
Universidade do Minho
Escola de Engenharia
Departamento de Informática

Miguel Ângelo Pereira Barros

Development of a deep learning-based
computational framework for the
classification of protein sequences

December 2022

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Miguel Ângelo Pereira Barros

Development of a deep learning-based
computational framework for the
classification of protein sequences

Master dissertation
Master Degree in Bioinformatics

Dissertation supervised by
Miguel Francisco Almeida Pereira da Rocha
Óscar Manuel Lima Dias

December 2022

ii

DIREITOS DE AUTOR E CONDIÇÕES DE UTILIZAÇÃO DO TRABALHO POR
TERCEIROS

Este é um trabalho académico que pode ser utilizado por terceiros desde que respeitadas as

regras e boas práticas internacionalmente aceites, no que concerne aos direitos de autor e

direitos conexos.

Assim, o presente trabalho pode ser utilizado nos termos previstos na licença abaixo indicada.

Caso o utilizador necessite de permissão para poder fazer um uso do trabalho em condições

não previstas no licenciamento indicado, deverá contactar o autor, através do RepositóriUM da

Universidade do Minho.

Licença concedida aos utilizadores deste trabalho

A C K N O W L E D G E M E N T S

The submission of the dissertation symbolizes the conclusion of a major step in my academic

journey. As I reach the end of this milestone, I would like to thank the contribution of those that

supported me during this journey.

Firstly, I would like to address a special acknowledgement to my supervisors. To Dr. Miguel

Rocha and Dr. Óscar Dias, for their advice, help, guidance and availability during the past year.

Without their suggestions and knowledge, this thesis would not have been possible. For their

trust in my work and the freedom to explore new areas of knowledge that contributed to my

personal growth as a bioinformatician.

To the OmniumAI, for allowing me to develop this thesis in collaboration with the company,

and also, to all the collaborators for sharing their knowledge. I would like to give a special

acknowledgement to Ana Marta Sequeira, a PhD student and collaborator of OmniumAI. Thanks

for all the patience, kindness, support and time that you dedicated to guiding me in this area of

knowledge.

To my family, for their support, care and love. Without them, I couldn’t complete my academic

studies. To my girlfriend Alexandra, for all the patience, love and care. Thank you for always

being there for me.

To my bioinformatician buddies at the University of Minho, in particular Mónica Fernandes,

Tiago Machado and Tiago Silva. Thank you for keeping me sane and for the 16 hours calls. To

my buddies from Biochemistry, in particular Inês and João. Thank you for remembering me that

sometimes it’s necessary to hit the brakes. And finally, to my longtime friends that are always

ready for a cold one.

Thank you to all that in one way or another helped me during this journey!

iii

iv

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have not

used plagiarism or any form of undue use of information or falsification of results along the

process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of

Minho.

A B S T R A C T

Proteins are one of the more important biological structures in living organisms, since they

perform multiple biological functions. Each protein has different characteristics and properties,

which can be employed in many industries, such as industrial biotechnology, clinical applications,

among others, demonstrating a positive impact.

Modern high-throughput methods allow protein sequencing, which provides the protein

sequence data. Machine learning methodologies are applied to characterize proteins using

information of the protein sequence. However, a major problem associated with this method

is how to properly encode the protein sequences without losing the biological relationship

between the amino acid residues. The transformation of the protein sequence into a numeric

representation is done by encoder methods. In this sense, the main objective of this project is to

study different encoders and identify the methods which yield the best biological representation

of the protein sequences, when used in machine learning (ML) models to predict different labels

related to their function.

The methods were analyzed in two study cases. The first is related to enzymes, since

they are a well-established case in the literature. The second used transporter sequences, a

lesser studied case in the literature. In both cases, the data was collected from the curated

database Swiss-Prot. The encoders that were tested include: calculated protein descriptors;

matrix substitution methods; position-specific scoring matrices; and encoding by pre-trained

transformer methods. The use of state-of-the-art pretrained transformers to encode protein

sequences proved to be a good biological representation for subsequent application in state-of-

the-art ML methods. Namely, the ESM-1b transformer achieved a Mathews correlation coefficient

above 0.9 for any multiclassification task of the transporter classification system.

Keywords: Computational Biology, Protein Classification, Machine Learning, Deep Learn-

ing

v

R E S U M O

As proteı́nas são estruturas biológicas importantes dos organismos vivos, uma vez que estas

desempenham múltiplas funções biológicas. Cada proteı́na tem caracterı́sticas e propriedades

diferentes, que podem ser aplicadas em diversas indústrias, tais como a biotecnologia industrial,

aplicações clı́nicas, entre outras, demonstrando um impacto positivo.

Os métodos modernos de alto rendimento permitem a sequenciação de proteı́nas, fornecendo

dados da sequência proteica. Metodologias de aprendizagem de máquinas têm sido aplicadas

para caracterizar as proteı́nas utilizando informação da sua sequência. Um problema associado

a este método é como representar adequadamente as sequências proteicas sem perder a

relação biológica entre os resı́duos de aminoácidos. A transformação da sequência de proteı́nas

numa representação numérica é feita por codificadores. Neste sentido, o principal objetivo

deste projeto é estudar diferentes codificadores e identificar os métodos que produzem a

melhor representação biológica das sequências proteicas, quando utilizados em modelos de

aprendizagem mecânica para prever a classificação associada à sua função a sua função.

Os métodos foram analisados em dois casos de estudo. O primeiro caso foi baseado em

enzimas, uma vez que são um caso bem estabelecido na literatura. O segundo, na utilização de

proteı́nas de transportadores, um caso menos estudado na literatura. Em ambos os casos, os

dados foram recolhidos a partir da base de dados curada Swiss-Prot. Os codificadores testados

incluem: descritores de proteı́nas calculados; métodos de substituição por matrizes; matrizes de

pontuação especı́ficas da posição; e codificação por modelos de transformadores pré-treinados.

A utilização de transformadores de última geração para codificar sequências de proteı́nas

demonstrou ser uma boa representação biológica para aplicação subsequente em métodos

ML de última geração. Nomeadamente, o transformador ESM-1b atingiu um coeficiente de

correlação de Matthews acima de 0,9 para multiclassificação do sistema de classificação de

proteı́nas transportadoras.

Palavras-chave: Biologia Computacional, Classificação de Proteı́nas, Aprendizagem de

Máquina, Aprendizagem Profunda

vi

C O N T E N T S

1 Introduction 1
1.1 Motivation and context 1
1.2 Objectives 2
1.3 Thesis Organization 2

2 State of the art 4
2.1 Proteins 4

2.1.1 Amino acid residues 4
2.1.2 From amino acids to proteins 7
2.1.3 Proteins structure 8
2.1.4 Case studies 9

2.2 Machine Learning and Deep Learning 11
2.2.1 Unsupervised Learning 12
2.2.2 Supervised Learning 13
2.2.3 Deep learning models 21
2.2.4 Automated Machine Learning 27

2.3 Deep Learning applied to Protein sequence classification 28
2.3.1 Sequence encoding 29
2.3.2 Relevant work on Protein Classification 32
2.3.3 Tools for building protein classification algorithms 35
2.3.4 Relevant packages and tools 36

3 Methods and Software Development 39
3.1 Processing and encoding of protein sequences 39

3.1.1 Protein descriptors 40
3.1.2 Substitution matrix 40
3.1.3 Position Score matrix 42
3.1.4 Transformer encoding 42

3.2 Deep Learning models 44

4 Development 48
4.1 OmniumAI 48
4.2 OmniumAI and ProPythia methods implementation 50

4.2.1 Feature extractors 50
4.2.2 OmniumAI pipeline 51

4.3 Training and evaluation of the encoders 53

5 Results and Discussion 55

vii

C O N T E N T S viii

5.1 Enzymes case study 56
5.1.1 Collection of enzyme sequences 56
5.1.2 Classification of Enzymes 57

5.2 Transporters case study 58
5.2.1 Collection of transporter sequence 58
5.2.2 Classification of transporters 63
5.2.3 Classification of transporters with non-transporters sequences 72
5.2.4 Binary classification of transporters and non-transporters 72

6 Conclusion 75
6.1 Main results and contributions 75
6.2 Future perspectives 77

A Support work 88
A.1 Multi-classification of transporters with non-transporters 88

B Details of results 93
B.1 Binary classification of transporters and non-transporters 93

A C R O N Y M S

AE Auto-encoders

AI Artificial Intelligence

AutoML Automated Machine Learning

ANN Artificial Neural Network

BAcc Balance Accuracy

Bi-RNN Bidirectional Recurrent Neural Network

BLAST Basic Local Alignment Search Tool

BLOSUM Blocks Substitution Matrix

CART Classification and Regression Trees

CHAID Chi-square Automatic Interaction Detection

CNN Convolutional Neural Network

CRF Conditional Random Fields

DBN Deep belief networks

DC Domain Content

DL Deep Learning

DNA Deoxyribonucleic Acid

DNN Deep Neural Network

DT Decision Trees

EC Enzyme Classification

ESM Evolutionary Scale Modeling

FN False Negatives

FP False Positives

ix

C O N T E N T S x

GNB Gaussian Naive Bayes

GPUs Graphics Processing Units

GRU Gated Recurrent Unit

HE Hot-Encoded Sequence

ICA Independent Component Analysis

ID Identification

ID3 Iterative Dichotomiser 3

KNN k-Nearest Neighbors

LgR Logistic Regression

LM Language Modeling

LR Linear Regression

LSTM Long Short-Term Memory

MCC Matthews Correlation Coefficient

ML Machine Learning

MLP Multilayer Perceptron

NLF Non-Linear Fisher

NLP Natural Language Processing

NMF Non-negative Matrix Factorization

PCA Principal Component Analysis

PCF Physicochemical Features

PPI Protein-protein Interactions

Prec Precison

PSI-BLAST Position-Specific Iterative Basic Local Alignment Search Tool

PSFM Position-Specific Frequency Matrix

PSSM Position-Specific Scoring Matrices

RBF Radial basis function

C O N T E N T S xi

ReLU rectified linear activation function

ResNet Residual network

RF Random Forest

RMSE Root-mean-squared Error

RNA Ribonucleic Acid

RNN Recurrent Neural Network

ROC Receiver Operating Characteristic

SF Structural Features

SMILES Simplified Molecular-input Line-entry System

SSE squared sum of errors

SVM Support Vector Machine

TC Transporter Classification

TCDB Transporter Classification Database

TF Transformer Features

TN True Negatives

TP True Positives

t-SNE t-Distributed Stochastic Neighbor Embedding

W2V Word2vec

L I S T O F F I G U R E S

Figure 1 Tetrahedral arrangement of an amino acid residue 5
Figure 2 Reaction of condensation to form a peptide 7
Figure 3 The four levels of protein structure 9
Figure 4 Relationship between artificial intelligence, machine learning, and deep

learning 12
Figure 5 Scheme of an artificial neuron 17
Figure 6 Artificial neural network 18
Figure 7 The learning process of an artificial neural network 19
Figure 8 Error metrics for classification tasks 20
Figure 9 Representation of a dense neural network 22
Figure 10 Representation of a convolutional operation 23
Figure 11 Representation of a max-pooling layer 23
Figure 12 An example of a complete convolutional neural network 24
Figure 13 Loop associated to a recurrent neural network neuron 24
Figure 14 Long short-term memory network cell 25
Figure 15 An encoder-decoder architecture in a attention mechanism 27
Figure 16 Representation of orthogonal encoding 30
Figure 17 Adapted DeepPPF architecture 45
Figure 18 Adapted DeepLoc architecture 45
Figure 19 Adapted UDSMProt architecture 46
Figure 20 Adapted ET-GRU architecture 47
Figure 21 Architecture of Omnia package 49
Figure 22 Proteins sub-package in the OmniumAI platform 51
Figure 23 Development in the ProPythia package 51
Figure 24 An overview of the OmniumAI pipeline 52
Figure 25 Confusion matrices for binary classification with the PSSM encoder 73
Figure 26 Confusion matrixes for binary classification with the ESM-1b and ESM2-

650 encoders 74

xii

L I S T O F TA B L E S

Table 1 Amino acid residue and their codes 6
Table 2 Review of studies conceived for protein tasks 33
Table 3 Distribution of the enzymes sequences 56
Table 4 Performance of all models for EC class prediction 57
Table 5 Distribution of the transporters based on the TC class 60
Table 6 Distribution of the transporters based on the TC subclass 60
Table 7 Distribution of the transporters based on the TC family 61
Table 8 Distribution of the transporters based on the TC superfamilies 62
Table 9 Distribution of the transporter and non-transporter sequences 63
Table 10 Performance of all models on TC main class prediction 64
Table 11 Performance of DeepPPF on TC subclass, family and superfamily classi-

fication through one-hot, BLOSUM and PSSM encoders 65
Table 12 Performance of DeepLoc on TC subclass, family and superfamily classi-

fication through one-hot, BLOSUM and PSSM encoders 65
Table 13 Performance of UDSMProt on TC subclass, family and superfamily clas-

sification through one-hot, BLOSUM and PSSM encoders 66
Table 14 Performance of ET-GRU on TC subclass, family and superfamily classifi-

cation through one-hot, BLOSUM and PSSM encoders 66
Table 15 Performance of DeepPPF on TC family and superfamily classification

through ProtBert, ESM-1b, ESM2-150 and ESM2-650 encoders 68
Table 16 Performance of DeepLoc on TC family and superfamily classification

through ProtBert, ESM-1b, ESM2-150 and ESM2-650 encoders 69
Table 17 Performance of UDSMProt on TC family and superfamily classification

through ProtBert, ESM-1b, ESM2-150 and ESM2-650 encoders 69
Table 18 Performance of ET-GRU on TC family and superfamily classification

through ProtBert, ESM-1b, ESM2-150 and ESM2-650 encoders 70
Table 19 Performance of DeepPPF on TC class and subclass classification through

ESM-1b encoder 71
Table 20 Performance of DeepPPF on binary classification through PSSM en-

coder 73
Table 21 Performance of DeepPPF on binary classification through ESM-1b and

ESM2-650 encoders 74

xiii

L I S T O F TA B L E S xiv

Table 22 Performance of all models on TC main class prediction (with non-transpo-
rters) 88

Table 23 Performance of DeepPPF on TC subclass, family and superfamily clas-
sification (with non-transporters) through one-hot, BLOSUM and PSSM
encoders 89

Table 24 Performance of DeepLoc on TC subclass, family and superfamily clas-
sification (with non-transporters) through one-hot, BLOSUM and PSSM
encoders 89

Table 25 Performance of UDSMProt on TC subclass, family and superfamily clas-
sification (with non-transporters) through one-hot, BLOSUM and PSSM
encoders 90

Table 26 Performance of ET-GRU on TC subclass, family and superfamily classi-
fication (with non-transporters) through one-hot, BLOSUM and PSSM
encoders 90

Table 27 Performance of DeepPPF on TC family and superfamily classification
(with non-transporters) through ProtBert, ESM-1b, ESM2-150 and ESM2-
650 encoders 91

Table 28 Performance of DeepLoc on TC family and superfamily classification (with
non-transporters) through ProtBert, ESM-1b, ESM2-150 and ESM2-650
encoders 91

Table 29 Performance of UDSMProt on TC family and superfamily classification
(with non-transporters) through ProtBert, ESM-1b, ESM2-150 and ESM2-
650 encoders 92

Table 30 Performance of ET-GRU on TC family and superfamily classification (with
non-transporters) through ProtBert, ESM-1b, ESM2-150 and ESM2-650
encoders 92

Table 31 Performance of DeepPPF on TC class and subclass classification (with
non-transporters) through ESM-1b encoder 92

Table 32 Performance of DeepLoc, UDSMProt and ET-GRU on binary classification
through PSSM encoder 93

1

I N T R O D U C T I O N

1.1 MOTIVATION AND CONTEXT

Proteins are the main workhorses of living cells, since they carry different biological functions

ranging from gene regulation, growth control, enzymatic catalysis, transport across membranes

and many others. The knowledge of the protein characteristics and properties can have a wide

implication in a variety of areas, which include industrial biotechnology, clinical applications,

nutrition, and agriculture, among many others [1, 2].

