filePath));

while (lineIterator.hasNext()) {

lineIterator.nextLine();

noOfLines++;

}

return noOfLines;

}

With a simple change, not only we made the methods more refined, but also increased the chances

of being reused by others. The opposite refactoring (Inline Method) also exists and can be useful when

we have a method whose body is as clear as the method name. Therefore, it is necessary to evaluate the

context to know if a refactoring will have a positive or negative impact on the code.

In terms of global transformations, we can look at the effect of Fowler’s Tease Apart Inheritance

7

CHAPTER 3. STATE OF THE ART: REFACTORING

InputStream

File
InputStream

ByteArray
InputStream

Video
InputStream

OutputStream

File
OutputStream

ByteArray
OutputStream

Video
OutputStream

Stream

Input
Stream

Output
Stream

Storage

ByteArray
Storage

File
Storage

Video
Storage

Figure 3.1: A Stream class hierarchy in java.io before and after applying Tease Apart Inheritance
refactoring. The gray boxes represent the changes needed in each version to add the same functionality.

refactor. The top of figure 3.1 shows a hierarchy of classes from java.io for streaming data. Sup-

pose we want to add the features of reading and writing to a video stream with this structure. Unfor-

tunately, it would be difficult because we would have to add two new classes, VideoInputStream and

VideoOutputStream, probably with duplicate code between the two. The problem with this class hier-

archy is the mixture of two concerns: the direction of the flow (input or output) and the type of storage in

which it is performed. Not only is it difficult to make changes, as the resulting code is hard to understand.

However, we can solve this inconvenience by applying the refactoring Tease Apart Inheritance, in

order to create two different hierarchies, as we can see at the bottom of figure 3.1. With this structure, to

add streaming video, all we need to do is add the VideoStorage class as a subclass of Storage.

3.3 Refactoring Techniques

In 1992, William Opdyke developed the first detailed refactoring elaboration in his doctoral thesis. In this

dissertation [37], he presented 23 primitive refactorings, shown in the table 3.1, together with a set of

preconditions for each one that would ensure the behaviour of the software after the transformation. This

collection was achieved by looking at various systems and pointing out the types of refactorings that would

apply in object-oriented programming. All this work made it possible for other elaborated techniques to

emerge in the refactoring field.

8

CHAPTER 3. STATE OF THE ART: REFACTORING

Table 3.1: List of primitive refactorings identified by Bill Opdyke

creating an empty class
creating a member variable
creating a member function
deleting an unreferenced class
deleting an unreferenced variable
deleting a set of member functions
changing a class name
changing a variable name
changing a member function name
changing the type of a set of variables and functions
changing access control mode
adding a function argument
deleting a function argument
reordering function arguments
adding a function body
deleting a function body
convert an instance variable to a variable that points to an instance
convert variable references to function calls
replacing statement list with function call
inlining a function call
change the superclass of a class
moving a member variable to a superclass
moving a member variable to a subclass

A refactoring technique refers to a procedure in which a set of steps is taken in order to achieve the

desired transformation. After identifying where the software has bad smells, it is necessary to determine

which refactoring techniques to apply to keep the source code as clean as possible. In Martin Fowler’s

book [11] we can find a long catalog of refactorings techniques and, for each one, their steps and motiva-

tion. This list is divided into 8 groups.

Composing Methods

The composition of methods is one of the most common groups in refactoring techniques. The objective

is, in most cases, to restructure long and difficult to understand methods. For example, the refactoring

Extract Method shown above is one of the techniques belonging to this group. Also, when we want to

compose methods, one of the biggest concerns corresponds to temporary variables, so this group also

includes techniques related to these variables and the parameters of the methods.

9

CHAPTER 3. STATE OF THE ART: REFACTORING

Moving Features between Objects

These refactorings are used to decide where to place responsibilities between different classes in order

to make the best decisions in object design. Through them we can move functionality between classes,

create new classes and hide the implementation details from public access. Most problems can be solved

with the Move Method and Move Field refactorings, as well as the Extract Class that allows you to

create a new class from another.

Organizing Data

In object-oriented programming, one of the most important aspects is the definition of new types from

primitive types. This characteristic, despite being fundamental in problem-solving, brings, in itself, an

increase in potential disorders to keep the data structure clean as complexity increases in level. These

refactoring techniques make handling information easier. For example, when we have a simple information

value that would be more useful as an object, we can apply the Replace Data Value with Object

refactoring to create a new class that stores the value and all its behaviour.

Simplifying Conditional Expressions

As the name implies, these refactoring techniques are intended to facilitate the logic of conditions that,

at times, becomes complicated and confusing. The main refactoring is Decompose Conditional which

allows you to extract all parts of a complicated conditional sentence (if-then-else) in separate methods.

This makes the code more readable and easier to maintain by a different programmer.

Simplifying Method Calls

These techniques are related to the importance of interfaces in the development of object-oriented pro-

grams. One of the simplest techniques is to rename methods, variables and classes so that the code is

as readable as possible. Other concerns include the method parameters, the class constructors and the

error handling mechanism.

Dealing with Generalization

Generalization raises a set of refactoring techniques that influence functionalities along a class hierarchy.

The most common techniques in this group are to promote and descend methods or instance variables

among classes in the hierarchy. In addition to moving functions, there are also techniques, such as Ex-

tract Subclass, Extract Superclass and Extract Interface, that change the hierarchy by adding

10

CHAPTER 3. STATE OF THE ART: REFACTORING

new elements at various points. In case there are unnecessary classes in the hierarchy, we can use the

refactoring Collapse Hierarchy to remove them.

Big Refactorings

In his last group, Fowler presents 4 major refactorings. While the latter groups consisted of individual

refactoring changes, this group intends to ”play”at a higher level through a lot of transformations that

take longer to finish. One of the refactoring techniques included corresponds to the one presented in

section 3.2, which, as we have seen, exerts an enormous change in terms of the program structure.

3.4 Automated Refactoring

Although it is possible to apply refactorings manually, tool support is considered crucial. During refactor-

ing, users need to synthesize and analyze large collections of code to identify bad smells, decide the best

solutions to eliminate undesirable characteristics and apply potentially complex and error-prone transfor-

mations without changing the external behaviour of the system. If we take, as an example, the simple

renaming of a method, the user needs to propagate this change throughout an entire system. This be-

comes tedious and costly when developing a project, making automated refactoring software essential in a

time-consuming and error-prone manual task. Nowadays, a wide range of tools is available that automate

various aspects of refactoring [18].

The refactoring process is divided in distinct activities that can be supported by different tools:

1. Analyze the software to determine where it should be refactored (detecting bad smells).

2. Determine which refactoring(s) should be applied to the identified places in order to remove the

code smells.

3. Assure that the applied refactoring preserves the external behaviour of the software.

4. Apply the refactoring.

5. Evaluate the result of the refactoring on quality characteristics of the software (e.g., complexity,

understandability, maintainability) or the process (e.g., productivity, cost, effort).

“Fully-automatic tools complete the multi-stage refactoring process without user interaction, from the

initial identification of where it is needed through the selection and application of a specific refactor-

ing.” [24] Although these tools assist software developers, the absence of user input along the steps is the

root of worthless identifier names, lack of customizability, and negative impacts on a user’s understanding

of a system [4, 9]. On the contrary, semi-automated refactoring tools attempt to address these problems

11

CHAPTER 3. STATE OF THE ART: REFACTORING

by using user input to value the refactoring process whilst automating the tedious, error-prone and complex

sub-tasks. This single-stage focus makes the balance between automated and manual tasks essential to

readable and well-designed code. Examples of semi-automated refactoring tools include Eclipse’s refac-

toring transformation support, and jDeodorant’s code smell detection.

In the next sections, I will explore the different characteristics that affect the usability of an automated

refactoring tool and that can be interesting for the tool we want to create in this dissertation.

Reliability

The reliability of a refactoring tool is related to the ability to ensure that, after a transformation, the external

behaviour of the program remains similar. Most tools provide this feature by checking a set of precondi-

tions before applying the refactoring and running tests on the system’s functionalities after applying the

refactoring. In this dissertation, the reliability of the tool will be more relaxed since the objective is to

preserve a vulnerability of the system and not its external behaviour.

Configurability and Openness

Most refactoring tools are integrated into industrial IDEs through their extensibility mechanisms that some-

times make it impossible to configure the tools with specific user preferences. Some of the attributes that

a user should be able to control are:

• refactorings and bad smells specifications,

• the link between bad smells and refactorings [45],

• definitions of composite refactorings from primitive ones [33].

For this dissertation, having an open configurable tool is essential to control the different versions we

can produce from a code sample.

Coverage

This attribute is fundamental for refactoring tools because it indicates how comprehensive the tool is in

terms of the types of activities it can perform. The more complete the tool is, the easier it is for the user to

improve the code. Unfortunately, most tools tend to focus on just one aspect of the refactoring process.

Scalability and Performance

The ability to combine a sequence of primitive refactorings into a composite refactoring increases the

scalability and performance of a refactoring tool. This characteristic allows solving problems at higher

12

CHAPTER 3. STATE OF THE ART: REFACTORING

levels and, in the case of this dissertation, it allows transformations on larger scales. The performance

gain is related to the fact that the tool only needs to check the preconditions of the composite refactoring

once, instead of checking separately for each primitive refactoring in the sequence [25, 41].

Language Independence

Like coverage, the tool’s range for different programming languages should be as complete as possible

and in addition, the tool should provide the necessary hooks to add language-specific behaviour [27].

