
Universidade do Minho
Escola de Engenharia
Departamento de Informática

Rafael Braga Gomes da Costa

Animating user interface prototypes
with formal models

November 2020

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Rafael Braga Gomes da Costa

Animating user interface prototypes
with formal models

Master dissertation
Integrated Master in Informatics Engineering

Dissertation supervised by
José Creissac Campos
Rui Couto

November 2020

D I R E I T O S D E AU T O R E C O N D I Ç Õ E S D E U T I L I Z A Ç Ã O D O
T R A B A L H O P O R T E R C E I R O S

Este é um trabalho académico que pode ser utilizado por terceiros desde que respeitadas as
regras e boas práticas internacionalmente aceites, no que concerne aos direitos de autor e
direitos conexos.

Assim, o presente trabalho pode ser utilizado nos termos previstos na licença abaixo
indicada.

Caso o utilizador necessite de permissão para poder fazer um uso do trabalho em
condições não previstas no licenciamento indicado, deverá contactar o autor, através do
RepositóriUM da Universidade do Minho.

Licença concedida aos utilizadores deste trabalho

Atribuição
CC BY
https://creativecommons.org/licenses/by/4.0/

ii

https://creativecommons.org/licenses/by/4.0/

S TAT E M E N T O F I N T E G R I T Y

I hereby declare having conducted this academic work with integrity. I confirm that I have
not used plagiarism or any form of undue use of information or falsification of results along
the process leading to its elaboration. I further declare that I have fully acknowledged the
Code of Ethical Conduct of the University of Minho.

iii

A C K N O W L E D G E M E N T S

I would like to express my sincere gratitude and appreciation to my supervisor, Professor
José Creissac Campos, for his guidance, availability, commitment, and continuous assistance.
Without his exceptional suggestions, this work would not have been possible.

I would also link to thank my co-supervisor, Professor Rui Couto, for his help and valuable
ideas that vastly contributed to the final result.

I am incredibly grateful to my family for their unconditional support, affection and for
pushing me in the right direction throughout my life.

I would like to express my profound gratitude to my girlfriend, Mariana Farias, for always
giving me the inspiration and motivation that I need.

My special thanks to Diogo Silva, for providing me relevant feedback that helped me to
achieve better results.

I am very grateful to my friends for their support and companionship throughout my life
and for giving me countless memorable moments that allowed me to stay focused.

Last but not least, I wish to extend my special thanks to all participants that completed a
survey to help me gather valuable data for this dissertation.

iv

A B S T R A C T

The User Interface (UI) provides the first impression of an interactive system and should,
thus, be intuitive, in order to guide users effectively and efficiently in performing their tasks.
User interface prototyping is a common activity in UI development, as it supports early
exploration of the UI design by potential users.

UI quality plays a crucial role in safety-critical contexts, where design errors can poten-
tially lead to catastrophic events. Model-based analysis approaches aim to detect usability
and performance issues early in the design process by leveraging formal analysis. They
complement prototyping, which supports user involvement, but not an exhaustive analysis
of the designs.

The IVY Workbench emerges as a model-based analysis tool intended for non-expert
usage. The tool was originally focused on supporting modelling and verification, but more
recently an effort began to combine the formal model capabilities with UI mock-ups, to
produce more interactive prototypes than traditional mock-up editors support.

This work addresses the enhancement of the prototyping features of the IVY Workbench.
The improvements of such features include the creation of a dynamic widget library that
can vastly improve the quality of prototypes. Such a library, however, should be compatible
with several mock-up editors to attract a broader design community.

The results of this work include an analysis of alternative prototyping tools, identifying
potential features that can enhance the IVY Workbench, the creation of a dynamic widget
library that is compatible with several mock-up editors, and several improvements to IVY’s
prototyping plugin, including the addition of code exporting functionalities. Usability tests
were conducted to validate the new features of the tool, with positive results. Two mobile
applications were also created, allowing users to test prototypes in their mobile devices.

Keywords: User interface, prototype, user-centred design, widget.

v

R E S U M O

A UI proporciona o primeiro contacto entre um utilizador e um sistema interativo. Assim,
a UI deverá ser capaz de guiar o utilizador na execução das suas tarefas, de um modo
eficiente e eficaz. A prototipagem de interfaces é uma atividade comum no processo de
desenvolvimento de UIs, já que permite a exploração antecipada do design de uma UI com
potenciais utilizadores.

A UI tem um papel bastante relevante no contexto de sistemas críticos, onde falhas no
design podem gerar eventos catastróficos. As metodologias de análise baseadas em modelos
procuram detetar potenciais falhas de usabilidade e desempenho, em fases iniciais do
processo de desenvolvimento, através de análise formal. Estas metodologias complementam
o processo de prototipagem, que suporta o envolvimento dos utilizadores mas não oferece
uma análise exaustiva do design.

A IVY Workbench surge como uma ferramenta de análise baseada em modelos que visa
suportar utilizadores sem grandes conhecimentos de análise formal. Embora originalmente
focada na modelação e verificação, surgiu recentemente um esforço para combinar as
capacidades da análise formal com mock-ups da UI. O objetivo é produzir protótipos com
maior nível de interação do que os produzidos pelos tradicionais editores de mock-ups.

O presente trabalho apresenta melhorias das capacidades de prototipagem da ferramenta
IVY Workbench. Estas melhorias incluem a criação de uma biblioteca de widgets dinâmicos,
que aperfeiçoa a qualidade dos protótipos desta ferramenta. Esta biblioteca deverá ser
compatível com múltiplos editores de mock-ups, de modo a atrair uma vasta comunidade de
designers.

Os resultados deste trabalho incluem uma análise de alternativas de ferramentas de
prototipagem, onde são identificadas funcionalidades que podem aprimorar a ferramenta
IVY Workbench; a criação de uma biblioteca de widgets dinâmicos, compatível com inúmeros
editores de mock-ups; assim como várias melhorias efetuadas no plugin de prototipagem
desta ferramenta, incluindo a adição de funcionalidades de exportação de código fonte.
Foram realizados testes de usabilidade para validar as novas funcionalidades da ferramenta
com utilizadores, onde foram obtidos resultados positivos. Finalmente, foram criadas
duas aplicações móveis que permitem que os utilizadores testem os protótipos nos seus
dispositivos móveis.

Palavras-Chave: User interface, protótipo, user-centred design, widget.

vi

C O N T E N T S

1 introduction 1

1.1 Contextualization 1

1.2 Motivation 2

1.3 Aim of the work 2

1.4 Document structure 3

2 state of the art 4

2.1 User-centred Design 4

2.2 Prototyping 6

2.2.1 Prototyping dimensions 7

2.3 Prototyping Tools 12

2.3.1 Mock-up editors 13

2.3.2 Model-based tools 16

2.4 Summary 22

3 requirements of interface prototyping 24

3.1 Prototyping tools revisited 24

3.1.1 Pencil Project 24

3.1.2 Adobe XD 24

3.1.3 PVSio-Web 25

3.1.4 CIRCUS 25

3.1.5 IVY’s Prototyping Plugin 25

3.2 Requirements 27

3.3 Technologies 28

3.3.1 SVG 29

3.3.2 DOM 31

3.3.3 Apache Batik 32

3.3.4 Rhino 33

3.4 Summary 33

4 the prototyping plugin 35

4.1 Approach 35

4.2 Workflow 36

4.3 Architecture of the plugin 37

4.4 Generic SVG parser 39

4.5 Dynamic widget framework 40

4.5.1 Dynamic widget structure 41

vii

contents viii

4.5.2 IVY scripting environment 43

4.5.3 Compatibility with mock-up editors 44

4.6 Added features 45

4.6.1 SVG renderer 46

4.6.2 SVG tree sidebar 46

4.6.3 States and events sidebar 47

4.6.4 Prototype simulation window 49

4.6.5 Dynamic widget collection 49

4.7 Evolutionary prototyping 51

4.7.1 Formal model export 51

4.7.2 States and events export 54

4.7.3 Android and iOS mobile applications 55

4.8 Summary 55

5 plugin validation and evaluation 57

5.1 B. Braun Perfusor ® Space 57

5.1.1 Formal Model 58

5.1.2 UI Mock-up 59

5.1.3 Prototype Configurations 60

5.2 Usability Tests 61

5.2.1 Procedure 61

5.2.2 Participants 63

5.2.3 Collected data and results 63

5.3 Summary 65

6 conclusion 67

6.1 Results 67

6.2 Future Work 69

a listings 77

a.1 Switch widget 77

a.2 B. Braun Perfusor ® Space Formal Model 81

b usability tests documents 83

b.1 Consent Form 83

b.2 Experiment Script 85

L I S T O F F I G U R E S

Figure 2.1 User-centred Design (UCD) process and its activities represented as
rectangles (image adapted from ISO (1999)). 5

Figure 2.2 Paper sketch mock-up representing a sign up page. 8

Figure 2.3 Comparison between low and high-fidelity prototypes. 10

Figure 2.4 Example of a prototype consisting of two clickable mock-ups. When a
user clicks on a list item of the home page, he or she will be redirected
to the chat page (prototype made with Adobe XD). 11

Figure 2.5 Prototyping environment of the Pencil Project. The current prototype
represents a home page built with the collection of widgets available
on the left panel. 14

Figure 2.6 Definition of different states for a checkbox component with Adobe
XD. 15

Figure 2.7 Architecture of the CIRCUS environment (source: Campos et al.
(2020)). 17

Figure 2.8 Prototyping environment of the PVSio-Web. Green areas over the
prototype image represent the widgets depicted on the left panel.
The right panel lists all the available environments of this tool. 18

Figure 2.9 Representation of a device with clock and chronometer modes, built
with the prototyping plugin of the IVY Workbench. The right panel
presents the interactable elements available for assigning actions. Any
interaction with this panel reflects in the prototype (the dark green
highlight over the clock icon). 21

Figure 3.1 Architecture of the current version of IVY’s prototyping plugin
(Araújo, 2019). 26

Figure 3.2 Shape associated with the SVG document of Listing 3.1. 29

Figure 3.3 DOM tree associated with the HTML document of Listing 3.2. 31

Figure 4.1 Schematic representation of the primary components of IVY Work-
bench prototypes. 36

Figure 4.2 Activity diagram representing the workflow of the prototyping plu-
gin. 37

Figure 4.3 Simplified class diagram of the prototyping plugin architecture. 38

Figure 4.4 Representation of the different possibilities of the switch widget
checked state. 42

ix

list of figures x

Figure 4.5 Prototyping plugin interface. 46

Figure 4.6 Conditional state configuration of a switch widget. 48

Figure 4.7 Simulation window of the prototyping plugin. 49

Figure 4.8 Developed mobile applications. 56

Figure 5.1 Infusion pump mock-up with the respective association between its
elements and the formal model’s attributes and actions. The formal
model also contains the infuse action that is triggered every one
second. 58

Figure 5.2 Configurations of the external widgets led and cursor. 60

L I S T O F TA B L E S

Table 2.1 Advantages and disadvantages of rapid, iterative and evolutionary
prototypes. 13

Table 2.2 Categorization of the studied prototyping tools according to precision,
interactivity and evolution. 22

Table 5.1 Participants involved in the usability tests. 63

Table 6.1 Updated comparison table against the new features of IVY Work-
bench. 69

xi

L I S T O F L I S T I N G S

3.1 Example of a SVG document. 30

3.2 Example of a HTML document. 32

4.1 Structure of the switch widget. 41

4.2 Structure of a user defined widget library for Pencil. 44

4.3 Widget structure compatible with the studied mock-up editors. 45

4.4 Different forms of axioms. 52

4.5 Generic conversion of axioms into Javascript code. 53

4.6 Formal model of a switch. 53

4.7 Javascript code generated from the switch model. 53

4.8 Example of the compatibility between the Apache Batik library and the
browser Document Object Model (DOM). 54

A.1 Full code of the switch widget. 77

A.2 Formal model of the medical device B. Braun Perfusor Space. 81

xii

A C R O N Y M S

A

API Application Programming Interface.

C

CSS Cascading Style Sheets.

D

DOM Document Object Model.

G

GUI Graphical User Interface.

H

HCI Human-computer Interaction.

HTML Hyper Text Markup Language.

I

ICO Interactive Cooperative Objects.

J

JPEG Joint Photographic Experts Group.

M

MAL Modal Action Logic.

MVC Model-View-Controller.

P

PNG Portable Network Graphics.

xiii

Acronyms xiv

PVS Prototype Verification System.

S

SVG Scalable Vector Graphics.

U

UCD User-centred Design.

UI User Interface.

UUID Universally Unique Identifier.

UX User Experience.

W

W3C World Wide Web Consortium.

X

XML Extensible Markup Language.

1

I N T R O D U C T I O N

It is of crucial importance for user interfaces to be well designed and intuitive, thereby
leading to correct system usability and promoting user acceptance and productivity.

Building prototypes is a typical techniques used to help improve user interface quality. In
many cases these prototypes consist of mock-ups of the envisaged design. When considering
safety-critical systems, however, more detailed prototypes, capturing also the behaviour of
the systems, are needed. Models of user interface behaviour can be useful in this regard.

This work addresses the prototyping of user interfaces. The current chapter aims to
introduce the domain of user interface prototyping and the motivation of model-based
approaches for critical systems design, with a particular focus on the IVY Workbench tool.

1.1 contextualization

The UI plays a crucial role in the field of interactive systems because it is the component
of the system that users can hear, see, touch, understand or interact with. The UI should
be easy to use and intuitive, promote efficient system use, to increase productivity and
satisfaction. By contrast, a poorly designed UI leads to exasperation, frustrations and may
even lead users to abandon the system permanently Galitz (2007). Besides, in the field of
critical systems, where human lives are at risk, a bad UI design could lead to potentially
catastrophic events. Consequently, it is indispensable to design the system by taking into
account the requirements of the users.

In this context, prototyping emerges as an essential step of the design process. It provides
a quick and inexpensive first impression of the system before its release, allowing users
and designers to identify usability issues early. Therefore, prototypes provide a method for
designers to evolve the system into a final result that meets the users’ demands.

Prototypes can take many forms, from rough sketches to complex animations built with
software tools. Some prototyping tools focus on the visual representation, producing mock-
ups with several levels of detail that can closely resemble the final look of the system, the
so-called mock-up editors.

1

1.2. Motivation 2

However, in safety-critical fields, even if the prototype is detailed enough to capture all
relevant features of the system, it may not present the required level of analysis thoroughness.
Model-based approaches surpass these issues by involving a formal analysis of the system
behaviour alongside with its design. For this reason, tools of this approach tend to be often
complex and designed for experts.

The IVY Workbench (Campos and Harrison, 2008; Couto and Campos, 2019) is a model-
based tool currently under development. It provides a set of plugins with multiple features
intended for a multidisciplinary team. One of its main goals is to provide a simple environ-
ment for non-experts.

1.2 motivation

Conceiving well designed and intuitive systems can be an expensive and time-consuming
task, requiring early planning, testing, and evaluation with the users. In safety-critical con-
texts, this process grows in complexity, demanding model-based tools for proper prototyping
of the system behaviour.

However, the model-based solutions found so far require extensive knowledge of the
tool (cf. Campos et al., 2020). Furthermore, they require designers to understand the internal
model of the system behaviour when building prototypes for the system UI. Thus, the
current solutions for this approach target domain experts and programmers.

This work proposes a more powerful model-based approach with the IVY Workbench
tool. A combination of the prototyping features of the mock-up editors and the formal
analysis of this tool can potentially produce highly-detailed prototypes with large sets of
user interaction. Moreover, the usage of these features expands the target fields of this tool,
enabling prototype creation for non-expert users.

1.3 aim of the work

The main goal of this work is to enhance the prototyping features of the IVY Workbench
with the definition of a widget framework capable of introducing dynamic behaviour to the
prototypes’ interface and validate it with the creation of a collection of programmable and
easy to use widgets. We envisage that these widgets will be embedded into SVG (Scalable
Vector Graphics) files, which are often used in mock-up editors. This approach will allow
designers to build mock-ups with dynamic functionalities in their preferred tools and later
import these mock-ups into IVY Workbench.

This work also aims to bring together prototyping techniques and model-based tools, to
achieve a user-friendly environment for user interface prototyping in the IVY Workbench.
The goal is to explore relevant features of mock-up editors and provide an abstraction of the

1.4. Document structure 3

user interface models, in order to support synergistic but independent development of both
layers, thus promoting task division within a multidisciplinary team. Furthermore, cognitive
and usability tests of this tool should be carried out with non-expert users to validate these
subjects.

The current work also addresses tests for compatibility of the tool’s prototypes with the
major mobile platforms, such as Android and iOS. The purpose is to promote prototype
usability, allowing users to test and validate prototypes in their own mobile devices.

To summarize, the goals of this work are the following:

• Design a widget framework capable of introducing dynamic behaviour to prototypes.

• Validate this framework by creating a collection of programmable widgets.

• Explore relevant features of prototyping tools that can improve the IVY Workbench
prototyping functionality.

• Provide support for importing prototypes from multiple prototyping tools.

• Automatize the prototyping features of the IVY Workbench.

• Perform usability tests with non-expert users.

• Evaluate cross-platform compatibility of the prototypes by performing tests on mobile
devices.

1.4 document structure

The remaining of the dissertation includes the following chapters:

• Chapter 2 reviews previous studies regarding the user-centred design methodology,
prototyping techniques and prototyping tools. This chapter ends with a comparison of
those tools according to their prototyping features.

• Chapter 3 explores features to include in the IVY Workbench prototyping plugin,
describing their requirements and the technologies needed.

• Chapter 4 presents the contribution made to the prototyping features of the IVY
Workbench.

• Chapter 5 provides an application example of the new prototyping features. This
chapter also details the results obtained from the tests with non-expert users.

• Chapter 6 presents the conclusions regarding the additional prototyping features and
the studies conducted in this project, as well as prospects for future work.

2

S TAT E O F T H E A RT

Use errors derived from user interface design flaws are a significant concern in safety-critical
contexts. Prototypes provide a means to improve the design process by helping users and
designers in the early identification of usability issues (Beaudouin-Lafon and Mackay, 2002).
In critical systems design, however, prototyping is not enough to provide the required
level of assurance. Even if the prototype is detailed enough to capture all relevant aspects
of the system, it may not present the required level of analysis thoroughness. A correct
application of human factors intrinsic to UCD and the usage of prototyping tools supporting
this methodology could conceivably augment the safety level of these systems (Cacciabue,
2004).

This chapter describes the UCD methodology and its relevance for critical systems design,
as well as the chief prototyping techniques. Ultimately, it also reports examples of two types
of tools that support prototyping: model-based tools and mock-up editors.

2.1 user-centred design

This section describes a design process focused around users’ needs called user-centred
design, and provides a brief explanation about alternatives centred around technologies, the
so-called technology-centred design.

Traditionally, systems have been designed and developed from a technology-centred
view (Endsley and Debra, 2011). As technology grows, more and more components are
added, like displays and sensors. This style of approach, centred around the technologies,
assigns a great responsibility to the users since they are left to keep up with the exponential
growth in complexity of the system. Because humans can only process a certain amount of
information at once, this becomes a pitfall, especially in the design of critical systems, such
as those found in the medical and avionics domains. A good design should focus more on
users intentions and their working conditions rather than technologies, since the opposite
tends to induce usability errors.

UCD (ISO, 1999) emerges as an alternative to the complexity and error induced by the
technology-centred design methodologies. This approach’s prime focus is to make systems

4

2.1. User-centred Design 5

Figure 2.1: UCD process and its activities represented as rectangles (image adapted from ISO (1999)).

usable by incorporating human factors, ergonomics knowledge and balancing the allocation
of functions and responsibilities between users and technology. One of the main principles
of this methodology is the active involvement of users that provide a valuable source of
knowledge about their demands, while also increasing their interaction with developers.
Furthermore, UCD is an iterative process that minimizes the risk of poorly designed systems
by testing preliminary design solutions against real scenarios and user requirements. Lastly,
another fundamental principle of the UCD is the involvement of a multidisciplinary team that
should be sufficiently diverse to make relevant design decisions. The correct application of
UCD and its principles assists developers to produce systems that support users according to
their goals, tasks and needs while motivating them to learn. The benefits of this methodology
can include improved user satisfaction, enhanced quality of work, increased productivity,
reductions of learning curves and training costs.

UCD process should start at the most beginning stage of the project and repeated iteratively
until the system satisfies all the requirements, as depicted in Figure 2.1. This process should
have the following four inherent design activities:

• The context specification relates to the identification of the characteristics and roles of
the intended users. Furthermore, it describes the tasks the users are to perform and
the environment in which they are to work with the system.

2.2. Prototyping 6

• The requirements specification is a description of user and organizational require-
ments. In this activity takes place the division of the system tasks between humans
and technology.

• The production of design solutions activity relates to the collection and management
of both multidisciplinary design proposals and user feedback. Moreover, it iteratively
evolves the design solutions in response to the collected feedback until the design
goals are met.

• The design evaluation is the activity that tests and validates the design solutions of
the system to ensure that they satisfy the requirements of the users, the tasks and the
environment.

To summarize, UCD is an iterative process that focuses on users tasks and characteristics.
It receives input from a multidisciplinary team to explore diverse design ideas from various
fields, such as ergonomics and cognitive science. Lastly, it collects user feedback from
interaction with generated design solutions. Prototypes play a crucial role in the latter
subject, by providing a concrete and inexpensive representation of the system, and are
described with detail in the next section.

2.2 prototyping

A prototype is a concrete representation of part or all of a system, used to envision and
reflect on the final product (Beaudouin-Lafon and Mackay, 2002). A prototype can be
defined differently according to the application area. In architecture, for instance, a plausible
prototype is a scaled-down representation of the building. By contrast, prototypes for
interactive systems, although with limited information, should present a full-scaled interface.

