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Abstract
A two-dimensional (r, z) time-dependent fluid model was developed and
used to describe a dc planar magnetron discharge with cylindrical symmetry.
The transport description of the charged species uses the corresponding first
three moments of the Boltzmann equation: continuity, momentum transfer
and mean energy transfer (the last one only for electrons), coupled with the
Poisson equation. An original method is proposed to treat the transport
equations. Electron and ion momentum transport equations are reduced to
the classical drift–diffusion expression for the fluxes since the presence of
the magnetic field is introduced as an additional part in the electron flux,
while for ions an effective electric field was considered. Thus, both
continuity and mean energy transfer equations are solved in a classical
manner. Numerical simulations were performed considering argon as a
buffer gas, with a neutral pressure varying between 5 and 30 mTorr, for
different voltages applied on the cathode. Results obtained for densities of
the charged particle, fluxes and plasma potential are in good agreement with
those obtained in previous studies.

1. Introduction

The magnetron discharge stands out from other low pressure
electrical discharges because of the presence of a strongly non-
homogeneous magnetic field in front of the cathode (target).
In our particular case, this field is created by a pair of magnets
co-axially disposed under the cathode plate (figure 1). As
a consequence of the geometric arrangement a balanced or
unbalanced structure of field lines emerges [1]. A strong axial
electric field, �Ez, is present in the magnetic field region due to
the cathode fall. The simultaneous action of these two fields
leads to a high density confined plasma, which permits a low
voltage operating discharge (hundreds of volts) at very low
pressures, typically about 10 mTorr. The Larmor radius for
ions is of the order of centimetres, while the thickness of the
cathode fall does not exceed a few millimetres. Thus, the ions
might be considered as not being affected by the magnetic
field but accelerated directly to the cathode, where by impact
on the surface they are able to generate secondary electrons
and to sputter particles that can typically be used for surface
deposition of a wafer placed in front of the target.

Figure 1. Magnet configuration.

Magnetron discharges were and still are extensively
studied experimentally, analytically or numerically in order
to better understand both the physical and chemical processes
involved in their multiple applications. Working in pure rare
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gases [2–5, 9] or reactive mixtures [5–8], in dc [7–9], RF [5, 6]
or pulsed regimes [2–4], magnetron discharges are mainly (and
widely) used as sputter/deposition sources.

Over the last few years, many numerical models were
proposed to properly describe these discharges and to speed
up the computing time. Particle-in-cell/Monte Carlo collision
(PIC-MCC) is a very common technique applied for two-
dimensional [10–12] or three-dimensional [13] simulations. It
is easy to implement, without a priori physical approximations
except that of the classical nature of particle trajectories, and
is very useful for non-equilibrium processes, but it requires a
very large amount of computational time. The hybrid model
combines the particle and continuum models, achieving more
reasonable computing times. In some studies [1, 14] fast
electrons, such as secondary emitted electrons at the cathode,
which are accelerated in the cathode fall (mainly giving
the ionization rate), are treated by the Monte Carlo model,
while for slow electrons and ions, which are the dominant
particle population, the fluid equations are used. Other authors
[15] combine a particle simulation of neutral atoms and ions
with a fluid description of electrons. Here, such a model is
applied to stationary plasma thrusters (SPT), devices related
to magnetron discharges through the presence of a magnetic
field. In the kinetic model [16, 17] a microscopic description
of the plasma is carried out. The distribution functions of
the particles are calculated by solving the Boltzmann equation
and the macroscopic plasma parameters can be obtained by
integrating over the distribution functions. The kinetic model
is often combined with a collisional–radiative one [18, 19],
which requires us to solve rate balance equations for excited
species.