There are several techniques for achieving language independence:

• Meta modelling is a technique presented by both Tichelaar et al. [44] and Mens et al. [26]

• The notion of generic program refactoring introduced by Lämmel [22]

• Ward and Bennett suggested translating the code into the formal intermediate language WSL,

where it can be restructured, refined and abstracted, and then translated back into the original

language [48]. For any language, just create an automatic translator in both directions for WSL.

13

C
h
a
p
te

r

4
State of The Art: Mutation Testing

Mutation Testing is a fault-based testing technique whose purpose is to measure the adequacy of an input

software test set in terms of its ability to detect certain types of faults. It was first developed and published

in the late 1970s by DeMillo, Lipton and Sayward [5]. By applying simple syntactic transformations to the

original program, this technique pretends to simulate errors that programmers often make during software

development. Each generated version is called a mutant and is based on a well-defined mutation operator

such as the replacement of an arithmetic operator in the original program with other operators, which

represents a programmer using a wrong arithmetic operator. When evaluated by a test set, if his behavior

is different from the original program, the mutant is said to be killed. Otherwise, it remains alive because

either it is equivalent to the original program (same functionality although syntactically different), or the

test set is inadequate to detect the fault and must be improved by adding test cases to kill the live mutant.

Tests Mutation
Testing

Source
Code Verify Quality Of Verify Quality Of

Figure 4.1: Mutation Testing in Software Development

Although there are a huge number of potential failures in a given program, the mutation testing tech-

nique selects only a subset of mutation operators to generate mutants, close to the original version, hoping

that these will be enough to represent all faults. This theory is based on two hypotheses, both introduced

and proposed by DeMillo et al. in 1978 [5]: the Competent Programmer Hypotheses and the Coupling

Effect. The first hypothesis states that programmers are competent and tend to write programs that are

close to being correct, which means most software faults introduced are due to small syntactic errors that

can be easily corrected with small changes. The second hypothesis asserts that if a test set can be so

14

CHAPTER 4. STATE OF THE ART: MUTATION TESTING

sensitive as to distinguish the original program from those generated by only simple errors, then it will

also distinguish from those created by more complex errors.

Later, Offutt [35] extended this hypothesis into the Coupling Effect Hypothesis and the Mutation Cou-

pling Effect Hypothesis with a definition of simple and complex faults. A simple fault consists on creating a

single mutant by making a single syntactical change, while a complex fault is represented as a higher-order

mutant which is generated by introducing multiple mutations into the program. With this, his definition of

the Coupling Effect states that ”complex faults are coupled to simple faults in such a way that a test data

set that detects all simple faults in a program will detect a high percentage of the complex faults” [35].

For the empirical analysis, this was restricted into the Mutation Coupling Effect Hypothesis: ”Complex

mutants are coupled to simple mutants in such a way that a test data set that detects all simple mutants

in a program will also detect a large percentage of the complex mutants” [35].

Many research works [20, 30, 34, 35] were done in order to validate the coupling effect hypothesis. Of-

futt [34, 35] performed an experiment where it was generated all possible second-order mutants (mutants

created by 2 mutations) of three programs, MID, TRITYP, and FIND. The results in table 4.1 shows that

a weaker test case set, generated to target a random selection of 1-order mutants, is very successful at

killing a higher percentage of 2-order mutants, which implies that the mutation coupling effect hypothesis

does indeed manifest itself in practice.

Table 4.1: The Coupling Effect with a weaker test case set [34]

Program Mutation order M K Eq Live MS

MID
1-order 196 161 16 19 .89
2-order 19110 18607 145 503 .98

MID
1-order 196 161 16 44 .76
2-order 19110 17276 145 1689 .91

TRYTIP
1-order 970 745 110 115 .87
2-order 469965 443875 2154 23936 .95

TRYTIP
1-order 970 636 110 224 .74
2-order 469965 426030 2154 46781 .90

4.1 The Process of Mutation Analysis

This section presents a detailed view of the modern mutation testing process. This process forms an

extension of the one proposed by Offutt and Untch [36] and is based on the latest advances in the area.

Performing the mutation analysis for a given 𝑃 program, starts by selecting a set of transformation rules to

apply in the original program and then generating the actual executable programs. The next step concerns

about some problematic mutants that need to be removed. For example, there are some mutants that

15

CHAPTER 4. STATE OF THE ART: MUTATION TESTING

cannot be killed by testing because, although syntactically different, they produce the same output as the

original program (equivalent mutants). There are also some redundant mutants, i.e., mutants that are

killed when other mutants are killed, which must be removed due to the fake impact they have on the

mutation score and which can lead to tests of a lower quality than intended.

With the mutants all generated, the next step is to create the test cases with the potential to kill all the

mutants, run them for each alternative program and determine how well they scored. This score, known

as the Mutation Score, indicates the quality of the input test set and is calculated with the ratio of dead

mutants over the total number of live mutants. At this point, a reduction may be applied to the test suite

by removing tests that are potentially ineffective. Also, at the same time, the tests can be arranged so that

those with the most impact are executed first. These steps are repeated until the tester is satisfied with

the mutation score. A mutation score threshold can be set as a policy decision to require testers to test

software to a predefined level.

The last step of this process evaluates the original program by comparing the results of the test

executions with those expected. If failures are detected then the programmer must find the faults in the

program, repair these problems and relaunch the process until reaching an acceptable mutation score

and a faultless program.

Input Test
Program P

Select
 Mutants

Create
Mutants

Remove
Problematic

Mutants

Generate Test
Inputs T

Execute
Mutants

Compute Mutation
Score

Reduze/Prioritize
TCs

no

yes

Threshold
reached?

Define
threshold

no

yes

P (T) Correct?Fix P

Quit

Figure 4.2: Modern process of mutation analysis [39]. Bold boxes represent steps where human interven-
tion is mandatory

16

CHAPTER 4. STATE OF THE ART: MUTATION TESTING

4.2 Mutation Operators

A transformation rule that generates a mutant from the original program is known as a mutation operator.

Table 4.2 shows the mutant 𝑝′, generated by changing the and operator (&&) of the original program
𝑝, into the or operator (| |), thereby producing the mutant 𝑝′. A large amount of work has focused on

designing mutant operators that target different (categories of) programming languages, applications,

types of defects, programming elements, and others.

Table 4.2: An Example of Mutation Operation

Program 𝑝 Mutant 𝑝′

...
if (a > 0 && b > 0)
return 1;
...

...
if (a > 0 | | b > 0)
return 1;
...

4.2.1 Operators for Specific Programming Languages

King and Offutt [17] introduced the first set of formalized mutation operators for the Fortran programming

language. These typical mutation operators were implemented in the Mothra mutation system.

In 1989, Agrawal et al. [1] proposed a comprehensive set of mutation operators for the ANSI C pro-

gramming language. There were 77 mutation operators defined in this set, which was designed to follow

the C language specification. These operators are classified into variable mutation, operator mutation,

constant mutation, and statement mutation.

Kim et al. [16] were the first to design mutation operators for the Java programming language. They

proposed 20 mutation operators (Table 4.3) for Java using a safety technique which investigates and

records the result of system deviations. Based on the results, 20 Java mutation operators were designed,

falling into six groups: Types/Variables, Names, Classes/interface declarations, Blocks, Expressions, and

others.

Derezinska and Kowalski [8] introduced six object-oriented mutant operators designed for the inter-

mediate code that is derived from compiled C# programs. Their work also revealed that mutants on the

intermediate language level are more efficient than the high-level source code level mutants.

Mirshokraie et al. [28, 29] proposed a set of JavaScript operators. These are designed to capture com-

mon mistakes in JavaScript (such as changing the setTimeout function, removing the this keyword, and

replacing undefined with null). Experimental results indicate the efficiency of these operators in generating

non-equivalent mutants.

17

CHAPTER 4. STATE OF THE ART: MUTATION TESTING

Table 4.3: 20 mutation operators proposed by Kim et al. [16] for the Java programming language

Types and variables
Type replacement operator
Variable replacement operator

Names Modifier change operator

Classes/interfaces declarations

Package replacement operator
Imported type replacement operator
Cluster structure change operator
Constructor declaration change operator
Formal parameter change operator

Blocks

Control-flow disruption operator
Scope change operator
Statements swap operator
Exception handler change operator

Expressions

Language operator replacement
Literal change operator
Constructor replacement operator Accessed
Accessed field replacement operator
Method name replacement operator Argument
Argument change operator

Others
Coverage operator
Equivalent replacement operator

4.2.2 Operators for Specific Categories of Programming Languages

Derezinska and Kowalski [8] explored and designed the mutant operators for object-oriented programs

through C# programs. They argued that traditional mutant operators are not enough to reveal object-

oriented flaws. Hu et al. [13] studied in depth the equivalent mutants generated by object-oriented class-

level mutants and revealed differences between class-level and instruction-level mutation: instruction-level

mutants are easier to be killed by test cases.

Aspect-Oriented Programming is a programming paradigm that aids programmers in separation of

cross-cutting concerns. Ferrari et al. [10] proposed 26 mutation operators based on a generalization of

faults for general Aspect-Oriented programs. These mutation operators are divided into three groups: point

cut expressions, aspect declarations, and advice definitions and implementation. This work uses AspectJ

as a representative of aspect-oriented programs.