The prevalence of high-throughput experimental methods has resulted in a large availability

of biological data, such as protein sequences. The database’s statistics reflect the increasing

number of uncharacterized sequences, once experimental methods generally used to study

these properties cannot scale up to the task due to associated cost and time [3, 4].

Although traditional machine learning methods encounter difficulties to learn complex data

structures, they have been used in multiple applications, for example protein transcription factors,

DNA-binding sites, protein function, etc. On the other hand, deep learning methods have shown

to work well in several biological problems, with successful applications of these methods in

learning representations from complex data. These motivated the usage of deep learning

architectures to predict the properties and characterize proteins based on their sequences [5–8].

ProPythia is an open-source python package that was developed within the Biosystems

group at CEB/ U. Minho, that allows the development of machine learning and deep learning

approaches for protein sequence analysis and classification [9]. Still, the methods can still be

improved as many recent approaches are still not implemented within this package.

1

1.2. Objectives 2

1.2 OBJECTIVES

The main objective of this work is to develop a deep learning framework for sequence-based

protein classification. The framework will be based on training and validating deep learning

models based on protein sequences for the prediction of distinct biological activities.

The work will address the following scientific / technical objectives:

• Review relevant literature regarding deep learning models and their applications in protein

classification tasks.

• Explore different deep learning frameworks for protein sequence representation and

classification, assessing their performance in different case studies, including enzyme and

transporter classification.

• Develop a framework that encompasses input representation/ encoding for protein classifi-

cation, to be integrated within the ProPythia package.

• Develop a platform that allow to create deep learning based classifiers for protein se-

quences, including the features above, which will be integrated into OmniumAI’s software

platform.

• Writing the thesis with the main results of this work.

1.3 THESIS ORGANIZATION

This section is meant to explain the organization of this thesis. The thesis is organized in six

chapters, a brief description of the chapters is given as follows:

• Chapter 1: it is composed by the motivation and main goals, which presents a brief

description of the subject of this work.

• Chapter 2: this chapter consists of three main sections. The first section presents the the-

oretical foundation for the understanding of proteins and also a more detailed explanation

of the study cases. The second section is composed by the theoretical foundations of

machine and deep learning, where the main focus is to discuss existing algorithms and ar-

chitectures. Lastly, the third section introduces the topic of protein sequence classification

1.3. Thesis Organization 3

by deep learning models. In this section is discuss the techniques for encoding the protein

sequence, a review of relevant methods and computational tools for protein classification

and relevant packages for the development of this thesis.

• Chapter 3: This chapter contains the methods used throughout the thesis. Along this

chapter, it is explained the encoding methods used and the structure of the deep learning

models.

• Chapter 4: The fourth chapter starts by stating the relationship between the developed work

in thesis and the company. Then is explained the Automated Machine Learning (AutoML)

pipeline created in the company. It is also described the implementation of protein encoders

and the parameters used in deep learning methods used.

• Chapter 5: The fifth chapter presents the results from the methods used and the discussion

of these results.

• Chapter 6: And lastly, conclusions taken from this dissertation are presented, as well as

the future perspectives for this work.

2

S TAT E O F T H E A R T

2.1 PROTEINS

The improvement of high-throughput data acquisition technologies has been transforming

biology into a data-rich science and, therefore, has caused an exponential growth in the available

amount of biological data. Among the biological data available in databases is included protein

sequences.

Proteins are polymeric macromolecules, which perform crucial functions across all domains

of life. These macromolecules are composed of an evolution-derived combination of 23 amino

acid residues linked together. In a cell, proteins can carry out different biological functions

ranging from gene regulation, control of growth, enzymatic catalysis, and others. There are

distinct families/groups of proteins based on their main function in the cell. Therefore, an

opportunity for computational approaches was provided to develop methods to extrapolate the

function of proteins based on the available data.

2.1.1 AMINO ACID RESIDUES

Proteins are polymeric macromolecules, which are composed of amino acid residues joined to

their neighbor by a covalent bond. In total, there are twenty-six different amino acid residues,

although only twenty are commonly found in proteins.

All twenty common amino acids (standard amino acids) are α-amino acids, meaning they

are bonded to the α-carbon, specifically a carboxyl group and an amino group carbon. These

monomeric molecules differ from each other by having different side chains bounded to the

4

2.1. Proteins 5

α-carbon, or R group. These groups alter the amino acid properties, such as structure, size, and

electric charge. The α-carbon is also connected to a hydrogen atom [10, 11].

Due to the tetrahedral arrangement of the four bounded groups, the α-carbon is a chiral

center and, consequently, each one of them can only occupy two unique spatial arrangements,

as represented in figure 1. The R group is the main responsible for the chemical properties of the

common amino acid residues, being these properties essential for biochemistry understanding.

Figure 1 – Tetrahedral arrangement of an amino acid residue. A common structure to almost all α-amino
acids. The side chain (red), R group, is attached to the α-carbon. Adapted from [10].

Based on the R group polarity or tendency to interact with water at neutral pH, each amino

acid is categorized into one of five main classes: nonpolar and aliphatic, aromatic, positively

charged, polar and uncharged, and negatively charged. Polarity can vary from nonpolar or

hydrophobic to highly polar or hydrophilic.

In order to easily identify the amino acids in peptide or protein sequences, a three-letter

code was created, also called abbreviation, generally consisting of the first three letters of the

amino acid name. Also, a one-letter code or symbol was devised by Margaret Oakley Dayhoff,

reflecting an attempt to reduce the size of data files. Both codes for the amino acid name can be

seen in Table 1 [10, 11].

2.1. Proteins 6

Table 1 – Amino acid residue and their codes. Representation of the amino acid residue name, abbrevia-
tion and symbol.Adapted from [10] and [11]

Amino acid Abbreviation Symbol

Nonpolar, Aliphatic R groups

Glycine Gly G

Alanine Ala A

Proline Pro P

Valine Val V

Leucine Leu L

Isoleucine Ile I

Methionine Met M

Aromatic R groups

Phenylalanine Phe F

Tyrosine Tyr Y

Tryptophan Trp W

Polar, Uncharged R groups

Serine Ser S

Threonine Thr T

Cysteine Cys C

Asparagine Asn N

Glutamine Gln Q

Positively charged R groups

Lysine Lys K

Histidine His H

Arginine Arg R

Negatively charged R groups

Aspartate Asp D

Glutamate Glu E

2.1. Proteins 7

2.1.2 FROM AMINO ACIDS TO PROTEINS

To transform the monomers of amino acid residues into peptides or proteins, the amino acids

need to be covalently joined through a substitute amide linkage, termed peptide bond. This

linkage is formed by a condensation reaction that removes a water molecule from the α-carboxyl

of one amino acid and the α-amino group of another, as shown in Figure 2.

Figure 2 – Reaction of condensation to form a peptide. The α-amino group of one amino acid residue
removes the hydroxyl group (OH-) from the other, forming the peptide bond. Adapted from
[10].

When two amino acids are joined by a peptide bond, a dipeptide is formed, while if three

amino acids are linked together by two peptide bonds, a tripeptide is formed. Similarly, four

amino acids joined form a tetrapeptide, five amino acids joined form a pentapeptide, and so

on. When a small number of amino acids are joined together the structure is nominated an

oligopeptide, but if it is constituted by a greater number it is indicated as a polypeptide. To be

classified as proteins, these molecules must have a molecular weight over 10,000 Dalton.

A protein or any molecule derived from the linkage of amino acids can be broken down by

hydrolyzation of the peptide bond, which requires the replacement of the water element removed

on the condensation reaction. Although the hydrolysis of a peptide bond is an exergonic reaction,

it occurs slowly because of a high activation energy, making this bond a stable bond with a good

average half-life.

Relatively to the protein function, there is not a universal rule that associates the molecular

weight or length of the protein to their function. Biologically, proteins can have a wide length

2.1. Proteins 8

range that varies from a few hundred to thousands of amino acid residues. Some small peptides

can exert their effects in a very low concentration, such as vertebrate hormones, toxic mushroom

poisons, and many antibiotics. Proteins can be composed of only a polypeptide chain or by

more than one noncovalently associated polypeptides, denominated multi-subunit proteins.

Although some proteins only contain amino acid residues, some proteins are associated

with other chemical components, being conjugated proteins. Conjugated proteins are classified

based on the chemical group associated: lipoproteins contain lipids, metalloproteins contain a

metal component, and glycoproteins contain sugar groups [10].

2.1.3 PROTEINS STRUCTURE

The protein structure is usually divided into four levels of complexity, arranged in a kind of

conceptual hierarchy. The primary structure is the sequence of amino acid residues, resulting

from the covalent interactions and being the most important element of this structure. The

secondary structure is obtained by the interaction of non-consecutive amino acids within a chain,

describing particularly stable arrangements of amino acid residues, such as α-Helix, β-sheets,

and nonregular coils [12, 13]. The combination of the local secondary structure elements along

the protein chain originates a tertiary structure, describing all aspects of the three-dimensional

folding of a polypeptide [14–16]. Finally, the protein chains can interact or assemble, forming

protein complexes. The quaternary structure describes the arrangement in space of the chains

of the protein complex in the same frame of reference [10, 17]. A visual representation of these

4 levels can be seen in figure 3.

The primary structure can be especially informative, since each protein has a distinct amino

acid sequence and length. The primary structure of a protein also determines how the protein

folds in the three-dimensional space, which in turn determines the function of the protein. A

simple observation: proteins with different functions always have a different amino acid sequence,

and many diseases have been traced to the production of defective proteins. This defect can

range from a change of a single amino acid residue to a deletion of a larger portion of the amino

acid sequence. Despite one change in the amino acid sequence can be linked to a certain

disease, the protein sequence can be flexible having variations in sequence with little to no effect

2.1. Proteins 9

Figure 3 – The four levels of protein structure. The primary structure is represented by the sequence of
amino acid residues. The secondary structure consists of particularly stable arrangements of
amino acid residues, such as α-Helix, β-sheets. The tertiary structure is the combination of
the stable arrangements along the amino acid sequence. The quaternary structure consists of
the spatial association of all polypeptides. From source [10].

on the function of the protein, which is in this case called polymorphic. Furthermore, different

sequences of amino acids exist in distinct species that carry out the same function [10].

Although some regions of the primary structure may vary considerably without affecting the

protein function, most of the proteins contain crucial regions which are essential for the protein

function, denominated conserved regions or domains. The conserved regions vary from protein

to protein, making difficult the task of relating the sequence to the three-dimensional structure

or the structure to their function. Much of the functional information encapsulated in protein

sequences comes from consensus sequences [1].

2.1.4 CASE STUDIES

Enzymes

Enzymes are central to every biochemical process in a living cell. These proteins are highly

specialized for their substrates and are capable of catalyzing chemical reactions. Multiple en-

zymes in a certain order carry out functions, such as degrading nutrient molecules, transforming

chemical energy and making biological macromolecules from simple precursors. The catalytic

2.1. Proteins 10

activity of enzymes depends on the integrity of their native protein conformation. Thus, the

stability of the primary, secondary, tertiary, and quaternary structures is essential to their catalytic

activity.

Just like any other protein, enzymes vary in length. While some enzymes just need their

amino acid residues for activity, other enzymes can require additional chemical compounds

such as cofactors or coenzymes. In certain cases, some enzymes are modified covalently by

phosphorylation, glycosylation, and other processes [10].

Because of the increasing number of discovered enzymes, biochemists adopted an inter-

national system to classify and name new enzymes. The Enzyme Classification (EC) number,

specifies the function of an enzyme by a 4 digits code. The first digit, which is the main node,

classified them into 7 standard categories: Oxidoreductases, Transferases, Hydrolases, Lyases,

Isomerases, Ligases, and Translocases [18, 19]. Each main class node extends for several

subclass nodes, represented by the second digit, specifying the enzyme’s subclass. In the

same logic, the third digit represents the sub-subclasses, and the fourth digit represents the

sub-sub-subclasses [20].

Transporters

Membrane transporters are proteins that mediate the transport of solutes through the cell

membrane, which can range from ions to molecules and drugs. The transporters also mediate

transports between the cells and the environment, being responsible to maintain the equilibrium

for the survival of the cell. There are two types of transport: passive transport, and secondary

active transport.

The passive transporters are also called uniporters, facilitators, or equilibrative transporters.

The passive transport can occur via additional intermediate occluded states, facilitating substrate

calibration across both sides of the membrane, or via channels where the diffusion of multiple

substrates takes place upon the opening of the channel. In this type of transporter, the direction

of substrate flow is determined only by electrochemical potential [21].

The secondary active transporters are used to concentrate the solutes on one side of a

membrane. To achieve the movement of the substrate against the electrochemical potential,

these proteins couple the movement of the substrate with a solute moving in favor of the

2.2. Machine Learning and Deep Learning 11

electrochemical potential. These transporters are called symporters or antiporters depending on

if the substrates and solutes are moving in the same or opposite direction [21].

Transporters in the Transporter Classification Database (TCDB) are classified in a five-tier

system, also known Transporter Classification (TC), following the structure of N1.L1.N2.N3.N4.

The N represents numbers, and the L represents letters. The N1 is the class of the transporter.

This system is a analogous to the EC number. Classes are divided into 9 classes: the classes

from 1 to 5 define channels, secondary carriers, primary active transporters, group translocators,

and transmembrane electron carriers, respectively; the classes 6 and 7 are empty, reserved

for future classes; class 8 is constituted by accessory proteins, and class 9 by uncharacterized

proteins. L1 represents the subclass, N2 is family or superfamily, N3 is the subfamily and N4

represents the sub-subfamily [22].

2.2 MACHINE LEARNING AND DEEP LEARNING

Artificial Intelligence (AI) is a general field which Machine Learning (ML) and Deep Learning (DL)

are incorporated, and originated in the 1950s. AI intends to create systems to learn and extract

knowledge from data. In the early stages, AI was achieved by handcrafting an explicit set of rules

to extract knowledge from data. ML is a branch of AI that enables the discovery of underlying

relationships within data by applying algorithms trained instead of being explicitly programmed.

The backbone of ML is composed of statistical learning methods, allowing the system to find a

statistical structure in the data in order to generate rules for automating the needed task. DL,

which is a specific sub-field of ML based on networks that will be discussed in the section 2.2.3

[23, 24]. Figure 4 represents the relationship between AI, ML, and DL.

ML algorithms can be classified accordingly to the type of learning in supervised, unsu-

pervised, semi-supervised, and reinforcement learning. Each type of learning is appropriate

to address different tasks, requiring a type of input to train the models. Once supervised and

unsupervised learning are the main paradigms, a brief description of each will be presented.