Despite numerous papers devoted to the modelling of
this type of discharge, those using the fluid approach are
very rare and, more often, a one-dimensional treatment of
fluid equations is done [20, 21]. This is mainly due to
the difficulty in treating the effect of the inhomogeneous
magnetic field on the electrons. The problem is typically three-
dimensional but it can be spatially reduced to two dimensions
in the particular case of cylindrical symmetry. For numerical
simulations the fluid model has an advantage in terms of the
computing time but it loses validity with decrease in the gas
pressure when the mean free path of charged particles strongly
exceeds the characteristic length of the discharge. Although
magnetron discharges work at low pressures (1 to tens of
mTorr), the presence of the magnetic field reduces the effective
distance covered by electrons between two collisions, which
is equivalent to an increase of the pressure, thus fulfilling the
hydrodynamic hypothesis. As an alternative point of view,
the set of fluid equations considered in this work should
be regarded as a pure macroscopic representation of the
electron Boltzmann equation whose solution mainly concerns
the calculation of the electron density and mean energy. Such
a quantity plays a crucial role in defining a spatial dependence
for the electron distribution function, when adopting the local
mean energy approximation as in this work. We must pay
attention to the fact that, due to the large electron density, the
Boltzmann equation can still describe the electron kinetics and,
consequently, we can suppose this is also true for its moments.

This paper presents an original two-dimensional (r, z),
time-dependent fluid model approach to describe the transport

Figure 2. Reactor geometry and magnetic field map.

of two charged species, electrons and positive ions, in
a cylindrically symmetric dc planar magnetron reactor.
The transport of the charged species is described by
the corresponding first three moments of the Boltzmann
equation—continuity, momentum transfer and mean energy
transfer equation (the last only for electrons)—coupled with
the Poisson equation. Due to the strong coupling of the
fluid equations in the presence of the magnetic field, some
assumptions are required in order to simplify the numerical
procedure. Thus, all transport equations are treated in the
same manner, using a classical drift–diffusion expression for
fluxes. This condition is achieved by introducing the influence
of the magnetic field as an additional part in the electron flux
and considering an effective electric field for ions. Boundary
conditions are set for the fluxes of the charged particles and for
the electric potential at the walls.

Computations were performed for a planar magnetron
device, schematically drawn in figure 2. Argon was chosen
as the working gas. Due to the cylindrical symmetry of
the system only a bi-dimensional picture is plotted. The
cathode is a metallic disc, with radius rcath = 16.5 mm,
and grounded metallic walls playing the role of the anode
(Rmax = Zmax = 26.95 mm). The neutral gas pressure varies
between 5 and 30 mTorr, for a gas temperature of 350 K. The
applied dc voltages on the cathode are −350 and −550 V. The
magnetic field structure is unbalanced, as shown in figure 2.
For convenient visualization, the length of the plotted vectors
is made proportional to the logarithm of the magnetic field
strength, ln B, measured and numerically fitted as presented
in [22]. In the region where the field lines are parallel to the
cathode (r ≈ 9.5 mm), the magnetic field strength decreases
from about 750 G at z = 0, to 20 G at z ≈ 15 mm. Several
plasma parameters, such as the plasma potential, densities of
the charged particles and ion flux at the cathode, are obtained
from the model and they are discussed as representative results.

2. Model equations

A two-component fluid model was considered in order to
describe the magnetron discharge. The basic fluid equations
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were written for electrons (1a)–(1c) and ions (1a) and (1b).
They consist of the first three moments of the Boltzmann
equation, continuity (1a), momentum transfer (1b) and mean
energy transfer (1c):

∂ns

∂t
+ ∇ · ��s = S, (1a)

msns

[
∂ �vs

∂t
+ (�vs · ∇)�vs

]
= qsns( �E + �vs × �B) − ∇ ��Ps

−msnsfms�vs

(
1 +

nefiz

nsfms

)
, (1b)

∂(neεe)