4.2.3 Operators for Specific Categories of Applications

Deng et al. [6, 7] defined mutant operators specific for the characteristics of Android apps, such as

the event handle and the activity lifecycle mutant operators. Usaola et al. [46] introduced an abstract

18

CHAPTER 4. STATE OF THE ART: MUTATION TESTING

specification for defining and implementing operators for context-aware, mobile applications. Similarly,

Linares-Vásquez et al. [19] introduced 38 mutation operators for Android apps. These operators were

systematically derived by manually analysis of types of Android faults.

In 2014, Maezawa et al. [23] proposed amutation-basedmethod for validating Asynchronous JavaScript

and XML (Ajax) applications. The approach is based on delay-inducing mutant operators that attempt to

uncover potential delay-dependent faults. The experimental study suggests that by killing these mutants,

actual errors can be revealed.

4.2.4 Operators for Specific Categories of Bugs

Brown et al. [3] proposed a technique to find mutation operators from source code repositories with the

intuition of getting mutants semantically similar to real faults. Loise et al. [21], concerning security issues,

proposed 15 security-aware mutant operators for Java. Nanavati et al. [32, 49] realized that few operators

are able to simulate memory faults, so they proposed 9 memory mutant operators targeting common

memory faults. Garvin and Cohen’s work [12] focus on feature interaction faults. An exploratory study

was conducted on the real faults from two open-source projects and mutants are proposed to mimic

interaction faults based on the study’s results.

Other examples are mutation operators that target specific C program defects or vulnerabilities.

Shahriar and Zulkernine [43] proposed 8 mutation operators to generate mutants that represent For-

mat String Bugs (FSBs). Vilela et al. [47] proposed 2 mutation operators representing faults associated

with static and dynamic memory allocations, which were used to detect Buffer Overflows (BOFs). This work

was subsequently extended by Shahriar and Zulkernine [42], who proposed 12 comprehensive mutation

operators to support the testing of all BOF vulnerabilities, targeting vulnerable library functions, program

statements, and buffer size.

19

CHAPTER 4. STATE OF THE ART: MUTATION TESTING

Table 4.4: 15 security-aware mutation operators proposed by Loise et al. [21] for Java

Use predictable pseudo random number generator
Remove path traversal sanitization
Use weak message digest
Remove host name verification
Make XML parser vulnerable to XML Entity Expansion attack
Make XML parser vulnerable to XML eXternal Entity attack
Remove encryption in socket
Unsecure cookie
Remove HTTP-only flag from cookie
Use RSA with short key
Use Blowfish with short key
Permit SQL injection
Use DES in symmetric encryption
Use ECB in symmetric encryption
Remove regex sanitization

20

C
h
a
p
te

r

5
VSG - Vulnerable Samples Generator

This chapter represents the core of this dissertation by introducing the VSG tool, together with all the

steps and decisions taken during its development. It is in this section that we can find a path to the

solution of the problem presented at the beginning, describing the whole development process from the

tool architecture to its implementation. Within the topics presented in the state of the art, this tool will focus

on the application of transformations in the code, both present in refactoring 3 and mutation testing 4.

The most important point will be how syntactic transformations will be applied to vulnerable code samples

in order to obtain the greatest possible diversity regarding the presence of vulnerabilities.

Therefore, the first part of this chapter gives an introduction to the tool by describing what it is intended

to achieve and how it will be achieved. The second section explores the tool’s architecture, explaining how

it is structured and what technologies have been used. Finally, the remaining sections present the main

components of the tool and the implementation of syntactic transformations on code samples.

5.1 A Samples Generation Tool

As previously mentioned, the main objective of this project is the development of a tool that generates

code samples with a security flaw that is known by the user. The path chosen to achieve this goal involves

an initial sample of code, provided by the user as input, with a known vulnerability. The tool must then

apply several syntactic transformations to the sample code without losing the security flaw, thus obtaining

a set of code samples sharing the same characteristic: having the same vulnerability 5.1.

To ensure that all the transformations applied to the code have an impact on the vulnerability, the user

must also provide a metadata file with information about the flow of the vulnerability in the code sample.

This file will be an XML file containing a path with all the nodes that define the behavior of the security

21

CHAPTER 5. VSG - VULNERABLE SAMPLES GENERATOR

VSG Tool

Vulnerability Flow

Vulnerable Code Samples
Produced

Vulnerable
Code Sample

Figure 5.1: The inputs and the outputs of the VSG Tool

flaw. If the transformations were applied anywhere in the code, the result would be a large percentage of

the code samples produced with an identical vulnerability, in terms of behavior, to the one present in the

initial sample, so we can assume that its presence would not be difficult to detect since we know that the

initial vulnerability was also detected at the beginning (remember the main problem of this project).

Each type of syntactic transformation that can be applied over the code will have the name of mutation

rule. One of the key aspects for this tool will be how different mutation rules can be combined in order to

vary the set of code samples obtained at the end of the process. This feature allows exploring the multiple

case where a vulnerability is present, making the role of a security testing tool more difficult to assume.

In addition, a mutation rule can be applied at various points in a code sample, so this aspect will also be

used in favor of the tool.

The initial step of the process is to parse the sample code in order to identify the places where the

transformations can be applied. For this purpose, the ANTLR parser generator was used for the lexical

and syntactic analysis of the code, which will be described in the section 5.3. As for the language, the

tool will be written in C#, an object-oriented language that easily links ANTLR to the development of the

mutation rules and which the author is comfortable to work with. In this first version, only code samples

written in the Java language will be accepted as input for the tool. This choice is due to the fact that Java is

one of the most used languages by programmers and therefore needs more concern from security testing

applications.

22

CHAPTER 5. VSG - VULNERABLE SAMPLES GENERATOR

5.2 VSG Architecture

Before jumping to the implementation, this section will explain how the tool is structured internally and

what is the interaction between the different components that allow the whole process to be executed.

The figure 5.2 introduces an abstract overview of this structure through a diagram with the main VSG

components. Although there are other elements in this structure, such as the component that allows

loading the code samples together with their vulnerability flows, the most important ones that allow the

magic to happen are represented in the diagram.

VSG

RulesApplier

Grammar

Symbol Table

ParserVisitor

Code Samples Generated
Code Samples

Rule

Figure 5.2: The internal structure of the VSG Tool

As stated in the previous section, it is necessary to analyze the code samples in order to identify

the places where a mutation rule can be applied. In this sense, through the grammar that specifies the

language in which the samples are written, the application uses ANTLR to generate a recognizer for that

language. The grammar only needs to be compiled once to create a parser written in C#. This way, ANTLR

replaces the work of having to create a parser manually that can be used by the mutation rules. This

parser, which will be explained further in section 5.3, constitutes one of the components of this structure.

The next component represents the mutation rule itself. Each rule will be a component that will use

the parser to find all the places where it can be applied and collect all the applicable transformations

on the code sample. The way how all possible locations will be detected and transformations executed

represents the main focus of this dissertation and will be described in detail in section 5.6. The set of

components consisting of the mutation rules and the parser represents the RulesApplier which, fed by

the initial code samples, will generate the output with the code samples produced.

23

CHAPTER 5. VSG - VULNERABLE SAMPLES GENERATOR

Finally, the whole structure was assembled to obtain the initial code samples from a directory instead

of receiving one at a time to execute the whole process. For this, the directory must follow a predefined

structure so that the tool can correctly load the code samples together with the corresponding vulnerability

flows. In the end, all the code samples produced will be exported to another directory that will also follow a

structure that facilitates the correspondence between the initial code sample and those that were generated

from it.

5.3 Parsing with ANTLR

The development of a parser for a certain language can be a difficult and time-consuming task, requiring

several skills before starting to write one. For this purpose, Terence Parr, together with other colleagues,

created ANTLR (ANother Tool for Language Recognition) to speed up this process. This tool receives as

input a grammar specification and automatically produces a parser that can build and walk parse trees.

No effort is required in the analysis of structured texts such as program source code. This tool is an

important part of the VSG and this section tries to explain a little of its process and why it is important for

the mutation rules.

For ANTLR to work, it is necessary to provide a grammar with two types of rules that describe the

language syntax: parser and lexer rules. Lexer rules are responsible for lexical analysis, i.e. the process

of identifying tokens in a character stream. Parser rules focus on recognizing the structure of the input

sentence by building the abstract syntax tree from the identified tokens. Diagram 5.3 demonstrates the

process of a language recognizer for an arithmetic expression with an example. By entering the input

sentence 5+4, the lexer will recognize the INT (integers) and PLUS tokens and feed them to the parser,

which in turn, will produce a parse tree with the arithmetic expression structure.

Language recognizer

5 + 4 LEXER PARSER
 INT
5

 INT
4+

Parse tree

expr

+expr expr

5 4

Chars Tokens

Figure 5.3: The process of a language recognizer

A grammar must follow the syntax defined by ANTLR to specify other languages. Listing 5.1 is an

example of a grammar for traditional arithmetic expressions (addition, subtraction, multiplication and

division) with the name Expr. This language has only one parser rule called expr with four alternatives

to define an arithmetic expression. The remaining rules are lexer rules intended to recognize operators

24

CHAPTER 5. VSG - VULNERABLE SAMPLES GENERATOR

(MUL, DIV, ADD, SUB) and integers (INT) with one or more digits. Note that all parser rules start with a

lowercase letter and all lexer rules start with an uppercase letter.

Listing 5.1: Grammar for traditional arithmetic expressions written in ANTLRv4

grammar Expr;

expr

: expr (MUL|DIV) expr

| expr (ADD|SUB) expr

| INT

| '(' expr ')'

;

ADD : '+';

SUB : '-';

MUL : '*';

DIV : '/';

INT : [0-9]+ ;

The parse tree is a useful data structure that contains complete information on how the parser has

grouped the recognized tokens. From another point of view, when analyzing a program source code,

the result would be a tree with an easy to process structural representation of the program. However, a

mechanism is still needed to walk this tree in order to take the desired actions at the correct nodes. One

of the tree-walking mechanisms that ANTLR offers is tree visitors.