The goal of supervised learning is, based on input-output pairs, to discover relationships

between the data (input data) and the output variables, such as labels, in order to make

2.2. Machine Learning and Deep Learning 12

Figure 4 – Relationship between artificial intelligence, machine learning, and deep learning. Adapted
from [24].

predictions for new and unseen data. Unsupervised learning only attempts to extract knowledge

from the data, not requiring output variables [23, 25].

2.2.1 UNSUPERVISED LEARNING

In unsupervised learning, the learning algorithm does not have access to a known output variable.

In this approach, where the data does not contain labels, the algorithm intends to discover a

hidden structure or data patterns to extract knowledge. Because of the frequent lack of labels

associated with the input data, the main challenge related with this approach is evaluating if

the unsupervised algorithm learned something valuable. Therefore, unsupervised methods are

usually seen as an exploratory analysis technique, helping to understand better the data. These

algorithms are frequently used as a pre-processing tool for supervised learning algorithms [26,

27].

This section will present two methods, clustering algorithms and unsupervised transforma-

tions.

Clustering algorithms

Clustering algorithms try to divide the input data into subgroups (clusters) without the knowledge

of their group membership. Each cluster defines a set of inputs that share a certain degree

2.2. Machine Learning and Deep Learning 13

of similarity, being dissimilar to inputs associated to other clusters. Algorithms such as K-

means (most-used), and hierarchical clustering fall into this category, often called as methods of

”unsupervised classification” [26, 28].

Unsupervised transformation

A common application of unsupervised transformations is dimension reduction, where it takes

a high-dimensional representation of the input data, usually an input with many features, and

creates a new representation of the original data to summarize the essential characteristics in a

lower number of features.

The most remarkably used technique is Principal Component Analysis (PCA). PCA is a

statistical procedure that uses an orthogonal transformation to perform the dimension reduction.

The transformation is defined so that the components, the features created by this technique,

are in descending order of explained variance. Other transformation algorithms include t-

Distributed Stochastic Neighbor Embedding (t-SNE), Independent Component Analysis (ICA),

or Non-negative Matrix Factorization (NMF) [23, 26, 28].

2.2.2 SUPERVISED LEARNING

As already mentioned, the principal objective of a supervised learning algorithm is to infer

relationships between the input data (observed data) and the variable that will be predicted.

Therefore, it requires the separation of the input data into a training set and a test set. First,

the training set is used to build the model fitting the data, based on the input data and output

variables or labels. If the algorithm is flexible enough and data elements are coherent, iteration

after iteration, it will adjust the parameters in the model to improve the prediction capacity. The

objective is to make an accurate prediction for new, never-before-seen data.

Classification and regression are the two major types of supervised ML applications. In

regression problems, the objective is to predict a continuous variable that is within a continuous

set, based on the input data. Classification problems have the objective of predicting the

label/class for the inputted data from a predefined list of possibilities. The classification problems

2.2. Machine Learning and Deep Learning 14

can be classified into binary problem (only two labels) or multiclass problem (more than two

labels) [26].

The development of a ML workflow is composed of several steps. The first step is related to

the collection of data and preparation. This is followed by a sampling of the data, training of the

models, and evaluation of their prediction capabilities.

Data collection and preparation

The starting point in ML is the collection and preparation of data which is going to be used to build

and train the model. This includes the dataset construction, pre-processing, feature extraction,

and feature selection. Generally, a dataset is a matrix of data where each row represents an

example and each column represents an attribute/feature. The columns must contain all the

input attributes or features, and also the real output, being fixed-length vectors [29].

Depending on the collected data, processes such as feature extraction and pre-processing

may be needed. The feature extraction transforms the initial collected data, raw data like text

and images, into features suitable for modeling [26]. The pre-processing allows, for instance, the

removal or substitution of corrupt and missing data, while it can also format the data, transform

the data (e.g. log transform) or standardize the raw data if needed [30].

The last process that is normally used for the construction of the dataset is feature selection.

Feature selection is a process that selects a subset of features that are sufficient to describe the

target concept, from all inputted attributes [31]. Ideally, the feature selection allows removing

redundant and irrelevant features and maintain only the relevant features [32].

Data sampling

Before feeding the data to a model, the dataset must be split into a train and test dataset. Usually,

this division is randomly applied. While the training data is used to train the model, the test data

is used only to evaluate the performance of the trained models. In most cases, a validation set

may also be required, which is a third partition of the dataset, typically obtained by partitioning

the training set, used to evaluate different model configurations [30].

2.2. Machine Learning and Deep Learning 15

Machine Learning traditional supervised algorithms

After following the previous steps, the training set can be applied to train the chosen algorithm.

Some commonly used classes of models, with associated supervised learning algorithms,

include Support Vector Machine (SVM), Decision Trees (DT), Random Forest (RF), and Artificial

Neural Network (ANN), for which a brief description will be presented below. Other supervised

algorithms include Logistic Regression (LgR), Linear Regression (LR), k-Nearest Neighbors

(KNN), and Gaussian Naive Bayes (GNB).

Support Vector Machines

SVM are supervised learning models that can be used to analyze data and recognize

patterns, for classification and regression applications, able to provide high accuracy in many

applications [33]. A SVM training algorithm works over a representation of the data into a

higher-dimensional space, in which the objective is to divide the input feature space, separating

the two output classes, through a decision boundary, also called hyperplane, that is as wide as

possible. For example, for a training set with the objective to predict labels, SVM will try to find

the hyperplane which maximizes the distance between the labels [23, 25, 33].

The method can perform the objective by using a linear methodology or a nonlinear method-

ology. When dealing with nonlinear problems, it is useful projecting the original data transformed

into a dimensional space and linearly separate the data. However, this increases the computa-

tional complexity. The use of kernels allows to efficiently perform a nonlinear method by reducing

the computational complexity, allowing to benefit from the power of non-linear projections even

in a very large number of dimensions [34].

A kernel is a function that the value of the kernel for two feature vectors is the dot product

of the two projected vectors. The kernel methods aim to create a smooth separation based

on nonlinear decision boundaries. Radial basis function (RBF), polynomial and sigmoid are

examples of kernels that can be used in SVMs [25, 34].

Decision Trees

DT are statistical models used in classification and regression applications, being one of the

simplest ML methods [35]. DTs can handle different types of data (nominal, textual, numeric),

redundant data, and missing values, and can provide high accuracy with a low computational

2.2. Machine Learning and Deep Learning 16

effort. However, dealing with high dimensional data with DT can be difficult [23, 33]. This

type of model, as the name suggests, breaks the data by making decisions based on a series

of questions. A DT is started with a root and assigning it to a label according to majority

votes obtained from the training set, becoming a leaf. After that, the model will perform a

series of iterations and evaluate at each iteration the gain of splitting a single leaf. Then, the

model will choose the split that maximizes the gain and performing the best option, learning

the series of questions that are most informative to predict the output. The gain of splitting

a leaf is determined by the algorithm used [26, 36]. A decision tree can be built based on

different algorithms, such as Classification and Regression Trees (CART), Chi-square Automatic

Interaction Detection (CHAID), and Iterative Dichotomiser 3 (ID3) [25].

Random Forest

RF is an ensemble method that operates by training several decision trees and returning the

predicted class based on the majority of all trees trained. In some applications, RF models are

slightly ahead of SVMs because they are fast and scalable, do not overfit, are robust to noise,

and are easy to interpret and visualize with no additional parameters to manage. However, as

the number of trees is increased, the algorithm can become slow for real-time prediction [33].

Artificial neural network

ANN was originally inspired by the idea of mimicking the functioning of the human brain

with artificial neurons (processing units). The neurons or nodes, the basic building block of this

method, are responsible for computing output from the inputted data.

The output is obtained by multiplying the data inputted to the neuron by the weights of

the connections to other neurons, and by adding the bias. Followed by the application of an

activation function that determines the output that the neuron will pass to the next layer. The

weights are parameters associated with the linkage between neurons, which reflect the relative

importance of each connection for the output of the receiving neuron. The bias is a parameter

associated with the neuron to help the model to better fit the received data. Figure 5 represents

the process of calculating the output of a neuron, with the inputs (χ), weights (ω), bias (b),

weighted sum function, and the activation function (f) and output (y).

The activation functions more used are the sigmoid function, TanH function and the rectified

linear activation function (ReLU). The sigmoid function returns a value between 0 and 1, while

2.2. Machine Learning and Deep Learning 17

Figure 5 – Scheme of an artificial neuron. The neuron receives the input χ, weights ω, and bias b. The
output produced by the neuron results from applying the nonlinear transformations of linear
combinations and an activation function f . Adapted from [37].

the TanH returns a value between -1 and 1. However, the ReLU function is more widely used

because it can learn a lot more quickly in networks with multiple layers. This function returns the

input value, if it is positive, or 0 if the input is negative [38, 39].

A feedforward ANN is constituted by neurons disposed in layers and connections between

the neurons. The ANN models have 3 types of layers: an input layer, hidden layers, and an

output layer as represented in figure 6. The input layer receives the data fed to the model, each

neuron represented by a feature of the data. In the hidden layers, each neuron receives input

signals from the previous layer. The connections between the layers represent the learnable

parameters, weights, and bias, which are integrated in the neurons to compute the output as

described previously. Since each neuron has a different parameter associated, the inputted data

is transformed differently in each neuron, followed by a non-linear activation function. In the end,

the output layer receives the values from the last hidden layer and transforms them to output

values [24].

The learning process is the adjustment of the learnable parameters to fit the training data,

which are set randomly in the first moment. In order to learn from the data, it is required an

objective function and an optimizer. The objective function, also called loss function, measures

the difference between the predicted variable and true variable. It captures how well the network

has performed in the prediction of training data, represented by a loss score. The optimizer

is responsible for adjusting the learnable parameters utilizing a learning algorithm, based on

gradient descent. The backpropagation algorithm was one of the first to be used, and is still a

2.2. Machine Learning and Deep Learning 18

Figure 6 – Artificial neural network. It is composed by an inputted layer of two neurons, a single hidden
layer with four neurons, and an output layer with only one neuron. Adapted from [37].

central algorithm in this field, which has been improved in the last years. The optimizer receives

a score as feedback to perform the adjustments, usually the loss score [24, 38].

The Adam algorithm is one of the most popular optimizers. This algorithm determines

the gradient and squared gradient by exponential moving average. The decay rates of these

moving averages are controlled by the parameters β1 and β2. The Adam optimizer maintains the

learning rate while updating the weights, and the learning rate does not change during training

[40].

At the beginning of the training process, the loss score is usually very high, meaning that

the predictions are far from the true label. During the training process, occurs the forward

propagation where the inputs are processed through the ANN and generate the output. Then,

they are compared to the real outputs to calculate the loss score by the loss function. The next

step is to modify the learnable parameters, weights and bias, to minimize the loss score. This

process is done by the backward propagation that uses the chosen optimizer to perform the

adjustments. Figure 7 illustrates the learning procedure [24, 38].

This training loop is repeated multiple times to obtain the minimum loss function score.

The network is considered trained when it achieves the minimal loss score, implying that the

2.2. Machine Learning and Deep Learning 19

Figure 7 – The learning process of an artificial neural network. The learning loop starts by feeding
the input to the network, calculate the loss function and update the weights of the network.
Adapted from [24].

predicted outputs are most similar to the true labels as they can be, enabling the network to

predict labels from unseen data [24].

Evaluation and application of the model

After the train of the chosen algorithm with the training data, the trained model can be evaluated

using error metrics. This evaluation is made by exposing the trained model to the test dataset.

The error metrics compare the outputs given by the model to the real values. The error metrics

used depend on if it is a regression or a classification problem.

When dealing with a classification problem, a confusion matrix is often used. The confusion

matrix consists of a matrix in which the rows represent the real classes and the columns the

classes predicted by the trained model. In the binary case, this allows an easy representation of

True Positives (TP), False Negatives (FN), True Negatives (TN), and False Positives (FP) cases.

Accuracy is an error metric that produces a value related to how often the classifier makes the

correct prediction. Based on the accuracy metric, the Balance Accuracy (BAcc) mitigates the

limitation of the traditional accuracy for imbalanced data. Precison (Prec) is also often used,

representing the samples predicted correctly as positive. Another frequently used metric is

recall, which represents the number of positive labels amongst all positive labels [26, 28, 41].

The Matthews Correlation Coefficient (MCC) is another important classification metric.

While other metrics only consider part of the predictions, MCC produces a more informative and

balanced score by taking into account true and false positives and negatives. It returns a value

2.2. Machine Learning and Deep Learning 20

between -1, disagreement, and 1, perfect prediction [42]. Other relevant classification metrics

include F1 score, Receiver Operating Characteristic (ROC), and precision-recall curves [26, 28].

The equations of these metrics are represented in figure 8.

Figure 8 – Error metrics for classification tasks. A confusion matrix is presented for a binary classification
of positive (P) or negative (N). The equations to calculate the accuracy, precision, recall,
specifity, F1 score, balanced accuracy and Matthews correlation coefficient are presented
considering the true positives (TP), false negatives (FN), true negatives (TN), and false
positives (FP). Adapted from [42, 43].

For regression problems, the error metrics are based on the difference between real and

predicted values in all examples. They can be calculated by functions such as the squared sum

of errors (SSE), Root-mean-squared Error (RMSE), or R-squared [44].

Sometimes the chosen model can be too complex or too simple to correctly learn from the

data. A model can be underfitting, when the model is too simple, not capturing the variability in

data. The model can also overfit, when the model is too complex, resulting in a high performance

of the model over the training data and a low performance for the test data. The objective is to

obtain a trained model that generalizes as correctly as possible [26].

After the validation of the trained model, usually comes the model deployment. This

corresponds to the application of the model in an actual task of prediction.

2.2. Machine Learning and Deep Learning 21

2.2.3 DEEP LEARNING MODELS

Many methods labeled as ML rely heavily on feature engineering to make the right transformation

of the raw data, facilitating the ML algorithm to solve the desired task. The main focus of a DL

approach is not the handcraft of representations but the manipulation of a mathematical entity to

allow the model to discover representations from the training data autonomously, which makes

DL a powerful tool in data mining.

DL methods are a ML subset based on ANNs, which use a cascade of multiple layers to

extract increasingly meaningful representations from the input stacked on top of each other.

Typically, these methods have several hidden layers to transform the data [45].

DL techniques include fully connected deep neural networks or Deep Neural Network (DNN),

Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), transformers, Auto-

encoders (AE), Deep belief networks (DBN), and deep reinforcement learning [46]. Below, we

address a description of the main architectures: DNN, CNN, RNN and transformers.

Dense Neural Networks

The DNN is the simplest DL model, being the principle of this method the same as described in

the traditional ANNs. While an ANN only contains one hidden layer, a DNN can contain multiple

layers, leading to a higher level of complexity. They are also feedforward networks, meaning that

the data flows in a single direction [27]. Figure 9 shows an example of a DNN with two hidden

layers, containing 4 neurons in each layer.

Convolutional Neural Networks

CNNs were firstly introduced in 1998 by LeCun et al., as an architecture directed to digital

recognition, belonging to the feedforward neural network group. CNN is mostly used in computer

vision, image recognition, and video recognition. Other areas such as Natural Language

Processing (NLP), drug discovery, and others often use this technique for different purposes

[27]. CNNs are usually composed of an input layer, convolutional layers, pooling layers, fully-

connected layers (including the output layer).

2.2. Machine Learning and Deep Learning 22

Figure 9 – Representation of a dense neural network. It consists of two input neurons that receive the
input values, two hidden layers with 4 neurons and an output layer that produces the output
values. Adapted from [27].