∂t
+ ∇ · ��εe = −��e · �E − θene, (1c)

where s is the type of particle (s = e for electron and i for
ion, respectively), ns the density, ms the mass, �vs the velocity
of the fluid particle, fiz the ionization frequency by electron–
neutral impact, fms the total momentum transfer frequency for
s-species–neutral collisions, �E the electric field intensity, �B the

magnetic field strength, ��Ps the pressure tensor, qs the particle
charge, t the time, εe the electron mean energy (in eV), θe the
energy loss rate for electron–neutral collisions, ��s = ns�vs is
the flux of particles and ��εe = ne〈εe�ve〉 the energy flux for
electrons. Considering that both electrons and ions are created
only by electron–neutral ionization collisions, the source term
in the continuity equation is S = fizne. The magnetic field,
�B, considered in the calculations takes into account only
the stationary magnetic field produced by the magnets behind
the cathode, excluding the one generated by movement of the
charged species. In particular, the azimuthal drift current in
the plasma ring in front of the target can be of the order of
a few amperes [23]. The magnetic field generated by such
currents can be estimated to be about a few per cent of the
static field when the latter is of the order of hundreds of Gauss.
The electric field and plasma potential are given by the Poisson
equation:

�V = − e

ε0
(ni − ne), (2)

�E = −∇V. (3)

All equations are written in cylindrical coordinates (r, ϕ, z).
Due to axial symmetry of the magnetron, the electric and
magnetic fields have no azimuthal components, but the
presence of the �E × �B drift generates a flux component, �sϕ ,
in the ϕ direction. However, disregarding the possible drift
current instabilities, this component can be expressed as a
function of �sr and �sz, thus, permitting us to reduce the
problem to a bi-dimensional one, (r, z).

3. Electron transport treatment

Starting from the momentum transfer equation (1b), the
electron flux can be expressed in the form

��e = ��0
e + ��1

e (4)

with ��0
e the classical drift–diffusion flux and ��1

e a contribution
of the magnetic field. To obtain (4) some simplifying
assumptions were made in equation (1b): (i) the inertial term
mene[∂ �ve/∂t + (�ve · ∇)�ve] was neglected due to the small

mass of the electron; (ii) the ionization frequency fiz was also
neglected with respect to the total electron–neutral momentum
transfer frequency, fme; (iii) considering an isotropic electron
distribution function, the pressure tensor becomes a scalar,
Pe = nekTe. Thus, the momentum transfer equation can be
written as

ne�ve = − e

mefme
ne �E − ∇

(
kTe

mefme
ne

)

− e

mefme
ne�ve × �B, (5)

where µe = e/mefme and De = kTe/mefme are the electron
mobility and diffusion coefficient, respectively. The two
electron flux components are then

��0
e = −µene �E − ∇(Dene) (6a)

and

��1
e = −ne�ve ×

��e

fme
≡ −��e ×

��e

fme
, (6b)

where ��e = e �B/me is related to the electron cyclotron gyro-
frequency. Due to the cylindrical symmetry ��0

e has only two
components, �0

er and �0
ez, while ��1

e has also the azimuthal one
induced by the magnetic field:


�1

er

�1
eϕ

�1
ez


 = 1

f 2
me + �2

e




−�2
ez �er�ez

fme�ez −fme�er

�er�ez −�2
er




(
�0

er

�0
ez

)
. (7a)

The azimuthal flux component �eϕ can be deduced from the
combination of equations (4) and (7a), as a function of �er

and �ez

�eϕ = 1

fme
(�er�ez − �ez�er ). (7b)

The reduced electron transport parameters, DeN and µeN ,
depend on the electron energy distribution function (EEDF),
f (�r, u), where u = mev

2/2e is the electron kinetic energy
in eV. Under the classical two terms approximation of the
EEDF they can be written [24] as

De(�r)N = 1

3

√
2e

me

∫ ∞

0

u

σme(u)
f0(�r, u)du, (8a)

µe(�r)N = −1

3

√
2e

me

∫ ∞

0

u

σme(u)

∂f0(�r, u)

∂u
du, (8b)

where σme is the total electron–neutral momentum transfer
collision cross section, N is the gas density and f0(�r, u) is the
isotropic part of f (�r, u), satisfying the normalization condition∫ ∞

0 f0(�r, u)u1/2 du = 1.
The energy flux is written in the same manner as

the particle flux, with corresponding reduced transport
coefficients, DεeN and µεeN [24]:

Dεe(�r)N = 1

εe(�r)
1

3

√
2e

me

∫ ∞

0

u2

σme(u)
f0(�r, u)du, (8c)

µεe(�r)N = − 1

εe(�r)
1

3

√
2e

me

∫ ∞

0

u2

σme(u)

∂f0(�r, u)

∂u
du. (8d)
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The spatial map of electron transport parameters can be
obtained by adopting the local mean energy approximation
[24], which involves introducing the spatial dependence of
EEDF via the electron mean energy profile, εe(�r). The profile
εe(�r) of the electron mean energy is obtained as a solution of
the electron mean energy transfer equation (1c). Instead of
calculating the solution of the electron Boltzmann equation, a
Maxwellian EEDF was considered:

f0(�r, u) = f0[εe(�r), u] ≡ 2√
π

[
2εe(�r)

3

]−3/2

e−3u/2εe(�r). (9)

The validity of this assumption will be discussed in section 7.
In equation (1c), electron energy loss rate in elastic and
inelastic (excitation, ionization) collisions is calculated
according to [24]

θe(�r) = N
2me

Mn

√
2e

me

∫ ∞

0
σ el

e–n(u)f0(�r, u)u2 du

+
inel∑
k

Wkfke(�r), (10)

where Mn is the mass of neutral atoms, σ el
e–n is the elastic

cross section of the electron–neutral collision, Wk the
energetic threshold for the k-inelastic process characterized
by fke, the collision frequency. All collision frequencies are
calculated with

fke(�r) = N

√
2e

me

∫ ∞

0
σke(u)f0(�r, u)u du, (11)

using the collision cross sections given in [25]. Elastic,
excitation and ionization collisions with ground state neutrals
are considered.

4. Ion transport treatment

In the ion momentum transfer equation, the inertial term cannot
be neglected due to the heavier mass of the ion. The influence
of the magnetic field was not considered because the ion
cyclotron gyro-radius is larger than the linear dimension of the
examined region. In front of the cathode, where the magnetic
field is important, the ion Larmor radius is larger than 7 cm,
while the linear dimension of the examined region is 2.7 cm.
Under such assumptions, the ion momentum transfer equation
becomes

ni�vi = e

mifmi
ni �E − ∇

(
kTi

mifmi
ni

)
− nefiz

nifmi
ni�vi

− 1

fmi
ni

[
∂ �vi

∂t
+ (�vi · ∇)�vi

]
, (12)

where the ion pressure was also taken to be a scalar, Pi = nikTi.
This last assumption is justified even in the cathode fall
where a strong electric field is present. In this region, the
main movement of the ions is the drift one. Superposed
on this movement is also the thermal one, characterized by
a Maxwellian distribution function. The drift movement
gives the velocity of the ion fluid particle while the thermal
movement is responsible for the diffusion. Their separation
in expression (12) allows the use of a scalar pressure.

For convenience, the ion flux is written in a drift–diffusion
form by introducing an effective electric field, �Eeff , [26] as

��i = ni�vi ≡ µini �Eeff − ∇(Dini). (13)

Identifying these two expressions, (12) and (13), for the ion flux
and performing some simple calculations [27], an equation for
the space–time evolution of �Eeff is obtained:

∂ �Eeff

∂t
= fmi( �E − �Eeff) − fiz

ne

ni

�vi

µi
− 1

µi
(�vi · ∇)�vi. (14)

The reduced diffusion coefficient of argon ions is deduced from
the Einstein relation

DiN = µiN
kTi

e
, (15)

where the ion reduced mobility depends on the reduced
effective electric field, µiN = f (Eeff/N). The data adopted
for this dependence are given in [28] for E/N in the range
(0–2) × 103 Td and were extrapolated up to 105 Td according
to [29]. Argon ions were supposed to be thermalized at the
gas temperature, Ti = TAr. The ion momentum transfer
frequency, fmi, was calculated through the expression for
classical mobility

fmi = N
e

mi(µiN)
. (16)