When provided with a grammar, ANTLR is able to generate a visitor interface with a visit method for

each rule that will be called along a depth-first walk on the parse tree. In other words, this mechanism

follows a visitor pattern on the parse tree. As an example, figure 5.4 demonstrates the order of method

calls among the visitor methods for the parse tree obtained in the input sentence 5+4.

Expr
(1) visitExpr(ExprContext)

+
(4) visitTerminal(TerminalNode)

Expr
(2) visitExpr(ExprContext)

Expr
(5) visitExpr(ExprContext)

5
(3) visitTerminal(TerminalNode)

4
(6) visitTerminal(TerminalNode)

Visitor API
visitExpr(ExprContext)
visitTerminal(TerminalNode)

Figure 5.4: The sequence of visit method calls in a parse tree

Each visit method will take as argument a context object. According to Terence Parr, ”each context

25

CHAPTER 5. VSG - VULNERABLE SAMPLES GENERATOR

object knows the start and stop tokens for the recognized phrase and provides access to all elements of

that phrase” [40]. This means that for the example in figure 5.4, the first ExprContext has access to the

expression subtrees.

For the matter of this project, the ParserVisitor generated by ANTLR for each programming language

will be an important component for the mutation rules. Each rule needs to explore the structure of a

program in order to evaluate and apply the transformations in the right places. Therefore, ParserVisitor

enables rules to take actions at the correct nodes of a program’s parse tree. For example, imagine a rule

that wants to make changes to if statements in a program. All it needs is to override the visitIfStatement

method (assuming the grammar contains a parser rule for the if statement) provided by the ParserVisitor

and explore the context to find out how the transformation will be applied.

Having the ability to parse the code, the next step was to start implementing the rules. However, it

was quickly realized that a data structure would be needed to assist the rules in code analysis and correct

application of transformations. Thus, the next section presents the symbol table.

5.4 Symbol Table

One of the problems that arose during the implementation of the mutation rules was the situation when

new identifiers were added within a scope. If, for example, a mutation rule adds a new variable within a

method, it is necessary to verify that the name of that variable is not already being used within the scope

of the method. Otherwise, the result would be conflicts of identifiers, which in turn would result in the

production of non-compilable code samples.

In addition to this problem, other complications emerged, such as mutation rules that needed to infer

the type of an identifier so that its transformation could be successfully applied. In this context, it was

important to implement an auxiliary data structure with all the information about the symbols and scopes

defined in the source code of a program. Being widely used in compiler design to achieve compilation

time efficiency, the symbol table proved to be the solution to these problems.

A symbol table consists of a data structure with the purpose of storing identifiers (symbols) present in

the source code of a program, such as classes, methods and variables, and associating to each one its

information and relationship with other identifiers. There are several types of data structures that can be

used to implement a symbol table, the most commonly used being lists, hash tables and trees. The main

purposes of a symbol table are:

• Inference of an identifier type

• Verification of the existence of a symbol within a scope

• Getting the scope of a symbol

26

CHAPTER 5. VSG - VULNERABLE SAMPLES GENERATOR

The two most common operations in a symbol table are:

insert() Used during the code analysis to insert a new entry in the table with the symbol identifier and

its information.

lookup() Used to search for a name in the symbol table and, if it exists, return its information.

5.4.1 Symbol Table in VSG

The first step in implementing the symbol table used in the VSG tool was choosing the information that

would be added for each entry in the table. This decision was made by the mutation rules that were

implemented, which means that newmutation rules in the future may require more information about each

symbol. Each entry contains the information present in the table 5.1. For example, for the next variable

declaration, the entry stored in the symbol table would be: <”firstName”, Variable, String>.

Listing 5.2: Example of a variable declaration

String firstName = ”John”;

Table 5.1: Attributes for each entry in the Symbol Table

Name Symbol’s identifier

Kind Represents the symbol’s kind in the program (e.g. Class, Variable, Parameter, Method)

Type Stores the symbol’s type (e.g., int, float, boolean, String)

The next decision was how the scopes would be defined and represented in the symbol table. Taking

advantage of the rich C# library, each scope became a dictionary in which the key consists of the symbol

identifier and its value represents the additional information of the symbol. In addition, each scope also

has access to the scope in which it is contained so that it is possible to return to the previous scope. The

reason for this is that to implement the lookup operation it is necessary to look for the symbol in the outer

scopes in case it is not present in the current one. Each symbol will thus be associated with a scope that

will only be initialized if it is appropriate to its kind. For example, a symbol that represents a variable does

not need a scope.

Let’s look at the following example: figure 5.5 shows the symbol table represented from the sample

code present in listing 5.3. This sample consists of a simple class with two fields and a method to get

the full name of a person. By looking at the table, we can confirm that certain kinds of symbols have no

scope, in this case the Field and Variable kinds. We can also verify that the Class kind entry does not have

a defined type since the symbol itself is a type. Finally, as mentioned, we can see that from each scope

it is possible to go back to the outer scope, except for the root scope.

27

CHAPTER 5. VSG - VULNERABLE SAMPLES GENERATOR

Listing 5.3: Example of a code sample to build the symbol table
class Person {

private String firstName;
private String lastName;

public String getFullName() {
String fullName = firstName + ” ” + lastName;
return fullName;

}
}

Root Scope

NAME KIND TYPE SCOPE

"Person" Class (null) Class Scope

NAME KIND TYPE SCOPE

"firstName" Field String (null)

"lastName" Field String (null)

"getFullName" Method String Method Scope

NAME KIND TYPE SCOPE

"fullName" Variable String (null)

Outer Scope

Outer Scope

Figure 5.5: Example of the symbol table constructed from the listing 5.3

The symbol table will then be defined by the root scope, the scope it is currently in, and the last

added symbol that will be used during construction to know where the next scope will be open. As for

its operations (Table 5.2), the symbol table built for VSG presents operations for the construction phase

(OpenScope, AddSymbol and ExitScope) and for the exploration phase (EnterScope, ExitScope, Lookup

and Exists).

28

CHAPTER 5. VSG - VULNERABLE SAMPLES GENERATOR

Listing 5.4: Symbol Table construction when visiting a method declaration
public override void VisitMethodDeclaration(MethodDeclarationContext context)
{

string methodName = context.methodName().GetText();
string methodReturnType = context.returnType().GetText();
SymbolTable. AddSymbol (methodName, methodReturnType, SymbolKind.Method);

SymbolTable. OpenScope ();

Visit(context.formalParameters());
Visit(context.methodBody());
SymbolTable. ExitScope ();

}

Table 5.2: Operations provided by the Symbol Table

OpenScope() Initialize a new scope in the last added symbol and move the
current scope to there

AddSymbol(name, type, kind) Add a new symbol to the current scope

ExitScope() Move to the outer scope of the current scope

EnterScope(name) Move to the scope of a symbol if present in the current scope

Lookup(name) Search a symbol in the current and outer scopes and return its
information

Exists(name) Check if a symbol name already exists in the current, outer and
all inner scopes

The construction of the symbol table takes place from a ParserVisitor who performs the specific

operations in the appropriate visit methods. Listing 5.4 is an example of how a new method is stored in

the table. At first, it is necessary to collect additional information about the method, in this case the name

of the method and the return type. Then, a new symbol is added with the collected information and a new

scope is opened (remember that a scope is opened in the last symbol added, in this case the method

symbol). The next order is to visit the child nodes of the method declaration. One possibility would be to

invoke the VisitChildren method to visit all the nodes below. However, ANTLR visitors allows you to define

the path to follow through the parse tree. In this context, it is only necessary to visit the parameters and the

body of the method (we can exclude, for example, the list of exceptions that are thrown by the method). In

the end, it is important to leave the scope so you can then visit, for example, the next method and open

a new scope in the right place.

Let us now turn to the most important part of the symbol table: how the mutation rules will explore

the table. As in construction, it is mandatory to enter and exit the scopes in the appropriate places of the

parse tree. The only difference is that no symbols will be added and instead of opening a scope, you enter

a scope. Thus, a mutation rule will have to perform operations on the symbol table at the same points in

29

CHAPTER 5. VSG - VULNERABLE SAMPLES GENERATOR

which it was built. For example, whenever it enters a new class, the rule will have to enter the class scope,

visit its child nodes, and finally leave the scope. However, a problem arises.

Let’s imagine a rule that is only interested in visiting while loops. To define this rule, it would only

be necessary to define the visit method corresponding to the while loop. But, since we have to define

where we need to enter and leave the scopes in order to explore the symbol table correctly, we end up

having to define all the visit methods related to scopes (for example, class and method declaration). The

solution to this problem was to define a ParserVisitor only for exploring the symbol table, i.e. opening and

closing scopes. When a rule wants to explore the symbol table, instead of defining a new ParserVisitor, it

will extend the one in which the exploration is already defined. This means that, using the same example

above, the rule will only have to define the visit method for the while loop context. Obviously, if it defines a

visit method in which a scope in the symbol table exploration is opened and closed, the rule will also have

to open and close the scope to keep the exploration correct. This means that, when visiting the while loop,

the rule will have to open its scope, check if it can apply the transformation, and finally exit the scope.