Prototypes support creativity and innovation (Viswanathan and Linsey, 2009), helping
designers to generate ideas, specify design problems, and gather information about users and
their habits. They promote communication and interaction between designers, managers,
developers and customers. Furthermore, they allow early evaluation by collecting user
feedback throughout the design process with usability tests. Therefore, they are useful to
capture user requirements (Deininger et al., 2017), anticipate possible improvements, and
identify and mitigate errors (Devadiga, 2017), both early and late in the design process.

Prototyping plays a crucial role in the design process, especially in the research field of
Human-computer Interaction (HCI), being used in the early stages to explore several design
options and direct the development further through iterations (Elverum and Welo, 2014).
It is also one of the most significant activities of UCD by allowing users to evaluate the
product throughout the design process (Rocha Silva et al., 2015).

2.2. Prototyping 7

This section begins with the introduction of four dimensions for analysing prototypes.
Then, it describes three prototyping approaches: rapid, iterative and evolutionary.

2.2.1 Prototyping dimensions

According to Beaudouin-Lafon and Mackay (2002), prototypes and its techniques have four
dimensions:

• Representation describes their form.

• Precision measures their level of detail when compared to the final product.

• Interactivity describes the user interaction with the prototype.

• Evolution describes their expected life cycle.

Representation

Prototypes take different forms, from rough sketches to complex computer animations, to
serve many purposes. Each form is useful for designers and users in several ways. This
section distinguishes two types of prototype representations: offline and online (Beaudouin-
Lafon and Mackay, 2002).

Offline prototypes do not require a computer and usually include paper sketches (Figure
2.2) and videos. They provide a quick and inexpensive first impression of the system that
allows designers to explore several options without becoming overly attached to the first
solution. For this reason, these prototypes are mainly used in the early stages of design and
are typically thrown away once they fulfil their purpose. Another chief feature of offline
prototypes is that developing them does not require any particular set of skills, promoting
multidisciplinary involvement in the design process (Bähr, 2013).

Online prototypes, also referred to as software prototypes, run on a computer. They typi-
cally include computer animations, interactive videos, and programs created with scripting
languages. Therefore, online prototypes usually resemble the future product (Johansson
and Arvola, 2007). However, this representation of prototypes is typically more expensive
than the offline type and may require skilled and domain-specific professionals to imple-
ment their features. Additionally, they narrow the number of design proposals, as opposed
to offline ones. For these reasons, online prototypes are more practical in the latter stages
of design.

Offline prototypes provide a rapid iteration cycle, quick and low detailed solution.
Whereas online prototypes focus more on the implementation, requiring high costs, both in
skill and time. One must consider the purpose of the prototype at each stage of the design
process and choose the best-suited representation.

2.2. Prototyping 8

Figure 2.2: Paper sketch mock-up representing a sign up page.

Precision

Prototyping is an iterative process that entails the design and redesign of a system into a
functional product that can be evaluated by the target users (Suleri et al., 2019). Hereupon,
the term precision regards to the level of detail or fidelity of a prototype. Imprecise prototypes,
herein called low-fidelity prototypes, offer a version of a product open to further discussion
of design ideas. Medium-fidelity prototypes provide a more detailed look with limited
functionality (Engelberg and Seffah, 2002). High-fidelity prototypes provide a very close
look of the final product.

Low-fidelity prototypes are useful to identify design issues at very early stages of the
design process (Carter and Hundhausen, 2010). They provide a quick and inexpensive way
to explore an extensive set of new design ideas, as they are usually implemented with paper
sketches or screen mock-ups. They also stimulate communication between designers and
users and avoid costly redesigns.

Medium-fidelity prototypes focus on the interactive aspects, namely the navigation
between components, functionality and layout. They also provide a more detailed look than
lower-fidelity versions. However, both the look and feel aspects are limited when compared
to the final product. This type of prototypes is also less time consuming and have much
lower costs as compared with higher-fidelity versions.

2.2. Prototyping 9

Lastly, High-fidelity prototypes offer a way for users to test a close version of the system
UI, both in terms of functionality and representation. Therefore, they are more expensive
than the low-fidelity ones, both in cost and time. Ergo, they are usually targeted to the latter
stages of the design process. High-fidelity prototypes are very useful for the identification
of design problems where low and medium-fidelity prototypes may not suffice. Paper
sketches or screen mock-ups could not convey the full sense of the system behaviour and
do not provide an adequate environment of user testing and execution (Virzi et al., 1996).
Furthermore, in safety critical domains, for instance, the requirements and precision of
prototypes are usually high since there is the risk of fatal accidents (Rottermanner et al.,
2018).

The level of fidelity of prototypes usually increases as the design process iterates, and more
details are set. Lower fidelity levels provide an inexpensive way for designers to expand the
universe of design solutions rapidly, whereas higher levels refine the solutions into the final
product. Figure 2.3 illustrates these concepts by providing a comparison between low and
high-fidelity prototypes of a mobile application page. Notice that the low-fidelity version is
represented by a wireframe, emphasizing the main components of the UI but not their look
and feel. By contrast, the high-fidelity variant represented by a mock-up presents a more
detailed version of the UI, including icons and the style of its components. Section 2.3.1
discusses and provides some examples of wireframing and mock-up tools, the so-called
mock-up editors.

Interactivity

Effective interaction design is crucial in HCI systems but challenging to implement since it
implies the definition of how a system should be used. Although many systems provide
attractive visuals, they fail on user interaction (Beaudouin-Lafon and Mackay, 2002). Usually,
higher levels of interactivity bring user’s satisfaction, effectiveness and efficiency towards
the designed system (Teo et al., 2003). Hereupon, designers must hold a deep understanding
of users and their working practises.

Prototypes have three different classes, according to their interactivity level: fixed, fixed-
path, and open (Beaudouin-Lafon and Mackay, 2002). Fixed prototypes do not support user
interaction and are merely a preview of the system. A set of video clips or precomputed
animations are examples of fixed prototypes. Fixed-path prototypes provide little user
interaction, usually triggered by a specific action. A typical example of this implementation
consists of a set of clickable mock-ups, mainly used to simulate the UI flow and navigation
between components of the designed application (Figure 2.4). Finally, open prototypes
provide more support for user interaction by allowing some level of control flow, working
and behaving like the target system, although with limitations, such as poor error-handling,
limited user input and performance.

2.2. Prototyping 10

Figure 2.3: Comparison between low and high-fidelity prototypes.

These three classes of prototypes address different levels of interactivity. Fixed prototypes
are a simple illustration of the system, whereas fixed-path prototypes offer the experience
of what the interaction might look like, in certain situations. Finally, open prototypes are
useful to determine how users will interact with the system.

Evolution

Evolution defines the lifespan of a prototype. According to their lifespan, prototypes can be
rapid, iterative, or evolutionary (Beaudouin-Lafon and Mackay, 2002).

The primary role of rapid prototyping is to create prototypes quickly and to shorten the
design evaluation cycle, encouraging the design team to explore an extensive set of new ideas
before reaching a point in the design process where changes are costly (Liou, 2007). Although

2.2. Prototyping 11

Figure 2.4: Example of a prototype consisting of two clickable mock-ups. When a user clicks on a
list item of the home page, he or she will be redirected to the chat page (prototype made
with Adobe XD).

rapid prototypes promote early experimental usage and evaluation, they are usually dis-
carded as the design process iterates, and solutions that better meet the users’ requirements
are found. For this reason, they are often called throwaway prototypes (Nguyen-Duc et al.,
2017). Rapid prototyping techniques include both offline, like paper prototypes, and online
approaches, such as wireframes and interactive mock-ups. Paper prototypes are a valuable
offline technique in the early stages of the design process (Soute et al., 2017), being a low-cost
and fast way for designers to communicate, explore and evaluate interface designs (Bailey
et al., 2008). Wireframes are representations of the skeletal structure of the UI that provide
an initial perception of the hierarchy and relationship between its components (Llema and
Vilela-Malabanan, 2019). Lastly, mock-ups can be used at different levels of detail to provide
a representation of the system, allowing designers to concentrate on the physical design of

2.3. Prototyping Tools 12

the UI, like layout positioning (Beaudouin-Lafon and Mackay, 2002). Mock-ups also enable
designers to distinguish and detail specific areas of concern while leaving others open to
further discussion (Camburn et al., 2017).

Iterative prototyping is a process that evolves with the design process with increasing
levels of fidelity (Wood and Romero, 2010), commencing with exploratory and simple
prototypes and iterating towards complex models of the system (Gervet et al., 1999). As the
process iterates, each successive prototype uncovers new design opportunities or refines
some ideas made with previous ones, oscillating between creation and feedback with
experimentation (Dow et al., 2009). Iterative prototyping techniques include software tools
and environments that require a higher level of expertise when compared to the rapid
prototyping approaches described earlier (Beaudouin-Lafon and Mackay, 2002). Model-
based tools are one of those techniques that aim to facilitate the creation of UI’s and to reduce
costs of interactive systems development (Machado et al., 2017). Section 2.3.2 provides some
tool examples and a more detailed explanation of the model-based methodology.

Evolutionary prototypes are a particular case of iterative prototypes only applicable to
software products, with the purpose to evolve into a part or all of the system (Beaudouin-
Lafon and Mackay, 2002). Due to their nature, they are very challenging to implement when
compared with the approaches described earlier, requiring careful planning about their
underlying software architecture (Hertel and Dittmar, 2017). One chief advantage of this
approach is that it allows users to test the product even in the early stages of the design
process (Guida et al., 1999). However, this process tends to introduce over commitment
due to the amount of time invested in one solution, encouraging designers to refine and
work towards a particular solution instead of exploring more alternatives. Evolutionary
prototyping techniques imply the use of architectural solutions such as Model-View-Controller
(MVC) and other design patterns.

Each one of the described prototyping approaches has its own set of unique features that
make them appropriate to different contexts. Table 2.1 summarizes the main principles of
the mentioned approaches by clarifying their advantages and disadvantages.

2.3 prototyping tools

Prototypes serve different goals and thus take many forms at each stage of the design
process. Therefore, one must consider the purpose of the prototype and the best-suited
prototyping tool for the current design question (Beaudouin-Lafon and Mackay, 2002).

This section details and provides examples of two distinctive types of tools that support
prototyping: mock-up editors and model-based tools. The goal is to evaluate potential
prototyping features that could substantially improve the tool related to this project, the
IVY Workbench. The combination of features from these two types of prototyping promotes

2.3. Prototyping Tools 13

Table 2.1: Advantages and disadvantages of rapid, iterative and evolutionary prototypes.
Approach Advantages Disadvantages
Rapid Low time consumption and Discarded as the design

inexpensive; support for process iterates.
exploring new ideas; low
evaluation cycle.

Iterative Evolves with the design Higher costs and evaluation
process; explore and refine cycles when compared to
ideas. rapid approaches.

Evolutionary Early testing of the product; Very high costs and
becomes part or all of the evaluation cycles;
product. challenging to implement;

discourages exploration
of new solutions.

multidisciplinary team working, which is one of the standards of the UCD methodology
(ISO, 1999). Each prototyping tool detailed in this section is categorized according to the
dimensions introduced in Section 2.2. This categorization will exclude the representation
dimension since all tools produce online prototypes..

2.3.1 Mock-up editors

Mock-up editors focus on the physical design of the system, allowing users and designers
to identify potential problems with the interface or generating ideas for new functionali-
ties (Beaudouin-Lafon and Mackay, 2002). There are several tools of this type that support
prototyping currently available in the market. However, since the current project is related
to interactive systems, it is more relevant to consider tools that can produce interactive
prototypes rather than fixed mock-ups that do not support user interaction. Pencil Project1,
Adobe XD2, InVision3 and Figma4 are some examples of mock-up editors that provide
support for this feature and are widely used by the design community.

Pencil Project played a crucial role in the latest version of the IVY Workbench since it
was the selected tool for creating prototypes to be imported into IVY. For this reason, it
is included in the analysis. The other tree tools are not free or open-source, unlike Pencil.
Nevertheless, Adobe XD offers a free plan for prototype creation, even if with limited
features. Missing features include cloud storage, access to fonts and unlimited prototype
sharing between teams, which have little relevance to this project. Thus, the prototyping
tools considered in this comparative analysis are Pencil Project and Adobe XD.

1 http://pencil.evolus.vn/, accessed 06-July-2020

2 https://www.adobe.com/products/xd/details.html, accessed 06-July-2020

3 https://www.invisionapp.com/, accessed 06-July-2020

4 https://www.figma.com/, accessed 06-July-2020

http://pencil.evolus.vn/
https://www.adobe.com/products/xd/details.html
https://www.invisionapp.com/
https://www.figma.com/

2.3. Prototyping Tools 14

Figure 2.5: Prototyping environment of the Pencil Project. The current prototype represents a home
page built with the collection of widgets available on the left panel.

Pencil Project

Pencil is a free and open-source Graphical User Interface (GUI) prototyping tool designed
for simplicity that provides an extensive set of built-in widgets, like basic drawing shapes,
flowchart elements and UI controls. Many of these follow the style of the leading desktop
and mobile platforms, allowing designers to develop mock-ups more familiar to users.
Furthermore, experienced users can easily create custom widgets and shared them with the
Pencil community. Designers can use these widgets and shapes to build wireframes and
mock-ups with ease (Figure 2.5).

Additionally, this tool provides support for system navigation by allowing designers to
split wireframes or mock-ups into a set of pages. Elements of these pages can then receive
click events that trigger the navigation to other pages, thus enabling the simulation of the
UI flow. Essentially, this feature allows designers to define static routes that encompass the
navigation of a system without any logic associated to them. However, this tool offers no
built-in support for running the produced simulations with these features. Instead, designers
need to export all pages to a single web page that allows users to interact with the prototype
in a browser. Given these features, the prototypes produced with this tool are fixed-path in
terms of interactivity.

Designers can quickly create prototypes only with the composition of the widgets provided
by the tool. This characteristic makes Pencil Project an adequate choice for rapid and

2.3. Prototyping Tools 15

Figure 2.6: Definition of different states for a checkbox component with Adobe XD.

inexpensive prototype building. That said, the widget collection itself can limit designers to
achieve highly-detailed mock-ups since the widgets are not fully customizable. Designers
should then focus on presenting to users a preview of the system’s layout and interaction,
rather than its final look. Thus, the prototypes built with this tool fall in the medium-fidelity
category. As the design process iterates and the necessity of adding more detail arises, these
prototypes will probably be discarded since they cannot evolve into high-fidelity versions.
Therefore, Pencil Project is a rapid prototyping tool in terms of prototype evolution.

Adobe XD

Adobe XD (Schwarz, 2017), or Adobe Experience Design, is a tool for highly-detailed mock-
up building. It exploits much of the features of other Adobe tools, like Illustrator5 and
Photoshop6, that allow designers to create mock-ups for the final stages of the design process.
This tool offers three main features: design, prototyping, and sharing.

The design feature offers a diverse set of highly customizable elements built to assemble a
mock-up of a UI. Additionally, designers can import several widget libraries made by the
Adobe XD community to speed up the process of prototype building. Several mock-ups can
be created with these features, allowing designers to present each page of the expected UI in
an organized fashion. Moreover, it is possible to create reusable components of drawings,
allowing several instances to inherit all their base properties. These instances can then add
their unique attributes without affecting their base component. Constraints can also be
attached to the elements of a page, making them adjust accordingly as the screen resizes,
which promotes responsiveness. Another notable design feature is that drawings can have
multiple states. A state might represent a hover or a selected status that is triggered by a
specific user action, such as a click event, keyboard press or even a voice command. This
feature helps designers to define several states of a specific component without having to
redraw the entire mock-up multiple times. Figure 2.6 depicts one example of this feature.

5 https://www.adobe.com/products/illustrator.html, accessed 14-January-2020

6 https://www.adobe.com/products/photoshop.html, accessed 14-January-2020

https://www.adobe.com/products/illustrator.html
https://www.adobe.com/products/photoshop.html

2.3. Prototyping Tools 16

The prototyping feature enables the creation of prototypes that support user interaction
by allowing pages to be connected, in order to simulate the flow of the UI. Each interaction
reacts to the same triggers defined with the design component of this tool. Although this
navigation has no logic associated with it, designers can create several animations between
the pages, thence achieving prototypes that closely resemble the final version of the UI.
Furthermore, this tool offers built-in support for running the defined prototype simulations.
The tool also allows users to export prototypes to Hyper Text Markup Language (HTML). With
this feature, the tool transforms the internal SVG structure into HTML and Cascading Style
Sheets (CSS) code. However, this code is not optimized since the generated CSS most often
relies on absolute position properties. Besides, the exported results do not offer any internal
logic. Lastly, the Adobe XD mobile app available in iOS and Android allows users to test
the created prototypes in their mobile devices.

The sharing feature encourages teamwork by allowing designers to share a link of the
produced prototype and all its evolution history. Other team members can then proactively
add reviews and contribute new ideas to improve the product.

Adobe XD offers support for building high-fidelity prototypes. However, it also allows
designers to create low-fidelity versions for the early stages of the design process. The level of
fidelity of these versions can increase as the process iterates, making Adobe XD a tool suitable
for iterative prototyping approaches. Although this tool offers code exporting functionalities
to HTML and CSS, it is not an evolutionary prototyping tool since its prototypes do not
provide any logic. Even so, this tool can produce fixed-path prototypes that support several
user event triggers, navigation animations and multiple screen dimensions support.

2.3.2 Model-based tools

Model-based analysis tools enable user-centred design methods that integrate formal verifica-
tion technologies, facilitating early detection of underlying user interface problems (Szekely
et al., 1996). This section includes three model-based tools: CIRCUS, PVSio-Web, and IVY
Workbench. These tools were chosen because each tool covers distinctive UI issues, supports
UCD methodology and has prototyping, verification and validation capabilities (Campos
et al., 2020).

CIRCUS

CIRCUS (Fayollas et al., 2014), which stands for Computer-aided-design of Interactive,
Resilient, Critical and Usable Systems is a development environment that embeds both
system and task modelling functionalities. This environment helps to achieve the design
and development of interactive critical systems, and it is best suited for software engineers,
system designers and human factors specialists. CIRCUS features range from the formal

2.3. Prototyping Tools 17

Figure 2.7: Architecture of the CIRCUS environment (source: Campos et al. (2020)).

verification of the system’s behaviour to the assessment of compatibility between users’ tasks
and that behaviour. The environment, as illustrated in Figure 2.7, integrates three tools:

• HAMSTERS (Fayollas et al., 2014) allows the editing and simulation of task models,
ensuring consistency, coherence, and conformity amidst users’ tasks and the sequence
of actions necessary to operate interactive systems. It offers a graphical notation to
structure users’ goals and sub-goals into hierarchical task models, while also denoting
temporal operators that express qualitative temporal relationships between tasks.

• PetShop (Palanque et al., 2009) is a tool for system modelling and prototyping, where
developers specify the behaviour and the appearance of interactive systems, using the
Interactive Cooperative Objects (ICO) notation (Navarre et al., 2001). ICO uses object-
oriented concepts to define the structural or static features of the system. In this
tool, prototypes are an assembled set of objects featuring four components: behaviour,
presentation, and two functions (activation and rendering) that make the bridge be-
tween the cooperative object and the presentation component. Finally, the presentation
component is built using Java widget libraries or by invoking Java code dedicated to it.

• SWAN (Campos et al., 2020) is a tool for the co-execution of PetShop and HAMSTERS
models, allowing developers to establish correspondences between tasks and system
behaviours.

2.3. Prototyping Tools 18

Figure 2.8: Prototyping environment of the PVSio-Web. Green areas over the prototype image
represent the widgets depicted on the left panel. The right panel lists all the available
environments of this tool.

The CIRCUS environment produces prototypes designed to evolve into a part or all of the
system. These prototypes fit in the evolutionary category by following the ICO methodology
that is adaptable to the Model-View-Controller design pattern (Navarre et al., 2000). Finally,
this tool uses interface builders which makes it possible to design both high-fidelity and
open prototypes.

PVSio-Web

PVSio-Web7 provides a formal method based, graphical front-end for prototyping and mod-
elling interactive systems (Masci et al., 2015). Users can rapidly generate realistic prototypes
by uploading an image representing the UI of the system into this tool. Afterwards, they can
define programmable areas over the image and link them to the formal model that specifies
the human-system interaction logic (Mauro et al., 2016).

This tool combines multiple development environments aimed for multidisciplinary teams
of UI engineers, domain experts and software analysts. These environments allow users with
different backgrounds and expertise levels to cooperate with the same underlying formal
models. There are seven fundamental environments incorporated into this tool:

7 http://www.pvsioweb.org/, accessed 14-January-2020

http://www.pvsioweb.org/

2.3. Prototyping Tools 19

• The Prototype builder provides a graphical environment with functions for defining
the visual aspect of the prototype, as well as for creating programmable overlay areas
that enable user interaction with the prototype. These overlay areas correspond to two
types of widgets: input and output widgets. Input widgets, react to user actions and
translate them into formal model expressions. By contrast, output widgets illustrate
how to render the internal prototype behaviour (Figure 2.8).

• The Simulator executes the developed prototypes and logs user interactions with them.
This environment translates user actions over the input widgets into model expressions,
evaluates these expressions and renders all the returned results into output widgets
on the Web browser.

• The Storyboard editor facilitates preliminary mock-up prototype development. It
allows developers to load images representing different screens, and to define input
widgets on these images. Transitions between screens can then be made by linking
these widgets with user actions.