5. Boundary conditions

Fluid equations as well as the Poisson equation can be solved
only if boundary conditions are specified. For charged
particles, these conditions are imposed on fluxes. All parallel
fluxes with respect to any surface are zero, �‖

s = 0, s = e, i. In
the absence of the magnetic field, the normal electron flux to the
anode surface must satisfy �0⊥

e = ne〈ve〉/2 [24], where 〈ve〉
is the mean electron velocity obtained by integrating over the
EEDF. At the cathode, under the same conditions, the normal
flux has two components: one comes from the discharge,
ne〈ve〉/2, while the other one is due to the secondary electrons
emitted by ion impact, −γi�

⊥
i , where γi is the coefficient for

secondary electron emission. Due to the very low electron
density in the cathode fall—it is 3–4 orders of magnitude lower
than the one in the anode sheath—the inner flux is negligible
with respect to the flux of the secondary electron emitted,
permitting us to write �0⊥

e = −γi�
⊥
i . Taking into account

the magnetic field, the total normal flux is �⊥
e = �0⊥

e + �1⊥
e ,

with �1⊥
e given by (7a) and �

0‖
e zero.

Because the secondary emission coefficient has a strong
influence on the properties of the magnetron discharge, some
remarks have to be made. Due to the presence of a strong
magnetic field close to the cathode surface, the secondary
electron trajectory is turned around the field lines, enabling
electrons to interact with the target, which reflects or recaptures
them. The last process decreases the effective value of the
coefficient for total secondary electron emission without a
magnetic field, γi, so that the magnetron discharge ‘sees’ only
a fraction of it, γnet = γi(1−p) [30]. As the probability of the
recapture, p, depends on both the orientation and magnitude
of the magnetic field strength on the cathode surface, from
figure 2 it can be concluded that γnet depends on the radial
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position, γnet(r) = γi[1 − p(r)]. Also, it must be mentioned
that secondary electrons can collide with gas neutrals or they
can interact with the cathode. Once a collision takes place,
the electron can no longer return to the surface. Thus, the
probability of the recapture depends on the electrons mean
free path and, implicitly, on the gas pressure [30]. Even if
γnet depends on the position, according to [30] a constant
coefficient γd can be calculated for the whole cathode surface,
as being the effective coefficient ‘seen’ by the discharge. In
our case, it is not necessary to introduce an effective coefficient
because it appears explicitly from the calculus; thus, it can
also be estimated. Assuming �0⊥

e = −γi�
⊥
i , the total normal

electron flux at the cathode becomes

�⊥
e = −γi�

⊥
i

(
1 − �2

er

f 2
me + �2

e

)
= −γnet�

⊥
i (17)

with

γnet = γi

(
1 − �2

er

f 2
me + �2

e

)
. (18)

Expression (18) clearly shows the dependence of γnet on the
gas pressure, through fme, on the magnetic field, through �e,er

and implicitly on the position.
According to [31], below 500 eV, γi can be considered to

be independent of the ion energy for clean metal surfaces, with
typical values in the range 0.05–0.1. For the Ar–Cu couple,
[32] reports a mean value for γi at about 0.01 versus the reduced
electric field, E/p, in the range of hundreds of V cm−1 Torr−1.
In this paper, we chose forγi an intermediate value between that
in the two references, γi = 0.02. The boundary conditions for
the equivalent flux are available for electron energy transport
by changing 〈ve〉 to 〈εeve〉 and taking a mean energy, ε0 = 1 eV,
for secondary electrons emitted at the cathode surface, even if
in the literature the given energy values are between 2 and
6 eV [33]. For all surfaces, the normal ion flux is given
by �⊥

i = nivthi/4 + δµiniE
⊥
eff , where vthi is the ion thermal

velocity; δ = 1 if E⊥
eff is directed to the surface and δ = 0

otherwise. For the Poisson equation, the boundary conditions
include the fact that the anode is grounded (Vanode = 0) and
that a negative voltage, Vcathode, is applied to the cathode. For
symmetry reasons at the reactor axis ∂V/∂r = 0, and for the
particle density ∂ns/∂r = 0, s = e, i.