As mentioned, the input is given without any additional transformation, avoiding any complex

feature extraction and data reconstruction process. Therefore, every layer in this network has a

distinct function to transform the inputted data.

A convolutional layer is a feature extractor that identifies important features. It is responsible

for learning local patterns instead of global patterns. The convolutions operate over feature

maps with two spatial dimensions, height and width, and a depth axis, used for the channels for

the color in the input image, but also to provide for different feature types in hidden layers.

A new feature map is obtained by multiplying the inputted feature map with a kernel, or filter,

along the width [24]. Figure 10 show a convolutional operation. Consequently, the convolution

extracts patches from the inputted feature map and applies the same transformation to all

matches to produce the new feature map. After the convolution, the activation function is applied

element wise. The outputted feature map tends to represent the presence of a local pattern

or concept over the different tiles. A combination of multiple convolutional layers is able to

progressively perform more refined feature extraction from the inputted data [27, 47, 48].

The pooling layers, also denominated subsampling or downsampling layers, usually come

after convolution layers and are capable to perform a spatial dimension reduction of the inputted

data in width and height, not altering the depth axis dimension. This allows to reduce the

2.2. Machine Learning and Deep Learning 23

Figure 10 – Representation of a convolutional operation. The defined kernel dimensions is of 3 × 3.

dimension of the feature maps to process [49]. The average and max pooling are the most

used strategies, the average pooling calculates the average value for the defined window, while

max-pooling extracts only the maximum value of the window. In a detailed comparative analysis

of max and average pooling performance, it was shown that max-pooling leads to a faster

convergence, improved generalization, and selected superior invariant features [24, 27, 48, 49].

Figure 11 represents the result obtained by a pooling layer using a max pooling strategy.

Figure 11 – Representation of a max-pooling layer. The dimensions defined for the window is 2 × 2.
Adapted from [45].

After the multiple convolutions and pooling layers, usually there is one or more fully-

connected layers. The neurons in a fully connected layer are connected to all neurons in the

previous layer. The output of convolutional layers has to be flattened to feed the dense layer as a

1D feature vector. This feature vector can be used to feedforward for a classification task based

on the extracted features or used as a feature vector for further processing [47–49]. Figure 12

represents an example of a CNN architecture for an object detection task.

2.2. Machine Learning and Deep Learning 24

Figure 12 – An example of a complete convolutional neural network. The fed input passes through
two convolution layers and two pooling layers, flattened and fed to a fully-connected layers.
Adapted from [27].

Recurrent Neural Network

In feed forward networks, such as DNN or CNN, the neurons are connected between adjacent

layers in the forward direction. This means that each layer processes the signals received by

the previous layer independently and then propagates them to the next layer. On the other

hand, RNNs can produce an output by comprising a latent vector, which contains the information

relative to what the network has seen so far [47].

RNNs are a type of neural network designed to handle spatial-temporal structures, the

layers have recurrent feedback neurons that are capable to merge the current incoming inputs

with previous information, as represented in figure 13. This type of neural network has memory,

having exploitable bias related to the ”past” to make informed decisions with the new data. RNNs

are useful when working with sequences such as text, audio, or multiple sets of images [38].

Figure 13 – Loop associated to a recurrent neural network neuron. Adapted from [24].

The biggest limitation of a RNN network is that it is not capable of dealing with long-term

dependencies. This problem is known as the vanishing gradient problem, which causes the

RNNs to ”forget” what they have seen in longer sequences, having a short-term memory.

Therefore, to address the limitation of the RNN, variants surged such as Long Short-Term

2.2. Machine Learning and Deep Learning 25

Memory (LSTM) and Gated Recurrent Unit (GRU) which have internal gates to regulate the flow

of information to the cell state and deal with the vanishing gradient problem [24, 50, 51].

An LSTM is usually composed of a cell state and three gates. The cell state, also called

latent vector, is responsible for the memory which resets between the processing of two different

and independent sequences. The cell state transfers relative information down the sequence

chain. As the neural networks process the sequence, information gets added to the cell state.

The three internal gates are the forgot gate, the input gate, and the output gate. The

input gate decides which information from the input is relevant, the output gate decides what

information can be output based on the cell state, and the forget gate can decide which

information will be discarded from the cell state. Each gate decision is based on activation

functions, sigmoid and TanH functions. Each gate has a different combination of activation

functions suited for its purpose, as can be seen in figure 14 [52].

Figure 14 – Long short-term memory network cell. A cell state and a hidden state passes through the
cell with the input. Firstly, it passes in the forgot gate, followed by the input gate and lastly the
output gate. The present active functions are sigmoid function (σ) and TanH function (TanH).
It also has operation of multiplication (×) and addition (+). Adapted from [52].

For sequences as biological ones, a model can perform better if it processes the sequence in

both directions, in forward and in the reversed direction. The bidirectional LSTMs are composed

by two LSTMs, allowing to process the sequence in both directions. The first LSTM is trained

with the input in a given order, and the second one is trained with the reversed input [24].

2.2. Machine Learning and Deep Learning 26

The GRU layers are simpler than the LSTM layers. GRU usually are composed of only two

gates: reset and update gates. While the reset gate decides how much past information to

forget, the update gate decides what information to throw away and the new information to add.

The update gate can be seen as a combination between the forget and input gates in a LSTM

network. GRU only has a hidden state, combining the cell state and the hidden state present in

the LSTM. Because of the higher complexity in the LSTM layers, their training is slower than the

GRU layers [24, 52].

However, the more exciting results based on RNNs were achieved by LSTMs, because

of their powerful capacity of learning from the data. LSTMs were used in a wide variety of

applications such as speech recognition, acoustic modeling, trajectory prediction, correlation

analysis and sentence embedding, becoming a focus technique in DL [38, 50].

Transformers

The first models in the Language Modeling (LM) were often models based on the RNN ar-

chitecture. Despite the improvements of the LSTM and GRU relative to RNN, the lack of

comprehension in bigger contexts has proven to be an obstacle in these fields [53].

Transformers were initially introduced by Vaswani et al. [54] in 2017. Transformers are

attention-based architectures, composed of encoder and decoder blocks. The attention mech-

anism is responsible for processing the data in parallel with no sequential dependency. This

allows to overcome the LSTM context limitation, and capturing long-range sequence features

[53, 55]. While, in the LSTM layer, all tokens of the sequence are represented by only one

hidden state, the encoder produces a hidden state for each inputted token in the sequence. The

encoder converts the inputted tokens into the called hidden state or context, embedding vectors.

The attention mechanism is between the encoder and the decoder. As the increased number

of hidden states fed to the decoder can create an enormous input, the attention mechanism

allows the decoder to assign more importance to certain hidden states, allowing to process the

hidden states and generate an output sequence. Figure 15 is a representation of the procedure

[56].

Despite the fact that this architecture was designed for sequence-to-sequence tasks, like

translation and summarizing tasks, it was rapidly adapted to be explored for other tasks. The

2.2. Machine Learning and Deep Learning 27

Figure 15 – An encoder-decoder architecture in an attention mechanism. Adapted from [56].

transformers rapidly become dominant in sequential tasked fields, such as NLP [57], speech

processing [58, 59], computer vision [60], and gradually extended to handle non-sequential

problems [61–63].

Nowadays, there are variations from the original transformers. Encoder-only are models

designed to supply a rich representation of the inputted sequences, including models such

as BERT [57], RoBERTa [64] and DistilBERT [65]. Decoder-only or autoregressive attention

models were idealized to predict the next token in the sequence context, as it is the case with the

family of GPT [66, 67] models. Lastly, encoder-decoder models are appropriate for sequence-to-

sequence tasks, for example text summarization, BART [68] and T5 [69] are examples of this

type.

A major drawback is the complexity of such models because they require a considerable

amount of computation resources to train. However, the usage of pre-trained models allows the

usage of the trained models with a generic collection of data. Therefore, pre-trained models are

often used as feature extraction methods. These pre-trained models can then be loaded and

used with lower computation resources, providing an accessible and efficient means to create

representations of the inputted tokens [53, 56].

2.2.4 AUTOMATED MACHINE LEARNING

AutoML is an automatic pipeline, completing the steps usually created by the ML scientist. This

pipeline is usually segmented into the multiple steps. In a normal ML pipeline, to achieve good

results, all data, features, and the model must be manually prepared and fine-tuned through trial

2.3. Deep Learning applied to Protein sequence classification 28

and error by the ML scientist. However, the time required to manually complete this pipeline

increases with the complexity of the models [70].

AutoML can be divided into four different stages, which one compassing different steps of

the typical pipeline [71]. These stages are as follows:

• Data Preparation: The acquisition of new data to create and/or augment a dataset, along

with the cleaning of data to remove noise.

• Feature Engineering: The process that uses feature extraction methods to transform

existing features, feature construction to create new features from data, and feature

selection to reduce dimensionality by selecting the most important features.

• Model Generation: Testing different ML algorithms and the parameters associated to the

ML algorithms are optimized to achieve the best model architecture.

• Model Evaluation: Process where the trained models are evaluated in the performance

of each model.

AutoML can encompass all steps of the pipeline, or only a group of selected steps. Tools

that allow to realize one or more of these stages are : Auto-PyTorch [72], Autogluon [73],

Auto-Keras [74] and many others.

2.3 DEEP LEARNING APPLIED TO PROTEIN SEQUENCE CLASSIFICATION

High-throughput data acquisition technologies have been transforming biology into a data-rich

science. The increasing capabilities of the technologies used by laboratory personnel have

caused an exponential growth in the available amount of biological sequence data, such as

Deoxyribonucleic Acid (DNA), Ribonucleic Acid (RNA), and protein sequences. However, due to

the limitations in the wet lab experiments, the gap between the sequence data and characterized

data is increasing.

To fulfill the need for methods capable of analyzing large-scale data, bioinformatics has

found in data mining an excellent and mature ally. Bioinformatics recurs to ML methods not only

to analyze sequence data in order to understand the structure and the function but also to drive

the development of applications to obtain knowledge in a fast, inexpensive and efficient way.

2.3. Deep Learning applied to Protein sequence classification 29

As mentioned, proteins are responsible for most of the cell activity. Therefore, many models

of ML have been applied to predict the function, the various protein structure, or even the

interactions of a protein. The majority of tasks related with protein sequence analysis are

classification tasks, which classify the protein sequence into defined classification systems, i.e.

EC and TCDB.

An objective of this work is the development of a DL framework capable of performing the

classification of proteins based on their primary structure. To evaluate the performance of the

framework, two case studies of protein sequences will be used, enzymes and transporters.

However, the major step is the encoding the amino acid sequence.

2.3.1 SEQUENCE ENCODING

The amino acid sequences, proteins, are accessible in databases represented by the one-letter

code, as explained in the section 2.1.1. Therefore, protein sequences are strings composed

of letters and each letter represents an amino acid residue. Even though DL models can take

the input from raw data, raw text can not be inputted into the model. Consequently, the raw

text has to be transformed into a numeric tensor, a process called vectorizing text. A good

representation of the protein in the mathematical vector is essential to provide insights into

distinct characteristics of different proteins.

Substitution matrix

A common technique to encode sequences is the orthogonal encoding, also known by one-hot

encoding, which transforms the tokens into a binary vector with the length of the vocabulary.

The text is split into tokens, where each token can represent a word or a single character. The

vector is composed of all zeros except for an index which represents each token. An example

can be seen in figure 16, showing the binary vector for each character [24, 75].

Other relevant techniques are the use of a substitution matrix like Blocks Substitution Matrix

(BLOSUM) representing accepted mutations between amino acid pairs [76]. The BLOSUM is

a family of substitution matrices, often used for protein sequence alignment. Here, the score

assigned to two residues reflects the likelihood of those being aligned in a homologous sequence.

2.3. Deep Learning applied to Protein sequence classification 30

Figure 16 – Representation of orthogonal encoding. One-hot-encoding into binary vectors of a vocabulary
of 4 letters.

These substitutions were found from studying protein sequence conservation in large databases

of related proteins. The number included in each BLOSUM matrix name refers to the percentage

identity at which sequences were clustered in their definition. A lower number is better for

aligning sequences of lower identity, while higher values are better to find highly conserved

regions [77, 78].

Z-scales and Non-Linear Fisher (NLF) matrices are substitution matrices for protein se-

quences. The Z-scale encodes each amino acid for a numeric representation of lipophilic, steric,

and electronic properties of the amino acid residues [79]. The NLF matrix is the representation

of supervised feature transformation based on non-linear Fisher transformation, which tries to

preserve the distances between amino acid residues by eighteen numeric features [80].

Position Score Matrix

Also, an option is the use of Position-Specific Scoring Matrices (PSSM) or Position-Specific Fre-

quency Matrix (PSFM) capturing evolutionary constrains on a protein family, assuming that each

amino acid is highly conserved in a protein family [76, 81, 82]. PSSM is frequently referenced as

profiles or hidden Markov models. The intuition behind this method is that a multiple sequence

alignment (MSA) of related proteins can identify position-specific residues, which may benefit in

the identification of homology (conserved regions). This position-specific residues are identified

by a high positive score related to the preservation of the amino acid residue [83]. Also, this

PSSM based feature descriptors have improved the prediction performance in a large spectrum

of bioinformatics applications [84, 85]. Methods such as Position-Specific Iterative Basic Local

Alignment Search Tool (PSI-BLAST) allow an iterative search for a more sensitive search of

biologically relevant sequence similarities [86].

2.3. Deep Learning applied to Protein sequence classification 31

Embedding

The use of embedding layers can be seen as an alternative to the commonly used one-hot

encoding, which is used after the input layer. The embedding layer compresses the input feature

space into a smaller one, finding the optimal mapping of each of the unique tokens to a vector

of real numbers. These can be obtained by word embedding techniques, such as word2vec

and protVec, which perform a distribution encoding to characterize the relationship between the

tokens. While word2vec is a technique related to word expression including the meaning and

context of words in a document, protVec is designed to be applied to a wide range of problems

in bioinformatics. This tool allows representing co-occurrence relationships between blocks of

amino acids instead of between individual amino acids [87, 88].

Transformer

As referenced in section 2.2.3, the transformer or LM is a dominant architecture in sequential

tasks by using attention. Despite, the transformers were initially developed for NLP, LM were

successfully applied to protein sequences [63, 89].

ProtTXL, ProtBert, ProtXLNet, ProtAlbert, ProtElectra, ProtT5-X, and ProtT5-XXL are ex-

amples of usage successfully transformers in NLP trained with protein sequence data. ProtBert,

ProtAlbert, ProtElectra, ProtT5-X and ProtT5-XXL belong to encoder-only type of transformers,

while ProtXLNet and ProtTXL belong to the autoregressive models [63]. DistilProtBert [90] is

another example of an adaptation from the NLP field to a biological field. The Evolutionary Scale

Modeling (ESM) is a transformer protein language model from Facebook AI developed for tasks

such as predicting variant effects, inverse folding, and contact prediction [91–95].

The usage of these transformers as feature extractors to represent the protein sequence

was shown to have a better performance in multiple prediction tasks related to protein sequences

[96, 97]. The data often chosen to train such transformers belong to UniRef [63, 90].