• The EmuCharts editor is a visual editor and code generator for creating executable
formal models, using a graphical notation based on Statecharts (Harel, 1987). With
this module, developers can define states, transitions, variables representing relevant
properties of the system, and generate executable models from the visual diagram.

• The Model editor is a component for editing formal models, providing syntax high-
lighting, auto-completion, search, and compile functionalities. It also incorporates
a file browser that allows developers to select, rename, delete, and create files and
directories.

• The Property providing assistant includes the PVSio environment and the Prototype
Verification System (PVS) (Owre et al., 1992) theorem prover. PVSio is used during
simulations to evaluate PVS expressions generated by the Simulator environment.
Whereas PVS offers a formal analysis of use-related safety properties of the prototype.

• The Co-Simulator engine creates a communication infrastructure that enables the
exchange of simulation events and data between PVS models and other models
developed with different simulation frameworks, like Simulink8 (Masci et al., 2014).

PVSio-Web produces high-fidelity prototypes since it allows developers to import images
from any source that represent the visual appearance of UI. In terms of interactivity, the
prototypes created with this toolkit provide large sets of user interaction coupled with
internal logic associated with the formal model, therefore falling in the open prototype

8 https://www.mathworks.com/products/simulink.html, accessed 14-January-2020

https://www.mathworks.com/products/simulink.html

2.3. Prototyping Tools 20

category. Finally, this toolkit designs iterative prototypes intending to evolve as the design
process iterates without becoming part or all of the system.

IVY Workbench

The IVY Workbench (Campos et al., 2016) supports the development of models of interactive
systems, the formulation of required properties of the behaviour of these systems, and their
verification through the NuSMV model checker (Cimatti et al., 2002). The tool generates
counter-examples acting as scenarios for analysis when this verification fails.

Models follow the Modal Action Logic (MAL) interactor language, which describes how
available actions change the state of the system (Ryan et al., 1991; Couto and Campos, 2019).
The MAL model describes the structure of the system with a set of attributes, possible actions
and rules expressing its behaviour (axioms).

IVY is designed for simplicity, aiming to provide representation and analysis tools easily
usable by interface developers and to communicate results effectively within an inter-
disciplinary team of software engineers and formal method experts. Lastly, it adopts a
plugin-based architecture to establish a flexible development environment (Couto and
Campos, 2019). In its current version (2), the tool includes five interoperable plugins:

• The MAL editor supports the usual editing facilities like syntax highlighting, code
completion, undo/redo, and cut and paste. The editor also presents the model as a
tree view in a side panel, that enables easy navigation of the model’s structure.

• The Properties editor supports the formulation of properties of the model, assisting
with pattern and template selection. This editor is useful for the verification of
assumptions about the expected system’s behaviour (Campos and Harrison, 2008). The
verification step produces counter-examples when any property fails, that can be later
analysed.

• The Traces Analyser offers a visual representation of the produced counter-examples
by the verification step when a property fails. It makes it possible to analyse the
sequence of actions that prove the falseness of the failed property, and therefore
explore alternative paths.

• The Animator plugin allows users to choose the sequence of executed actions, starting
from the initial state of the model. It implements two representations: tabular and
state-based. The tabular one uses columns to represent states and lines for actions and
attributes. The state-based one represents each interactor as a lifeline. Each lifeline is
the sequence of states of the execution trace for that interactor.

• The Prototyper plugin focuses on the design of the prototype’s UI (Araújo et al.,
2019; Araújo, 2019). It operates in two different modes: edit and animate modes.

2.3. Prototyping Tools 21

Figure 2.9: Representation of a device with clock and chronometer modes, built with the prototyping
plugin of the IVY Workbench. The right panel presents the interactable elements available
for assigning actions. Any interaction with this panel reflects in the prototype (the dark
green highlight over the clock icon).

The edit mode allows designers to import the visual representation of the system, as
one or multiple SVG files representing several screens, and link this representation
to the behaviour defined with the MAL editor. Then, the plugin identifies all the
interactable elements of the SVG file, allowing a map between these elements and the
model’s actions and attributes. Actions associated with elements allow further user
interaction with the prototype, supporting mouse clicks and keyboard press events.
Attributes of the model can either be presented with textual elements or toggle the
several prototype’s screens according to their values. The animate mode simulates the
user interaction with the prototype by following all the configurations made in the edit
mode. In the running animation, users can either interact with the prototype itself or
select between the available actions of the model presented in a side panel (Figure 2.9).

The IVY Workbench allows developers to define the behaviour and visual aspect of the
prototype’s UI and therefore build open prototypes. The prototypes are iterative since both
the model and the UI components used by this tool can evolve as the design process iterates
but not become part of the real system. Finally, the latest version of this tool is dependent
on the Pencil Project exported SVG files to identify interactable elements and only offers
partial support to other sources. Thus, like Pencil, the prototypes built with this tool have
medium-fidelity precision.

2.4. Summary 22

Table 2.2: Categorization of the studied prototyping tools according to precision, interactivity and
evolution.

Tool Precision Interactivity Evolution
Pencil Project Medium-fidelity Fixed-path Rapid
Adobe XD High-fidelity Fixed-path Iterative
CIRCUS High-fidelity Open Evolutionary
PVSio-Web High-fidelity Open Iterative
IVY Workbench Medium-fidelity Open Iterative

2.4 summary

UCD places the user at the centre of the design process, from the initial analysis of user
requirements to testing and evaluation. This approach improves user acceptance and
satisfaction by making systems easier to understand and use, being therefore crucial for
safety-critical domains.

Prototyping is an iterative process, essential for interactive systems design. Prototypes
support UCD by allowing users and designers to experience earlier versions of the real sys-
tem, identify potential usability and functional issues and to improve the design accordingly.
They may take several forms, provide highly-detailed representations of the system, and
have different life cycles according to their goals.

This chapter described two types of tools that support prototyping: mock-up editors
and model-based tools. The first type of tools focuses on the visual representation of the
system. The second one excels for critical systems design by prototyping the UI and its core
behaviour. The studied tools serve different purposes in the design process, being therefore
complementary rather than competitive. Each one of the mentioned tools was categorized in
Sections 2.3.1 and 2.3.2 according to the prototyping dimensions introduced in Section 2.2.
Table 2.2 summarizes this categorization.

Pencil Project is a tool best-suited for earlier stages of the design process, producing
medium-fidelity prototypes inexpensively and with ease, capable of representing the overall
look of the system’s UI. Whereas, Adobe XD allows designers to build high-fidelity proto-
types with large sets of user interaction. CIRCUS defines both the UI and its behaviour and
aims for the production of evolutionary prototypes meant to become part of the real system.
Therefore, each iteration of the design process with this tool is expensive both in skill and
time. PVSio-Web offers a flexible prototyping environment, useful for a multidisciplinary
team. IVY Workbench, like CIRCUS and PVSio-Web, creates prototypes by defining the
system’s representation with its core usability features. Moreover, it offers a more automated
analysis through model checking, requiring lesser levels of formal methods expertise (Araújo
et al., 2019; Campos et al., 2020) when compared to the other studied model-based tools.

2.4. Summary 23

Prototyping support in the IVY Workbench has some downfalls like Pencil Project de-
pendency, requiring exported SVG files from this tool to further identify user interactable
elements. Consequently, the prototypes achieved with IVY have medium-fidelity precision.
A combined approach between the formal methodologies inherent to this tool and the proto-
typing features related to mock-up editors that are familiar to non-experts could potentially
promote its multidisciplinarity. Lastly, the current version of IVY has some limited user
interaction with the produced prototypes when compared to CIRCUS and PVSio-Web. One
plausible method for solving this limitation is to develop a library of dynamic widgets.

The next chapter describes the features of the studied tools that may be attractive for the
enhancement of the prototyping capabilities of IVY and introduces the requirements and
technologies of the dynamic widget library.

3

R E Q U I R E M E N T S O F I N T E R FA C E P R O T O T Y P I N G

This chapter describes the potential features of the prototyping tools detailed in Chapter 2

that can considerably improve the prototyping capabilities of the IVY Workbench. Fur-
thermore, the chapter describes the architecture of IVY’s prototyping plugin and identifies
its limitations. From the features of the other tools and the identified issues, a list of
requirements is derived, in conjunction with the technologies needed to fulfil them.

3.1 prototyping tools revisited

Besides the IVY Workbench, Chapter 2 detailed other tools that support prototyping: CIRCUS
and PVSio-Web as model-based tools; Pencil Project and Adobe XD as mock-up editors.
Each one of these tools has its specific prototyping features and covers different concerns
intrinsic to the design process. This section revisits these tools to identify potential features
to improve the prototyping capabilities of IVY.

3.1.1 Pencil Project

Pencil Project is easy to use and rapidly produces medium-fidelity prototypes. One of its
relevant features is offering support for the development of widget libraries. Designers
can then import these libraries into the tool and add widgets to the prototype. Hereupon,
a library of dynamic widgets made for IVY should support being imported into Pencil,
allowing designers to produce prototypes with dynamic behaviour quickly and later import
them into IVY.

3.1.2 Adobe XD

Adobe XD supports the reuse of components, allowing designers to define multiple states
for a specific element of the prototype, something which is a relevant feature to include in
the plugin, as it would enhance the functionality and usability of the prototypes. Another

24

3.1. Prototyping tools revisited 25

striking feature of this tool is its capability to run prototypes in Android and iOS platforms,
through a companion mobile application. This feature allows users to test and validate
dynamic prototypes on their mobile devices. Lastly, the transformation of SVG layouts into
file formats such as HTML is a prominent feature to add to the IVY Workbench. However,
the development of such features is out of the scope of this project and left for future work.

3.1.3 PVSio-Web

PVSio-Web supports dynamic behaviour in the prototypes by providing widgets with
scripting functionalities. However, this tool uses static raster images as the source format
of its prototypes’ mock-ups. This hinders a tight integration with mock-ups developed by
designers. Since raster images do not provide any internal structure, users must define the
widgets that specify the behaviour component of a prototype in PVSio-Web explicitly. On
the contrary, IVY takes more advantage of the output of the mock-up editors by working
with SVG files that allow IVY users to import mock-ups. This feature correlates with the
main goal of the new prototyping approach of the IVY tool: the creation of a framework of
dynamic widgets. Another relevant feature of this tool is how it assists users with mapping
the model to the prototype. It automatically assigns widgets’ events to actions in the model
sharing the same name. Once again, this is only useful for domain experts, aware of the
system’s model. The IVY Workbench could assume an improvement of this feature by
assisting users without any knowledge of the model with auto-complete functionalities or
listings of the available actions accompanied by their documentation.

3.1.4 CIRCUS

Lastly, CIRCUS aims to produce prototypes designed to evolve into the real system, conse-
quently requiring skilled programmers and domain experts. Evolutionary features, such as
code generation are of great interest in the improvement of IVY capabilities.

3.1.5 IVY’s Prototyping Plugin

The current version of the prototyping plugin of the IVY Workbench successfully manages
the mapping of the actions and attributes of the formal model with the visual representation
of the UI. The overall architecture of the plugin, depicted in Figure 3.1, is divided in two
packages: Gui and Backend.

The Gui package contains classes that define the UI of the plugin. The Backend package
contains the classes that hold the internal infrastructure of the plugin. The plugin uses the
Parser class to process SVG documents and extract the elements that can receive configu-

3.1. Prototyping tools revisited 26

Figure 3.1: Architecture of the current version of IVY’s prototyping plugin (Araújo, 2019).

rations. These elements are identified by SVG metadata originated by the Pencil Project
tool. Currently, the parsing algorithm only extracts elements marked as labels or buttons.
Furthermore, the Parser verifies the existence of SVG layers in the imported document. This
verification is also performed by analysing Pencil metadata in SVG group elements. The
imported SVG document is then divided into the identified layers that are stored in the
SVGLayers class. Lastly, other relevant classes of the architecture are the AttributeManager
and the ActionManager classes. These classes hold the mapping between the extracted
elements and the attributes and actions of the formal model, respectively. This mapping
only includes the association between attributes and labels, and the association between
actions and buttons.

The plugin allows the importing of mock-ups in the SVG format, aiming to offer designers
the possibility to work in their preferred mock-up editor tools. However, the current version
is dependent on SVG files originated from Pencil Project. This dependency is an issue for
three reasons. First, it limits designers to one tool. Second, it causes IVY prototypes to share
the same definitions of the medium-fidelity prototypes of the Pencil Project, which prevents
the achievement of high-fidelity versions. Lastly, as the Pencil Project evolves and future
updates are released, so can its SVG file format change. This can lead to the entire rewrite of
the parsing algorithm, as it forces the contributors of the IVY plugin to always keep up with
the updates of the mock-ups tool.

Besides the mentioned dependency, there are opportunities for further enhancements
of the plugin’s prototyping environment, in particular since it does not support dynamic
widgets. Currently, if a user wants to define multiple states of a specific element of a page,
he or she must replicate the design of that page for each of those states. Each replicated
page is then associated with a layer by the described parser. To achieve the desired results,

3.2. Requirements 27

users need to perform configurations in each generated layer. Using the plugin’s multi-
page support, users can then toggle between the several layers by assigning values of the
model to them. This feature, however, is an inefficient and tedious solution, especially
when prototyping large and complex interfaces that contain several states. In such a case
scenario, the prototyping plugin will require the configuration of multiple layers to achieve
the desired results. The new version advocates for a new approach where it is possible to
introduce dynamic behaviour to the elements of the prototype, preventing page replication
and improving the quality of the produced prototypes.

Lastly, the mapping of the attributes and actions of the formal model is also minimal, since
it only allows the association of actions with buttons and attributes with labels. However,
there could be cases where it is profitable to assign both actions and attributes of the formal
model to any SVG element. Moreover, this approach does not offer a clear distinction
between these two types of associations.

To summarise, the issues of the current version of the prototyping plugin are the following:

• Dependency of an external tool.

• Does not escalate well as the complexity of prototypes increases.

• Limited set of SVG elements that can receive configurations.

• Poor mapping between elements and the actions and attributes of the formal model.

3.2 requirements

As mentioned before, the current version of the IVY Workbench has some downfalls like
the dependency on Pencil Project. Furthermore, there are some features of alternative
prototyping tools capable of enhancing the prototyping abilities of IVY. The following list of
requirements derives from these subjects:

1. The prototyping plugin must allow designers to import SVG files from multiple
sources. SVG files can have distinct internal structures according to the mock-up
editors that generated them. The current version of IVY can only extract and work
with specific elements present in Pencil-generated SVG files. This requirement aims to
solve this dependency. The goal is to produce a parsing algorithm able to extract all
the elements of a SVG file generically. This improvement will allow designers to work
in their favourite tools.

2. The plugin must be capable of producing high-fidelity prototypes. This feature is
an addition to the first requirement. The prototypes achieved with Pencil Project have
a medium-fidelity precision since they present the chief aspects of their UI layout and

3.3. Technologies 28

navigation but not the final look and feel. Therefore, the parsing algorithm must be
able to extract elements from high-fidelity sources as well.

3. The plugin must support a framework of dynamic widgets. This framework should
be capable of considerably enhancing the usability of the produced prototypes. The
widgets should react to every single change made in the values of attributes and actions
of the model, modifying the visual appearance of prototypes accordingly. Moreover,
this framework should assist in multi-page prototyping designs. The creation of
dynamic widgets supporting several states can prevent page replication, providing,
therefore, a more intuitive design experience. Finally, these widgets should consider-
ably improve the User Experience (UX) by introducing large sets of user interactions
that closely resembles the real system.

4. The widgets should be as generic as possible and not only applicable to a specific
model. The goal is to develop widgets able to introduce dynamic behaviour to
prototypes independently of their formal models. The more generic the widgets
are, the less the probability of building new widgets for each created formal model.
However, there could be some situations where more advanced and model-specific
widgets are required to achieve the desired results. For example, widgets such as
checkboxes or toggle buttons can be used for developing prototypes of a diverse set
of mobile applications, whereas medical devices such as heart rate monitors require
more specific widgets to define their functionalities.

5. The plugin must be intuitive and made for non-expert users. The plugin must
provide the means for users to easily combine the visual appearance of the prototype
with the formal analysis of the model. This process can assist users with hints about
the correct attributes to be sent to the widgets. Furthermore, all the functionalities
of the widgets should provide understandable documentation to users and therefore
guide them to the correct building of prototypes. Lastly, usability tests of the plugin
should be conducted with non-expert users to evaluate their acceptance and validate
the new prototyping features.

6. The prototypes should be compatible with multiple platforms. The plugin should
be able to export prototypes in a format compatible with web and mobile platforms to
promote usability.

3.3 technologies

The IVY Workbench offers support for UI prototyping by allowing designers to import files
in the SVG format, access their elements and attach attributes and actions to them. This

3.3. Technologies 29

Figure 3.2: Shape associated with the SVG document of Listing 3.1.

section describes the base technologies surrounding the prototyping plugin as developed by
Araújo (2019) (see also Araújo et al., 2019) that are still relevant to the new planned features.
It also details the new technologies required to fulfil the list of requirements enumerated in
Section 3.2.

3.3.1 SVG

SVG1 is a free, open and standardized file format for vector graphics, developed and
maintained by the World Wide Web Consortium (W3C), which is the foremost international
standards organization for the web. It is based on XML (Extensible Markup Language) and
explicitly designed to work with other web standards such as the DOM2. This file format
provides three types of graphic objects: vector graphic shapes (such as paths consisting of
straight lines and curves), images and text. These graphical objects offer a diverse set of
operations such as grouping, styling, transforming and composition.

SVG usage has many benefits over raster image formats like PNG (Portable Network
Graphics) or JPEG (Joint Photographic Experts Group). The chief advantage is that SVG images
do not suffer a quality loss when scaled or zoomed. These files are also human-readable,
easily created, compressed, scripted, and edited with a text editor. Finally, they can store a
broad set of settings by embedding editor metadata3.

It is possible to introduce dynamic and interactive behaviours to SVG drawings. Anima-
tions can be defined and triggered by embedding a set of components into the SVG content.
Another option is the use of a supplemental scripting language to manipulate the SVG DOM,
which provides complete access to all elements, attributes and properties.

1 https://www.w3.org/TR/SVG/, accessed 14-January-2020

2 https://developer.mozilla.org/en-US/docs/Web/SVG, accessed 14-January-2020

3 https://inkscape.org/pt/develop/about-svg/, accessed 14-January-2020

https://www.w3.org/TR/SVG/
https://developer.mozilla.org/en-US/docs/Web/SVG
https://inkscape.org/pt/develop/about-svg/

3.3. Technologies 30

A basic example of a SVG shape is illustrated in Figure 3.2, while the code that generated
it is represented in Listing 3.1. In this example, a rect and a circle are defined inside a defs
tag. This tag does not render any particular shape. Instead, it stores SVG tags as constants.
Later, several instances of those shapes are created with use tags which allow SVG elements
duplication and the deep cloning of all their attributes. It is, however, important to note,
that new attributes can be added to use tags, such as the transform attribute, as depicted
in the bottom half of the example. Other relevant aspects of the illustrated example are
the g elements and namespace attributes. g elements allow SVG object grouping that can
be later referenced by use elements. Moreover, children objects inside g elements inherit
any attributes or transformations applied to them. Namespaces (in the example the xmlns
namespace is declared) allow additional metadata such as attributes or element tags to
be inserted into the SVG document. This SVG property is handy for the development
of the dynamic widget framework by providing support for inserting additional widget
information inside any SVG document.

Listing 3.1: Example of a SVG document.

<svg xmlns="http://www.w3.org /2000/svg" xmlns:xlink="http://www.w3.org
/1999/xlink" viewBox="0 0 125.06 96.12">

<defs>
<rec t id="round-rect" x="40.06" y="11" width="69" height="14" rx="7"

ry="7" transform="translate(-2.12 19.91) rotate(-15)" f i l l = "#7397
f1"/>

< c i r c l e id="ball" cx="118.06" cy="6.5" r="7" f i l l = "#7397f1"/>
</defs>
<g id="group" data−name="Layer 1">

< c i r c l e cx="51.61" cy="49.28" r="45" f i l l = "#57c7d5"/>
<text transform="translate (22.75 54.77)" s tyle= "font-size:21px;fill:#

fff;font-family:Consolas-Bold , Consolas;font-weight:700">&l t ; s v g&
g t ; < / t e x t >

<use xl ink :href= "#round-rect"/>
<use xl ink :href= "#ball"/>
<use xl ink :href= "#round-rect" transform="translate(-40 65)"/>
<use xl ink :href= "#ball" transform="translate(-107 60)"/>
<use xl ink :href= "#ball" transform="translate(-90 23)"/>
<use xl ink :href= "#ball" transform="translate(-24 33)"/>

</g>
</svg>

SVG is the current file format used in the IVY Workbench prototyping plugin. Several
design platforms use this file format which is an advantage since one of the goals of IVY is
to work with a vast diversity of mock-up editors and consequently adapt to a broader design
community. Designers can then import files of this format into IVY for adding the dynamic
behaviour to mock-ups, leading to more interactive and realistic prototypes Furthermore,
its ability to embed scripts is a fitting feature for the development of the framework of

3.3. Technologies 31

Figure 3.3: DOM tree associated with the HTML document of Listing 3.2.

dynamic widgets. Lastly, the SVG is a file format that is compatible with multiple platforms,
such as web browsers and mobile devices, which makes it suitable for the fulfilment of the
cross-compatibility requirement.

3.3.2 DOM

The DOM (Jakobson, 2014) is a language-independent Application Programming Interface (API)
intended for use with HTML (Hyper Text Markup Language) or XML. The DOM API represents
a document in the indicated formats as a logical tree, allowing application programs to
change its structure, style and content (by changing, deleting, or adding elements) or even
add event handlers to its elements that react to user input events such as mouse clicks. Each
DOM tree has a root node that subsequently has one or more leaf nodes, with zero or more
intermediates, that can be easily accessed by attributes such as the id or tag names. This
feature provides an effective way to traverse all the elements contained in a document for
further manipulation of their properties. Figure 3.3 illustrates an example of the generated
DOM tree of an HTML document (depicted in Listing 3.2).