6. Numerical solution

As was already mentioned above, due to cylindrical symmetry
of the magnetron, a bi-dimensional (r, z) treatment is complete
for a proper description of the discharge. Even if an
electronic azimuthal flux exists, it can be expressed in the (r, z)
co-ordinate system as shown in equation (7b). For the charged
particles, continuity type equations,

∂ns

∂t
+

[
1

r

∂

∂r
(r�sr ) +

∂

∂z
(�sz)

]
= S, s = e, i, (19)

have to be solved. The transport equation for electron energy
has the same form, if we replace the particle density by the
electron mean energy density and express the source term Sε

correctly. In equation (19) the fluxes of the charged species
must be introduced in order to obtain the particle densities. If
the expression for the global flux for electrons (5) and ions (12)

is used, it will result in a complicated system to be solved. Two
conditions are imposed to simplify the problem: (i) the fluxes
are expressed in the forms (4) and (13) and (ii) only the drift–
diffusion component of the flux is kept in the left-hand side
terms of equation (19). The latter condition does not affect
the ion equation, because in expression (13) the flux already
has a classical drift–diffusion form. Under these assumptions,
equation (19) are developed as

nt+�t
e − nt

e

�t
+

[
1

r

∂

∂r
(r�0

er ) +
∂

∂z
(�0

ez)

]t+�t

= St −
[

1

r

∂

∂r
(r�1

er ) +
∂

∂z
(�1

ez)

]t

, (20a)

nt+�t
i − nt

i

�t
+

[
1

r

∂

∂r
(r�ir ) +

∂

∂z
(�iz)

]t+�t

= St , (20b)

which gives a semi-implicit temporal discretization scheme,
where �t is the time step. The spatial discretization method
is based on the finite difference scheme. The equations (20a)
and (20b) are multiplied by r dr dz and are integrated over a
grid cell, thus allowing us to avoid the singularity problem
of the divergence for r = 0. The drift–diffusion fluxes
for electrons and ions are discretized using the Scharfetter–
Gummel exponential scheme [34]. Equations (20a) and (20b)
can then be solved to obtain particle densities and drift–
diffusion fluxes. After that, ��1

e is deduced from equation (7a)
and the total electron flux is obtained. The plasma potential is
calculated from the Poisson equation for every time step. All
equations are numerically solved using a band matrix method
[35], including the boundary conditions.

The time step value is constrained by the convergence of
the numerical methods used to solve the system of equations
mentioned above. First of all, the Courant–Friedrichs–Lewy
(CFL) stability criterion [36, 37] must be satisfied. This
criterion imposes the condition that a particle can cover at most
the dimension of one cell per time step. Also, for the stability
of the space charge and electric field, the time step must have
an upper limit equal to the Maxwell relaxation time [37].

7. Results

Typical simulation results for the whole volume of the
discharge are presented for argon at a pressure p = 20 mTorr,
neutral temperature TAr = 350 K and a polarization of the
cathode of −550 V. The spatial distribution of the potential
in the reactor is plotted in figure 3. In the largest part of
the discharge, the plasma potential is weakly positive. The
cathode fall thickness is about 5 mm on the magnetron axis
while in the highest confinement zone it does not exceed
3.8 mm. This zone corresponds to the region where the vectors
�E and �B are perpendicular to each other. As the electric field
is axially dominant in the cathode fall, the magnetic field must
be radial and, according to figure 2, this occurs in front of
the cathode at a radius of about 9.5 mm. The confinement
zone is visible in figure 3, being characterized by a higher
local potential, but is more evident in figure 4 where we
obtain the electron and ion densities. The representation is
bi-dimensional (r, z), but rotating the picture around the z-axis,
according to the cylindrical symmetry, it is clearly shown that
the negative glow in the magnetron is a torus. The maximum
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Figure 3. Plasma potential distribution.