Protein Descriptors

Another encoding technique for sequences is obtained through the combination of the repre-

sentations of proteins by physicochemical properties, such as pseudo-acid and amino acid

2.3. Deep Learning applied to Protein sequence classification 32

composition and physical properties, such as charge and hydrophobicity. There are also auto-

correlation descriptors that consider the physicochemical properties of amino acids for specific

positions and related in a higher dimensional protein space [81]. The feature encoding assumes

the function/activity of the protein based on these properties computed through the knowledge

of the amino acid sequence [98].

In correlation with the physicochemical properties, structural descriptors like hydrophobicity

scale, average flexibility index, polarizability parameter, the free energy of amino acid solution in

water, residue accessible surface area, amino acid residue volume, Van der Waals volume, and

relative mutability can also be used [99]. Structural representations based on torsion angles,

secondary structure elements and other structural elements are another option [100–102].

Binary profiles based on the absence or presence of sequence motifs (e.g. protein motifs

from databases as PFAM) may also provide important information [9, 20, 82].

2.3.2 RELEVANT WORK ON PROTEIN CLASSIFICATION

Previously, numerous classification tasks associated with proteins have been conceived by using

different frameworks. Some of the frameworks are trained with different transformation of the

protein sequence, while some only use the encoded protein sequence, others use features

obtained from the sequence.

The first method widely used to predict protein function is the Basic Local Alignment Search

Tool (BLAST). BLAST searches in the database for sequences that are homologous to the

protein query, and then uses the information of the homologous sequence found to predict the

function of the query protein, relying on high sequence similarity [103]. Despite the value that

this method has shown, it suffers from limitations, such as depending on homologous protein

sequences to predict the function of the query protein [104].

Table 2 lists some of the previous works based on DL architectures. The table refers to the

prediction task, the year of the publication, the type of architecture used, and the inputted data

into the model for each study.

Previous works have shown the potential of DL for prediction tasks associated with proteins.

The most frequent method to encode the sequences is the Hot-Encoded Sequence (HE), that few

2.3. Deep Learning applied to Protein sequence classification 33

studies combined to Structural Features (SF), Protein-protein Interactions (PPI) derived features,

Domain Content (DC), Physicochemical Features (PCF) based on the protein sequence, amino

acid composition, and others. Another approach is the use of PSSM to capture the evolutionary

information in the sequences. The DeepPPF [6] is the only study which uses the sequence

encoded by the embedding Word2vec (W2V) [87]. DeepConv-DTI [105] associates the hot

encoded sequence to the Simplified Molecular-input Line-entry System (SMILES) to predict

drug interactions. More models in the latest years use Transformer Features (TF) to encode the

protein sequence.

Table 2 – Review of studies conceived for protein tasks. It is presented the prediction task, the year
of the publication and the method used to input the sequence into the model. The inputted
data is abbreviated as follows: hot-encoded sequence (HE), BLOSUM, sequence encoded by
word2vec (W2V), structural features (SF), protein-protein interaction derived features (PPI),
simplified molecular-input line-entry system (SMILES), domain content (DC), physicochemical
features (PCF), residue–residue contacts (RRC) and transformer features (TF)

Name Prediction task Year Data

DeepLoc 2.0 [96]
Protein subcellular

localization
2022 TF

Tranception [106] Protein Fitness Prediction 2022 TF

SPOT-Contact-LM
[107]

Protein Contact Map 2022 HE, TF

A-Prot [108] Protein structure 2022 TF

NetSurfP-3.0 [109] Protein structural features 2022 TF

DTITR [110] Drug-target interactions 2022 TF

LM-GVP [111] Protein property 2022 TF

SPOT-Contact-Single
[112]

Protein Contact Map 2021 HE, TF

DeepPPF [6] Protein family 2021 W2V

DeepDTAF [113]
Protein–ligand binding

affinity
2021

HE, PCF, SF,
SMILES

DeepTFactor [114] Transcription factors 2021 HE

DeEPn [115] Enzyme EC number 2021 HE, PCF

Continued on next page

2.3. Deep Learning applied to Protein sequence classification 34

Table 2 – continued from previous page

Name Prediction task Year Data

DeepSVM-fold [5] Protein fold recognition 2020
RRC, PSSM,

PSFM

SDN2GO [116] Protein Function 2020 HE, DC, PPI

MusiteDeep [117]
Protein post-translational

modification site
2020 HE

UDSMProt [118] Protein classification 2020 HE

ProtTrans [63]
Per-residue secondary

structure, Protein
localization

2020 TF

DeepConv-DTI [105] Drug-target interactions 2019 HE, SMILES

DeepFunc [119] Protein function 2019 HE, PPI

DeepGOPlus [120] Protein function 2019 HE

DeepEC [121] Enzyme EC number 2019 HE

DEEPred [122] Protein Function 2019 HE, PCF

DeepIon [123]
Ion Transporters and Ion

Channels
2019 PSSM

ET-GRU [124] Identify electron transporters 2019 PSSM

DeepFam [125] Protein family modeling 2018 HE

DeepSol [7] Protein solubility 2018 HE, PCF, SF

DeepCrystal [8] Protein crystallization 2018 HE

DPPI [126] Protein–protein interactions 2018 HE

DEEPre [20] Enzyme EC number 2017 HE, SF, PSSM

DeepLoc [127]
Protein subcellular

localization
2017 BLOSUM

The CNN architecture was applicable in the majority of the works seen in the research in the

literature. However, models previously to 2019 also use the architectures of DNNs and LSTMs

for some prediction tasks. Models in the literature after the year 2021 often introduce attention

2.3. Deep Learning applied to Protein sequence classification 35

mechanisms into the model structure. Another notable fact is that in more recent prepositions of

models for protein prediction tasks, the usage of pretrained transformers as features extractors

has increased. The usage of the transformers has allowed to surpass previously state-of-art in

some tasks.

The most relevant studies to this thesis are related to the classification of the function

of proteins, universal approaches for classification of protein into classes or families. Works

such as DeEPn [115], DeepEC [121], and DEEPre [20] are models that predict the enzyme

classification, which were capable to achieve a good prediction performance. However, the

enzymes sequences are often used in other prediction tasks. For the classification of transporter

sequences, it was found that most of the studies isolates the prediction task to small subgroups

of transporters. The DeepIon [123] and ET-GRU [124] were the models which encompasses

a larger number of transporter sequences. However, these models do not include all the

transporter class from the TC system.

2.3.3 TOOLS FOR BUILDING PROTEIN CLASSIFICATION ALGORITHMS

The development of a complete ML framework for data analysis has become essential in

biological studies, which can be a hurdle to biologists and bioinformatics with no experience

in ML. Therefore, some tools and web servers have been developed. The solutions include

SPiCE [128], ASAP [129], [130], modlAMP [131], PyFeat [132], BioSeq-Analysis2.0 [133], iLearn

[134], iLearnPlus [135] and ProPythia [9] which allow the feature calculation integrated with the

functionality for further sequence analysis data and perform ML pipelines. A description of the

more recent tools can be seen below.

BioSeq-Analysis2.0 [133] is available as a web server but also as a package for protein,

DNA, and RNA sequences analysis based on ML approaches. This package performs feature

reduction and feature calculation but also incorporates classification algorithms like SVM (RBF

kernel), RF, and a sequence labeling algorithm: Conditional Random Fields (CRF). This

package does not give a lot of freedom in terms of algorithms and choice of parameters.

iLearnPlus [134, 135] is an updated version of the iLearn. The iLearnPlus is available in

a web server and a Graphical User Interface (GUI) version. Even though the code can not be

2.3. Deep Learning applied to Protein sequence classification 36

manipulated as a package, a ML pipeline for analysis can be built, and prediction using protein,

DNA, or RNA sequences. The iLearnPlus concedes the sequence-based feature extraction

and analysis. It allows the construction and deployment of models, assessment of predictive

performance, statistical analysis, and data visualization without programming. This package

allows the calculation of 37 feature descriptors, to use 5 feature selection methods, 10 types of

clustering algorithms, 12 conventional ML algorithms but also implement DL architectures such

as CNN, RNN, Bidirectional Recurrent Neural Network (Bi-RNN), Residual network (ResNet),

AE and Multilayer Perceptron (MLP).

ProPythia [9, 136] is a generic Python-based free tool to apply ML and DL pipelines to

protein classification problems. It has a modular nature and flexibility that makes the package

able to adapt to different problems and fit the needs of the user. It offers a user-friendly possibility

to implement ML/DL pipelines for protein/ peptide classification. It is a tool suitable for beginners

because it gives the user control of the whole process without the need of writing extensive code.

It is composed by 3 main groups, each one divided into independent modules. The first group is

associated with the generation of the dataset and calculation of features, the second group is

composed of unsupervised methods, and the third one is related to supervised methods, ML

and DL. To the best of my knowledge, the ProPythia is the only package that allows performing

extensive feature calculation and selection. It also allows the application of unsupervised and

supervised algorithms, including DL, with an extensive set of options of visualization to analyze

the results.

2.3.4 RELEVANT PACKAGES AND TOOLS

The code was implemented using the Python language. Taking this into account, the packages

relevant to the completion of this thesis were Pytorch, TensorFlow, ProPythia, Pandas, NumPy,

Autogluon and Fair-esm and Transformers.

• Pytorch is an open source high-level ML framework, which allows the implementation of

DL models and the manipulation of numbers, vectors, matrices, or arrays in general. This

package provides an array-based programming model accelerated by Graphics Processing

Units (GPUs). Most of this package is written in C++ achieving a high performance. It is

2.3. Deep Learning applied to Protein sequence classification 37

also characterized as a library with optimization support for scientific computing in Python

[45, 137].

• TensorFlow is an open source platform for ML frameworks, which was originally devel-

oped to conduct ML and DL research by the Google Brain team. This platform has a

comprehensive, flexible ecosystem of libraries, tools, and community resources that allows

researchers and developers to build and deploy ML frameworks [138].

• Scikit-learn is an open source platform for ML frameworks. However, this package only

supports processes of traditional ML, covering supervised and unsupervised learning.

Scikit-learn also provides methods for data preprocessing, model selection, model evalua-

tion, and many other utilities [39, 139].

• ProPythia is a generic Python-based free tool to apply ML and DL pipelines to protein

classification problems. As mentioned previously, it allows performing a extensive feature

calculation and selection to protein sequences [9, 136].

• Pandas is a high-level building block for real-data analysis package in Python, which allows

dealing with series, 1-dimensional data, and dataFrame, 2-dimensional data. Therefore,

this package allows to implement a fast, flexible, and expressive data structures to work

with “relational” or “labeled” data [140].

• NumPy is a package designed for scientific computing in Python. This package allows

manipulating multidimensional structures, like matrices or arrays objects, masked arrays,

and apply an assortment of routines on arrays, including mathematical, logical, shape

manipulation, sorting, selecting, I/O, discrete Fourier transforms, basic linear algebra,

basic statistical operations, random simulation and much more. NumPy is also known by

being a efficient and having a user-friendly package [141].

• Autogluon is a package from Amazon Web Services that automates ML tasks, enabling

strong predictive performance in ML applications. The package enables easy-to-use and

easy-to-extend AutoML with a focus on automated stack ensemble, DL, and real-world

applications spanning image, text, and tabular data [73].

• Fair-esm is a package provided by Facebook AI which allows the download and loading of

pre-trained transformer protein language models from Facebook AI Research. The Fair-

2.3. Deep Learning applied to Protein sequence classification 38

esm package allows the access to state-of-the-art ESM-2, ESM-1 and MSA Transformer

to extract per-residue representation based on the pre-trained transformer [142].

• Transformers is an API provided by HuggingFace which allows access to pre-trained

transformer models on a given generic dataset, also allowing the fine-tuning of pre-trained

models with specific datasets. This API includes models from different fields such as NLP,

Computer Vision, Audio, and Multimodal [55].

3

M E T H O D S A N D S O F T W A R E D E V E L O P M E N T

3.1 PROCESSING AND ENCODING OF PROTEIN SEQUENCES

In order to apply the ML methods to protein sequences, it is necessary to convert the protein

sequences into numeric values, as mentioned in the section 2.3.

The transformation of the protein sequences can be performed by different methods.

Protein descriptors are biochemical properties that can be calculated from the sequence. Other

techniques use encoding methods, such as one-hot encoding, BLOSUM, PSSM, and attention-

based transformations that encode each amino acid residue into a numeric vector. These

methods range from a simple matrix substitution to the use of transformers to encode the protein

sequence.

The nature of the sequence may be related to some of the limitations of those methods.

A common issue is that the transformation method cannot be executed in sequences that

contain non-standard amino acids. Therefore, the uniformization of the protein sequences

is usually required. The non-standard amino acids like Aspartic acid (B), Glutamic acid (Z),

Selenocysteine (U) and Pyrrolysine (O) are frequently removed from the sequences, or replaced

for the closest amino acid residue such as Asparagine (N), Glutamine (Q), Cysteine(C) and

Lysine (K), respectively. Ambiguous amino acids, an amino acid letter (X and J) that can

represent more than one amino acid residue, are also often removed.

While psycho-chemical descriptors are independent of the protein length, the output pro-

duced by encoders is dependent on the protein length, which may be a concern as the ML

approaches cannot receive data with different dimensions. Therefore, it’s necessary to scale the

sequences in terms of length to produce a numerical representation equal in dimension that

39

3.1. Processing and encoding of protein sequences 40

can be fed to ML methods. In order to achieve this, amino acid residues are added to scale all

sequences to the same length, N, amino acid residues. Generally, an ambiguous value is added

at the end when the sequence is shorter than the selected length. The ambiguous value is either

0 or an ambiguous amino acid residue (X). The sequence can also be larger than the defined

length. In such cases, a part of the sequence is deleted, thereby shortening the sequence by

deletion of the amino acid residues.

3.1.1 PROTEIN DESCRIPTORS

The protein descriptors are features calculated based on the protein sequence. These methods

calculate biochemical properties based on the amino acid residues that compose the protein

sequence. The function for the calculation of the protein descriptors is available in open-source

packages like ProPythia [9, 136]. This package allows calculating features such as physicochem-

ical descriptors, amino acid composition descriptors, pseudo amino acid composition descriptors,

auto-correlation descriptors, sequence order descriptors and others. For each sequence, a

vector of chosen descriptors is produced, which can have a maximum of 9596 descriptor values.

3.1.2 SUBSTITUTION MATRIX

One-hot encoding

The one-hot encoding replaces the amino acid residue into the binary vector as shown in figure

16. Uniformized sequences are composed of the 20 standard amino acids plus an ambiguous

amino acid residue (X). Therefore, the binary vector generated for each amino acid residue

(token) has a length of 21 tokens. A protein sequence encoded by this encoder will generate a

matrix with 21 columns and a number of lines equal to the length of the sequence, in this case,

a matrix of 21 columns and N lines.

3.1. Processing and encoding of protein sequences 41

BLOSUM encoding

As explained in section 2.3.1, the BLOSUM62 is the default substitution matrix for protein

sequence alignment tools, such as BLAST. The BLOSUM50 is a matrix also used to identify

the evolutionary conservation of protein sequences with a lower identity percentage.

The usage of the BLOSUM62 matrix allows encoding the standard and nonstandard amino

acid residues, only excluding the ambiguous amino acid J. Each amino acid residue is encoded

to a vector with a length of 24, producing a matrix of 24 columns and N lines for each sequence.

On the other hand, BLOSUM50 matrix allows the encoding of all amino acid residues. The

amino acid residue is encoded in a vector with a length of 25, producing a matrix of 25 columns

and N lines for each sequence. The columns represent the scores assigned to the likelihood of

amino-acid substitution to other amino acid residues.