3.3. Technologies 32

Listing 3.2: Example of a HTML document.

<html>
<head>

< t i t l e >DOM example < / t i t l e >
</head>
<body>

<head er>

< l i >Item 1 < / l i >
< l i >Item 2 < / l i >
< l i >Item 3 < / l i >

</head er>
<footer>

<h6>Copyright 2020 </h6>
< / f o o t e r >

</body>
</html>

The IVY Workbench uses this technology for retrieving elements of the SVG document
of a prototype. These elements can then be linked to attributes of the formal model and
receive user input events. It also allows for the development of traditional mock-up editors
features such as the addition and removal of SVG elements. Other features, such as the
changing of the visibility of an element, can be implemented as well. Lastly, it enables the
manipulation of the prototype’s appearance during its simulation. Therefore, the DOM
technology emerges as one of the core components of the prototyping features of the IVY
Workbench.

3.3.3 Apache Batik

Apache Batik4 is a Java-based toolkit for SVG manipulation that is the core of the Prototyper
plugin for offering support for SVG importing and rendering. It also provides a Java
implementation of the SVG DOM with its typical features. Studies conducted by Araújo
(2019) (see also Araújo et al., 2019) concluded that this toolkit was the best-suited choice for
the prototyping features of the IVY Workbench, leading to its inclusion in the creation of the
Prototyper plugin. This reason serves, therefore, as a motivation for its continued use.

4 https://xmlgraphics.apache.org/batik/, accessed 19-January-2020

https://xmlgraphics.apache.org/batik/

3.4. Summary 33

3.3.4 Rhino

Rhino5 is an open-source implementation of JavaScript written entirely in Java, usually
embedded into Java applications to provide scripting to end-users. Furthermore, it allows
the implementation of Java interfaces, as well as the extension of Java classes, with JavaScript
objects. This library plays a crucial role in the development of the framework of dynamic
widgets by providing support for scripting evaluation, execution of JavaScript functions with
a list of parameters, and features for passing Java objects into the scripting environment.
However, Rhino is an implementation of the JavaScript core language, designed to be used
in server-side or desktop applications, hence lacking the built-in support for document
manipulation, since the DOM is a browser technology. Still, Rhino offers methods for
converting Java objects into JavaScript objects. Therefore, the scripting environment provided
by Rhino can receive the DOM implementation generated by the Apache Batik to access and
modify its structure.

There are other currently available scripting libraries, such as Nashorn6. Nonetheless, the
Apache Batik library requires the use of Rhino at runtime when rendering SVG documents
that contain scripts. This, combined with the fact that Rhino provides the required features
for the framework development, serve as a motivation for its usage.

3.4 summary

The current version of the IVY Workbench has some prototyping downfalls, for instance, the
dependency on Pencil Project and limited prototyping behaviour since it does not support
widgets. This chapter evaluated potential features of other prototyping alternatives that
could considerably enhance the IVY tool. PVSio-Web includes dynamic widgets and user
assistance when creating prototypes. The Pencil Project provides the means for creating
widget libraries that allow non-expert users to build prototypes. Adobe XD supports the
definition of multiple states of the prototype, as well as the simulation of prototypes on
mobile devices. Lastly, CIRCUS offers support for evolutionary prototypes. These features
rise as striking complements to include in the IVY Workbench.

The current chapter also enumerated a list of requirements of the new features and
described the technologies required to fulfil them. The SVG file format offers the opportunity
for designers to import into IVY prototypes originated by their preferred tools. However,
mock-up editors can produce SVG files with distinct internal structures. The addition of
dynamic widgets to mock-ups aggravates this subject even further because mock-up editors
can modify the internal structure of SVG files and consequently remove relevant information

5 https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino, accessed 14-January-2020

6 https://www.oracle.com/technical-resources/articles/java/jf14-nashorn.html, accessed 14-July-2020

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino
https://www.oracle.com/technical-resources/articles/java/jf14-nashorn.html

3.4. Summary 34

about its widgets. Thus, the new IVY version should present a solution that makes it
compatible with a wide variety of mock-up editors. Apache Batik is used in this process,
being capable of generating a Java version of the DOM originated from the SVG structure.
This library is also responsible for reading SVG files for their subsequent rendering in the
prototyping plugin. Dynamic widgets can be added to prototypes by including scripts
containing intended functionalities in SVG files. Lastly, the Rhino library is the component
that completes the framework since it can evaluate the scripts received in the prototype and
execute their functions. By converting the Java DOM into a JavaScript object, it grants the
IVY widgets the capabilities to offer scripting functions that can modify the SVG content of
the prototype during its simulation.

The following chapter focuses on the development of the new features that will fulfil all
the proposed requirements, detailing the process of generic SVG parsing, the creation of the
dynamic widget framework and all the new implemented functionalities.

4

T H E P R O T O T Y P I N G P L U G I N

The new version of the IVY Workbench has improvements in its prototyping plugin to
enhance the fidelity and user interaction of its prototypes. This chapter describes the
development process of the new features, which fulfil the requirements put forward in
Chapter 3 and solve the issues of the previous prototyping plugin, described in Section
3.1.5. The chapter starts by describing the developed approach to prototypes’ building,
as well as the workflow and the new internal architecture of the plugin. Next, it details
two fundamental components of the plugin: the generic parser and the dynamic widget
framework. Lastly, the chapter ends with a description of the added features.

4.1 approach

The prototypes of IVY Workbench have two major components: the formal model of the
interactive system and the UI mock-up. To build these prototypes, one must bring together
these two components by configuring two kinds of mappings: events and states. Figure 4.1
presents a schematic version of this process.

Events specify how the prototype responds to user interactions and internally execute
actions of the formal model. By contrast, states relate to the attributes of the formal model
and specify how the prototype reacts to changes in this model. Each element of the mock-up
has a set of properties that compose its state. This set varies according to the element type.
A state property defines a SVG parameter or a widget parameter value that can either be
controlled by a constant value or a model’s attribute. Sections 4.5.2 and 4.6.3 describe these
configurations in more detail.

During the prototype simulation, the user interaction with the prototype triggers the
defined events. Each event executes its mapped action on the model leading to the update
of the model’s attributes. Consequently, the configured states react to these changes in
the model and update their properties accordingly. These properties are then passed as
parameters to methods that update the prototype appearance to achieve the desired results.

This new approach offers a clear distinction between the configurations of the actions
and attributes of the model when compared to the old version described in Section 3.1.5.

35

4.2. Workflow 36

Figure 4.1: Schematic representation of the primary components of IVY Workbench prototypes.

Moreover, it provides a more robust set of configurations, since each element of a mock-up
can be associated with actions and attributes of the formal model, by configuring their states
and events. Lastly, the developed approach takes the prototyping capabilities of the plugin
one step further by adding the possibility to configure SVG properties.

4.2 workflow

The developed prototyping plugin complements the IVY Workbench with prototypes’ an-
imation capabilities. To be appropriately used, users should load a formal model of the
interactive system and the UI mock-up into the tool.

When a user imports the mock-up of the UI, the plugin uses its generic parser to process
it and the built-in scripting environment to initialize its dynamic widgets. After this
initialization, the plugin renders the prototype. Users can then configure the prototype by
defining its events and states with the mapping between the mock-up and the actions and
attributes of the model. Lastly, users can start the prototype simulation that receives all the
configurations made. Users can repeat the tasks of the mentioned workflow process if the

4.3. Architecture of the plugin 37

Figure 4.2: Activity diagram representing the workflow of the prototyping plugin.

prototype simulation does not achieve the desired results. Figure 4.2 presents an activity
diagram that illustrates the tasks and activities of the described workflow.

4.3 architecture of the plugin

The new architecture of the prototyping plugin follows an Oriented Object approach like the
other components of the IVY Workbench. The architecture also performs a separation of
concerns between the UI classes and business classes by following the MVC pattern. Figure
4.3 illustrates a class diagram of the prototyping plugin architecture. Due to the complexity
of the architecture, the class diagram only presents the chief classes of the plugin and omits
their attributes and methods. The architecture has three main packages: the Model, View and
Controller packages.

The Model package contains classes that hold the prototype configurations made by the
user, such as the events and states and their mapping to the formal model. States have

4.3. Architecture of the plugin 38

Figure 4.3: Simplified class diagram of the prototyping plugin architecture.

different properties according to their SVG element. For this reason, distinct states were
developed with an inheritance pattern. The View package contains classes that specify
the UI of the plugin. In this case, these classes hold Swing components that compose the
appearance of the new features described in Section 4.6. Both the View and Model classes are
entirely independent of each other. Controller classes, contrarily, act as mediators between
Views and Models. These classes add listeners to views to receive user interactions, such as
click events. Moreover, the Controllers’ classes observe changes in the Models and update
the UI, respectively. Since the plugin architecture is quite complex, Controllers can use
sub-controllers to separate these tasks into smaller ones.

Besides the Model, View and Controller packages, there is also the Framework package. This
package mostly offers static methods for supporting the dynamic widget framework. Its
two essential components reside in the SVGEngine and ScriptEngine classes. The SVGEngine
contains methods for prototype initialization, such as the generic SVG parser detailed in
Section 4.4, as well as methods for SVG manipulation. Lastly, the ScriptEngine class provides

4.4. Generic SVG parser 39

support for widget initialization and an API for scripting execution. The next sections
describe these two essential components of the new version with more detail.

4.4 generic svg parser

The current version of the IVY Workbench plugin is dependent on the SVG file format
exported by Pencil Project. The developed SVG parser inspects the imported files for
elements that contain specific attributes characterizing widgets of that tool, such as buttons
and labels. Only those elements can later receive formal model configurations for the
prototype simulation. This approach has several downfalls, covered in Chapter 3.

The new version of the IVY Workbench follows a distinct approach by leveraging the DOM
structure generated by Apache Batik to identify all the elements that support user interaction.
Instead of extracting specific elements, the new parser considers all SVG elements of the
imported document as valid components for the prototype. There are, however, some
exceptions of SVG elements that do not offer user interaction, such as script, filter, defs, and
title elements. The new parser, developed herein, does not extract these elements and all
their child elements to prevent further configurations on them. This process removes some
misconceptions that could be introduced to non-expert users lacking the knowledge about
SVG elements that do not provide user interaction. On the contrary, all elements supporting
user interaction are assigned a Universally Unique Identifier (UUID) on their id property to
ensure their uniqueness. This method allows fast document queries by ids of SVG elements.

One particular exception of the parsing process is the handling of use elements. There
are no guarantees of style modifications of the instances created with these elements when
applying CSS properties to them, unless those are explicitly requested using CSS inheritance.
Therefore, any style modification of a use element without this request during the prototype
simulation will not be applied and rendered, preventing the desired results. The parser
takes the following steps to solve the unique case introduced by use elements:

• Extract the original element with the reference identifier in the use element.

• Perform a deep copy of the extracted element.

• Add all properties assigned to the use element to that element. This step ensures that
the new element receives attributes such as the visibility and position, supported by
use elements.

• Replace the use element with the new element in the SVG document.

Lastly, when the parser detects a script element, it passes the control to the Script Engine for
the proper dynamic widget initialization.

4.5. Dynamic widget framework 40

To validate the parser abilities of the new IVY version, several identical SVG shapes from
distinct sources were imported into the workbench. The process included Pencil Project,
Adobe Illustrator, Adobe XD, and Inkscape. The study consisted of creating a mock-up
with a set of SVG basic shapes, such as rectangles and circles. Both Adobe tools and
Inkscape produced similar results: a SVG document containing rect and circle tag elements.
Therefore, the developed parser successfully extracted all the desired elements from these
tools’ documents. Pencil Project, however, produced a much different document. This tool
declared all SVG shapes in a defs element. Then it created use elements to render those
shapes. Also, it added several custom SVG elements to the document. The new parser
successfully discarded these tags since it only processes SVG elements that can support user
interactions. Furthermore, the described process to handle use tags successfully replaces
all these elements with the original shapes included in the defs tags. This study provided
positive insights about the generic parser correctness and proper extraction of SVG elements
that support user interaction.

The new SVG parser successfully solves the dependency on the Pencil Project. Further-
more, it extracts a more diverse set of SVG elements, as opposed to the old parser that only
extracted labels and buttons. Lastly, the new parser does not divide the SVG document into
layers, since the developed framework of dynamic widgets provides a more effective method
for building prototypes in the IVY Workbench. This framework is described with detail in
the next section.

4.5 dynamic widget framework

The developed dynamic widget framework has two major components: the library of
dynamic widgets and the scripting environment of the IVY Workbench. This framework
aims to improve the quality of prototypes and removes the necessity of configuring multiple
layers (described in Section 3.1.5) to achieve the desired results. Since each widget has its
own set of dynamic properties, designers no longer need to replicate parts of the UI mock-up
and to add configurations to these parts.

This section commences with an overview of the required structure of the widgets
that compose the developed library. Then, it details the functionalities of the scripting
environment responsible for processing the dynamic widgets in prototypes. The section
ends with a description of the studies made to check the compatibility of the developed
library with mock-up editors.

4.5. Dynamic widget framework 41

Listing 4.1: Structure of the switch widget.

<svg . . . >
<g xmlns:ivy="http://ivy.di.uminho.pt/ivy" id="ivy-widget:Switch"

ivy : id= "ivy-widget:Switch" ivy:widget="Switch">
< s c r i p t type="application/javascript"> //<! [CDATA[

var Switch = (func t ion () {
<!-- Private auxiliary function -->
func t ion setColor (c o l o r) { . . . }

<!-- Checks or unckecks the switch -->
func t ion setChecked (value) { . . . }

re turn {
setChecked: setChecked ,
props : {

setChecked: {
params: [{

name: "Checked" ,
t y p e : "boolean" ,
d e s c : "<html>Checks or unchecks the switch.
Checks the

switch if the received value
is true and unchecks
it otherwise.</html>" ,

d e f a u l t : f a l s e
}] } } } ;

}) () ;
//]]> < / s c r i p t >
<!-- SVG elements of the widget -->

</g>
</svg>

4.5.1 Dynamic widget structure

The dynamic widget framework requires an extensive library of widgets. The more diverse
and complete the library, the better the capabilities of the framework to achieve high-fidelity
prototypes for multiple contexts. Each widget of this library, however, must follow specific
requirements to be correctly interpreted by the framework. This section describes these
requirements by detailing the structure of a switch widget developed for the framework.

The dynamic widgets are built by embedding Javascript code into SVG files to specify
their behaviour. Each widget is defined by a g element containing a script element and
one or more SVG elements representing its appearance. Listing 4.1 presents the code for a
switch widget that follows this structure, while Figure 4.4 illustrates the appearance of the
widget regarding its checked state variations. The script functions and many SVG elements
composing this widget were omitted in this example for the sake of simplicity. The full code
is provided in Appendix A.1.

4.5. Dynamic widget framework 42

Figure 4.4: Representation of the different possibilities of the switch widget checked state.

Widgets are defined in SVG documents, inside g elements using the IVY namespace
(assigned with xmlns:ivy=“http://ivy.di.uminho.pt/ivy”). The ivy:widget attribute provides
information about the root element of the widget and its name to be presented to users.
While the ivy:id attribute assists in situations where the mock-up editors modify the ids of
the constructed SVG document. These aspects are discussed further in the sections below.

The widgets follow the Javascript Revealing Module pattern (Osmani, 2012). This pattern
allows the definition of modules that can encapsulate variables and methods. The module
also provides a set of public pointers to its methods and variables in a return section. Only
these methods and variables can be accessed outside of the module. In the example of
the switch widget, only the method setChecked and the object props are accessible outside
of its module. By contrast, the method setColor remains a private function that is only
recognized inside of the Switch module. This pattern has great relevance, as more and more
widgets are included in a particular prototype. Conflicts between widget properties’ and
methods’ names might happen, for example, when a widget is used multiple times. This
can compromise the results of a prototype simulation. The Revealing Module pattern solves
this issue by granting the widget encapsulation in its model. Furthermore, it only allows the
scripting environment of IVY to access the revealed public API of the widget.

Besides the list of public methods, the widgets should also expose their method parameters.
The props object is a collection containing information about the parameters of their public
methods. These parameters are exposed as widgets properties by the plugin. In the example
provided in Listing 4.1, the parameter of method setChecked is associated with a property of
name Checked. It expects a value of type boolean and has its default value set to false. All this
information guides users through the process of prototype configuration. The type value
prevents users from passing invalid formal model parameters to the methods of the widgets.
Furthermore, users might not need to specify all parameters of the widgets’ methods. The
default value assists these situations, providing the default value to be passed into methods
that were not configured. Lastly, the prototyping plugin uses the desc value to provide tool
tips to users on a widget’s property.

4.5. Dynamic widget framework 43

4.5.2 IVY scripting environment

The scripting environment of the IVY Workbench holds the responsibility for the proper
initialization of the widgets of the user imported mock-up. Using Rhino, the environment
can extract the API and the properties of the widgets, necessary for the configuration of the
prototype simulation. Furthermore, the environment checks if the received widgets follow
the Revealing Module pattern and the structured described in Section 4.5.1, discarding any
widget that fails these constraints.

There are some scenarios where the Revealing Module pattern may not suffice. For
instance, a user might be attempting to execute a prototype containing the same widget
multiple times. In this case, there will be two or more modules with the same name leading
to override issues. Another issue that arises is the duplication of the ids of the widgets’
elements that lead to simulation errors. These errors occur because the widget’s scripts
use DOM queries by id to grab specific SVG elements of their structure to modify their
properties. Consider the scenario where a user loads into the mock-up two switch widgets
having the structure depicted in Listing 4.1. This process results in two modules with the
same name (Switch module) and two ids with the same value (“ivy-widget:switch”). To
fix these issues, the environment performs the management of the widgets’ module names
to ensure their uniqueness. It follows an approach typically used by filename systems by
appending a sequential number to a repeated module name. These unique names can then
be prefixed to each id of the widget’s elements. The repeated names and ids are also replaced
in the widget’s scripts.

The scripting environment is also responsible for the execution of the methods of the
widgets during simulations. It supports the execution of these methods with a list of
parameters. These parameters are the same ones exposed with the Revealing Module pattern
in the props object. The prototyping plugin presents these parameters as properties that
assemble the state of the widget. Users can control these properties by assigning constant
values or attributes of the formal model to them. This feature is essential for combining the
inherent formal model capabilities of IVY with the visual representation prototypes. During
the simulation, the environment executes the methods of the widgets with the configured
parameters. As mentioned, these methods use DOM queries to select SVG elements. Then,
they modify the CSS properties of those elements according to the values of the received
parameters. Lastly, the Rhino library used to execute the Javascript code of the widgets does
not have built-in DOM support. This limitation means that any DOM query performed by
the widgets will fail at runtime. However, this library does offer support for converting a
Java object into a Javascript object. The developed environment uses this feature to convert
the DOM structure generated by Apache Batik into a Javascript object. This process ensures
the expected behaviour of the widgets.

4.5. Dynamic widget framework 44

4.5.3 Compatibility with mock-up editors

Listing 4.2: Structure of a user defined widget library for Pencil.

<Shapes xmlns="http://www.evolus.vn/Namespace/Pencil"
xmlns:p="http://www.evolus.vn/Namespace/Pencil"
xmlns:svg="http://www.w3.org /2000/svg"
xmlns:xlink="http://www.w3.org /1999/xlink"
id="id of the library"
displayName="library name"
description= "description of the widget"
author="author name"
url="url of the library/">

<Shape id="widget id" displayName="widget name" icon="widget icon">
<p:Content xmlns="http://www.w3.org /2000/svg" xmlns:xlink="http://

www.w3.org /1999/xlink">
<!-- widget structure goes here -->
</p:Content>

</Shape>
<!-- more widgets can be added here -->

</Shape s>

One of the goals of the IVY Workbench is to offer a way for designers to reuse previous
work done building mock-ups. One of the motivations for the generic SVG parser stemmed
from this. Through the creation of such a feature, designers can user their favourite mock-
up editors to create prototypes. By providing an online version of the dynamic widget
library, designers can also import IVY widgets with these editors. However, it is essential
to test if the mock-up editors do not alter the SVG structure or Javascript code added to
mock-ups, which would mean they might modify the widgets. If the structure of a given
widget is compromised, the scripting environment will not be able to initialize it, leading
to incomplete prototyping simulations. Therefore, a study was conducted where a switch
widget (presented in Listing 4.1) was imported into a mock-up. The study covered the
following mock-up editors: Inkscape 0.92.4, Pencil Project 3.1.0, Adobe Illustrator CC 22.0.1
and Adobe XD 28.9.12.2.

Inkscape does not modify any internal structure of the widgets, keeping both IVY names-
paces, id attributes and script elements intact. Therefore, this tool (or any other tools sharing
the same characteristics) does not require any addition of dedicated features to the developed
library.

Pencil Project is the only one of the studied tools that does not provide a built-in mech-
anism for users to import SVG documents. Instead, users need to create a new project
and create a prototype with the widgets of this tool. However, users can define a custom
library of widgets and import it into this tool. This library must be defined in a file called

4.6. Added features 45

Definition.xml and must follow the structured detailed in Listing 4.2. When a user imports
a library into Pencil Project, the widgets in the library will become available for creating
prototypes. Pencil Project modifies the ids of the widgets but keeps custom SVG namespace
attributes intact. Hence, the scripting environment of IVY can recover the original ids with
the assistance of ivy:id attributes. Then, the environment adds these recovered ids to the
elements of the widget.