5.5 Vulnerability Flow

A mutation rule is designed to detect all locations in a sample code where they can apply a certain

transformation. However, not all locations may be interesting for our purpose as they may not have an

impact on the vulnerability present in the program. This tool is intended to test a security testing application,

so transformations need to vary the presence of a security flaw in the code. For this reason, this section

introduces the vulnerability flow and describes how this additional information will help the tool in the

diversity of vulnerabilities in the code samples produced.

First, let us recall what was explained in chapter 2. The flow of a vulnerability consists of a path of code

elements by which the vulnerability manifests itself. For example, in a SQL injection, the flow shows the

steps from the user’s input to the SQL query that can be exploited by the attacker to affect the database. It

is along this path that the tool intends to apply transformations with the greatest impact on the vulnerability.

To obtain this additional information, the tool must receive, as input, an XML file with the vulnerability

flow for each sample of code. This file should follow the structure indicated in listing 5.5. This organization

has been defined to match the structure of the XML file that can be exported for each result obtained in

the Checkmarx SAST application, which is the target that the VSG tool wants to test.

Looking at this structure, it is in the Path tag that we find a set of PathNodes that we are interested in.

Each PathNode contains the information for the location of the node in the code sample: file, line, column

and text length.

The tool must load this file and store the flow information for each sample code. One small difference is

that instead of saving the line, length and node column, the tool will save the corresponding start and stop

index in the sample code to easily check if a transformation is contained in the flow. During the application

30

CHAPTER 5. VSG - VULNERABLE SAMPLES GENERATOR

Listing 5.5: Structure of the XML file with the vulnerability flow
<?xml version='1.0' encoding='utf-8'?>
<CxXMLResults>
<Query>
<Result>
<Path>
<PathNode>
<Line>22</Line>
<FileName>C:\sample\Person.java</FileName>
<Column>38</Column>
<Length>4</Length>

</PathNode>
<PathNode>
<Line>25</Line>
<FileName>C:\sample\Person.java</FileName>
<Column>10</Column>
<Length>4</Length>

</PathNode>
</Path>

</Result>
</Query>

</CxXMLResults>

of the transformations, after a rule detects all the transformations that can be applied to a sample of code,

the tool will have to check and apply only those that affect the flow nodes of the vulnerability. All the rest

will be discarded.

The next question is: what is the effect on the vulnerability flow after a transformation is applied? When

we change a piece of code, not only are we interfering with one of the flow nodes, but we are displacing

the location of the remaining nodes. This means that the information about the location of the nodes

becomes outdated.

To solve this situation, the tool will have to update the vulnerability flow after applying a transformation.

First, it will add a new node with all the new code that has been added to the program. This will cause

all the nodes that are contained in the location where the transformation was applied to disappear and

be replaced with a new node with the code inserted. Second, the tool will update the location of all the

nodes within the same file that are after the new added node, as these will be the ones affected with

the transformation. For this, it is enough to know the positions of the replaced code and the size of the

inserted code to repair the locations of the remaining nodes.

31

CHAPTER 5. VSG - VULNERABLE SAMPLES GENERATOR

 class Test {
 public void foo() {
 int n = 3;
 n++;
 }
 }

 class Test {
 public void foo() {
 int n; n = 3;
 n++;
 }
 }

"3"
start = 46
stop = 47

file = "Test.java"

Transformation

Test.java Test.java

 int n = 3;

 int n; n = 3;

Old Flow New Flow

"n"
start = 42
stop = 43

file = "Test.java"

"n"
start = 52
stop = 53

file = "Test.java"

"int n; n = 3;"
start = 38
stop = 51

file = "Test.java"

"n"
start = 55
stop = 56

file = "Test.java"

Figure 5.6: Example of how the vulnerability flow will be updated after applying a transformation

Figure 5.6 presents an example of the process of updating the vulnerability flow after applying a simple

transformation. When replacing that specific piece of code, the ”3” and ”n” (index = 42) nodes, that were

contained in the transformation, were replaced by the new ”int n; n = 3;” node containing all the

new code. In the remaining node ”n”(index = 52), which was after the location of the transformation, only

its location was updated, i.e., its start and stop index went to 55 and 56, respectively.

With all this said, the vulnerability flow presents itself as useful information for the choice of the

locations in the program in which the syntactic transformations will have the most impact on the presence

of the vulnerability and therefore limits the number of code samples produced that would be useless for

the evaluation of the security testing tool.

5.6 Code Transformation

Finally, we arrive at the most important and final part of this chapter. It is in this section that we really

find the core of this dissertation and the final step to reach the main goal. All the components that have

been described so far, represent the support for the creation and functioning of the mutation rules. It will

32

CHAPTER 5. VSG - VULNERABLE SAMPLES GENERATOR

be through the application of syntactic transformations in the code samples that it will be possible to test

the detection of vulnerabilities in a security testing application.

This section is organized as follows: first, it explains how a mutation rule is implemented to accomplish

what is intended; second, it describes how the transformations will be applied singularly in a code sample

and, third, how the rules will be combined in order to generate the most diverse samples of vulnerable

code. Finally, it will show the set of mutation rules that were implemented for the final analysis of the tool.

5.6.1 Implementing a Mutation Rule

The main function of a mutation rule is divided into two parts. The first part is concerned with detecting

all the places in the code where the transformation can be applied and how it will be applied. The second

part is related to performing the transformation in the code itself. This section focuses on the first part to

describe the process of creating a rule.

Let’s start with an example. Consider that the goal is to create a mutation rule that separates the

declaration of a new variable from its assignment. That is, if part of the code contains, for example, int

n = 3; will then be replaced by int n; n = 3;. At this point, there’s no need to worry about whether

the transformation will impact the flow of vulnerability or not.

5.6.1.1 Creating a new Visitor

The first step in implementing amutation rule is to define a ParserVisitor. This can be achieved by extending

the one created for the exploration of the symbol table. As with the construction of the symbol table, the

ParserVisitor will visit the appropriate contexts to obtain the information needed for the transformation.

For this case, it will not be necessary to resort to the symbol table since the transformation does not need

information about the symbols to be applied correctly.

Let’s call the rule we want to implement SeparateVariableDeclarationFromAssign and start by creating

a new Visitor. It will have two instance variables: the name of the file in which the rule is looking for

mutations, and a list that will be populated with the mutations found. It will also have a Visit method for

the root context of every parse tree (CompilationUnitContext), where the list of mutations is initialized and,

after visiting all children contexts and collecting all mutations, it will be returned.

The next step is to identify the context or contexts we want to visit in the program structure to as-

sess whether the transformation can be applied and, if it can, to collect the data needed to perform the

transformation process. A mutation rule may involve several changes to the contents of a code sample

in order to get the final result correct. For example, if the mutation introduces a class that needs to be

imported, the rule has to check the list of imported classes and add a new import if the desired class is

not present, which means that two local syntactic transformations would be required for the final code not

to present compilation problems. Each singular transformation has four characteristics: the name of the

33

CHAPTER 5. VSG - VULNERABLE SAMPLES GENERATOR

Listing 5.6: Creating the Visitor for the SeparateVariableDeclarationFromAssign rule
class SeparateVariableDeclarationFromAssignVisitor : JavaParserVisitor<List<Mutation>>
{

List<Mutation> Mutations;
string Filename;

public override List<Mutation> VisitCompilationUnit(CompilationUnitContext context)
{

Mutations = new List<Mutation>();
VisitChildren(context);
return Mutations;

}
}

file to which it will be applied, the start and stop indexes that represent the position of the code range that

will be removed, and finally the new code to be inserted.

For the example rule, only one context will need to be visited for the transformation, which in the

current grammar is called LocalVariableDeclaration. In order for the transformation to take place, certain

conditions must be met:

• The declaration must be of only one variable (i.e. avoid when there is ”int n = 3, x = 4”)

• The declaration must assign a value to the variable

• The declaration must specify the type of the variable to avoid cases where the var keyword is used

(introduced in Java 10)

To test these conditions, the Visitor presents the Applicable method which, receiving the variable

declaration context, approves whether the mutation can be performed.

To finish, it is only necessary to gather all the information about the transformation from the context

of the variable declaration: the start and stop indexes correspond to the index after the variable name in

the declaration (for this specific case, the two indexes will be identical since it is not necessary to remove

code), and the new code consists of a semicolon followed by the variable name. So, in the end, all this

mutation does is turn ”int x = 1;” into ”int x; x = 1;” (the highlighted code represents what was

added to the original).

Listing 5.7 shows the final version of the Visitor defined to obtain all possible transformations in a file

for the mutation rule to be developed. With this, half the work is done. All that remains is to create the

rule that will use this Visitor and apply the transformations to the code.