(a)

(b)

Figure 4. Electron (a) and ion (b) map densities (109 cm−3).

density both for electrons and ions reaches 2.5 × 1010 cm−3 at
r = 9.35 mm, z = 5.5 mm. The electron density decreases
significantly in the anode sheath and cathode fall with respect
to the volume, the white zone in figure 4(a) corresponding
to a density lower than 2.4 × 108 cm−3. The ion density
has the same comportment, but its drop is less important,
especially in the cathode fall. For better visualization, in
figure 5 we plot the axial dependence of the electron and ion
densities for two different radial positions: on the discharge
axis (r = 0) and in the region of maximum density of the
plasma torus (r = 9.35 mm). Both figures show a quasi-
neutral plasma in the volume of the discharge, with a density of
about 1.5×109 cm−3; the quasi-neutrality is strongly perturbed
in front of the electrodes where ion sheaths appear. In the
cathode fall the ion sheath is formed due to the negative voltage
applied on the cathode. At the anode, due to its extended
surface, there is significant electron loss and the ions remain
dominant in the sheath. Thus, the plasma potential becomes
positive with respect to the grounded anode (figure 3), in
accordance with the measurements in [9]. The shapes of the
plasma potential and charged particle densities in figures 3–
5 are in very good agreement with previous results from the
hybrid model [1, 14], the latter having the same spatial profile
mentioned above. Comparable results are given also by PIC
simulation [11–13], even if they are performed for a different
geometry. In figure 6 we give the axial ion particle flux in the
cathode fall. While the ion energy at the target does not depend
on the radial position r , the particle flux is a measure of the
sputtering profile of the cathode. It must be mentioned that,
unlike figures 2–4, this picture is plotted in a reduced region in
front of the cathode, rmax = 16.5 mm, zmax = 10 mm, where
the ion flux is really interesting. Positive/negative values of the
ion flux denote the orientation from/towards the cathode of
the flux vector. Plotting data were not limited to the cathode
fall (z � 5 mm) to show also the positive diffusive flux due to
the ion density gradient.

In order to study the influence of the gas pressure on the
discharge, in figure 7 we show the axial distribution of the
plasma potential, electron density and electron mean energy
at the radial position r = 9.35 mm, for Vcathode = −350 V,
TAr = 350 K and p = 5, 10, 20 and 30 mTorr. These results are
in good agreement with the spatial dependence of the plasma
parameters obtained under similar conditions from Langmuir
probe measurements [38]. In the volume of the discharge,
the plasma potential is practically constant at a positive value
and it decreases with increasing pressure (figure 7(a)). This
is strongly correlated with the electron mean energy, which
shows the same evolution with pressure (figure 7(c)). The
plasma potential, Vp, creates a trap for the electrons with
energies lower than eVp. These electrons are thermalized in the
volume and they have Maxwellian distribution functions even
if the pressure is low [9]. On the other hand, energy losses for
electrons are more important at high pressure and in this case
the electron mean energy diminishes. As a consequence, the
potential Vp necessary to trap these electrons also diminishes.
The density of the electron energy, 〈neεe〉, is calculated from
equation (1c) of the fluid model. The electron mean energy, εe,
is obtained by dividing 〈neεe〉by the electron density. The latter
is very low in the cathode fall (∼106 cm−3) and this can lead to
an overestimation of the electron mean energy. For this reason,
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(a)

(b)

Figure 5. Axial distribution of electron and ion densities at two
radial positions: (a) r = 0; (b) r = 9.35 mm.

Figure 6. Axial ionic particle flux in the cathode fall.

the energy axis was cut off at the entrance in the cathode fall in
figure 7(c). The thickness of the cathode fall also diminishes
with increasing pressure, as can be seen both in figures 7(a)
and (b). For high pressure (which means high plasma density)
a potential drop can be observed behind the plasma torus and,

implicitly, a field reversal. This can be caused by a higher loss
rate of the electron energy at the end of the cathode fall which
generates a minimum in the mean energy of the electrons. This
leads to an accumulation of electrons in that region, which
reduces the value of the local potential.