Adobe Illustrator and Adobe XD share similar SVG manipulation mechanisms. Both
remove script nodes and custom namespaces of produced SVG documents. Nevertheless,
both these tools keep the ids intact. Due to this feature, it is possible to rebuild the desired
widget with only the information provided by the elements’ ids. The scripting environment
checks for dynamic widgets on the imported prototype by analysing the id and ivy:id
properties of its SVG elements. If any of these properties start with the prefix ivy-widget:, the
environment extracts the widget name and loads its Javascript code from the widget library.
The properties id and ivy:id started with ivy: mark child elements of the widget that need to
receive the process mentioned in Section 4.5.2. After the described process, the content of
the widget becomes similar to one presented in Listing 4.1. Listing 4.3 presents the generic
widget structure that solves restrictions posed by the studied mock-up editors.

Listing 4.3: Widget structure compatible with the studied mock-up editors.

<g xmlns:ivy="http://ivy.di.uminho.pt/ivy" id="ivy-widget:Widget Name"
ivy : id= "ivy-widget:Widget Name" ivy:widget="Widget Name">
<elementName id="ivy:elementId" ivy : id= "ivy:elementId"/>

<!-- Remaining SVG elements of the widget -->
</g>

The described process solves the issues presented by the studied mock-up editors. The in-
formation contained in the property id makes the developed widgets compatible with editors
that remove custom SVG namespaces. By contrast, the ivy:id property offers compatibility
with editors that modify the ids of SVG elements.

4.6 added features

Sections 4.4 and 4.5 detailed internal additions to the plugin that augment the prototyping
capabilities of the IVY Workbench. The current section describes the newly introduced user
features built upon these internal additions. Figure 4.5 illustrates the overall appearance
of the prototyping plugin, as well as its added features. These include: the SVG renderer,
the SVG sidebar, the States and Events sidebar, the Prototype simulation window and the
dynamic widget collection.

4.6. Added features 46

Figure 4.5: Prototyping plugin interface.

4.6.1 SVG renderer

This component uses the Apache Batik library to render the SVG document of a prototype.
Users can select elements of the prototype by clicking on the rendered document. This
interaction creates a purple overlay on the selected element, as depicted in Figure 4.5. The
renderer also highlights the selected element on the SVG tree sidebar and updates the states
and events sidebar accordingly.

4.6.2 SVG tree sidebar

The SVG tree sidebar displays the hierarchic structure of the prototype’s SVG document
with the exclusion of SVG elements that do not support user interaction. Furthermore, it
exhibits the root elements of dynamic widgets by their widget names. Like the SVG renderer,

4.6. Added features 47

any user selection on this sidebar is also reflected in other components of the plugin. In this
case, the selection reflects in the SVG renderer and the states and events sidebar.

This component also provides basic SVG editing functionalities. These can be activated
when a user right-clicks on an element of the sidebar, which prompts a popup menu. The
provided functionalities are the following:

• Visibility toggling – Each element on the sidebar is represented by its tag name (or
widget name) and an eye icon that illustrates its current visibility status. If the eye
icon is not visible, then the element is not visible on the renderer as well. Users can
toggle an element’s visibility with the popup menu, which grants the ability to select
elements placed behind the interacted element. This functionality is most useful when
configuring a prototype that represents several pages of an application, for instance.
The pages can be structured in the SVG document as a group of layers. In this case,
this feature allows users to manipulate the visibility of each layer and configure each
page separately.

• SVG insertion – This feature allows users to insert SVG content into the rendered
prototype. It offers two options of insertion: before or after the clicked element’s
position in the document.

• SVG deletion – This functionality allows users to delete unnecessary SVG elements
from the prototype.

4.6.3 States and events sidebar

The states and events sidebar allows users to configure the behaviour of the prototype. As
the name suggests, this sidebar holds two types of configurations: prototype’s states and
events.

The states configuration allows users to define one or more states for a specific SVG
element of the prototype. Each element has a default state representing its initial appearance.
Users can modify all the properties that are intrinsic to that state or add more states that
trigger when a specific condition is met. A conditional state is triggered when a model’s
attribute matches a criterion based on its value. As illustrated in Figure 4.6, the conditional
“State 1” will be triggered when the attribute on1 has its value set to true. At simulation time,
the environment checks if any of the conditional states of an element matches its criteria. If
this happens, then the matched state will be rendered. Otherwise, the simulation renders
the default state of the element.

States also have specific properties according to the type of the configured element. g
elements allow users to define their visibility; shape elements, such as circles and rectangles,
have an additional fill property; text elements have the same properties of shape elements

4.6. Added features 48

Figure 4.6: Conditional state configuration of a switch widget.

with the addition of a text property that can be used to display the values of an attribute,
and widget elements allow users to configure their properties. Figure 4.6 shows an example
of the configuration of the states of a switch widget (detailed in Section 4.5.1). The widget
has four state properties to control: visibility, checked, checked colour and unchecked
colour. The plugin guides users to select valid values for each one of these properties. The
checked and unchecked colours only allow colour values that can be set with a colour picker
that prompts when a user clicks on the colour button. The visible and checked properties
require boolean attributes of the formal model. These can be selected by choosing one of the
available options listed in a combo box. The plugin only lists attributes having the same
type as the one required by each property to prevent usability errors. Lastly, when a users
moves the mouse over a property name label, the plugin shows a tool tip containing a brief
explanation about that property. All this information is defined inside the widget structure,
as mentioned in Section 4.5.1.

The events configuration allows users to specify multiple events for the elements of the
prototype. An event has a trigger, associates with an action of the formal model and executes
a function of the prototype’s widgets. A trigger can be defined by user interactions (the new
version supports click, keyboard press and hover events), or by periodic timer events. Users
can specify the duration in seconds of those timers. A practical example that illustrates the
benefits of this feature is a chronometer that updates its display every second. The function

4.6. Added features 49

Figure 4.7: Simulation window of the prototyping plugin.

component offers the possibility to alter the appearance of the prototype without the assist
of the formal model. This feature supports the creation of advanced prototypes without the
need for creating complex formal models.

4.6.4 Prototype simulation window

When a user clicks on the simulation button presented in Figure 4.5, the plugin commences
initializing the simulation environment. The environment receives the SVG document,
widgets, events, states and the formal model of the prototype. When the initialization
finishes, the environment launches the simulation window, as depicted in Figure 4.7. This
window has an SVG renderer that displays the prototype and a right sidebar that contains
the list of available actions of the formal model. Users can either interact with the prototype
itself, triggering the defined events, or with any of the actions in the sidebar. Lastly, the
simulation environment uses IVY’s internal messaging system to communicate with the
NuSMV model checker and receive the updates of the prototype’s formal model.

4.6.5 Dynamic widget collection

The developed collection of dynamic widgets contains widgets of two distinct types. One
type consists of what are herein called external widgets. Their structure is described in Section

4.6. Added features 50

4.5.1 and they can provide complex behaviour to the prototypes created with the plugin.
The created widgets of this type are the following:

• Switch – A representation of a toggle button inspired by the Android Material Design
guidelines. It offers mechanisms to control its checked, visibility and colour properties.

• Checkbox – Provides the same properties as the switch widget but offers a distinct UI.

• ClockChrono – Offers two distinctive modes: clock mode and chronometer mode. In
clock mode, it provides a display that presents its hours and minutes properties. In
chronometer mode, this widget adds the value of its seconds’ property to its display.

• Led – A circle shape that updates its On property with a boolean variable. It also
allows users to modify their On/Off colours.

• ProgressBar – Represents a horizontal bar that allows users to update its progress with
a value between 0 and 100.

• Cursor – This widget was developed to simulate the behaviour of the B. Braun
Perfusor medical device, although it can also simulate other prototypes due to its
generic implementation. This widget represents a numeric display with a fixed number
of digits and a cursor that marks the currently selected digit. Users can use this widget
to move the cursor position to the left or the right. Chapter 5 provides a more detailed
description of this widget and an example of its configuration.

The second type of widgets consists of SVG elements. These are called internal widgets
herein, because it is the prototyping plugin that defines their behaviour. Each type of
SVG elements has its own set of properties to control. Currently, the prototyping plugin
distinguishes three distinct groups of this type of widgets:

• Visibility widgets – Represent SVG elements such as image and g tags. These widgets
allow users to control its visibility property with a boolean variable.

• Shape widgets – These widgets inherit the visibility property from the visibility
widgets and also allow users to control their fill property. They represent SVG shapes
such as rects, circles and paths.

• Text widgets – Represent SVG text elements and can display any variable value as
its textContent property. They also inherit all the properties of shape and visibility
widgets.

The two types of dynamic widgets provide a very flexible method for users to define
the behaviour of a prototype. For complex models, users can create prototypes with

4.7. Evolutionary prototyping 51

external widgets that offer a more concrete solution for a specific problem. By contrast, the
internal widgets present a minimalist solution for users to add behaviour to prototypes or
to complement the functionalities of the external widgets.

4.7 evolutionary prototyping

The introduced features described earlier in this chapter enhanced the iterative prototyping
capabilities of the IVY Workbench. Besides these features, some efforts were made to
introduce evolutionary prototyping functionalities, such as support for code export. One of
the primary motivations for this work was to present to users the opportunity to evaluate
their prototypes in multiple platforms.

The support developed for evolutionary prototypes allows the export to HTML code. This
file format is optimal for cross-platform evaluation because it allows users to test prototypes
in the browser and mobile devices. Furthermore, it vastly reduces the export process by
allowing the embedding of the UI mock-up as a SVG element. Lastly, it supports Javascript
code which offers a similar DOM API to the one used with Apache Batik and grants the
possibility to add behaviour to the prototype.

This section describes the prototype export process to HTML. It starts by describing the
export of the formal model, states and events to Javascript code. This code, in combination
with the SVG structure of the UI mock-up are embedded in HTML code for achieving
evolutionary prototypes. Ultimately, this section ends by detailing the developed Android
and iOS mobile applications solely made for users to evaluate the exported prototypes on
their mobile devices.

4.7.1 Formal model export

The developed evolutionary prototypes contain the formal model as Javascript code. The
formal model of the IVY Workbench has four primary components: defines, attributes,
actions and axioms. The approach created to export these components into Javascript code
views defines as constants, attributes as code variables, actions as methods, and axioms as a
set of code instructions of a method.

The model’s axioms express how the actions affect the values of the attributes. The
approach considers four distinct forms for axioms, depicted in Listing 4.4, whereas Listing
4.5 presents the conversion into Javascript code of these forms.

The first axiom is the only one that is not associated with an action, and therefore not
associated with any method in the resulting code. In the formal model terminology, this
axiom defines the initial state of the model. The purpose of this axiom is to provide an initial
value to every attribute of the model. The second axiom defines a condition that must be met

4.7. Evolutionary prototyping 52

Listing 4.4: Different forms of axioms.

[] i n s t r u c t i o n 1 & i n s t r u c t i o n 2 & . . . & ins t ruct ionN
per (actionName) −> condi t ion1 & condi t ion2 & . . . & conditionN
[actionName] i n s t r u c t i o n 1 & i n s t r u c t i o n 2 & . . . & ins t ruc t ionN
condi t ion1 & condi t ion2 & . . . & conditionN −> [actionName] i n s t r u c t i o n 1 &

i n s t r u c t i o n 2 & . . . & ins t ruc t ionN

for the action to executes. In Javascript, this process can be done by adding the negation of
the condition to the corresponding method. If the condition fails, then the method is exited
by a return statement. This portion of code must be placed at the beginning of the method.
The third axiom represents a set of instructions that always execute when a specific action is
called. Lastly, the fourth axiom is a set of instructions that only executes if a condition is
met. In Javascript, this process is done with an if statement.

The axioms could also contain a function called keep, that receives attributes as parameters.
Its purpose is to record attributes that are not modified in a specific axiom and to make the
formal model deterministic. The algorithm discards this function. Moreover, the axioms
mark the current attribute value by adding the character “'” to their names. As an example,
consider the integer attribute inc. For an axiom to increment the value of this attribute by
one, the instruction would be the following: inc′ = inc + 1. When the algorithm detects this
kind of instructions, it discards the “'” character.

To better understand the whole model export process, consider the formal model presented
in Listing 4.6.

The export algorithm commences by extracting the defines of the formal model, if it has
any, and converts these into Javascript constant values. Next, it processes the attributes
by transforming these into Javascript variables. Then, it identifies the actions and stores
their names as dictionary keys. The values associated with these keys will later receive the
instructions resulting from the process of extracting the model’s axioms. This dictionary
structure is essential because one formal model could have multiple axioms associated with
one action. Afterwards, the algorithm initializes the variables. This step is done by analyzing
the initialization axiom. In Listing 4.6, this axiom is depicted in line number 7. Lastly, the
algorithm processes every set of instructions of the remaining axioms and adds the resulting
code to the dictionary. In the end, it traverses this dictionary and adds the full code of each
method to the code containing the variables and their initialization. For the model in Listing
4.6, the developed algorithm produces the Javascript code presented in Listing 4.7.

The formal models of the IVY Workbench also support attributes represented by fixed-size
arrays. Suppose the algorithm detects one of such attributes. In that case, it adds a Javascript
array to the produced code and initializes this array with the size equals to the number of
elements declared in the formal model. The arrays of the formal model also support negative

4.7. Evolutionary prototyping 53

Listing 4.5: Generic conversion of axioms into Javascript code.

// First Axiom
i n s t r u c t i o n 1 ;
i n s t r u c t i o n 2 ;
. . .
i n s t r u c t i o n N ;

function actionName () {
// Second Axiom
i f (! (condi t ion 1 && condi t ion 2 && . . . && conditionN)) {

r e t u r n ;
}

// Third Axiom
i n s t r u c t i o n 1 ;
i n s t r u c t i o n 2 ;
. . .
i n s t r u c t i o n N ;

//Fourth Axiom
i f (condi t ion 1 && condi t ion 2 && . . . && conditionN) {

i n s t r u c t i o n 1 ;
i n s t r u c t i o n 2 ;
. . .
i n s t r u c t i o n N ;

}
}

Listing 4.6: Formal model of a switch.

1 i n t e r a c t o r main
2 a t t r i b u t e s
3 [vis] checked: boolean
4 ac t ions
5 [vis] toggle
6 axioms
7 [] checked= f a l s e
8 [toggle] checked' =! checked

Listing 4.7: Javascript code generated from the switch model.

var checked;
c h e c k e d = f a l s e ;

function toggle () {
checked= ! checked;

}

4.7. Evolutionary prototyping 54

indexes which are not directly supported in Javascript. At the moment, the developed
version of the algorithm only supports positive index arrays. Therefore, the support for
negative indexes is left for future work.

4.7.2 States and events export

Besides the formal model, it is essential to export the configurations made for assigning the
states and events to the prototype. These two types of configurations are transformed into
Javascript code and added to the code generated by the formal model export process.

The generated code from the states is included in a method called update. This method is
invoked when an event is triggered and executes the properties of all configured states. In
code, these properties are widgets’ methods calls or SVG modifications with the DOM API.

The event configurations are transformed into document event listeners. As mentioned,
this type of configurations has an action of the formal model. Therefore, these listeners
execute their action by invoking its generated method from the formal model export process.
Lastly, the listeners execute the update method to update the prototype accordingly.

The DOM API used in the IVY Workbench has some differences from the browser DOM
API. One example is the modification of the text property of an SVG element. In the browser,
this modification is done by directly accessing the textContent property of the Element object,
whereas the API provided by the Apache Batik library requires invoking the setTextContent
method. Consequently, this kind of operations are incompatible and will result in an error
during the execution of the exported prototypes. To address this, the export process adds a
small compatibility script that adds extra functionalities to Javascript objects, such as the
Element object. This process can only be achieved because the Javascript language supports
the addition of object properties in runtime. For the example mentioned, the code presented
in Listing 4.8 grants the correct compatibility between the Apache Batik DOM and the
browser DOM.

Listing 4.8: Example of the compatibility between the Apache Batik library and the browser DOM.

Element .prototype .se tTextContent = funct ion (t e x t) {
t h i s . t e x t C o n t e n t = t e x t ;

} ;

The exported prototype is a HTML document that contains the SVG structure of the UI
mock-up and the combination of the compatibility methods, formal model, states and events
inside a single script. The exported prototypes follow a separation of concerns intrinsic of
the MVC pattern. The View is the SVG structure and the Model is the generated code from
the formal model. Both these components are completely independent of each other. The

4.8. Summary 55

Controller is the code generated from the states and events configurations. This component
receives user input and updates the Model. Lastly, it reflects these changes in the View by
invoking the generated update method.

4.7.3 Android and iOS mobile applications

Besides browser compatibility, the produced work includes Android (Figure 4.8a) and iOS
(Figure 4.8b) mobile applications that offer support for users to run the exported prototypes
in their mobile devices. The Android application was developed in Kotlin and the iOS
application in Swift. Both these applications use the WebView component to render the
prototype exported in the HTML file format. The only requirement was to enable the
Javascript in this component to ensure the correctness of the prototype execution.

As depicted in Figure 4.8, the developed applications provide a way for users to pick an
HTML file from their mobile’s files. A more optimal solution would have been to build
an infrastructure that supports the creation of user accounts and shared links. In the IVY
Workbench users could save their projects in their account and create a shared link of these
projects. Later, they could log into their account in the IVY mobile applications and load any
of their projects. Alternatively, they could share the links of their projects with other users
that do not have an IVY account. This solution is out of the scope of this project and is left
for future work.

4.8 summary

The new IVY version includes updates in its Prototyper plugin that improve the quality
of the produced prototypes. The generic SVG parser allows users to use their favourite
mock-up editors to build the mock-up of the prototype. It also augments the fidelity of the
tool’s prototypes since it does no longer requires Pencil Project’s medium-fidelity prototypes.
Moreover, the new parser allows users to configure each element of the prototype (excluding
non-interactable elements such as filters and scripts), as opposed to the limited set of
elements of the old version.

The scripting environment of the IVY Workbench is an essential component of the
developed widget framework, providing methods for initializing widgets of a prototype and
executing scripting functions during simulations. The developed framework vastly improves
the capabilities of the tool by removing the necessity of configuring several layers to achieve
the desired results.

The new features add basic mock-up editors’ functionalities such as manipulation of SVG
attributes, insertion and elimination of elements. Furthermore, they introduce dynamic
behaviour to prototypes by leveraging the functionalities of the widget framework. This

4.8. Summary 56

(a) Android mobile application.

(b) iOS mobile application.

Figure 4.8: Developed mobile applications.

behaviour stems from the events and states configurations that listen to user interactions
and react to changes in the formal model, respectively. The events and states augment the
configuration capabilities of the plugin’s older version and provide a more clear separation
of the formal model’s attributes and actions. Lastly, the introduced evolutionary features
provided a way for users to evaluate prototypes in the browser and their mobile devices.
For this last topic, the HTML proved to be a useful file format that readily allowed the
embedding of the UI mock-up and logic behaviour expressed with Javascript code.

The next chapter provides a more accurate view of the capabilities of the new features by
detailing some practical prototyping examples.

5

P L U G I N VA L I D AT I O N A N D E VA L UAT I O N

The present chapter explores the features added to the prototyping plugin, which have been
described in Chapter 4. It does this by describing the prototype of a medical device, the
B. Braun Perfusor ® Space, which covers most of the mentioned features, including two
external widgets: led and cursor. Lastly, this chapter covers the details of usability tests with
non-expert users.

The goal of presenting the prototype is to illustrate the new features introduced to the
prototyping plugin of IVY Workbench. The goal of the usability tests was to validate the
new features of the tool.

5.1 b . braun perfusor ® space

The B. Braun ® Perfusor Space1 is a syringe infusion pump that allows the configuration
of the amount of a specific drug to be administrated over time. This medical device offers
multiple configuration modes. However, the prototype of the device focuses only on the
configuration of the quantity of drug to be administered. Moreover, the prototype includes
an option that simulates the drug administration at one drug unit per second. For the sake
of simplicity, the prototype does not cover other configurations offered by this device, such
as drug selection, administration rate and patient weight specifications.

Figure 5.1 depicts the mock-up that was developed to represent the user interface of the
infusion pump. The goal is for the prototype to capture the following behaviour of the target
system:

• When a user performs a click in the left or right arrow buttons, then the cursor moves
left or right respectively. The cursor position is identified by a black background in the
digits screen. The cursor also changes the digit foreground to white.

• When a user performs a click in the up or down arrow buttons, then the digit value of
the current cursor position increases or decreases respectively.

1 https://www.bbraun.com/en/products/b/perfusor-space.html, accessed 26-September-2020

57

https://www.bbraun.com/en/products/b/perfusor-space.html

5.1. B. Braun Perfusor ® Space 58

Figure 5.1: Infusion pump mock-up with the respective association between its elements and the
formal model’s attributes and actions. The formal model also contains the infuse action
that is triggered every one second.

• When a user performs a click in the start/stop button, then the prototype commences/
stops the drug administration. In this mode, users cannot interact with the cursor, and
the value represented in the digits screen decreases one unit every second. The circle
above the screen has a white background colour when the administration is running
and a grey background colour otherwise.

This prototype requires a formal model that specifies its behaviour in order to animate the
mock-up. The following sections describe these components and the configurations required
to develop the prototype in the prototyping plugin.

5.1.1 Formal Model

The formal model on which the prototype is based (see Appendix A.2) has three main com-
ponents: the attributes that describe the system’s structure, the possible actions performed in
the system, and the axioms that represent rules for expressing system’s behaviour. However,
for users of the prototyping plugin, the relevant components are the attributes and actions
of the model (the mapping between them and the mock-up is presented in Figure 5.1). The
attributes are the following:

• digits – This attribute holds the value of each digit of the prototype. An array of five
integer values represents it.