34

CHAPTER 5. VSG - VULNERABLE SAMPLES GENERATOR

Listing 5.7: The final result of the Visitor for the SeparateVariableDeclarationFromAssign rule
class SeparateVariableDeclarationFromAssignVisitor : JavaParserVisitor<List<Mutation>>
{

List<Mutation> Mutations;
string Filename;

public override List<Mutation> VisitCompilationUnit(CompilationUnitContext context)
{

Mutations = new List<Mutation>();
VisitChildren(context);
return Mutations;

}

public override List<Mutation> VisitLocalVariableDeclaration(
↩→ LocalVariableDeclarationContext context)

{
if (Applicable(context))
{

var variableDeclarator = context.variableDeclarators().variableDeclarator()[0];
string variableId = variableDeclarator.variableDeclaratorId().GetText();

int start = variableDeclarator.variableDeclaratorId().stop.StopIndex;
int stop = start;
string newCode = $”; {variableId}”;
Mutations.Add(new Mutation(Filename, start, stop, newCode));

}
return null;

}

private bool Applicable(LocalVariableDeclarationContext context)
{

return
// the type of the variable is specified
context.typeType() != null
// only one variable is declared
&& context.variableDeclarators().variableDeclarator().Length == 1
// a value is assigned to the variable
&& context.variableDeclarators().variableDeclarator()[0].variableInitializer() !=

↩→ null;
}

}

35

CHAPTER 5. VSG - VULNERABLE SAMPLES GENERATOR

Listing 5.8: The definition of the FindAllMutations method for the Rule class. The Visitor variable is the
visitor created for the rule.

public List<Mutation> FindAllMutations() {
List<Mutation> mutations = new List<Mutation>();

foreach (var file in Sample.Files)
{

var parser = new ParserBuilder().Parse(file.Value);
var typeInferecenceVisitor = new BuildSTVisitor();
typeInferecenceVisitor.Visit(parser);

Visitor.Filename = file.Key;
Visitor.SymbolTable = typeInferecenceVisitor.SymbolTable;

List<Mutation> fileMutations = Visitor.VisitCompilationUnit(parser);

fileMutations = Sample.Flow.PathContains(fileMutations);
mutations.AddRange(fileMutations);

}

return mutations;
}

5.6.1.2 Creating a new Rule

After creating the Visitor that will collect all the mutations present in a code sample, the next step is to

create the rule itself. The goal is to take the information about the mutations and apply it to the source

code. For this, there is a class called Rule that will serve as the basis for all rules to be created. The

purpose of this class is to define the basic functionality that will traverse all the mutation rules that are

created.

Each rule will be defined by two features: the name of the rule and the Visitor used to search for all

mutations present in a code sample. Furthermore, every rule will have two methods: the FindAllMutations()

method (listing 5.8) and the Apply() method (listing 5.9).

The FindAllMutations method, as the name implies, will search for all mutations present in a code

sample. It is at this stage that the Visitors, explained and built in the previous chapters, will finally come

into play. For each file present in the sample, the same process will be performed: parsing the contents

of the file to get the parsing tree, visiting the tree to build the symbol table, visiting the tree with the Visitor

defined for the rule to collect the list of mutations, and finally filtering only the mutations that contain

transformations with impact on the vulnerability flow present in the code sample.

As for the Apply method, the goal is to apply a specific collected mutation to the code sample. To

achieve this, it is necessary to go through the stack of mutation transformations (keep in mind that the

order in which transformations are applied is important) and, depending on their information, remove the

portion of the target code in the indicated file and replace it with the new code. To finish, it is important to

36

CHAPTER 5. VSG - VULNERABLE SAMPLES GENERATOR

Listing 5.9: The definition of the Apply method for the Rule class
public CodeSample Apply(Mutation mutation)
{

CodeSample newSample = new CodeSample(Sample.Files, Sample.Flow?.Clone());
Stack<Transformation> transformations = mutation.Transformations;

while (transformations.Count > 0)
{

var transformation = transformations.Pop();

if (Sample.Files.ContainsKey(transformation.Filename))
{

StringBuilder code = new StringBuilder(newSample.Files[transformation.Filename]);
int start = transformation.Start;
int stop = transformation.Stop;
int length = stop - start;

code.Remove(start, length);
code.Insert(start, transformation.NewCode);

newSample.Flow.UpdatePath(transformation.Filename, start, stop, transformation.
↩→ NewCode.Length);

newSample.Files[transformation.Filename] = code.ToString();
}

}

return newSample;
}

update the vulnerability flow according to the transformation information so that all subsequent mutation

rules know the correct flow locations in the new code sample.

To create the example rule that separates the declaration of a variable from its assignment, all one

needs to do is create a Rule instance with the name of the rule and the Visitor that was built in the previous

chapter 5.6.1.1.

Listing 5.10: Creating the SeparateVariableDeclarationFromAssign rule

new Rule(”SeparateVariableDeclarationFromAssign”, new

↩→ SeparateVariableDeclarationFromAssignVisitor())

5.6.2 Applying the Mutations and Rules Composition

Finally, after the entire process of creating a mutation rule, the main goal of this thesis is close to being

achieved. Only the last step is missing, that is, taking a set of developed rules and actually applying them

to a set of code samples. With this, this chapter presents the last component of the VSG tool’s internal

structure, the RulesApplier.

37

CHAPTER 5. VSG - VULNERABLE SAMPLES GENERATOR

At the beginning of this dissertation, it was stated that one of the essential points for this tool would

be that all the generated samples be as diverse as possible to cover as many cases of vulnerable code

as possible. Having diversified code samples for the same vulnerability makes it more difficult for security

analysis tools to detect them. A simple solution would be to generate a code sample for each mutation

detected in each rule. However, following this path, the generated samples would have only one difference

from the original sample, and the difficulty of detecting the vulnerability present would be low. Therefore,

the best option was to compose the different rules in order to obtain more diversity in the generated

samples. So, the last step consists not only in applying the rules, but also in combining them.

Two possible paths were considered for rule composition. The first would be to collect all mutations

of all rules directly from the original sample and make combinations with at least one mutation from each

rule. Unfortunately, this path presented a problem when two or more mutations from different rules had

to be applied in the same zones of the code. When applying the first mutation, the information of the

transformations of the following mutations would be wrong and the generated code would be syntactically

wrong. One way to avoid this would be to separately apply each of the mutations that present conflicts.

However, not only would the number of generated samples be low, but also there would not be much

diversity between the samples. Therefore, this was not the chosen solution.

The second way to compose the rules is similar to the previous solution, however, the rules are applied

by phases in each original sample. According to a predefined list of rules, in each phase, one of the rules

will be applied to the samples generated by the previous rule. This means that mutations will be collected

from the code modified by one of the mutations of the rule that was applied before. In this way, all

mutations are applied to the same code sample from which they were collected, so there is no conflict

with mutations from previous rules. At the end of the process, if all rules are applicable, all generated

samples will have one mutation from each rule and all will be different. Figure 5.7 shows this procedure

for 3 rules from start to finish.

The goal of the RulesApplier component is to receive a set of code samples, a list of rules, and to

follow the explained process to produce the mutated code samples. While doing so, this component will

also update the user with information about the rules applied for each original code sample.

38

CHAPTER 5. VSG - VULNERABLE SAMPLES GENERATOR

Rule 1

Rule 2 Rule 2Rule 2

Rule 3 Rule 3Rule 3

Original Sample

Generated Samples

Rule 3Rule 3

Figure 5.7: Rules Composition Schema. In this example, a list of 3 rules is applied to an original sample
generating 11 different versions at the end

39

C
h
a
p
te

r

6
VSG Tests

This chapter is divided in two parts. The first part shows a simple test where a single code sample is used

as input to the VSG tool and then compared to all generated samples. This will be interesting to observe

where all mutations from different rules are applied in the samples. For the second part, this chapter will

meet the main objective of this dissertation: test how VSG can be used to find false negative results in a

static application security testing tool which, in this case, will be Checkmarx SAST tool. Since Java is the

only language supported, all samples are in Java source code.

6.1 Original code sample vs Generated samples

Before jumping to the differences between the original and generated samples, the following board presents

the textual output of VSG.

VSG output during the process

Generating samples for vulnerability: Command_Injection

Sample 'original_sample':

-> Applying rule ExtractExpressionStatement

-> Applying rule ReplaceArrayInitialization

Done!

Generated 1 new sample!

40

CHAPTER 6. VSG TESTS

This shows that two rules were applied to the original sample and only one code sample was generated

from the transformations. The first rule, ExtractExpressionStatement, is similar to the known refac-

toring rule ”Extract method”that extracts an expression statement to a new method. The second rule,

ReplaceArrayInitialization, transforms an array initialization into a list with the same elements

that is converted to the respective array.

The listing 6.1 presents the original code sample given as input for this test. It’s a simple program

that removes and creates files indicated by the user input. Since there is no sanitization for the input, this

program has a Command Injection vulnerability, which means the user can execute arbitrary commands

on the host operating system. To check the impact of the transformations in the vulnerability, the listing

highlights all the flow nodes identified by Checkmarx SAST. It starts on the args parameter of the main

method and ends in the exec invocation of the Shell class.

Listing 6.1: Original code sample

import java.io.IOException;

import java.util.Arrays;

public class CleanAndCreate {

static class Shell {

public void execute(String arg) throws IOException {

Runtime.getRuntime(). exec (arg);

}

}

public static void main(String[] args) {

String[] params = { ”rm”, args [1], ”;”, ”touch”, args[2] };

String res = Arrays.stream(params).reduce(” ”, String::concat);

new Shell().execute(res);

}

}

The code sample generated in this test is displayed on listing 6.2. The highlighted green lines rep-

resent the differences between the original code sample and, therefore, where the mutations were ap-

plied by VSG. The first rule applied was the ExtractExpressionStatement rule which, in this case,

extracted the exec invocation expression to a new method within the Shell class. The second rule,

ReplaceArrayInitialization, transformed how the params array is initialized. Instead of a simple

initialization with all elements, the array is created from a temporary list to which each element has been

added before, including the first element of the args parameter which belongs to the flow.

This test, not only shows the transformations applied to a code sample, but also how these mutations

affect the presence of a vulnerability, since every rule have an impact in, at least, one element of the flow.