Non-Linear Fisher encoding

The NLF encoding [80] can only be executed in uniformized protein sequences, once any

non-standard amino acid residues do not have a corresponding representation in this encoder.

This method produces a vector of 18 numeric features for amino acid residue, therefore, the

encoding of the protein sequence will generate a matrix with 18 columns and N lines.

Z-scale encoding

Similarly to the NLF encoding, the Z-scale [79] encoding can only be executed for uniformized

sequences. In this method, each amino acid residue is represented by 5 attributes:

• Z1: Lipophilicity

• Z2: Steric properties (Steric bulk/Polarizability)

• Z3: Electronic properties (Polarity / Charge)

• Z4 and Z5: Properties relate electronegativity, the heat of formation, electrophilicity and

hardness.

Therefore, the encoding of a protein sequence will generate a matrix with 5 columns and a

number of lines equal to N.

3.1. Processing and encoding of protein sequences 42

3.1.3 POSITION SCORE MATRIX

The PSSM profile contains the evolutionary information of a sequence. This profile is generated

by PSI-BLAST. The PSSM has shown to be a highly informative representation of the protein

sequence [84].

In the first iteration of the PSI-BLAST program, a protein sequence is used as a seed to

search and align to homologous sequences in the chosen database, similar to the BLASTp

process. The second iteration is realized to calculate a profile or PSSM, that can capture a

conservation pattern in the multiple alignment of sequences. The captured patterns are stored

as a matrix of scores for each position, where the highly conserved patterns receive higher

scores and the weakly conserved positions receive scores near zero.

For this application, the Swiss-Prot database was used (available in https://ftp.ncbi.nlm.

nih.gov/blast/db/swissprot.tar.gz), a curated database of protein sequences. Each sequence is

processed against the database, which can easily become a time-consuming method with the

increment of the number of sequences to process.

Thus, for each protein sequence, a PSSM is generated, a log-odds matrix of the size of 20

columns, 20 standard amino acids, and N lines, the length of the sequence. Each amino acid

residue is represented by the score of being mutated to other amino acid residues [84, 86].

3.1.4 TRANSFORMER ENCODING

As mentioned in section 2.2.3, the transformer is an attention-based architecture. These

transformers were used as feature extraction methods. The models process the sequence,

returning the last hidden-state. The transformers used include models from ProtTrans [63] and

ESM [91–95].

ProtBert transformation

ProtBert is a transformer derived from BERT [57]. ProtBert was trained with around 216M

proteins from the UniRef100 dataset [63] instead of NLP data. This pre-trained model can

https://ftp.ncbi.nlm.nih.gov/blast/db/swissprot.tar.gz
https://ftp.ncbi.nlm.nih.gov/blast/db/swissprot.tar.gz

3.1. Processing and encoding of protein sequences 43

be accessed from the package transformers provided by HuggingFace. The usage of this

transformer allows for the extraction of features that captured biophysical properties related to

protein shape. An amino acid residue is transformed into a numeric vector with a dimension of

1024. Therefore, a protein sequence is encoded into a representation with 1024 columns and N

lines, the length of the sequence.

Evolutionary Scale Modeling

ESM are a series of transformer-model protein language models from Facebook AI Research,

which are accessible with the package Fair-esm. This set includes models from the state-of-

the-art ESM-2, ESM-1b and MSA Transformer (ESM-MSA-1), as well as the model ESM-IF1

for inverse folding prediction and ESM-1v for predicting variant effects. These models use the

attention mechanism to learn the interaction patterns between pairs of amino acids.

The ESM models can produce different dimensions of transformation. Models with a lower

number of trainable parameters, such as ESM2 with 8 million parameters, generate a vector of

320 features for amino acid residue. While models with a greater number of parameters, like the

ESM2 with 15 billion trainable parameters, generate a vector of 5120 features for each amino

acid residue. During this thesis, we tested the models ESM-MSA-1b, ESM-MSA-1, ESM-1b and

ESM2. In the end, only the models ESM-1b, ESM2-150 and ESM2-650 were fully used and

explored.

The ESM-1b model is composed of 33 layers with a total of 650 million trainable parameters,

which produces a transformation of the amino acid residue into a vector of 1280 features, so

each sequence is encoded into a representation with 1280 columns and N lines.

The ESM2-650, a newer version of the original model ESM-1b, is a model composed of

33 layers with a total of 650 million trainable parameters. This produces a representation with

the same dimensions as the ESM-1b model. This model differs from the ESM-1b by being an

updated version, trained with the new data from the reference databases.

The ESM2-150 model is composed of 30 layers with a total of 150 million trainable parame-

ters. Producing a transformation of a vector of 640 features for the amino acid residue, so each

sequence is encoded into a representation with 640 columns and N lines.

3.2. Deep Learning models 44

3.2 DEEP LEARNING MODELS

Deep Learning models from the literature were implemented to test each encoder’s influence

on the predictive ability of different models. Firstly, different models were tested with the PSSM

encoder to assert the best possible models from the literature. Therefore, four models were

selected for the tasks at hand. These were selected because of the better performance, the

different types of architecture and different prediction tasks that were designed to do. The

selected models were DeepPPF [6], DeepLoc [127], ET-GRU [124] and UDSMProt [118].

However, all models were adapted to be able to fit and train the encoders used. In all models,

the activation function used for the neurons was the ReLU, for inner layers, while for the output

layer softmax was used on multiclass tasks and sigmoid was adopted on binary classification

tasks. The loss function used was categorical crossentropy on multiclass tasks and binary

crossentropy on binary ones.

DeepPPF

DeepPPF [6] was designed to predict the functional family of a protein sequence, using a CNN

architecture to identify and extract rich motifs that can be used to perform a prediction. The

model receives as input the protein sequence, which is encoded by a trained embedding of

W2V.

This model was adapted to receive the encoded sequence, where a dense layer was added,

once this was shown to improve the model prediction capability. Figure 17 represents the main

structure of the model used.

The encoded sequences are passed to three parallel CNN layers with 250 filters each,

where the kernel size is defined as 20, 18 and 9, respectively, and the weights are initialized by

the Glorot uniform. Each layer is max pooled to extract the maximum value of the convolution of

each neuron. Thus, each kernel size for the max pooled operation is equal to the length of the

convolution output. The results of the max pooling operation are added into a single matrix and

regularized by dropout with a rate of 0.35. This output is then concatenated with the result of the

max-pooling of the CNN layer with kernel 20 and regularized with a dropout rate of 0.35. The

results from the convolution methods are then passed to a dense layer with 2000 units, then to

3.2. Deep Learning models 45

Figure 17 – Adapted DeepPPF architeture.

another dense layer with 500 units, with batch normalization after each dense layer. Lastly, the

outcome is fed to the output layer.

DeepLoc

The DeepLoc [127] model was designed to predict the subcellular position localization of protein

sequences. The proposed pipeline uses a set of CNNs to extract motif information from the

sequence, followed by a bidirectional LSTM, and an attention decoder layer. This model takes

as input the protein sequence encoded by the BLOSUM62 matrix. The attention decoder layer

was removed from the original model once this layer could not be adapted from the original

model. The adapted architecture can be seen in figure 18.

Figure 18 – Adapted DeepLoc architecture.

3.2. Deep Learning models 46

The encoded sequences are fed to six parallel CNN layers with 32 filters each, the kernel

size is defined as 1, 3, 5, 9, 15 and 21, respectively, all with padding. The outputs from the

CNN layers are concatenated and passed to a CNN layer with 64 neurons with a kernel size

of 3 and padding. The output is regularized using dropout with a rate of 0.5 and passed to the

bidirectional LSTM with 512 neurons. The result from the LSTM is received by a sequence of 3

dense layers with 500, 250 and 100 neurons, respectively, with batch normalization after each

dense layer. Lastly, the outcome is fed to the output layer.

UDSMProt

UDSMProt [118] is a universal deep learning model for the classification of proteins based on the

sequence of amino acids alone, which is based on an LSTM architecture. The UDSMProt uses

an approach based on transfer learning, similar to the presented in ULMFit [143], to train the

initial embedding layer. Therefore, the model was trained in the data present in the Swiss-prot at

the time (2018) to obtain the representation of the proteins. Figure 19 represents the adapted

model that was used.

Figure 19 – Adapted UDSMProt architeture.

In UDSMProt, the encoded sequence is fed to four sequential bidirectional LSTMs with 128

neurons each. The output given by the last bidirectional LSTM is regularized with dropout with a

rate of 0.25 and batch normalization. The normalized output is then fed to two sequential dense

layers with 128 and 64 neurons, respectively. Then is normalized again by batch normalization

and passed to the output layer.

3.2. Deep Learning models 47

ET-GRU

ET-GRU [124] is a multi-layer gated recurrent unit to identify electron transport proteins. ET-GRU

is one of the few models designed to discriminate electron transporter proteins from other

transporter proteins. The pipeline proposed by the ET-GRU is composed of a sequential CNN,

followed by a GRU layer. This model originally receives as an input a PSSM profile of the

proteins. Figure 20 represents the adapted model used.

Figure 20 – Adapted ET-GRU architeture.

The encoded sequences are passed to a sequence of two CNN layers, with 250 filters and

a kernel size of 3, and two average pools, with a pool size of 3. The result from this operation is

passed to a GRU layer with 150 neurons and a dropout of 0.01. Finally, it is fed to a dense layer

with 32 neurons, normalized with a dropout rate of 0.5 and fed to the output layer.

4

D E V E L O P M E N T

4.1 OMNIUMAI

The thesis was accomplished in collaboration with OmniumAI, a company related to the bioin-

formatics and artificial intelligence fields. OmniumAI provides solutions in the fields of AI and

Data Sciences, including software development, consulting and tailored training. The main core

of the company is the AI field. Therefore, OmniumAI focuses on offering enriched solutions for

biological and biomedical data processing, analysis, mining, and integration. This company was

founded in 2021 as a spin-off company from the Center of Biological Engineering, University of

Minho.

The OmniumAI platform consists of a set of methods for processing and analyzing biological

data. At the moment, it includes the following Python sub-packages:

• Generics: a generic sub-package designed to load data, transform data, and training AI

models. Therefore, this sub-package is responsible for providing the methods to handle

the data and its transformation. All the packages listed below depend on Generics to apply

the methods specific to the data.

• Compounds: this sub-package contains specific methods for compound data. This sub-

package is composed of methods capable of performing compound feature extraction,

compound standardization, and molecular splitting.

• Genes: this sub-package contains specific methods to deal with DNA sequences. It is

composed of methods to perform DNA feature extraction.

48

4.1. OmniumAI 49

• Metabolomics: this sub-package contains specific methods for metabolomics data.

• Proteins: this sub-package contains specific methods to handle protein sequences. In

the sub-package, a set of methods are implemented to perform protein standardization,

calculate protein descriptors and perform the encoding of protein sequences.

• Transcriptomics: this sub-package contains specific methods for RNA-seq data. It

is composed of methods capable of performing RNA-seq data parsing, RNA-seq data

processing, and RNA-seq data feature selection.

• Text mining: this sub-package contains specific methods for textual data. The methods

included in this sub-package allow text feature extraction and text processing for NLP

approaches.

A full view of the Ominia architecture can be seen in figure 21.

Figure 21 – Architecture of Omnia package and the typology of methods implemented in each sub-
package.

The main purpose of this work is to further develop the Proteins sub-package of the

OmniumAI platform, through implementation of different methods and evaluation of their ability

to process protein sequences. These methods were then implemented into the AutoML platform

of OmniumAI.

4.2. OmniumAI and ProPythia methods implementation 50

4.2 OMNIUMAI AND PROPYTHIA METHODS IMPLEMENTATION

4.2.1 FEATURE EXTRACTORS

Firstly, we addressed the implementation of the methods of processing and feature extraction

for protein sequences in the sub-package Proteins. The methods were implemented in the

OmniumAI platform, more specifically in the Omnia package.

As mentioned in section 2.3.3, the open-source ProPythia package already contained

methods for feature extraction of protein sequences, some of which mentioned in the section 3.1.

The feature extracting methods include the protein descriptors and encoders such as BLOSUM,

one-hot, NLF and the Z-scale. The initial step was the improvement of these methods in the

ProPythia package.

During that phase, the first stage consisted of fixing some bugs and removal of features at

the request of the main author of the package. Then, code optimization was carried out and

the addition of the parallelization methods was done to allow the execution of feature extraction

in a multicore setting. The next step was to adapt these methods to be compatible with the

OmniumAI platform and assure that the features generated were equal to the original source

code.

Later in the development of this thesis, transformers were also implemented as feature ex-

tractor methods. These methods were implemented from scratch using pretrained transformers.

Despite multiple pretrained transformers from the ProtTrans [63] and ESM [142] being tested,

only 4 of these transformers were implemented into the OmniumAI platform as well as into the

ProPythia package. Figure 22 and 23 represent the methods implemented on the OmniumAI

platform and ProPythia package, respectively.

However, the position score matrix method depends on a local installation of the PSI-BLAST

program. Therefore, this method was not implemented in either of the platforms. Finally, it was

necessary to validate the functionality of the methods with the AutoML architecture implemented

in the company platform.

4.2. OmniumAI and ProPythia methods implementation 51

Figure 22 – Proteins sub-package in the OmniumAI platform. The methods implemented in the Omnia
package.

Figure 23 – Development in the ProPythia package. The alterations of the main source code with a green
arrow the methods that were fixed or optimized and with a red cross the added methods to
ProPythia package.

4.2.2 OMNIUMAI PIPELINE

The Generics sub-package of the company contains ML models, such as RF, SVMs, KNN, and

linear models, and also contains simple neural networks. An AutoML pipeline that encompasses

the feature engineering to the model evaluation was created. The pipeline extracted the protein

descriptors features from the protein sequences, exploring different combinations of features.

This pipeline fully processed the selected datasets and trained the models available in the

Generics sub-package. This process is controlled by the Autogluon package.

4.2. OmniumAI and ProPythia methods implementation 52

The current AutoML method in the OmniumAI platform requires the definition of the dataset,

feature extractor method and the ML models to test by the user. Therefore, the pipeline receives

a dataset with the protein sequences and the labels required for the classification task. From this

point, the AutoML tool does the feature engineering, model generation and model evaluation.

Subsequently, it displays, in a table format, the results achieved by the trained models, sorted by

the best-performing model to the least-performing model. Therefore, it is only required the user

define the dataset, the feature extractor method and the ML models to train, while the remaining

process is controlled autonomously by Autogluon. Figure 24 represents the chaining of events

during the execution of the AutoML pipeline created. It also contains the different elements

required to execute the pipeline.

Figure 24 – An overview of the OmniumAI pipeline. It is indicated the steps for the completion of the
pipeline and the sub-packages/modules required.

The encoders that produce the two-dimensional representations of proteins are often

used to train DL architectures. However, the lack of support for more advanced deep learning

structures, such as CNN, LSTM and others, led to research of encoders studied externally to

the OmniumAI platform. The main intention of this external study was to verify the performance

of these representations. The DL models used are explained in detail in section 3.2 and the

training procedure in section 4.3.

4.3. Training and evaluation of the encoders 53

4.3 TRAINING AND EVALUATION OF THE ENCODERS

Each dataset was split into three data groups. From the original dataset, 80 % was used as

training data, employed to train the model. 14 % was used as validation data, which is also used

during the training of the model. The remaining 6 % of the dataset was used as the test data

for evaluating the performance achieved by the model. This split of the dataset was realized

by stratified sampling, allowing for an equal representation of the different classes in all data

groups.