• position – As the name suggests, it represents the position of the cursor in the digits
screen.

5.1. B. Braun Perfusor ® Space 59

• running – This attribute has a boolean type and indicates if the device is in infusion
mode.

Lastly, the actions of the developed model are the following:

• up/down – Increases/decreases the value in digits array at the index equal to the
current value of the position attribute.

• left/right – Increases/decreases the value of the position attribute.

• startStop – Initiates or stops the infusion process. This action toggles the run attribute’s
value.

• infuse – This action only runs if the running attribute has its value equal to true. It
decreases the value of the whole digits array. It stops executing, by changing the value
of running to false, when all elements of the digits array are equal to 0.

5.1.2 UI Mock-up

The UI mock-up, presented in Figure 5.1 contains several SVG elements that are relevant to
the development of the prototype.

Two of these elements are the external widgets led and cursor. The led widget provides a
way to indicate if the device is in infusion mode with its On property. This property expects
a boolean and therefore is controlled by the running attribute of the formal model. The
cursor widget is responsible for the animation of the digits screen. Its main properties are
Digits and Cursor Position. The first property expects an array of integers and is controlled
by the digits attribute of the formal model. When this widget receives the integer array, it
creates as many SVG text elements as the size of the received array. The result is the display
of the reversed received array. For instance, if the array received has the values [1, 0, 4, 5, 6],
then the result in the screen will be 65401. The second property expects an integer value
and is assigned to the position attribute of the formal model. This property applies a SVG
filter to the text element in the current position. The result is a black rectangle, as shown in
Figure 5.1 in the digit “5”.

The remaining SVG elements of the mock-up are treated as internal widgets by IVY’s
prototyping plugin. The prototype of this device only requires the configuration of the
elements that assemble the arrow buttons and the start/stop button. It is essential to mention,
however, that these buttons have multiple elements. For instance, the arrow buttons have a
group (g tag) containing a white circle and an arrow icon. Only these group elements need
to received configurations to achieve the desired results.

5.1. B. Braun Perfusor ® Space 60

(a) State configurations of the led
widget.

(b) State configurations of the cur-
sor widget.

(c) Configuration of the periodic
event.

Figure 5.2: Configurations of the external widgets led and cursor.

5.1.3 Prototype Configurations

The last two sections described the two major components that assemble the prototype of the
mentioned medical device. This section details the steps required to link these components to
achieve the desired results. After the files containing the formal model and the UI mock-up
are imported into the IVY Workbench, users need to define the states and events in the
prototyping plugin by following these steps:

1. Configure the state of the cursor widget. For this step, users need to assign the
attributes digits and position to the properties Digits and Cursor Position, as depicted in
Figure 5.2b.

2. Configure the state of the led widget. The On property of this widget should be
assigned to the running attribute of the model. Moreover, the default On colour of this
widget is green, which could not be perceptible since the device shares the same colour.
To prevent such issues, users should assign a white colour value to this property.
Figure 5.2a illustrates these configurations.

3. Add event handling to the buttons of the mock-up. Users should add event handlers
to the click events of the arrow buttons and the start/stop button. In the prototyping
plugin, the default trigger for an event is a click. Therefore, users only need to select
the appropriate action (up, down, left, right, startStop) of the model in the action combo
box of the events sidebar.

5.2. Usability Tests 61

4. Configure the periodic event for the infusion mode. This event can be assigned to
the cursor widget. Users need to change the event trigger to time. This selection will
display a new input value that controls the interval in seconds that triggers this event,
as depicted in Figure 5.2c. The default value is one second which is the one required
for the prototype. Lastly, users need to select the action infuse.

When all the steps just described are performed, users can interact with the prototype
by clicking in the play button. This action launches the simulation window, which should
present the prototype of the medical device with the expected behaviour.

5.2 usability tests

The prototype described in the previous section served as the validation of the overall
capabilities of the new prototyping features of the IVY Workbench. However, it was
considered relevant to carry out a usability test to validate the new features with non-expert
users. The goals of such usability tests were the following: verify if any user was capable of
eagerly producing a prototype, and derive a list of future improvements for the workbench.
The usability tests were carried out according to the script provided in Appendix B.2. A
consent form (provided in Appendix B.1) was also collected.

The experiment script started with a brief explanation of the context of the tool and
its features. This document also included a step-by-step guide on how to create a simple
prototype: a toggle button. The test itself consisted on the creation of the prototype described
in Section 5.1. Lastly, the test ended with a brief questionnaire to collect demographic data
(name, age, sex and whether the user had background experience with mock-up editors)
and to collect information on the usability of the tool.

The consent form informed users about the data collected in the usability test. This
document ensures that users agree to share the required data by the experiment script and
the recording of the session.

This section describes the whole procedure of the usability tests. This description includes
the conditions of the tests and every step performed with the users. Next, the section
provides information on the participants and ends with a discussion about the collected
data and results.

5.2.1 Procedure

The usability tests were performed on a laptop that already contained the environment
setup with the IVY Workbench. Both the step-by-step guide and the actual test required
the importing of two files: the formal model and the UI mock-up. Both these files were
previously created since this step is related to experienced users. These files were saved

5.2. Usability Tests 62

in the same directory and were imported before the first contact with the users. This step
ensured that the IVY Workbench saved the files’ directory as the default working directory.
Therefore, in the usability tests, users were appropriately directed to the files directory. This
method avoided unnecessary work in the process of locating the required files.

The full procedure of the usability tests, as described in the script, included the following
steps:

1. Beginning of the process. The process started with a brief explanation of the tool and
the activities to perform in the tests. Afterwards, users were notified about the required
data and the recording of the session. If they agreed with the requirements, they were
asked to sign the consent form. All the participants involved in the performed tests
agreed to share the required data.

2. Experiment script reading. Users were asked to read the experiment script document.
In this phase, they were encouraged to ask questions about the document and the
goals of the tests.

3. Step-by-step example. As stated above, the script included a step-by-step guide on
how to create the prototype of a toggle button. The formal model of this prototype had
one boolean attribute and one action that toggled the value of that attribute. The UI
mock-up contained the switch widget described in Section 4.5. The prototype required
the assignment of the Checked property of the widget’s state with the attribute of the
model. The prototype also required a click event configuration on the widget that
executes the action of the formal model. The goal of this step-by-step guide was to
familiarize the users with the tool before the actual test. In this phase of the usability
tests, users were encouraged to ask questions about the tool’s features. Users were
also accompanied by the script document in the process of developing the example
prototype. During this process, it was also emphasized the relevant/irrelevant tool’s
features for the example and the official test.

4. Actual test. The test itself consisted on the creation of the prototype described in
Section 5.1. This test had a mandatory and a complementary part. The first part
consisted on the prototyping of the amount of drug to be administered, whereas the
complementary part included the prototyping of the infusion process. This division
was perform to evaluate if the users were able to complete at least the mandatory part.
In this test, users were also accompanied by the script document since this document
contains the required steps for building the prototype. Before the test commenced,
screen recording with the Windows Xbox Game Bar application was initiated. Then,
users were asked to build the prototype that fulfils the requirements of the mandatory
part. Afterwards, users began the complementary part. Lastly, when they finished the
prototype, they were asked to stop the screen recording.

5.2. Usability Tests 63

Table 5.1: Participants involved in the usability tests.
Participant Age Sex Previous experience Part I Part II Time (minutes)

1 25 F YES 10:08

2 25 F NO 12:19

3 24 M YES 06:38

4 24 F NO 07:40

5 20 F NO 07:52

5. Filling of the questionnaire. The last phase of the usability tests included the filling
of the questionnaire presented at the end of the script’s document. The questionnaire
contained seven questions about the usability with the tool and is presented in Ap-
pendix B.2. Question 6 is related to users with background experience in mock-up
editors. Therefore, only these users were asked to answer this question.

5.2.2 Participants

The usability tests were conducted in the region of Braga, Portugal and involved 5 partic-
ipants. The participants included one male and four females. Their average age was 23.5
years. Furthermore, two participants had background experience with mock-up editors.
Table 5.1 depicts this information and includes the information about the conclusion of parts
I and II of the test and the time required by each participant. As shown on the table, all
participants were able to complete the two parts. Lastly, the average time required to fulfil
the mentioned parts was 8 minutes and 51 seconds.

5.2.3 Collected data and results

By analysing Table 5.1 it can be concluded that all participants were able to successfully
develop a prototype that fulfils the requirements of the two parts of the test. Therefore, the
results of the usability tests suggest that the tool provides the means for non-expert users to
build prototypes of interactive systems by bringing together mock-ups and formal models.

It was expected that all users with previous experience with mock-up editors completed
the prototype in the shortest time, since these users would generally have more knowledge
about the SVG structure. Although one of this type of users proved this hypothesis, another
user of this type complete the prototype in the second-longest time. This event suggests that
a more in-depth knowledge about SVG structure might not be so relevant in the process of
developing prototypes with this tool.

The following observations were listed from the screen recordings of the official tests with
the participants:

5.2. Usability Tests 64

• Observation 1. The users quickly selected the appropriated attributes of the formal
model to configure the required states of the elements of the mock-up.

• Observation 2. The users had difficulties in the selection of elements that were a
composition of other SVG elements. In the prototype of the medical device, these
difficulties were raised in the selection of the arrow buttons.

• Observation 3. In the process of developing the prototype, users rarely selected
elements of the mock-up by interacting with the renderer. Instead, they usually
selected the elements with the SVG tree sidebar.

• Observation 4. The users had some difficulties in distinguishing the differences
between states and events. These difficulties were overcome as they interacted more
with the tool.

As mentioned, the questionnaire included seven questions about the usability with the tool.
The following list presents these questions and the answers provided by the participants:

1. What was your overall impression of this system? All participants made a posi-
tive overall evaluation of the system, recognizing its practical functionalities and its
simplicity.

2. What aspects of this system did you like the most? Most participants liked the colour
scheme and the simplicity of the UI. Three participants approved the possibility of
selecting SVG elements with the SVG tree sidebar and the renderer. One participant
mentioned the attribute selection guidance in the states configuration process.

3. What aspects of this system did you like the least? In general, the participants found
difficulties in selecting groups of SVG elements. Two participants suggested that only
one file should be imported instead of separate files containing the formal model and
the UI mock-up.

4. Were any features that you were surprised to see? Three participants were surprised
with the functionalities of the external widgets. Moreover, two participants pointed
out the periodic time events. Lastly, one of the participants acknowledged the tool’s
capabilities in creating prototypes with ease.

5. What features did you expected to find but are missing in this system? Two partici-
pants did not found any feature that was missing in the tool. One of the participants
chose not to answer this question. Lastly, two participants pointed out drag and drop
functionalities and the missing of a SVG group selection in the renderer.

5.3. Summary 65

6. Compare the capabilities of adding behaviour to prototypes of this tool with other
tools that you have used. This question was only answered by the two participants
with previous experience with mock-up editors. Both participants acknowledged the
capabilities of behaviour addition of the tool. One of the participants compared Pencil
Project (described in Section 2.3.1) with this tool and claimed that the IVY Workbench
allows the creation of prototypes with more complex behaviour.

7. Would you recommend this system to your colleagues? All participants said they
would recommend this tool to their colleagues.

The results of the usability tests proved satisfactory because each participant was able to
fulfil not only the mandatory part of the official test but also the complementary part where
more advanced features of the tool were covered. This fact seems to indicate that the IVY
Workbench is a tool that has the potential to support multidisciplinary teams, where even
non-expert users can develop prototypes for interactive systems.

The tests also emphasized the strengths and weaknesses of the new prototyping features.
Users recognized the capabilities of the external widgets and generally found the developed
UI intuitive. However, users had difficulties in selecting SVG elements in the renderer. This
suggests some improvements in the renderer are needed, to support group selection as
default instead of single element selection. This process includes the propagation of click
events one level higher of the SVG hierarchy. Lastly, another improvement is the addition of
project files to the tool. With this feature, users will be able to create projects that include
the two main components of a prototype: formal model and UI mock-up, hence reducing
the importing phase work.

5.3 summary

This chapter covered the development of a relatively complex prototype of the medical device
B. Braun Perfusor ® Space. This example prototype served to explore the new prototyping
features of the tool. The prototype also included a practical application of two external
widgets: led and cursor. These widgets proved useful to achieve the desired simulation
results that will not be possible only with a formal model and a mock-up. Although the
prototype had some level of complexity, it shared the same workflow as simple prototypes:
loading of the required files and configuration of the states and events.

The present chapter also covered the details of the tests conducted with users. These tests
provide indication that the IVY Workbench is a tool that makes it possible for non-expert
users to develop prototypes of interactive systems. In particular, the results indicate that
the tool has the potential to support multidisciplinary teams, which is one of the chief
aspects of the UCD methodology described in Section 2.1. These tests also pointed out a few

5.3. Summary 66

improvements that should be added to the tool, namely SVG group selection in the renderer
and support for project files.

6

C O N C L U S I O N

Prototyping is an iterative process, essential for interactive systems design that provides
an inexpensive earlier evaluation of the system, and supports the concepts of the UCD
methodology. In the context of safety-critical interactive computing systems development, it
is useful to combine it with the development of formal models that allow a more exhaustive
analysis of system behaviour.

This work addressed the synergies between two types of approaches: mock-up editors
and model-based tools. The first approach focuses on the visual representation of the system,
while the second one combines the appearance of the system with formal analysis. However,
the solutions found so far for the model-based approach are complex and not suited for
non-experts. The current work evaluated these issues on the IVY Workbench tool and
identified potential features to improve it. These features were collected from the studied
mock-up editors (Pencil Project and Adobe XD) and model-based tools (PVSio-Web and
CIRCUS). The contributed features of this project were added to the prototyping plugin of
the IVY Workbench.

6.1 results

The IVY Workbench prototyping plugin uses the SVG file format to work with a broader
design community than tools that resort to coding or raster images, since the majority of
mock-up editors commonly uses this format. However, distinct mock-up editors could
provide different types of SVG structures. Along these lines, this project included the
development of an engine that was able to process SVG files from different sources. To
validate the effectiveness of this engine, several identical SVG shapes from distinct sources
were imported into the workbench.

The SVG file format also granted the possibility of extending the prototyping capabilities
with the introduction of dynamic widgets, since this format allows the embedding of
Javascript code. These widgets provide the means for adding dynamic behaviour to SVG
mock-ups. One of the challenges of this project consisted in the creation of a framework

67

6.1. Results 68

of dynamic widgets. This framework included the definition of a widget API and the
development of a scripting environment that was able to execute these widgets during
prototype simulations. Tests were also performed to validate the compatibility of these
widgets with several mock-up editors. These tests suggested the widget recovery at runtime
from mock-ups since some mock-up editors modify both the SVG structure and the Javascript
code.

Furthermore, the developed widgets have two types: external and internal. The external
type includes the widgets created for a library of dynamic widgets that contain Javascript
code and aim for complex behaviour or model-specific functionalities. The internal widgets
are created by the prototyping plugin. These widgets are any SVG shape, such as rect, text
or g elements and allow the manipulation of several SVG properties. The main goal of this
type of widgets is to allow users to configure each component of the UI mock-up. Moreover,
these widgets are also independent of the formal model and reduce the complexity in the
process of creating prototypes.

The present work presented an approach for developing prototypes with IVY and combine
the features of formal models with UI mock-ups. The approach consists on the configuration
of states and events. States are related to the formal model attributes and define the way
prototypes react to changes in the values of these attributes. Events are associated with
formal model actions and user interactions, such as clicks or user-defined timers. This
approach proved resourceful to develop prototypes for interactive systems. One example
was provided in Chapter 5 where the prototyping of the B. Braun Perfusor ® Space device
was detailed.

Besides the features for improving the prototyping capabilities of the IVY Workbench
environment, code generation functionalities were was also added to the tool. This process
included the translation of the formal model and the configurations of states and events
into Javascript code. Then, the tool exports its prototypes by including, in a HTML file,
the SVG mock-up and the Javascript code. This file format proved useful since it is cross-
compatible with multiple platforms. Consequently, Android and iOS mobile applications
were developed that use the WebView component to render the exported prototypes.

Moreover, usability tests with non-expert users were conducted, to validate the new
prototyping features of IVY. The results were satisfactory since all users were able to fulfil all
the requirements of the tests, proving good indications of IVY’s support of multidisciplinary
teams, which is one of the chief principles of UCD methodology. The tests also helped
identify a number of improvements that should be added to the tool in future work.

Before the additions made by this project, the IVY Workbench was able to produce
medium-fidelity prototypes since it could only process SVG files from Pencil Project. Its
prototypes were iterative since they offered the possibility to evolve, as the design process
iterates, but do not become part of the system. The overall prototyping features of the

6.2. Future Work 69

Table 6.1: Updated comparison table against the new features of IVY Workbench.
Tool Precision Interactivity Evolution
Pencil Project Medium-fidelity Fixed-path Rapid
Adobe XD High-fidelity Fixed-path Iterative
CIRCUS High-fidelity Open Evolutionary
PVSio-Web High-fidelity Open Iterative
IVY Workbench High-fidelity Open Evolutionary

previous version of IVY Workbench were compared with other tools and the results are
presented in Table 2.2 (see Section 2.4).

With the new prototyping features, IVY Workbench can produce high-fidelity prototypes.
This improvement stemmed from the development of the engine that can process SVG
structures from distinct sources. Additionally, with the code export functionalities to HTML
and Javascript, the IVY Workbench achieved evolutionary prototypes intended to become
part of a system. Table 6.1 presents the updated version of the comparison table from
Section 2.4.

Lastly, the new prototyping plugin developed in this project solved the issues of the last
version, described in Section 3.1.5. The contributed solutions were the following:

• A SVG parser was created that can extract any SVG element from distinct sources,
which removed the dependency of an external tool. This new parser also allows the
configuration of any SVG element as opposed to the old solution that only allowed
Pencil Project’s labels and buttons.

• The addition of the dynamic widget framework reduced the complexity of the proto-
types’ building process, where it was required to replicate parts of the mock-up and
configure each one of these parts to achieve the desired results.

• A more flexible prototypes’ configuration approach was developed, which enables
users to assign both actions and attributes of the formal model to elements of the UI
mock-up. This approach also enriched on the prototype configuration capabilities of
the old version by adding conditional states, event triggers, dynamic widget functions,
and allowing the control of SVG properties.

6.2 future work

As previously mentioned in this document, future work should include improvements to fix
the difficulties felt by the users involved in the usability tests. These improvements include
the addition of project files to the tool. These should contain both the formal model and the

6.2. Future Work 70

UI mock-up. Moreover, the developed SVG renderer should support SVG group selection
and drag and drop functionalities.

More tests should also be conducted that cover more mock-up editors to evaluate their
compatibility with the developed SVG engine and the external widgets. The environment
could also extend the set of SVG properties supported by the internal widgets. Furthermore,
the extension of the external widget library could vastly improve the creation of prototypes
of diverse fields.

Another striking improvement concerning the widgets is the creation of a platform that
offers the full documentation of the widget library. This platform could also allow expert
users to upload new dynamic widgets. Such a platform has the potential of creating a
community of advanced IVY users that can continuously promote the library of dynamic
widgets. The more diverse and extended this library becomes, the more complete and
diverse the tool’s prototypes will be.

Improvements can also be made in the process of exporting prototypes. Currently, the
prototypes are exported to HTML files that embed Javascript code and the UI mock-up
as SVG. A more interesting solution is to transform the SVG layout into HTML and CSS.
Extending this process to other file formats would also be a remarkable improvement.

Lastly, the workbench should also support the creation of user accounts and shared links.
This feature could improve the development of prototypes in large teams and could also
improve the UX of the developed mobile applications.

B I B L I O G R A P H Y

J. M. Araújo, R. Couto, and J. C. Campos. A generator of user interface prototypes for the
ivy workbench. In 2019 International Conference on Graphics and Interaction (ICGI), pages
32–39, Nov 2019. doi: 10.1109/ICGI47575.2019.8955088.

João Araújo. Gerador de protótipos de interfaces gráficas. Master’s thesis, Universidade do
Minho, 2019.

Benjamin Bähr. Rapid creation of sketch-based native android prototypes with “blended
prototyping”. In Mobile HCI 2013—Workshop on Prototyping to Support the Interaction
Designing in Mobile Application Development, 2013.

Brian Bailey, Jacob Biehl, Damon Cook, and Heather Metcalf. Adapting paper prototyping
for designing user interfaces for multiple display environments. Personal and Ubiquitous
Computing, 12:269–277, 03 2008. doi: 10.1007/s00779-007-0147-2.

Michel Beaudouin-Lafon and Wendy Mackay. Prototyping tools and techniques. In Julie A.
Jacko and Andrew Sears, editors, The human-computer interaction handbook: fundamentals,
evolving technologies and emerging applications, chapter 52, pages 1006–1031. L. Erlbaum
Associates Inc., 365 Broadway Hillsdale, NJUnited States, 2002.

Pietro C Cacciabue. Guide to applying human factors methods: Human error and accident
management in safety-critical systems. Springer Science & Business Media, 2004.

Bradley Camburn, Vimal Viswanathan, Julie Linsey, David Anderson, Daniel Jensen, Richard
Crawford, Kevin Otto, and Kristin Wood. Design prototyping methods: state of the art in
strategies, techniques, and guidelines. Design Science, 3:e13, 2017. doi: 10.1017/dsj.2017.10.

J. C. Campos, M. Sousa, M. C. B. Alves, and M. D. Harrison. Formal verification of a space
system’s user interface with the ivy workbench. IEEE Transactions on Human-Machine
Systems, 46(2):303–316, April 2016. ISSN 2168-2305. doi: 10.1109/THMS.2015.2421511.