41

CHAPTER 6. VSG TESTS

Listing 6.2: Generated code sample
import java.io.IOException;
import java.util.Arrays;

public class CleanAndCreate {

static class Shell {
public void execute(String arg) throws IOException {

ffsQXMp(arg);
}

private void ffsQXMp(String arg) throws IOException {
Runtime.getRuntime().exec(arg);

}
}

public static void main(String[] args) {
String[] params = {};
List<String> params_temp = new ArrayList<String>();
params_temp.add(”rm”);
params_temp.add(args[1]);
params_temp.add(”;”);
params_temp.add(”touch”);
params_temp.add(args[2]);
params = params_temp.toArray(params);
String res = Arrays.stream(params).reduce(” ”, String::concat);
new Shell().execute(res);

}
}

6.2 Testing VSG against Checkmarx SAST

Following the main goal of this dissertation, a set of code samples, each with an identified vulnerability,

were used as input to test the resulting VSG tool against Checkmarx SAST. Not only different samples

were tested, but also multiple kinds of vulnerabilities were used to check if there were any differences in

terms of false negative results detected. All vulnerabilities considered of high risk in Java by Checkmarx

were chosen to test VSG.

The test was simple. Each initial code sample with a type 𝐴 vulnerability (detected by Checkmarx

SAST) was provided as input to the VSG tool. After this, all generated code samples were analyzed by

Checkmarx SAST to detect type𝐴 vulnerabilities. If not found, it means that there is a false negative result

in the analyzed sample. In other words, for each initial code sample, the number of false negative results

detected in the samples generated by the VSG tool was evaluated. Table 6.2 shows the results obtained

in the tests.

Using only the 6 mutation rules present in table 6.1, VSG was able to generate more than the initial

number of samples provided as input for almost all vulnerabilities. As discussed in chapter 5.6.2, not only

42

CHAPTER 6. VSG TESTS

Listing 6.3: Main program of VSG using the list of transformations in table 6.1
static void Main(string[] args)
{

var sampleSet = Load(initialSamplesDirectory);

var rules = new List<Rule> {
new Rule(”ExtractExpressionStatement”, new ExtractExpressionStatementVisitor()),
new Rule(”ExtractIfCondition”, new ExtractIfConditionVisitor()),
new Rule(”AddReturnVariable”, new AddReturnVariableVisitor()),
new Rule(”StringFormat”, new StringFormatVisitor()),
new Rule(”ReplaceExplicitTypeWithVar”, new ReplaceExplicitTypeWithVarVisitor()),
new Rule(”ReplaceArrayInitialization”, new ReplaceArrayInitializationVisitor()),

};

RulesApplier.Apply(sampleSet, rules);

int generatedSamples = sampleSet.ExportToFiles(generatedSamplesDirectory);
Console.WriteLine($”Generated {generatedSamples} new samples!”);

}

is this possible by applying the rules, but also in the combination of applicable mutations each rule has

in a code sample.

Table 6.1: Mutation rules used for the test

AddReturnVariable Change a return expression by declaring a new variable for the
return value and returning the variable itself

ExtractIfCondition Extract the condition of an if statement to a new variable

ReplaceArrayInitialization Create a new ArrayList using the values of an initialized array
and convert it back to an array

ReplaceExplicitTypeWithVar Whenever possible, replace an explicit type in a variable decla-
ration by the keyword var

StringFormat Replace a string interpolation expression by a string format ex-
pression

ExtractExpressionStatement Extract an expression statement into a new method

Each of these mutation rules has its own parsing tree visitor from where all the transformations are

detected in a code sample. All it’s necessary for the whole process is to create a rule from each of these

visitors and use them in the RulesApplier, together with the initial code samples provided. So, the main

program of VSG will have a similar look as in listing 6.3.

Finally, after running VSG and scanning each generated sample with Checkmarx SAST searching

for the vulnerability present in the original sample from where it was created, the results in table 6.2

were obtained. The last column of the table shows that false negative results were detected for 6 of the

43

CHAPTER 6. VSG TESTS

vulnerabilities used in the initial code samples.

Table 6.2: Results after using Checkmarx SAST to detect in the generated samples the same vulnerability
present in the original

Vulnerability
of initial
samples

of generated
samples

of false
negatives
detected

Command Injection 10 20 5
Connection String Injection 11 13 0
Deserialization of Untrusted Data 15 7 0
LDAP Injection 10 9 0
Reflected XSS All Clients 70 129 42
Second Order SQL Injection 13 14 1
Stored XSS 15 29 5
XPath Injection 13 20 2
SQL Injection 71 102 20

44

C
h
a
p
te

r

7
Conclusion

This last chapter will be a summary of all the information that was presented throughout this document

in order to recall the main goal of the project and how it was achieved.

Any tool that seeks to identify some characteristic in a given object, whether it is detecting a certain

protein in a substance, or looking for flaws in production material in a factory, suffers from the possibility

of failing its purpose and not being able to find what they are looking for when it exists, which results

in false negative results. The same is true for application security testing tools. The problem with these

results is that, for the most part, they go unnoticed and do not end up being corrected.

The main idea of static code security analysis tools is to identify vulnerabilities in an application by

analyzing the source code. The thesis of this dissertation suggests using code transformation to produce

vulnerable code samples that can be used to test the capabilities of these tools. Therefore, this project

aims to help discover false negative results and, consequently, failures in the analysis of these security

tools.

So, it was necessary to design a tool, which was called VSG, whose function would be to receive code

samples and apply transformations that would not interfere with the presence of the vulnerability. In order

for the transformations not to be random in the sample body, the vulnerability flow was also introduced

as an input to the tool to identify the places where the mutations would be better applied to change the

way of detecting the vulnerability.

The next step consisted of using ANTLR to parse the code according to the language grammar. For

each mutation rule, there is a Visitor that will traverse the parsing tree generated by ANTLR, and will collect

all possible transformations. For some rules, a type inference mechanism was needed, so a symbol table

was implemented that works as an auxiliary data structure with the purpose of storing identifiers present

in the analyzed code.

45

CHAPTER 7. CONCLUSION

After implementing the mutation rules, the last developed component of the VSG tool, RulesApplier,

will apply the generated transformations to the code sample. In order for the generated samples to be

as diverse as possible, the rules were applied in phases. At the end of the process, if all rules apply, all

samples will have a mutation of each rule and all will be different.

Finally, VSG was used to test the capability of a security testing tool, in this case Checkmarx SAST.

Using 228 vulnerable code samples written in Java as input (along with the vulnerability flows present

in each sample previously detected by Checkmarx SAST) and, applying 6 mutation rules, VSG was able

to generate a total of 343 vulnerable samples. Of this set, the Checkmarx SAST tool failed to detect

the same vulnerability present in the original sample in 75 samples. In other words, 75 false negative

results were found. It was then concluded that, through the code transformation process, it is possible

to generate samples of vulnerable code that can be used to test the ability of a security analysis tool to

detect vulnerabilities.

In the context of the Checkmarx tool, most of the false negative results were identified as a limitation

in the flow calculations that will be investigated and, if there is a solution, it will be resolved. The VSG tool

not only allowed to discover this flaw, but also provided code samples that will help to solve the problem.

7.1 Future Work

Despite the results obtained, the tool developed within the scope of this project presents not only aspects

that can be improved, but also potential features that can be added:

• For this dissertation, only the Java language was supported as an example of the project. However,

other programming languages may be supported.

• Instead of applying transformations directly in code, these could be applied at the level of an abstract

syntax tree that would later be converted to code again. This could improve the way to implement a

mutation rule that, at the moment, presents itself as a laborious process where it is easy to make

mistakes.

• The symbol table itself presents several points for improvement.

• Although not related to the main functionality of the tool, the process of identifying false negative

results can be automated (scan generated samples with the security tool) so that the final result is

only the samples generated in which it was not detected the respective security flaw.

46

Bibliography

[1] H. Agrawal, R. A. DeMillo, B. Hathaway, W. Hsu, E. W. Krauser, R. J. Martin, A. P. Mathur, and

E. Spafford. Design of Mutant Operators for the C programming language. Tech. rep. Purdue Uni-

versity, 1989.

[2] Application security testing company: Software security testing solutions: Checkmarx. 2022. url:

https://checkmarx.com/.

[3] D. B. Brown, M. Vaughn, B. Liblit, and T. Reps. “The care and feeding of wild-caught mutants.” In:

Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering. ESEC/FSE

2017. New York, NY, USA: ACM, 2017, pp. 511–522.

[4] F. W. Calliss. “Problems with automatic restructures.” In: ACM SIGPLAN Notices 23.3 (1988),

pp. 13–21.

[5] R. DeMillo, R. Lipton, and F. Sayward. “Hints on Test Data Selection: Help for the Practicing Pro-

grammer.” In: Computer 11 (1978), pp. 34–41.

[6] L. Deng, N. Mirzaei, P. Ammann, and J. Offutt. “Towards mutation analysis of Android apps.” In:

2015 IEEE Eighth International Conference on Software Testing, Verification and Validation Work-

shops. 2015, pp. 1–10.

[7] L. Deng, J. Offutt, P. Ammann, and N. Mirzaei. “Mutation operators for testing Android apps.” In:

Information and Software Technology 81 (2016), pp. 154–168.

[8] A. Derezinska and K. Kowalski. “Object-Oriented Mutation Applied in Common Intermediate Lan-

guage Programs Originated from C#.” In: 2011 IEEE Fourth International Conference on Software

Testing, Verification and Validation Workshops. 2011, pp. 342–350.