During the training of the models, callback functions were used. These functions allow to

the application of routine or action inside the outer function of training the model. The callbacks

used were ModelCheckpoint, EarlyStopping and ReduceLROnPlateau.

ModelCheckpoint is a function that allows saving the model during the training phase, with a

frequency that can be defined by the user. Therefore, the model can be saved in a fixed number

of epochs or by monitoring the performance of the model.

EarlyStopping is a function used to monitor the fitting metric and stop the training phase

when no improvement occurs on a monitored metric during more than the defined value of

epochs.

ReduceLROnPlateau is a function used to reduce the learning rate during the training of a

model. If during the training process, a monitored metric does not improve for the defined value

of epochs, the function will reduce the learning rate by multiplying it by a factor.

The improvement of the models was monitored by the metric of loss value for validation

data. ModelCheckpoint was used to save the model based on the performance achieved, by

monitoring the loss value for the validation data and saving the model with a lower value. The

parameters used for ReduceLROnPlateau was a reduction factor of 0.2, when the loss value for

the validation data did not improve for longer than 15 epochs. The training phase was stopped

by the EarlyStopping when the loss value stopped improving for more than 80 epochs, except

for the ET-GRU, which was stopped at 90 epochs.

The encoders used for the DL approaches include one-hot encoding, BLOSUM encoding,

PSSM encoding, ProtBert transformation and ESM transformation (ESM-1b, ESM2-150 and

ESM2-650). The batch size used for the encoders was 32 sequences with the optimizer

4.3. Training and evaluation of the encoders 54

Adam. The initial learning rate used was 0.01, 0.0001, 0.001, 0.0001 for the adapted DeepPPF,

DeepLoc, UDSMProt and ET-GRU, respectively.

The evaluation of the trained models was realized by loading the model with the best

performance saved by the ModelCheckpoint callback. Then, the loaded model predicts the

class of the sequences of the test data and compared them to the label associated with each

sequence (real label). The metrics used to analyze the performance were BAcc, MCC, Prec

and F1 score.

5

R E S U LT S A N D D I S C U S S I O N

This chapter will describe the process used for the collection of protein data, creation of datasets

and the results obtained with different combinations of encodings and DL models for two case

studies. The models DeepPPF, DeepLoc, UDSMProt and ET-GRU referenced during this chapter

corresponds to the adapted version implemented in the section 3.2 and trained/ evaluated by

the procedure explained in the section 4.3.

The case studies chosen were enzyme and transporter classification. Enzyme classification

is an important research topic with several applications, therefore, some ML and DL methods

have been developed. The state-of-the-art literature have shown models with a good perfor-

mance in tackling this problem, therefore, were used as a proof of concept. The classification of

transporters is also an important topic to address. However, the results that have been reported

are still far from being considered of good quality. Therefore, this will be the case study that

we are going to focus on more on this work, seeking to obtain well performing models for this

challenging task.

The databases Swiss-Prot and Uniref were used to collect the data. The choice was based

on the fact that Swiss-Prot is a database composed only by curated protein sequences. The

Uniref database allows the removal of sequences with a similarity above a given threshold. In

this case, sequences with more than 90 % similarity were not considered.

55

5.1. Enzymes case study 56

5.1 ENZYMES CASE STUDY

5.1.1 COLLECTION OF ENZYME SEQUENCES

The enzyme sequences were retrieved based on datasets described in the literature. The

datasets from ECPRED [144] and Amidi et al. [145] articles were used as the starting point for

the enzyme data. These articles were published in 2017, thereby it was appropriate to update

the dataset to the current information. Only sequences with Uniprot Identification (ID) belonging

to Swiss-Prot and Uniref90 were maintained. This was accomplished by using the ID mapping

tool of Uniprot. This data was accessed on June 21, 2022.

The sequences were filtered, removing sequences that had associated more than one EC

number from different main class, the first digit as referenced in section 2.1.4. For example, a

enzyme with EC numbers of 1.2 and 1.3 was kept as 1, whereas a enzyme with EC number 2.5

and 1.2 was deleted. Sequences with a length smaller than 50 and greater than 2000 were also

excluded.

This process resulted in a collection of 74791 enzyme sequences.The distribution of the

enzyme sequences by EC main class can be seen in table 3.

Table 3 – Distribution of the enzymes sequences. The enzymes are distributed by the associated EC
main class

EC main class

1 2 3 4 5 6 7

Number of enzymes 8779 27822 14180 7208 4627 10441 1734

The dataset was uniformized, by replacing all non-standard amino acid residues with the

closest amino acid residue, as mentioned previously.

In order to handle enzyme sequences with different lengths, a length threshold was defined

and sequence padding and truncation were applied. The values of 1000, 700 and 500 amino

acid residues were tested for this threshold. The threshold of 500 amino acid residues allowed to

reduce computational costs without affecting the performance of the classification, and thereby

5.1. Enzymes case study 57

was the proposed length. Proteins longer than 500 amino acids were truncated at the end, while

shorter sequences were padded, adding an ambiguous amino acid residue (X) also at the end of

the sequence. It is important to note that most of the enzyme sequences had a length between

250 and 500 amino acid residues.

Finally, the homogenized sequences were encoded using one-hot, BLOSUM and PSSM en-

codings as described in section 3.1. The encoders are a deterministic transformation. Therefore,

a sequence will always produce an equal representation for the encoder used.

5.1.2 CLASSIFICATION OF ENZYMES

As previously mentioned, the task of enzyme classification was used as a proof of concept. In

order to assess the prediction capability of a predictor, BLOSUM, PSSM and one-hot encoders

were fed into the models described in section 3.2. Initially, only these three encoders were

executed. The metrics achieved for the prediction of the test data can be seen in table 4.

Table 4 – Performance of all models for EC class prediction through one-hot, BLOSUM and PSSM
encoders. The performance is represented by the metrics Matthews correlation coefficient
(MCC), balanced accuracy (BAcc) and precision (Prec). The highest metric values determined
by each encoder and between models are indicated in bold

Models Metrics One-hot encoder BLOSUM encoder PSSM encoder

DeepPPF

MCC 0.905 0.873 0.978

BAcc 0.912 0.876 0.978

Prec 0.927 0.905 0.983

DeepLoc

MCC 0.840 0.845 0.954

BAcc 0.843 0.844 0.958

Prec 0.876 0.880 0.965

UDSMProt

MCC 0.842 0.891 0.967

BAcc 0.844 0.890 0.972

Prec 0.880 0.915 0.975

ET-GRU

MCC 0.777 0.750 0.937

BAcc 0.762 0.745 0.936

Prec 0.829 0.809 0.951

5.2. Transporters case study 58

The encoders tested were capable of generating an informative representation of the amino

acid residues to achieve a good performance. The performance achieved by the BLOSUM

encoder and the one-hot encoder are similar within the same model, and both are outperformed

by the PSSM encoder.

The models achieved different performances using the same encoders. The DeepPPF

achieved the best overall performance. The model of ET-GRU was the model that obtained the

lower performance among the models. The models originated from the models DeepLoc and

UDSMProt achieved similar results for all the encoders.

PSSM encoder had a better performance than the BLOSUM and one-hot encoding. As the

literature indicates, this method generates a informative representation of the protein using the

multi alignment of sequences to generate a consensus scoring of the sequence. The use of this

encoder seems the most important factor to improve prediction ability of the models in these

experiments.

5.2 TRANSPORTERS CASE STUDY

The main interest of this thesis is to analyze the capability of different encoders to generate

an informative representation of protein sequences for more complex problems, such as the

classification of transporter sequences.

5.2.1 COLLECTION OF TRANSPORTER SEQUENCE

There is no dataset available from literature for the classification of transporter proteins in the

complete range of the TC, and so the first task was to build one that would fit the purpose.

The positive cases, ID and transporter sequences, were retrieved from the TCDB database

downloading a FASTA file. The FASTA file contains a total of 21803 protein sequences. The

protein sequences were first filtered by mapping the sequences present in the Swiss-Prot and

Uniref90 databases. This was implemented to retain only the curated data without identical

sequences.

5.2. Transporters case study 59

Usually, protein sequences with less than 50 amino acid residues are associated to frag-

ments of virus proteins. Therefore, sequences with less than 50 amino acid residues were

excluded. Sequences with TC classes of 6, 7, 8, and 9 were also excluded as they have no

interest for this work, as explained in the section 2.1.4. The classes 6 and 7 are considered

empty classes, reserved for future classes. Class 8 and class 9 are constituted by accessory

proteins and uncharacterized proteins, respectively.

The sequences considered as negative examples were obtained from the Swiss-prot

database using the conditions: “NOT transporter AND NOT transporter activity”. A total of

550334 protein sequences were retrieved. All sequences with a length greater than 2000 amino

acids and smaller than 50 amino acids were excluded. The information, for both cases, was

collected on March, 18th 2022.

After the filtering process, positive cases were composed of 6225 transporter sequences

and the negative cases were composed of 547462 protein sequences.

Given the unbalanced numbers in the two classes, the datasets were obtained by taking all

transporter sequences (positive cases) with a selected number of randomly chosen negative

cases. The classification of transporters in different TC classes was studied with and without

the inclusion of non-transporter sequences. The number of non-transporter sequences added

corresponds to the mean of the transporter sequences by class. The classification was executed

to different levels of the TC system referenced in section 2.1.4. The levels of the TC system

used as classification tasks are the following:

• Classification of the TC class of the transporter sequence.

• Classification of the TC subclass of the transporter sequence.

• Classification of the TC family of the transporter sequence.

• Classification of the TC superfamily of the transporter sequence.

Table 5 represents the distribution of sequences for the classification of the main class asso-

ciated to the transporter sequence. This dataset has a total of 6225 transporter sequences and

1245 non-transporter sequences. The class represents if the protein is a channel, carrier/porter,

primary active transporter or group translocator.

5.2. Transporters case study 60

For the remaining classification tasks, the transporter sequences were firstly grouped by

the TC level of interest (subclass, family, or superfamily), and the groups with less than 50

transporter sequences were excluded.

Table 5 – Distribution of the transporter sequences based on the TC class

TC class Number of sequences

Non-transporter 1245

TC 1 1929

TC 2 2079

TC 3 1968

TC 4 153

TC 5 96

Table 6 shows the distribution of the sequences accordingly to their transporters subclass. This

dataset has a total of 5835 transporter sequences and 583 non-transporter sequences. The

grouping of the transporter sequences by class and subclass was based on identical transporter

class and energy source used to drive the transport.

Table 6 – Distribution of the transporter sequences based on the TC subclass

TC subclass Number of sequences

Non-transporter 583

TC 1.A 881

TC 1.B 271

TC 1.C 352

TC 1.F 60

TC 1.I 166

TC 2.A 2071

TC 3.A 1507

TC 3.D 383

TC 4.A 93

Continued on next page

5.2. Transporters case study 61

TC subclass Number of sequences

TC 5.A 51

The classification by transporter family consists of 2808 transporter sequences and 165 non-

transporter sequences. The dataset is represented in the table 7. In this method, each group

includes sequences that have the same class and subclass, and belong to the same transporter

family.

Table 7 – Distribution of the transporter sequences based on the TC family

TC family Number of sequences

Non-transporter 165

TC 1.A.1 166

TC 1.A.8 56

TC 1.A.9 51

TC 1.I.1 152

TC 2.A.1 457

TC 2.A.3 105

TC 2.A.6 53

TC 2.A.7 153

TC 2.A.29 122

TC 3.A.1 752

TC 3.A.2 168

TC 3.A.3 102

TC 3.A.5 77

TC 3.A.16 65

TC 3.A.31 53

TC 3.D.1 203

TC 3.D.4 73

5.2. Transporters case study 62

Alternatively to the TC classification system, a dataset using the TC superfamily classifi-

cation was made. This dataset includes 3292 transporter sequences and 164 non-transporter

sequences. The distribution of the dataset is shown in table 8. This grouping differ from the

previous TC categorization of the transporter sequences, as two sequences with different class

or subclass can belong to the same superfamily. Instead of classifying the transporter sequence

based on the physical attributes, the superfamily classifies them based on common ancestry.

The superfamilies are defined in https://tcdb.org/superfamily.php.

Table 8 – Distribution of the transporter sequences based on the TC superfamilies

TC superfamily Number of sequences

Non-transporte 164

AAA-ATPase 111

Cation Diffusion Facilitator 74

Cation:Proton Antiporter 96

Drug/Metabolite Transporter 153

Endomembrane Protein-Translocon 66

Iron-Sulfur Protein 98

Ion Transporter 98

Major Facilitator 603

Major Intrinsic Protein 62

Mercuric Ion Pore 122

Mitochondrial Carrier 309

Outer Membrane Pore-forming Protein I 229

Protein Kinase 233

P-type ATPase 102

Phosphotransferase (or PTS-GFL) 67

Resistance-Nodulation-Cell Division 53

Tetraspan Junctional Complex Protein 66

Acid-polyamine-organocation 403

Transporter-Opsin-G protein-coupled receptor 73

Voltage-gated Ion Channel 274

https://tcdb.org/superfamily.php

5.2. Transporters case study 63

In this work, the model ability to distinguish transporter proteins from non-transporters was

also evaluated. To this end, a dataset for binary classification with different ratios of the number

of examples for positive and negative cases was created. For example, a 1 to 1 ratio means

transporter sequence to 1 enzyme sequence ratio. The number of examples in each class, by

ratio, can be seen in the table 9.

Table 9 – Distribution of the transporter and non-transporter sequences. The A to B ratio equals to A
transporter sequences to B enzyme sequences ratio

Number of sequences

Transporter to Non-transporter ratio 1 to 1 2 to 1 3 to 1 1 to 2 1 to 3

Transporter 6283 6283 6283 6283 6283

Non-transporter 6283 3141 2094 12566 18849

Similar to what was made to the enzyme sequences, non-standard amino acid residues

were replaced by the closest standard amino acid residue. A threshold length was defined to

truncate and pad the sequences to obtain same length sequences. The length with the best

compromise between computational resources required, and classification performance was

600 amino acid residues. Padding and truncation were made at the end of sequence.

First, we will discuss the results for the multi-classification of transporters without non-

transporter sequences. Afterwards, the multi-classification of transporters with non-transporter

sequences and finally a binary classification of transporter and non-transporters.

5.2.2 CLASSIFICATION OF TRANSPORTERS

The initial encoders tested in the enzymes were used to encode the transporter sequences

without the inclusion of non-transporter sequences. The aim is to predict the main class (N1) of

the transporter sequences. The performance of the by different models in the prediction of the

test data can be seen in table 10.

In the classification of the transporter class, the BLOSUM encoder and the one-hot encoder

were not capable of supplying an equal representation of the sequence compared to the PSSM.