J. Creissac Campos and M. D. Harrison. Systematic analysis of control panel interfaces using
formal tools. In T. C. Nicholas Graham and Philippe Palanque, editors, Interactive Systems.
Design, Specification, and Verification, pages 72–85, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg. ISBN 978-3-540-70569-7.

71

bibliography 72

J.C. Campos, C. Fayollas, M.D. Harrison, C. Martinie, P. Masci, and P. Palanque. Supporting
the analysis of safety critical user interfaces: an exploration of three formal tools. ACM
Transactions on Computer-Human Interaction, 2020. accepted.

A. S. Carter and C. D. Hundhausen. How is user interface prototyping really done in
practice? a survey of user interface designers. In 2010 IEEE Symposium on Visual Languages
and Human-Centric Computing, pages 207–211, Sep. 2010. doi: 10.1109/VLHCC.2010.36.

Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto Giunchiglia, Marco Pistore,
Marco Roveri, Roberto Sebastiani, and Armando Tacchella. Nusmv 2: An opensource
tool for symbolic model checking. In Ed Brinksma and Kim Guldstrand Larsen, editors,
Computer Aided Verification, pages 359–364, Berlin, Heidelberg, 2002. Springer Berlin
Heidelberg. ISBN 978-3-540-45657-5.

Rui Couto and José Creissac Campos. Ivy 2: A model-based analysis tool. In Proceedings of
the ACM SIGCHI Symposium on Engineering Interactive Computing Systems, EICS ’19, New
York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450367455. doi:
10.1145/3319499.3328228. URL https://doi.org/10.1145/3319499.3328228.

Michael Deininger, Shanna R. Daly, Kathleen H. Sienko, and Jennifer C. Lee. Novice
designers’ use of prototypes in engineering design. Design Studies, 51:25 – 65, 2017.
ISSN 0142-694X. doi: https://doi.org/10.1016/j.destud.2017.04.002. URL http://www.

sciencedirect.com/science/article/pii/S0142694X17300273.

N. M. Devadiga. Tailoring architecture centric design method with rapid prototyping. In
2017 2nd International Conference on Communication and Electronics Systems (ICCES), pages
924–930, 2017.

Steven P. Dow, Kate Heddleston, and Scott R. Klemmer. The efficacy of prototyping under
time constraints. In Proceedings of the Seventh ACM Conference on Creativity and Cognition,
C&C ’09, page 165–174, New York, NY, USA, 2009. Association for Computing Machinery.
ISBN 9781605588650. doi: 10.1145/1640233.1640260. URL https://doi.org/10.1145/

1640233.1640260.

Christer Elverum and Torgeir Welo. The role of early prototypes in concept development:
Insights from the automotive industry. Procedia CIRP, 21:491–496, 12 2014. doi: 10.1016/j.
procir.2014.03.127.

Mica R. Endsley and Jones G. Debra. Designing for Situation Awareness: An Approach to
User-Centered Design, Second Edition. CRC Press, Inc., USA, 2nd edition, 2011. ISBN
1420063553.

https://doi.org/10.1145/3319499.3328228
http://www.sciencedirect.com/science/article/pii/S0142694X17300273
http://www.sciencedirect.com/science/article/pii/S0142694X17300273
https://doi.org/10.1145/1640233.1640260
https://doi.org/10.1145/1640233.1640260

bibliography 73

Daniel Engelberg and Ahmed Seffah. A framework for rapid mid-fidelity prototyping of web
sites. In Judy Hammond, Tom Gross, and Janet Wesson, editors, Usability: Gaining a Com-
petitive Edge, pages 203–215. Springer US, Boston, MA, 2002. ISBN 978-0-387-35610-5. doi:
10.1007/978-0-387-35610-5_14. URL https://doi.org/10.1007/978-0-387-35610-5_14.

Camille Fayollas, Célia Martinie, Philippe Palanque, Yannick Deleris, J.-C Fabre, and David
Navarre. An approach for assessing the impact of dependability on usability: Application
to interactive cockpits. Proceedings - 2014 10th European Dependable Computing Conference,
EDCC 2014, pages 198–209, 05 2014. doi: 10.1109/EDCC.2014.17.

Wilbert O Galitz. The essential guide to user interface design: an introduction to GUI design
principles and techniques. John Wiley & Sons, 2007.

Carmen Gervet, Yves CASEAU, and Denis Montaut. On Refining Ill-Defined Con-
straint Problems: A Case Study in Iterative Prototyping. In PACLP Practical Appli-
cations of Constraint Logic Programming, London, United Kingdom, 1999. URL https:

//hal.umontpellier.fr/hal-01742389.

Giovanni Guida, Gianfranco Lamperti, and Marina Zanella. Software Prototyping in Data and
Knowledge Engineering. Kluwer Academic Publishers, USA, 1999. ISBN 0792360168.

David Harel. Statecharts: a visual formalism for complex systems. Science of Com-
puter Programming, 8(3):231 – 274, 1987. ISSN 0167-6423. doi: https://doi.org/
10.1016/0167-6423(87)90035-9. URL http://www.sciencedirect.com/science/article/

pii/0167642387900359.

Henrik Hertel and Anke Dittmar. Design support for integrated evolutionary and exploratory
prototyping. In Proceedings of the ACM SIGCHI Symposium on Engineering Interactive
Computing Systems, EICS ’17, page 105–110, New York, NY, USA, 2017. Association
for Computing Machinery. ISBN 9781450350839. doi: 10.1145/3102113.3102145. URL
https://doi.org/10.1145/3102113.3102145.

ISO. Human-centred design processes for interactive systems. Standard, International
Organization for Standardization, Geneva, CH, June 1999.

Gabriel Jakobson. Collaborative web browsing system having document object model ele-
ment interaction detection. https://patents.google.com/patent/US8769017B2/en, July 1

2014. US Patent 8769017B2.

Maria Johansson and Mattias Arvola. A case study of how user interface sketches, scenarios
and computer prototypes structure stakeholder meetings. In Proceedings of the 21st British
HCI Group Annual Conference on People and Computers: HCI...but Not as We Know It - Volume

https://doi.org/10.1007/978-0-387-35610-5_14
https://hal.umontpellier.fr/hal-01742389
https://hal.umontpellier.fr/hal-01742389
http://www.sciencedirect.com/science/article/pii/0167642387900359
http://www.sciencedirect.com/science/article/pii/0167642387900359
https://doi.org/10.1145/3102113.3102145
https://patents.google.com/patent/US8769017B2/en

bibliography 74

1, BCS-HCI ’07, page 177–184, Swindon, GBR, 2007. BCS Learning & Development Ltd.
ISBN 9781902505947.

Frank W. Liou. Rapid Prototyping and Engineering Applications (Dekker Mechanical Engineering).
CRC Press, Inc., USA, 2007. ISBN 0849334098.

Charisa F. Llema and Cenie M. Vilela-Malabanan. Design and development of mlerws: A
user-centered mobile application for english reading and writing skills. Procedia Computer
Science, 161:1002 – 1010, 2019. ISSN 1877-0509. doi: https://doi.org/10.1016/j.procs.2019.
11.210. URL http://www.sciencedirect.com/science/article/pii/S1877050919319210.
The Fifth Information Systems International Conference, 23-24 July 2019, Surabaya, In-
donesia.

Marina Machado, Rui Couto, and José Creissac Campos. Modus: model-based user inter-
faces prototyping. In Proceedings of the ACM SIGCHI Symposium on Engineering Interactive
Computing Systems, EICS 2017, Lisbon, Portugal, June 26-29, 2017, page 111–116, 2017.
doi: 10.1145/3102113.3102146. URL http://doi.acm.org/10.1145/3102113.3102146.
<p>n/a</p>.

Paolo Masci, Yi Zhang, Paul Jones, Patrick Oladimeji, Enrico D’Urso, Cinzia Bernardeschi,
Paul Curzon, and Harold Thimbleby. Combining pvsio with stateflow. In Julia M. Badger
and Kristin Yvonne Rozier, editors, NASA Formal Methods: 6th International Symposium,
NFM 2014, Houston, TX, USA, April 29 – May 1, 2014. Proceedings, volume 8430, pages
209–214. Springer International Publishing, Cham, 2014. ISBN 978-3-319-06200-6. doi: 10.
1007/978-3-319-06200-6_16. URL http://dx.doi.org/10.1007/978-3-319-06200-6_16.

Paolo Masci, Patrick Oladimeji, Yi Zhang, Paul Jones, Paul Curzon, and Harold Thimbleby.
PVSio-web 2.0: Joining PVS to HCI. In Daniel Kroening and Corina S. Păsăreanu,
editors, Computer Aided Verification: 27th International Conference, CAV 2015, San Francisco,
CA, USA, July 18-24, 2015, Proceedings, Part I, pages 470–478. Springer International
Publishing, 2015. ISBN 978-3-319-21690-4. doi: 10.1007/978-3-319-21690-4_30. URL
http://dx.doi.org/10.1007/978-3-319-21690-4_30.

Gioacchino Mauro, Harold Thimbleby, Andrea Domenici, and Cinzia Bernardeschi. Ex-
tending a user interface prototyping tool with automatic MISRA C code generation. In
Proceedings of the Third Workshop on Formal Integrated Development Environment, F-IDE@FM
2016, Limassol, Cyprus, November 8, 2016, pages 53–66, 2016. doi: 10.4204/EPTCS.240.4.
URL https://doi.org/10.4204/EPTCS.240.4.

David Navarre, Philippe Palanque, Rémi Bastide, and Ousmane Sy. Structuring interactive
systems specifications for executability and prototypability. In Proceedings of the 7th

http://www.sciencedirect.com/science/article/pii/S1877050919319210
http://doi.acm.org/10.1145/3102113.3102146
http://dx.doi.org/10.1007/978-3-319-06200-6_16
http://dx.doi.org/10.1007/978-3-319-21690-4_30
https://doi.org/10.4204/EPTCS.240.4

bibliography 75

International Conference on Design, Specification, and Verification of Interactive Systems, DSV-
IS’00, page 97–119, Berlin, Heidelberg, 2000. Springer-Verlag. ISBN 3540416633.

David Navarre, Philippe Palanque, Rémi Bastide, and Ousmane Sy. A model-based tool
for interactive prototyping of highly interactive applications. In Proceedings of the 12th
International Workshop on Rapid System Prototyping, RSP ’01, page 136, USA, 2001. IEEE
Computer Society.

Anh Nguyen-Duc, Xiaofeng Wang, and Pekka Abrahamsson. What influences the speed of
prototyping? an empirical investigation of twenty software startups. In Hubert Baumeister,
Horst Lichter, and Matthias Riebisch, editors, Agile Processes in Software Engineering and
Extreme Programming, pages 20–36, Cham, 2017. Springer International Publishing. ISBN
978-3-319-57633-6.

Addy Osmani. Learning JavaScript Design Patterns: A JavaScript and jQuery Developer’s Guide.
" O’Reilly Media, Inc.", 2012.

S. Owre, J. M. Rushby, and N. Shankar. Pvs: A prototype verification system. In Deepak
Kapur, editor, Automated Deduction—CADE-11, pages 748–752, Berlin, Heidelberg, 1992.
Springer Berlin Heidelberg. ISBN 978-3-540-47252-0.

Philippe Palanque, Jean-François Ladry, David Navarre, and Eric Barboni. High-fidelity
prototyping of interactive systems can be formal too. In Human-Computer Interaction. New
Trends, volume 5610, pages 667–676, 07 2009. doi: 10.1007/978-3-642-02574-7_75.

Thiago Rocha Silva, Jean-Luc Hak, and Marco Antonio Winckler. A Review of Milestones in
the History of GUI Prototyping Tools. In 15th IFIP TC.13 International Conference on Human-
Computer Interaction (INTERACT 2015), pages pp. 1–12, Bamberg, Germany, September
2015. URL https://hal.archives-ouvertes.fr/hal-01343040.

Gernot Rottermanner, Markus Wagner, Martin Kalteis, Michael Iber, Peter Judmaier, Wolf-
gang Aigner, Volker Settgast, and Eva Eggeling. Low-fidelity prototyping for the air
traffic control domain. In Raimund Dachselt and Gerhard Weber, editors, Mensch
und Computer 2018 - Workshopband, Bonn, 2018. Gesellschaft für Informatik e.V. doi:
10.18420/muc2018-ws12-0401.

Mark Ryan, José Fiadeiro, and Tom Maibaum. Sharing actions and attributes in modal
action logic. In Takayasu Ito and Albert R. Meyer, editors, Theoretical Aspects of Computer
Software, pages 569–593, Berlin, Heidelberg, 1991. Springer Berlin Heidelberg. ISBN
978-3-540-47617-7.

Daniel Schwarz. Jump Start Adobe XD. Sitepoint, 1 edition, 2017. ISBN 0995382611.

https://hal.archives-ouvertes.fr/hal-01343040

bibliography 76

Iris Soute, Tudor Vacaretu, Jan De Wit, and Panos Markopoulos. Design and evaluation
of rapido, a platform for rapid prototyping of interactive outdoor games. ACM Trans.
Comput.-Hum. Interact., 24(4), August 2017. ISSN 1073-0516. doi: 10.1145/3105704. URL
https://doi.org/10.1145/3105704.

Sarah Suleri, Vinoth Pandian Sermuga Pandian, Svetlana Shishkovets, and Matthias Jarke.
Eve: A sketch-based software prototyping workbench. In Extended Abstracts of the 2019
CHI Conference on Human Factors in Computing Systems, CHI EA ’19, page 1–6, New
York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450359719. doi:
10.1145/3290607.3312994. URL https://doi.org/10.1145/3290607.3312994.

P. Szekely, P. Sukaviriya, P. Castells, J. Muthukumarasamy, and E. Salcher. Declarative
interface models for user interface construction tools: the mastermind approach. In
Leonard J. Bass and Claus Unger, editors, Engineering for Human-Computer Interaction:
Proceedings of the IFIP TC2/WG2.7 working conference on engineering for human-computer
interaction, Yellowstone Park, USA, August 1995, pages 120–150. Springer US, Boston, MA,
1996. ISBN 978-0-387-34907-7. doi: 10.1007/978-0-387-34907-7_8. URL https://doi.org/

10.1007/978-0-387-34907-7_8.

Hock-Hai Teo, Lih-Bin Oh, Chunhui Liu, and Kwok-Kee Wei. An empirical study of the
effects of interactivity on web user attitude. International Journal of Human-Computer Studies,
58(3):281 – 305, 2003. ISSN 1071-5819. doi: https://doi.org/10.1016/S1071-5819(03)00008-9.
URL http://www.sciencedirect.com/science/article/pii/S1071581903000089.

Robert A. Virzi, Jeffrey L. Sokolov, and Demetrios Karis. Usability problem identification
using both low- and high-fidelity prototypes. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ’96, page 236–243, New York, NY, USA, 1996.
Association for Computing Machinery. ISBN 0897917774. doi: 10.1145/238386.238516.
URL https://doi.org/10.1145/238386.238516.

V. K. Viswanathan and J. S. Linsey. Enhancing student innovation: Physical models in the
idea generation process. In 2009 39th IEEE Frontiers in Education Conference, pages 1–6,
2009.

W3C. Scalable vector graphics (svg) 2. https://www.w3.org/TR/SVG/, 2018. [Online; accessed
14-January-2020].

Simon Wood and Pablo Romero. User-centred design for a mobile learning application. In
Proceedings of the 3rd Mexican Workshop on Human Computer Interaction, MexIHC ’10, page
77–84, San Luis Potosí, S.L.P, MEX, 2010. Universidad Politécnica de San Luis Potosí.

https://doi.org/10.1145/3105704
https://doi.org/10.1145/3290607.3312994
https://doi.org/10.1007/978-0-387-34907-7_8
https://doi.org/10.1007/978-0-387-34907-7_8
http://www.sciencedirect.com/science/article/pii/S1071581903000089
https://doi.org/10.1145/238386.238516
https://www.w3.org/TR/SVG/

A
L I S T I N G S

a.1 switch widget

Listing A.1: Full code of the switch widget.

<svg xmlns="http://www.w3.org /2000/svg" xmlns:xlink="http://www.w3.org

/1999/xlink" viewBox="0 0 60 100">
<g xmlns:ivy="http://ivy.di.uminho.pt/ivy" id="ivy-widget:Switch"

ivy : id= "ivy-widget:Switch" ivy:widget="Switch">
< s c r i p t type="application/javascript">
//<! [CDATA[

var Switch = (func t ion () {
var isChecked = f a l s e ;
var v i s i b i l i t y = "" ;
var uncheckedColor = "#b1b1b1" ;
var checkedColor = "#3becc8" ;

func t ion setUncheckedColor (c o l o r) {
uncheckedColor = c o l o r ;

i f (! isChecked) {
se tColor (c o l o r) ;

}
}

func t ion setCheckedColor (c o l o r) {
checkedColor = c o l o r ;

i f (isChecked) {
se tColor (c o l o r) ;

}
}

77

A.1. Switch widget 78

func t ion setColor (c o l o r) {
var thumb = document.getElementById ("ivy:switch-thumb") ;
var trackElements = document.getElementById ("

ivy:switch-track") ;
var c i r c l e s = trackElements.getElementsByTagName ("circle") ;
var r e c t = trackElements.getElementsByTagName ("rect") . item

(0) ;

thumb.se tAt t r ibute ("style" , "fill: " + c o l o r) ;
c i r c l e s . i t e m (0) . s e t A t t r i b u t e ("style" , "fill: " + c o l o r) ;
c i r c l e s . i t e m (1) . s e t A t t r i b u t e ("style" , "fill: " + c o l o r) ;
r e c t . s e t A t t r i b u t e ("style" , "fill: " + c o l o r) ;

}

func t ion setChecked (checked) {
var thumb = document.getElementById ("ivy:switch-thumb") ;
var shadow = document.getElementById ("ivy:switch-shadow") ;
var l e f t C i r c l e = document.getElementById ("

ivy:switch-left-circle") ;
var r i g h t C i r c l e = document.getElementById ("

ivy:switch-right-circle") ;
var shadowR = p a r s e I n t (shadow.getAttr ibute ("width")) / 2 −

p a r s e I n t (thumb.getAttr ibute ("r")) ;

isChecked = checked;

i f (isChecked) {
thumb.se tAt t r ibute ("cx" , r i g h t C i r c l e . g e t A t t r i b u t e ("cx")) ;
se tColor (checkedColor) ;

} e l s e {
thumb.se tAt t r ibute ("cx" , l e f t C i r c l e . g e t A t t r i b u t e ("cx")) ;
se tColor (uncheckedColor) ;

}

shadow.setAtt r ibute ("x" , p a r s e I n t (thumb.getAttr ibute ("cx"))
− p a r s e I n t (thumb.getAttr ibute ("r")) − shadowR) ;

}

func t ion toggle () {
isChecked = ! i sChecked ;
setChecked (isChecked) ;

}

A.1. Switch widget 79

func t ion s e t V i s i b l e (v i s i b l e) {
v i s i b i l i t y = v i s i b l e ? "" : "hidden" ;

i f (v i s i b i l i t y == "") {
document.getElementById ("ivy-widget:Switch") .

removeAttribute ("visibility") ;
} e l s e {

document.getElementById ("ivy-widget:Switch") . s e t A t t r i b u t e
("visibility" , v i s i b i l i t y) ;

}
}

re turn {
t o g g l e : toggle ,
setChecked: setChecked ,
s e t V i s i b l e : s e t V i s i b l e ,
setUncheckedColor: setUncheckedColor ,
setCheckedColor: setCheckedColor ,
props : {

setChecked: {
params: [

{
name: "Checked" ,
t y p e : "boolean" ,
d e s c : "<html>Checks or unchecks the switch.