[9] M. Endsley. “Automation and situation awareness.” In: Human factors in transportation. Automa-

tion and human performance: Theory and applications. Ed. by R. Parasuraman and M. Mouloua.

Lawrence Erlbaum Associates, Inc., 1996, pp. 163–181.

[10] F. C. Ferrari, J. C. Maldonado, and A. Rashid. “Mutation Testing for Aspect-Oriented Programs.” In:

2008 1st International Conference on Software Testing, Verification, and Validation. 2008, pp. 52–

61.

47

https://checkmarx.com/

BIBLIOGRAPHY

[11] M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley, 1999.

[12] B. J. Garvin and M. B. Cohen. “Feature Interaction Faults Revisited: An Exploratory Study.” In: 2011

IEEE 22nd International Symposium on Software Reliability Engineering. 2011, pp. 90–99.

[13] J. Hu, N. Li, and J. Offutt. “An Analysis of OO Mutation Operators.” In: 2011 IEEE Fourth Inter-

national Conference on Software Testing, Verification and Validation Workshops. 2011, pp. 334–

341.

[14] A. Kaur and M. Kaur. “Analysis of Code Refactoring Impact on Software Quality.” In: MATEC Web

of Conferences 57 (2016).

[15] S. Kaur and E. H. Kaur. “Review on Identification and Refactoring of Bad Smells using Eclipse.” In:

International Journal For Technological Research In Engineering 2 (2015).

[16] S. Kim, J. Clark, and J. McDermid. “The Rigorous Generation of Java Mutation Operators Using HA-

ZOP.” In: Proceedings of the 12th International Conference on Software and Systems Engineering

and their Applications (1999).

[17] K. N. King and A. J. Offutt. “A fortran language system for mutation-based software testing.” In:

Software: Practice and Experience 21.7 (1991), pp. 685–718.

[18] B. P. Lientz and B. E. Swanson. Software Maintenance Management: A Study of the Maintenance

of Computer Application Software in 487 Data Processing Organizations. Addison-Wesley, 1980.

[19] M. Linares-Vásquez, G. Bavota, M. Tufano, K. Moran, M. Di Penta, C. Vendome, C. Bernal-Cárdenas,

and D. Poshyvanyk. “Enabling Mutation Testing for Android Apps.” In: Proceedings of the 2017 11th

Joint Meeting on Foundations of Software Engineering. ESEC/FSE 2017. New York, NY, USA: ACM,

2017, pp. 233–244.

[20] R. J. Lipton and F. Sayward. “The status of research on program mutation.” In: 1978.

[21] T. Loise, X. Devroey, G. Perrouin, M. Papadakis, and P. Heymans. “Towards Security-Aware Mutation

Testing.” In: 2017 IEEE International Conference on Software Testing, Verification and Validation

Workshops (ICSTW). 2017, pp. 97–102.

[22] R. Lämmel. “Towards Generic Refactoring.” In: Proceedings of the 2002 ACM SIGPLAN Workshop

on Rule-Based Programming. RULE ’02. New York, NY, USA: Association for Computing Machinery,

2002, pp. 15–28.

[23] Y. Maezawa, K. Nishiura, H. Washizaki, and S. Honiden. “Validating Ajax Applications Using a Delay-

Based Mutation Technique.” In: Proceedings of the 29th ACM/IEEE International Conference on

Automated Software Engineering. ASE ’14. New York, NY, USA: ACM, 2014, pp. 491–502.

[24] E. Mealy and P. Strooper. “Evaluating software refactoring tool support.” In: Australian Software

Engineering Conference (ASWEC’06). 2006, 10 pp.–340.

48

BIBLIOGRAPHY

[25] T. Mens. “Practical analysis for refactoring.” Doctoral dissertation. University of Illinois at Urbana-

Champaign, Champaign, IL, 1999.

[26] T. Mens, S. Demeyer, and D. Janssens. “Formalising Behaviour Preserving Program Transforma-

tions.” In: Proc. Int’l Symp. Principles of Software Evolution. 2002, pp. 286–301.

[27] T. Mens and T. Tourwé. “A survey of software refactoring.” In: IEEE Transactions on Software

Engineering 30.2 (2004).

[28] S. Mirshokraie, A. Mesbah, and K. Pattabiraman. “Efficient JavaScript Mutation Testing.” In: 2013

IEEE Sixth International Conference on Software Testing, Verification and Validation. 2013, pp. 74–

83.

[29] S. Mirshokraie, A. Mesbah, and K. Pattabiraman. “Guided Mutation Testing for JavaScript Web

Applications.” In: IEEE Transactions on Software Engineering 41.5 (2015), pp. 429–444.

[30] L. Morell. “A Theory of Error-based Testing.” Doctoral dissertation. Univ. of Maryland at College

Park, 1984.

[31] E. Murphy-hill and A. P. Black. “Refactoring Tools: Fitness for Purpose.” In: IEEE Computer Society

(2008).

[32] J. Nanavati, F. Wu, M. Harman, Y. Jia, and J. Krinke. “Mutation testing of memory-related opera-

tors.” In: 2015 IEEE Eighth International Conference on Software Testing, Verification and Validation

Workshops (ICSTW). 2015, pp. 1–10.

[33] M. O’Cinnéide and P. Nixon. Composite Refactorings for Java Programs. Tech. rep. Dept. of Com-

puter Science, Univ. College Dublin, 2000.

[34] A. J. Offutt. “The Coupling Effect: Fact or Fiction?” In: SIGSOFT Softw. Eng. Notes 14.8 (1989),

pp. 131–140.

[35] A. J. Offutt. “Investigations of the Software Testing Coupling Effect.” In: ACM Trans. Softw. Eng.

Methodol. 1.1 (1992), pp. 5–20.

[36] A. J. Offutt and R. H. Untch. “Mutation 2000: Uniting the Orthogonal.” In: Mutation Testing for the

New Century. 2001, pp. 34–44.

[37] W. F. Opdyke. “Refactoring Object-Oriented Frameworks.” Doctoral dissertation. University of Illinois

at Urbana-Champaign, 1992.

[38] W. F. Opdyke and R. E. Johnson. “Refactoring: An Aid in Designing Application Frameworks and

Evolving Object-Oriented Systems.” In: Proceedings of SOOPPA ’90: Symposium on Object-Oriented

Programming Emphasizing Pratical Applications. 1990.

[39] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. L. Traon, and M. Harman. “Mutation Testing Advances:

An Analysis and Survey.” In: Advances in Computers 112 (2019), pp. 275–378.

49

BIBLIOGRAPHY

[40] T. Parr. The Definitive ANTLR 4 Reference. 2nd. Pragmatic Bookshelf, 2013.

[41] D. B. Roberts and R. Johnson. “A formal foundation for object-oriented software evolution.” Doctoral

dissertation. Department of Computer Science, Vrije Universiteit Brussel, 1999.

[42] H. Shahriar and M. Zulkernine. “Mutation-Based Testing of Buffer Overflow Vulnerabilities.” In:

2008 32nd Annual IEEE International Computer Software and Applications Conference. 2008,

pp. 979–984.

[43] H. Shahriar and M. Zulkernine. “Mutation-Based Testing of Format String Bugs.” In: 2008 11th

IEEE High Assurance Systems Engineering Symposium. 2008, pp. 229–238.

[44] S. Tichelaar, S. Ducasse, S. Demeyer, and O. Nierstrasz. “A meta-model for language-independent

refactoring.” In: Proceedings International Symposium on Principles of Software Evolution. 2000,

pp. 154–164.

[45] T. Tourwé and T. Mens. “Identifying refactoring opportunities using logic meta programming.” In:

Seventh European Conference on Software Maintenance and Reengineering, 2003. Proceedings.

2003, pp. 91–100.

[46] M. P. Usaola, G. Rojas, I. Rodríguez, and S. Hernández. “An Architecture for the Development of

Mutation Operators.” In: 2017 IEEE International Conference on Software Testing, Verification and

Validation Workshops. 2017, pp. 143–148.

[47] P. Vilela, M. Machado, and W. E. Wong. “Testing for security vulnerabilities in software.” In: Pro-

ceedings of the 6th IASTED International Conference on Software Engineering and Applications

(2002), pp. 460–465.

[48] M. Ward and K. Bennett. “Formal Methods to Aid the Evolution of Software.” In: International

Journal of Software Engineering and Knowledge Engineering (1995), pp. 25–47.

[49] F. Wu, J. Nanavati, M. Harman, Y. Jia, and J. Krinke. “Memory mutation testing.” In: Information

and Software Technology 81 (2017), pp. 97–111.

50

	List of Figures
	List of Tables
	Listings
	Introduction
	The Goal
	A Proposed Solution
	Document Structure

	Background
	Checkmarx SAST

	State of The Art: Refactoring
	Definition of Refactoring
	Refactoring Example
	Refactoring Techniques
	Automated Refactoring

	State of The Art: Mutation Testing
	The Process of Mutation Analysis
	Mutation Operators
	Operators for Specific Programming Languages
	Operators for Specific Categories of Programming Languages
	Operators for Specific Categories of Applications
	Operators for Specific Categories of Bugs

	VSG - Vulnerable Samples Generator
	A Samples Generation Tool
	VSG Architecture
	Parsing with ANTLR
	Symbol Table
	Symbol Table in VSG

	Vulnerability Flow
	Code Transformation
	Implementing a Mutation Rule
	Applying the Mutations and Rules Composition

	VSG Tests
	Original code sample vs Generated samples
	Testing VSG against Checkmarx SAST

	Conclusion
	Future Work

	Bibliography