Examining the results in figures 7(b) and (c), the
validity of the Maxwellian EEDF approach must be discussed.
Most of the measurements of EEDF in magnetrons report
bi-Maxwellian distributions [9, 39–42], with two groups of hot
and cold electrons, at 2–7 cm from the cathode. In the plasma
torus only hot electrons are reported while cold electrons
are dominant far from the cathode (>7–8 cm). In [39] the
authors found that ‘inside the confined plasma region only
single gradient semi-logarithmic plots were obtained, implying
Maxwellian electrons of a well defined single temperature.
Any energetic, ‘beam-like’ electrons accelerated directly
through the cathode sheath superimposed on the thermal bulk
electrons could not be detected. Outside the closed fields
lines, however, two electron temperatures were obtained, with
a hot component with a concentration less than 10% that of
the cold group’. Their findings are in line with those of
[40]. In our case, due to the high density of the charged
particles in the plasma torus (∼1010 cm−3), the assumption of
a Maxwellian distribution function for electrons in this region
is reasonable. Taking into account the short linear dimension
of our modelled reactor (∼2.7 cm), it can be supposed that
only one group of electrons is present in the whole volume.
Hot electrons are rapidly lost at the anode while only cold
electrons with mean energy below eVp remain thermalized in
the potential trap, as already discussed. Even if the assumption
of a Maxwellian EEDF is only a first approximation for the fluid
model described in this paper, our results correspond with the
measurements in [38], where the electrons are treated as one
group and only one electron temperature is reported.

Figure 7(b) shows that the gas pressure strongly influences
the density of the plasma torus, but not that of the volume
plasma. The axial distribution of electron density at r = 0,
which is representative of the volume plasma, shows a very
weak dependence on pressure. This can be explained by taking
into account the fact that the ionization frequency depends
both on the gas density and electron energy. In the range of
energy that characterizes the volume plasma (below 8 eV),
the ionization frequency is very low, as also the influence
of the pressure. Things are different in the plasma torus
where electron energies exceed the ionization threshold for
argon. In this region, the gas pressure has more influence
than the electron energy. For more relevance, the maximum of
the electron density in the plasma torus is plotted against the
pressure in figure 8, for two different cathode voltages, −350
and −550 V. The plasma density increases both with pressure
and cathode voltage.

8. Concluding remarks

An original method of treating the fluid equations is proposed
in this paper. Separating the electron flux into two parts and
treating the influence of the magnetic field as an additional
term in the flux expression seems to be a valid and convenient
approach. The plasma potential, charged particle densities and
ion flux at the cathode are shown as representative results. Our
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Figure 7. Axial distribution of plasma potential (a), electron density (b) and electron mean energy (c) at r = 9.35 mm, for
Vcathode = −350 V, TAr = 350 K and p = 5, 10, 20 and 30 mTorr.

p (mTorr)

Figure 8. Maximum of the electron density as a function of
pressure, for Vcathode = −350 and −550 V.

calculations are in good agreement with previous ones obtained
by PIC or hybrid schemes. The variation of the plasma
parameters (potential, electron density, electron mean energy)
with the gas pressure corresponds to the experimental results
reported by other authors. Even more, if this approach works
for a term containing a vector product, �ve × �B, which creates

a strong coupling between the flux components, �er , �eϕ ,
�ez, it is expected to work all the better for the other terms
neglected in equation (1b). Thus, we can consider the electron
inertial term, pressure anisotropy or the contribution of the
finite fraction fiz/fme to the total electron flux. Each term can
be introduced following the same procedure presented in this
paper, the advantage being that we obtain an easy method for
linearizing and solving equations (1a) and (1c) by keeping in
the left-hand side term only a drift–diffusive flux form. Such
approaches, which solve time-dependent fluid equations, can
be used for RF magnetron discharges without modifications
except for the applied potential at the cathode.
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