Checks the switch if the received value
is
true and unchecks it otherwise.</html>" ,

d e f a u l t : f a l s e
}

]
} ,
s e t V i s i b l e : {

params: [
{

name: "Visibility" ,
t y p e : "visibility" ,
d e s c : "Hides or display the switch." ,
d e f a u l t : "visible"

}
]

} ,
setUncheckedColor: {

params: [

A.1. Switch widget 80

{
name: "Unchecked color" ,
t y p e : "color" ,
d e s c : "<html>Changes the color of the switch

when
it is in a unchecked state.</html>" ,
d e f a u l t : "#b1b1b1"

}
]

} ,
setCheckedColor: {

params: [
{

name: "Checked color" ,
t y p e : "color" ,
d e s c : "<html>Changes the color of the switch

when
it is in a checked state.</html>" ,
d e f a u l t : "#3becc8"

}
]

}
}

} ;
}) () ;

//]]>
< / s c r i p t >
<g ivy : id= "ivy:switch-track" id="ivy:switch-track" opacity="0.4"

f i l l = "#b1b1b1">
< c i r c l e cx="20" cy="30" r="8" id="ivy:switch-left-circle" ivy : id= "

ivy:switch-left-circle"/>
< c i r c l e cx="44" cy="30" r="8" id="ivy:switch-right-circle" ivy : id= "

ivy:switch-right-circle"/>
<rec t x="20" y="22" width="24" height="16"/>

</g>

<!-- Base 64 data omitted for the sake of simplicity -->
<image id="ivy:switch-shadow" ivy : id= "ivy:switch-shadow" x="5" y="16"

width="30" height="30" opacity="0.2" xl ink :href= "data:image/

png;base64"/>
< c i r c l e cx="20" cy="30" r="12" ivy : id= "ivy:switch-thumb" id="

ivy:switch-thumb" f i l l = "#b1b1b1"/>
</g>

</svg>

A.2. B. Braun Perfusor ® Space Formal Model 81

a.2 b . braun perfusor ® space formal model

Listing A.2: Formal model of the medical device B. Braun Perfusor Space.

defines
MAXDIG = 4

MAXINT = 9

types
i n t = 0 . .MAXINT
d i g i t = 0 . .MAXDIG

i n t e r a c t o r main
a t t r i b u t e s

[vis] d i g i t s : array 0 . .MAXDIG of i n t
[vis] p o s i t i o n : 0 . . 4

[vis] running: boolean
ac t ions

[vis] up
[vis] down
[vis] l e f t
[vis] r i g h t
[vis] s t a r t S t o p
[vis] i n f u s e

axioms
[] d i g i t s [0]=0 & d i g i t s [1]=0 & d i g i t s [2]=0 & d i g i t s [3]=0 & d i g i t s

[4]=0 & p o s i t i o n = 0 & running = f a l s e

per (up) −> d i g i t s [p o s i t i o n] < MAXINT & running = f a l s e
p o s i t i o n = 0 −> [up] d i g i t s [0] ' = d i g i t s [0] + 1 & keep (pos i t ion ,

d i g i t s [1] , d i g i t s [2] , d i g i t s [3] , d i g i t s [4] , running)
p o s i t i o n = 1 −> [up] d i g i t s [1] ' = d i g i t s [1] + 1 & keep (pos i t ion ,

d i g i t s [0] , d i g i t s [2] , d i g i t s [3] , d i g i t s [4] , running)
p o s i t i o n = 2 −> [up] d i g i t s [2] ' = d i g i t s [2] + 1 & keep (pos i t ion ,

d i g i t s [0] , d i g i t s [1] , d i g i t s [3] , d i g i t s [4] , running)
p o s i t i o n = 3 −> [up] d i g i t s [3] ' = d i g i t s [3] + 1 & keep (pos i t ion ,

d i g i t s [0] , d i g i t s [1] , d i g i t s [2] , d i g i t s [4] , running)
p o s i t i o n = 4 −> [up] d i g i t s [4] ' = d i g i t s [4] + 1 & keep (pos i t ion ,

d i g i t s [0] , d i g i t s [1] , d i g i t s [2] , d i g i t s [3] , running)

per (down) −> d i g i t s [p o s i t i o n] > 0 & running = f a l s e
p o s i t i o n = 0 −> [down] d i g i t s [0] ' = d i g i t s [0] − 1 & keep (pos i t ion ,

d i g i t s [1] , d i g i t s [2] , d i g i t s [3] , d i g i t s [4] , running)

A.2. B. Braun Perfusor ® Space Formal Model 82

p o s i t i o n = 1 −> [down] d i g i t s [1] ' = d i g i t s [1] − 1 & keep (pos i t ion ,
d i g i t s [0] , d i g i t s [2] , d i g i t s [3] , d i g i t s [4] , running)

p o s i t i o n = 2 −> [down] d i g i t s [2] ' = d i g i t s [2] − 1 & keep (pos i t ion ,
d i g i t s [0] , d i g i t s [1] , d i g i t s [3] , d i g i t s [4] , running)

p o s i t i o n = 3 −> [down] d i g i t s [3] ' = d i g i t s [3] − 1 & keep (pos i t ion ,
d i g i t s [0] , d i g i t s [1] , d i g i t s [2] , d i g i t s [4] , running)

p o s i t i o n = 4 −> [down] d i g i t s [4] ' = d i g i t s [4] − 1 & keep (pos i t ion ,
d i g i t s [0] , d i g i t s [1] , d i g i t s [2] , d i g i t s [3] , running)

per (r i g h t) −> p o s i t i o n > 0 & running = f a l s e
[r i g h t] p o s i t i o n ' = p o s i t i o n − 1 & keep (d i g i t s , running)

per (l e f t) −> p o s i t i o n < MAXDIG & running = f a l s e
[l e f t] p o s i t i o n ' = p o s i t i o n + 1 & keep (d i g i t s , running)

[s t a r t S t o p] running ' =! running & keep (d i g i t s , p o s i t i o n)

per (i n f u s e) −> running = t rue
d i g i t s [0] = 0 & d i g i t s [1] = 0 & d i g i t s [2] = 0 & d i g i t s [3] = 0 &

d i g i t s [4] = 0 −> [i n f u s e] running ' = f a l s e & keep (d i g i t s , p o s i t i o n
)

d i g i t s [0] > 0 −> [i n f u s e] d i g i t s [0] ' = d i g i t s [0] − 1 & keep (running ,
pos i t ion , d i g i t s [1] , d i g i t s [2] , d i g i t s [3] , d i g i t s [4])

d i g i t s [0] = 0 & d i g i t s [1] > 0 −> [i n f u s e] d i g i t s [0] ' = 9 & d i g i t s [1] ' =
d i g i t s [1] − 1 & keep (running , pos i t ion , d i g i t s [2] , d i g i t s [3] ,
d i g i t s [4])

d i g i t s [0] = 0 & d i g i t s [1] = 0 & d i g i t s [2] > 0 −> [i n f u s e] d i g i t s
[0] ' = 9 & d i g i t s [1] ' = 9 & d i g i t s [2] ' = d i g i t s [2] − 1 & keep (running ,
pos i t ion , d i g i t s [3] , d i g i t s [4])

d i g i t s [0] = 0 & d i g i t s [1] = 0 & d i g i t s [2] = 0 & d i g i t s [3] > 0 −> [
i n f u s e] d i g i t s [0] ' = 9 & d i g i t s [1] ' = 9 & d i g i t s [2] ' = 9 & d i g i t s [3] ' =
d i g i t s [3] − 1 & keep (running , pos i t ion , d i g i t s [4])

d i g i t s [0] = 0 & d i g i t s [1] = 0 & d i g i t s [2] = 0 & d i g i t s [3] = 0 &
d i g i t s [4] > 0 −> [i n f u s e] d i g i t s [0] ' = 9 & d i g i t s [1] ' = 9 & d i g i t s
[2] ' = 9 & d i g i t s [3] ' = 9 & d i g i t s [4] ' = d i g i t s [4] − 1 & keep (running ,
p o s i t i o n)

B
U S A B I L I T Y T E S T S D O C U M E N T S

b.1 consent form

83

Formulário de Consentimento

Obrigado por participar na nossa investigação.
Nós vamos gravar esta sessão para permitir que colaboradores do
HASLab/INESC TEC a visualizem e beneficiem dos seus comentários.
Por favor leia o texto abaixo e assine onde indicado.

Compreendo que esta sessão de testes de usabilidade vai ser gravada.
Eu dou permissão aos colaboradores do HASLab/INESC TEC para utilizarem
esta gravação unicamente para utilização interna, com o propósito de melhorar
os projetos em teste.

Assinatura:

1

B.1. Consent Form 84

B.2. Experiment Script 85

b.2 experiment script

IVY Workbench - Guião Experimental

“Antes de começarmos, gostaŕıamos de agradecer a sua participação neste
estudo. Esta sessão vai durar cerca de 10 minutos. Durante esse tempo, vai in-
teragir com uma plataforma que permite criar protótipos de sistemas interativos
– IVY Workbench”.

1 Introdução

A ferramenta IVY Workbench é uma plataforma que permite criar protótipos
de sistemas interativos. Os protótipos criados a partir desta ferramenta são
divididos em duas componentes: um modelo formal que expressa o comporta-
mento do sistema e uma mock-up que ilustra a interface com o utilizador desse
mesmo sistema. Pretende-se, com recurso a este guião experimental, explorar
as capacidades de prototipagem desta ferramenta através do desenvolvimento
de um protótipo do dispositivo médico B. Braun Perfusor ® Space1. Para isso,
este guião apresenta uma breve descrição das funcionalidades da ferramenta
necessárias para a construção do protótipo desejado, assim como um exemplo
passo a passo de um protótipo de um switch. No final deste guião apresenta-se
um breve questionário de usabilidade da ferramenta.

2 Descrição das funcionalidades

A ferramenta IVY Workbench (ilustrada na Figura 1) possui diferentes am-
bientes de execução organizados por separadores. Dentro destes, dá-se ênfase
aos ambientes “Editor” e “Prototyper”. O primeiro ambiente diz respeito à
construção de modelos formais que expressam o comportamento de um sistema.
Neste guião, este ambiente apenas será utilizado para importar o modelo formal,
já que este ambiente destina-se a utilizadores mais experientes desta ferramenta.
Do modelo formal em concreto, apenas é importante reter a informação que este
contém ações e atributos. As ações modificam o valor dos atributos e os atribu-
tos correspondem a variáveis que expressam o comportamento do protótipo.

O segundo ambiente é o ponto fulcral deste guião e será utilizado para adi-
cionar o comportamento definido num modelo formal a uma mock-up para sua
posterior animação. As Figuras 1 e 2, ilustram os componentes mais relevantes

1https://www.bbraun.pt/pt/products/b/perfusor-space.html

1

B.2. Experiment Script 86

Figura 1: Ilustração da ferramenta IVY Workbench.

deste ambiente de execução. As funcionalidades destes componentes relevantes
para este guião são as seguintes:

• Renderizador – Este componente é responsável por apresentar a mock-up
da interface do sistema a prototipar. Sempre que é efetuado um clique num
elemento da mock-up, este torna-se automaticamente selecionado através
de um fundo semi opaco roxo.

• Árvore de elementos – Apresenta a hierarquia interna de todos os ele-
mentos que constituem a mock-up importada. Este componente é uma
alternativa ao renderizador para selecionar elementos. No entanto, este
permite selecionar grupos de elementos e widgets. Os widgets são elemen-
tos pertencentes à plataforma IVY Workbench que podem ser utilizados
para construir mock-ups. Como regra geral, estes são apresentados na
árvore com um nome mais sugestivo que os outros elementos e iniciado
por uma letra maiúscula. O principal objetivo destes elementos é o de

2

B.2. Experiment Script 87

Figura 2: Barras de estados e eventos.

apresentar um conjunto de configurações mais espećıficas para o protótipo
a desenvolver. Na Figura 1, pode-se verificar que a árvore de elementos
possui um destes widgets chamado “Switch”. A árvore de elementos pos-
sui outras funcionalidades como a inserção de sub mock-ups, mas que não
serão relevantes para este guião.

• Barra de eventos – Os eventos estão correlacionados com as interações
do utilizador com o protótipo, tais como cliques ou movimento do rato, e
sobre que ações do modelo formal executar sempre que ocorre uma des-
sas interações. Na versão atual desta ferramenta pode-se configurar como
interações (“Trigger”) o clique ou movimento do rato, assim como o pres-
sionar do tecla ou um temporizador que é acionado num determinado
peŕıodo em segundos. Além disso, a combo box “Action” permite selecio-
nar que ação do modelo executar. Finalmente a combo box “Function” diz
respeito a executar determinadas componentes dos widgets das mock-ups,
mas não é relevante para os objetivos deste guião. A barra de eventos
permite também adicionar um conjunto ilimitado de eventos a um dado
elemento através do ı́cone “+”. No entanto, esta funcionalidade serve para
resolver protótipos mais complexos pelo que não será necessária para este
guião.

3

B.2. Experiment Script 88

• Barra de estados – Os estados dizem respeito ao modo de como o
protótipo é modificado sempre que um determinado evento é despoletado.
A barra de estados lista o conjunto de posśıveis propriedades que podem
ser configuradas para um elemento em espećıfico. Cada propriedade pode
ser controlada por um valor constante (identificado pelo ı́cone “K”) ou por
um atributo do modelo formal (identificado pelo ı́cone “x”). Uma propri-
edade atribúıda por um valor constante (por exemplo o valor de uma cor)
mantém-se constante durante toda a simulação do protótipo. Já uma pro-
priedade controlada por um atributo reflete o valor desse atributo durante
toda a simulação. Como exemplo, considere-se um atributo que controla
os minutos de um relógio. Se esse atributo for atribúıdo a um elemento de
texto da mock-up, então durante a simulação o texto é atualizado sempre
que o valor desse atributo é modificado. Tal como os eventos, também é
posśıvel adicionar mais sub estados através do ı́cone “+”. Esta funciona-
lidade também se destina a protótipos mais avançados pelo que não será
relevante para este guião.

• Barra de simulação – Neste guião esta barra apenas será utilizada para
simular as configurações efetuadas para a construção do protótipo. Ao
efetuar-se um clique no ı́cone play, a ferramenta deverá apresentar uma
janela com o protótipo desenvolvido.

3 Switch

Para se conhecer melhor as funcionalidades desta ferramenta, segue um exemplo
de uma criação de um protótipo relativamente simples detalhada com todos os
passos necessários. O protótipo em questão corresponde a um switch, ou toggle
button que deverá ser modelado de forma a apresentar as variações da Figura 3.

O modelo formal deste protótipo é relativamente simples, possuindo apenas
a ação toggle e o atributo checked. Este atributo possui apenas dois valores
posśıveis que indicam se o switch está ativo ou inativo. Relativamente à ação,
esta alterna o valor do atributo mencionado. Posto isto, a sequência de passos
necessários para a construção deste protótipo é a seguinte:

1. Importação dos ficheiros necessários – Comece por importar o fi-
cheiro “switch.i” no separador “Editor”. De seguida importe o ficheiro
“switch.svg” que contém a mock-up no separador “Prototyper”.

2. Configuração dos estados – Selecione o widget Switch na árvore de
elementos. Na barra de estados pode verificar algumas propriedades deste
elemento que podem ser controladas. Dentro destas propriedades pode-se
verificar a propriedade checked. Selecione o ı́cone “x” de modo a que este
possa ser controlado por um atributo. Dentro da caixa de atributos dis-
pońıveis deverá aparecer como única opção o atributo checked. Selecione
esse atributo.

4

B.2. Experiment Script 89

Figura 3: Resultados esperados do protótipo switch.

3. Configuração dos eventos – Este protótipo apenas necessita de um
evento que pode estar associado a um clique e que irá alternar o switch
entre o estado ativo e inativo. Tendo o elemento Switch selecionado na
árvore de elementos selecione o separador “Events”. Por defeito estará
selecionada a opção clique como a ação do utilizador que despoleta este
evento. Na caixa relativa à ação (“Action”) selecione a única ação dis-
pońıvel do modelo.

4. Simulação do protótipo – Após os passos efetuados acima, clique no
ı́cone play na barra acima da mock-up. Deverá ser apresentada uma janela
semelhante à Figura 4. Esta janela apresenta o protótipo desenvolvido e
a lista de ações posśıveis deste protótipo. O protótipo deverá apresentar
o resultado desejado sempre que se clica diretamente na mock-up ou na
ação toggle.

Como passos opcionais deste protótipo, feche a janela de simulação e modi-
fique as cores do Switch quando este está ativo (checked) e inativo (unchecked).

4 B. Braun Perfusor ® Space

Este dispositivo médico funciona como uma bomba de infusão para seringas e
permite criar configurações acerca da quantidade de um fármaco a ser aplicado
num determinado peŕıodo de tempo. Este dispositivo possui bastantes modelos
de configuração. No entanto, o objetivo deste guião é criar um protótipo que

5

B.2. Experiment Script 90

Figura 4: Janela de simulação do protótipo switch.

simule a quantidade de um fármaco a aplicar. O resultado deverá ser semelhante
ao ilustrado na Figura 5. Nesta figura, denote-se o ecrã com 5 d́ıgitos com um
cursor (identificado pelo fundo preto e d́ıgito a branco) e os botões “cima”,
“baixo”, “esquerda” e “direita”. O protótipo deverá apresentar os seguintes
aspetos:

• Quando é efetuado um clique no botão “cima”, deverá ser aumentado o
valor do d́ıgito na posição atual do cursor.

• Quando é efetuado um clique no botão “baixo”, deverá diminuir o valor
do d́ıgito na posição atual do cursor.

• O cursor deverá mover-se para a esquerda ou direita, sempre que se efetuar
um clique nos botões “esquerda” ou “direita”.

O modelo formal possui as ações up, down, left e right. Além disso, contém
o atributo digits que diz respeito aos valores dos d́ıgitos do ecrã do dispositivo,
e o atributo position que diz respeito à posição do cursor. A mock-up contém o
widget Cursor que possui propriedades que auxiliam a construção do protótipo
em questão. Posto isto, efetue os seguintes passos para desenvolver o protótipo
desejado:

1. Importe o ficheiro “bBraunPerfusor.i” no separador “Editor” e o ficheiro
“bBraunPerfusor.svg” no separador “Prototyper”.

6

B.2. Experiment Script 91

Figura 5: Mock-up da bomba de infusão e respetiva associação entre os seus
elementos e as ações e atributos do modelo formal.

2. Configure o estado do widget Cursor. Deverá configurar as suas duas
propriedades (digits e position) com os atributos adequados.

3. Configure os eventos dos botões mencionados com recurso às ações up,
down, left e right. Estes eventos deverão ser executados sempre que se
efetua um clique. NOTA: os botões são constitúıdos por mais que um
elemento. Pode, por isso, ser proveitoso selecionar o conjunto dos seus
elementos (definidos por um elemento g na árvore de elementos).

4. Simule o protótipo e verifique se este apresenta o comportamento esperado.

Considere agora as ações startStop e infuse. A primeira ação indica o ińıcio
ou o fim do processo de infusão. Já a ação infuse simula a aplicação do fármaco.
Neste caso, esta última ação corresponderá a uma diminuição do valor apresen-
tado no ecrã do dispositivo. Considere ainda o atributo running que indica se o
processo de infusão está em execução. Pretende-se, como objetivo complementar
ao proposto acima, acrescentar o seguinte comportamento ao protótipo:

• Quando se clicar no botão “start/stop” do dispositivo, este deve ini-
ciar/terminar a infusão.

• Quando a infusão está em execução o led do dispositivo (representado por
um ćırculo acima do ecrã) deverá estar ligado. Por conseguinte, este led
deverá estar desligado quando a infusão é terminada.

• Quando a infusão está em execução, então o valor apresentado no ecrã
deverá diminuir a cada 1 segundo.

Face ao comportamento complementar anunciado execute os seguintes pas-
sos:

7

B.2. Experiment Script 92

1. Configure o evento do botão “start/stop” para executar ou parar a si-
mulação. Deverá utilizar a ação starStop do modelo.

2. Configure o estado widget Led de modo a que este apresente o compor-
tamento esperado. Para isso configure a sua propriedade On de modo a
esta ser controlada pelo atributo running. NOTA: poderá ser necessário
mudar o valor da cor ativa (On Color) deste elemento de modo a que este
seja percept́ıvel na simulação.

3. Configure a execução da infusão através de um evento despoletado por
um timer de 1 segundo, na combo box relativa ao Trigger. Pode adicionar
este evento ao widget Cursor. Este evento deverá executar a ação infuse.

4. Simule o protótipo e verifique se este apresenta o comportamento esperado.

5 Questionário de usabilidade

Participante:

Data de nascimento: / /

Sexo: M F

Possui alguma experiência de utilização de editores de mock-ups? Sim Não

Data:

1. Qual foi a sua impressão em geral do sistema?

2. Quais foram os aspetos do sistema que mais gostou?

3. Quais foram os aspetos do sistema que menos gostou?

8

B.2. Experiment Script 93

4. O sistema continha algumas funcionalidades que o/a deixou surpreen-
dido/a?

5. Existem algumas funcionalidades que esperava encontrar nesta ferramenta,
mas que lhe estejam a faltar?

6. Compare a capacidade de adição de comportamento a protótipos desta
ferramenta com as de outras ferramentas que tenha utilizado.

7. Recomendaria o uso deste sistema?

9

B.2. Experiment Script 94

	1 Introduction
	1.1 Contextualization
	1.2 Motivation
	1.3 Aim of the work
	1.4 Document structure

	2 State of the art
	2.1 User-centred Design
	2.2 Prototyping
	2.2.1 Prototyping dimensions

	2.3 Prototyping Tools
	2.3.1 Mock-up editors
	2.3.2 Model-based tools

	2.4 Summary

	3 Requirements of interface prototyping
	3.1 Prototyping tools revisited
	3.1.1 Pencil Project
	3.1.2 Adobe XD
	3.1.3 PVSio-Web
	3.1.4 CIRCUS
	3.1.5 IVY's Prototyping Plugin

	3.2 Requirements
	3.3 Technologies
	3.3.1 SVG
	3.3.2 DOM
	3.3.3 Apache Batik
	3.3.4 Rhino

	3.4 Summary

	4 The Prototyping Plugin
	4.1 Approach
	4.2 Workflow
	4.3 Architecture of the plugin
	4.4 Generic SVG parser
	4.5 Dynamic widget framework
	4.5.1 Dynamic widget structure
	4.5.2 IVY scripting environment
	4.5.3 Compatibility with mock-up editors

	4.6 Added features
	4.6.1 SVG renderer
	4.6.2 SVG tree sidebar
	4.6.3 States and events sidebar
	4.6.4 Prototype simulation window
	4.6.5 Dynamic widget collection

	4.7 Evolutionary prototyping
	4.7.1 Formal model export
	4.7.2 States and events export
	4.7.3 Android and iOS mobile applications

	4.8 Summary

	5 Plugin Validation and Evaluation
	5.1 B. Braun Perfusor ® Space
	5.1.1 Formal Model
	5.1.2 UI Mock-up
	5.1.3 Prototype Configurations

	5.2 Usability Tests
	5.2.1 Procedure
	5.2.2 Participants
	5.2.3 Collected data and results

	5.3 Summary

	6 Conclusion
	6.1 Results
	6.2 Future Work

	A Listings
	A.1 Switch widget
	A.2 B. Braun Perfusor ® Space Formal Model

	B Usability Tests Documents
	B.1 Consent Form
	B.2 Experiment Script