5.2. Transporters case study 64

Table 10 – Performance of all models on TC main class prediction through one-hot, BLOSUM and PSSM
encoders. The performance is represented by the metrics Matthews correlation coefficient
(MCC), balanced accuracy (BAcc) and precision (Prec). The highest metric values determined
by each encoder and between models are indicated in bold

Models Metrics One-hot encoder BLOSUM encoder PSSM encoder

DeepPPF

MCC 0.616 0.613 0.869

BAcc 0.326 0.322 0.759

Prec 0.711 0.702 0.911

DeepLoc

MCC 0.486 0.628 0.788

BAcc 0.280 0.395 0.674

Prec 0.632 0.747 0.854

UDSMProt

MCC 0.535 0.536 0.853

BAcc 0.357 0.367 0.659

Prec 0.667 0.698 0.897

ET-GRU

MCC 0.599 0.640 0.778

BAcc 0.317 0.338 0.528

Prec 0.698 0.721 0.853

The one-hot encoder either achieved a prediction capability similar or lower than the BLOSUM

encoder in the trained models. However, there’s not a fixed trend between the performance

achieved and the model used. Due to the imbalance of the dataset, classes 1, 2 and 3 are

overrepresented relative to classes 4 and 5. The balanced accuracy achieved in these encoders

are usually lower than 0.4, while the weighted precision is around 0.7. This indicates that the

predictions are not too accurate, but still most of the test sequences from the overrepresented

classes were properly predicted. The best performance was achieved by the PSSM encoder,

that, similarly to what happened in the enzyme dataset, outperformed the matrix substitution

methods.

The DeepPPF was responsible for generating most of the highest prediction scores. This

model achieved a MCC of 0.86 for the transporter sequences.

Then, the classification tasks for the TC subclass, family and superfamily were evaluated.

The results achieved for the DeepPPF, DeepLoc, UDSMProt and ET-GRU models are presented

in the tables 11, 12, 13 and 14, respectively, for the multiclass classification of transporters.

5.2. Transporters case study 65

Table 11 – Performance of DeepPPF on TC subclass, family and superfamily classification through one-
hot, BLOSUM and PSSM encoders. The performance is represented by the metrics Matthews
correlation coefficient (MCC), balanced accuracy (BAcc) and precision (Prec). The highest
metric values determined by each encoder and between the classification tasks are indicated
in bold

Classification
task

Metrics One-hot encoder
BLOSUM
encoder

PSSM encoder

TC subclass

MCC 0.562 0.552 0.853

BAcc 0.336 0.350 0.758

Prec 0.686 0.663 0.893

TC family

MCC 0.782 0.803 0.967

BAcc 0.679 0.705 0.951

Prec 0.803 0.821 0.976

TC superfamily

MCC 0.657 0.696 0.918

BAcc 0.530 0.586 0.910

Prec 0.655 0.745 0.928

Table 12 – Performance of DeepLoc on TC subclass, family and superfamily classification through one-
hot, BLOSUM and PSSM encoders. The performance is represented by the metrics Matthews
correlation coefficient (MCC), balanced accuracy (BAcc) and precision (Prec). The highest
metric values determined by each encoder and between the classification tasks are indicated
in bold

Classification
task

Metrics One-hot encoder
BLOSUM
encoder

PSSM encoder

TC subclass

MCC 0.541 0.680 0.807

BAcc 0.311 0.609 0.723

Prec 0.619 0.753 0.857

TC family

MCC 0.652 0.734 0.933

BAcc 0.532 0.598 0.873

Prec 0.686 0.769 0.953

TC superfamily

MCC 0.601 0.718 0.846

BAcc 0.522 0.612 0.830

Prec 0.650 0.736 0.848

5.2. Transporters case study 66

Table 13 – Performance of UDSMProt on TC subclass, family and superfamily classification through
one-hot, BLOSUM and PSSM encoders. The performance is represented by the metrics
Matthews correlation coefficient (MCC), balanced accuracy (BAcc) and precision (Prec). The
highest metric values determined by each encoder and between the classification tasks are
indicated in bold

Classification
task

Metrics One-hot encoder
BLOSUM
encoder

PSSM encoder

TC subclass

MCC 0.595 0.587 0.785

BAcc 0.405 0.378 0.646

Prec 0.677 0.672 0.828

TC family

MCC 0.837 0.775 0.899

BAcc 0.749 0.663 0.870

Prec 0.863 0.820 0.924

TC superfamily

MCC 0.707 0.729 0.890

BAcc 0.663 0.695 0.846

Prec 0.743 0.752 0.897

Table 14 – Performance of ET-GRU on TC subclass, family and superfamily classification through one-hot,
BLOSUM and PSSM encoders. The performance is represented by the metrics Matthews
correlation coefficient (MCC), balanced accuracy (BAcc) and precision (Prec). The highest
metric values determined by each encoder and between the classification tasks are indicated
in bold

Classification
task

Metrics One-hot encoder
BLOSUM
encoder

PSSM encoder

TC subclass

MCC 0.672 0.639 0.790

BAcc 0.529 0.403 0.569

Prec 0.744 0.705 0.832

TC family

MCC 0.764 0.710 0.906

BAcc 0.635 0.555 0.856

Prec 0.805 0.714 0.930

TC superfamily

MCC 0.714 0.696 0.879

BAcc 0.612 0.556 0.851

Prec 0.740 0.703 0.886

5.2. Transporters case study 67

The decrease in the biological variety of the transporter sequences by grouping them by

subclass, family or superfamily, caused the increase of the prediction capability of all models. In

general, the prediction of the subclass had a better performance than the prediction of the class.

The prediction of the superfamily achieved better metrics than the prediction of the TC subclass

and class in all the models, but is often surpassed by the classification of family. Despite the TC

system being analogous to the EC system, it was verified that some of the main classes had

a larger number of families. For example, the class 1, channels/pores, contained more than

700 TC families. This includes transporter proteins with multiple subcellular localization and

organisms. On the other hand, the class 5, transmembrane electron carriers, only contained 18

TC families.

Similar to the previous results, the PSSM was the best encoder for the classification on

any task. When comparing the one-hot and BLOSUM encoding, none of these methods was

superior across all models. While the BLOSUM encoding performed better for models such as

DeepLoc and DeepPPF, the one-hot encoding performed better combined with the UDSMProt

and ET-GRU models.

Regarding the used models, the best-performing was the DeepPPF achieving close to 0.97

of MCC with the PSSM encoder without the non-transporter sequences for the TC superfamily

task. This model frequently achieved the best performance for a task with the encoder PSSM.

Less convincing results in the learning phase of the models using the BLOSUM and one-hot

encoder were verified. The performance achieved by these encoders varied substantially based

on the random sample at the start of the model. This instability caused some of the early models

not to be able to adjusting the model weights properly. The MCC scores ranged from -0.1 to

the presented results. Therefore, the representation of the protein sequences is not highly

informative. It is important to notice that these encoders require low computational resources,

producing a representation of the protein sequences in less than 0.01 seconds.

PSSM profiles are capable of generating an informative representation of the protein

sequences. This allowed for the models to learn the task at hand. However, PSSM profiles

have some restrictions and disadvantages. PSSM requires running the PSI-BLAST algorithm

for each protein sequence against a database. This means that in order to obtain a PSSM

profile, the query sequence needs to have a hit in the database. In the datasets used, two

sequences were not able to produce a PSSM profile, even though all sequences belong to a

5.2. Transporters case study 68

database composed of only curated sequences. Therefore, for newly discovered sequences, this

method can be ineffective. Another drawback of this method is that it may be time-consuming

when used on a larger scale. In average, each PSSM profile took around 12 seconds to be

generated from a FASTA file and saved into a PSSM file. The disk space required to save the

PSSM files can also be a limiting factor for larger-scale applications. For example, the PSSM

files for all the sequences used in this thesis use a total of 15 Gigabytes to store. Because of

these disadvantages, more exploration was performed to obtain other effective options for the

representation of protein sequences.

Recently, the pre-trained transformers with protein sequence data have received a spotlight

for classification tasks. Therefore, the usage of transformers to generate a representation of

the protein was analyzed. Different transformer encoders were selected from the ProtTrans

article [63] and from the ESM [142]. However, not all tested transformers are presented. The

results from the best four performing transformers are given in tables 15, 16, 17 and 18 for the

models DeepPPF, DeepLoc, UDSMProt and ET-GRU, respectively. Only the TC family and TC

superfamily tasks were used in this phase.

Table 15 – Performance of DeepPPF on TC family and superfamily classification through ProtBert, ESM-
1b, ESM2-150 and ESM2-650 encoders. The performance is represented by the metrics
Matthews correlation coefficient (MCC), balanced accuracy (BAcc) and precision (Prec). The
highest metric values determined by each encoder and between the classification tasks are
indicated in bold

Classification
task

Metrics
ProtBert
encoder

ESM-1b
encoder

ESM2-150
encoder

ESM2-650
encoder

MCC 0.960 0.980 0.960 0.993

BAcc 0.939 0.957 0.946 0.979TC family

Prec 0.968 0.987 0.974 0.995

MCC 0.917 0.967 0.956 0.956

BAcc 0.890 0.951 0.940 0.943TC superfamily

Prec 0.931 0.973 0.964 0.965

The DeepPPF model achieved the best performance for the majority of the encoders in the

classification tasks. It was capable of achieving a MCC score of 0.99 in the ESM2-650 encoder

for the classification of TC family. Between the ET-GRU, DeepLoc and UDSMProt models, none

was capable of achieving a better performance in all encoders in comparison to the others. In

other words, the prediction capability of these models depends on the encoder used.

5.2. Transporters case study 69

Table 16 – Performance of DeepLoc on TC family and superfamily classification through ProtBert, ESM-
1b, ESM2-150 and ESM2-650 encoders. The performance is represented by the metrics
Matthews correlation coefficient (MCC), balanced accuracy (BAcc) and precision (Prec). The
highest metric values determined by each encoder and between the classification tasks are
indicated in bold

Classification
task

Metrics
ProtBert
encoder

ESM-1b
encoder

ESM2-150
encoder

ESM2-650
encoder

MCC 0.892 0.966 0.898 0.940

BAcc 0.838 0.936 0.824 0.910TC family

Prec 0.913 0.976 0.913 0.958

MCC 0.840 0.929 0.924 0.918

BAcc 0.768 0.903 0.917 0.883TC superfamily

Prec 0.848 0.939 0.937 0.932

Table 17 – Performance of UDSMProt on TC family and superfamily classification through ProtBert,
ESM-1b, ESM2-150 and ESM2-650 encoders. The performance is represented by the metrics
Matthews correlation coefficient (MCC), balanced accuracy (BAcc) and precision (Prec). The
highest metric values determined by each encoder and between the classification tasks are
indicated in bold

Classification
task

Metrics
ProtBert
encoder

ESM-1b
encoder

ESM2-150
encoder

ESM2-650
encoder

MCC 0.872 0.960 0.966 0.933

BAcc 0.804 0.919 0.926 0.896TC family

Prec 0.897 0.970 0.972 0.949

MCC 0.885 0.951 0.913 0.945

BAcc 0.838 0.935 0.899 0.934TC superfamily

Prec 0.893 0.959 0.932 0.951

5.2. Transporters case study 70

Table 18 – Performance of ET-GRU on TC family and superfamily classification through ProtBert, ESM-1b,
ESM2-150 and ESM2-650 encoders. The performance is represented by the metrics Matthews
correlation coefficient (MCC), balanced accuracy (BAcc) and precision (Prec). The highest
metric values determined by each encoder and between the classification tasks are indicated
in bold

Classification
task

Metrics
ProtBert
encoder

ESM-1b
encoder

ESM2-150
encoder

ESM2-650
encoder

MCC 0.878 0.953 0.919 0.926

BAcc 0.773 0.938 0.863 0.878TC family

Prec 0.886 0.961 0.938 0.942

MCC 0.890 0.945 0.896 0.945

BAcc 0.834 0.922 0.897 0.934TC superfamily

Prec 0.885 0.955 0.910 0.959

Despite the best performance achieved by the ESM2-650 encoder, the ESM-1b pretrained

transformer achieved the best overall performance when considering all trained models. The

ESM-1b was able to slightly outperform the ESM2-650 and the ESM2-150. While the ESM-1b

obtained metrics over 0.93 in all the tests, the ESM2-650 and ESM2-150 frequently showed

metrics below 0.90. The authors claimed that the ESM transformers of second generation

(ESM-2) were more capable to represent the protein sequence than the ESM-1b transformer.

However, this claim was not confirmed in this scenario.

The pretrained transformers based on the NLP approaches and adapted for protein data

were the least capable of generating a good representation of protein sequences when compared

to the ESM transformers. The ProtBert transformer was the best adapted NLP approach.

However, these methods were able to outperform the BLOSUM and one-hot encoder. Protbert

also achieved similar or better performance than the PSSM profile previously tested.

The transformers are faster in obtaining the representation than the PSSM encoders. On

average, the transformers took around 2 seconds to obtain the representation for each protein.

This process was accomplished in CPU, which increases the time to obtain the representation

for each protein. The transformers can be executed in GPU, if these resources are available,

which allows to obtain the protein representation in the same time frame as the BLOSUM and

one-hot encoding. However, the transformers require more computation resources to obtain the

5.2. Transporters case study 71

protein representations than the previously tested encoders, due to the computation requirement

to load and process the pre-trained transformers.

Additionally, the higher complexity of the protein representation caused an increase in

the time required for training the DL models. For context, the encoders previously tested only

required a GPU to train a model, while the transformer encoders require 2 GPUs. It also took

the double of the time to converge in the optimal model. However, this computational cost was

proven to be worth it in recent works for the prediction of more complex tasks [107, 142, 146].

In the work developed along this thesis, the ESM transformers produced the most in-

formative representation of the proteins, providing quality data to the models. Despite the

disadvantages related to the computational resources of these methods, they solve the major

drawbacks of the PSSM encoders. They are not dependent on a database, therefore, they

always produce a representation. They are also capable of generating a representation informa-

tive that can be applied to different studies, which the encoders BLOSUM and one-hot could not

perform.

Considering the models trained, and the performance achieved, the DeepPPF model

achieved a better overall performance in the prediction of the transporters TC. However, the

prediction of the TC class and subclass with transformers was not tested during the previous

trials. Therefore, the model DeepPPF and the ESM-1b encoder were trained for these tasks,

due to be the best overall combination so far. The performance achieved is presented in the

table 19.

Table 19 – Performance of DeepPPF on TC class and subclass classification through ESM-1b encoder.
The performance is represented by the metrics Matthews correlation coefficient (MCC), bal-
anced accuracy (BAcc) and precision (Prec)

Model Metrics TC class TC subclass

MCC 0.908 0.960

BAcc 0.910 0.913DeepPPF

Prec 0.938 0.970

For the TC class, the prediction achieved to 0.91 MCC while obtaining 0.96 MCC for TC

subclass. With all the results obtained, it is possible to confirm that the combination of the

DeepPPF with the ESM-1b can achieve high quality results for the prediction of the TC class,

subclass, family and superfamily.

5.2. Transporters case study 72

5.2.3 CLASSIFICATION OF TRANSPORTERS WITH NON-TRANSPORTERS SEQUENCES

Next, the classification with the addition of non-transporter sequences was also evaluated. This

was made to assess if the models were able to classify transporter sequences and also identity

non-transporter sequences. The approach used was similar to the approach followed in the

multi-classification of transporters without non-transporters sequences.

The performance achieved for the same tests realized in the previous section can be seen

in the appendix A.1. The analysis of the multi-classification of transporters with and without

non-transporter sequences, shows that the tendency related to the performance between models

or the usage of different encoders remains the same. The best representation continues to be

obtained by the ESM-1b encoder, and the best prediction with the DeepPPF.

Nonetheless, a decrease in performance was verified between these case studies. The

PSSM encoder with the DeepPPF for the TC class dropped from a MCC of 0.86 to a MCC of

0.81. For the classification of the TC superfamily with non-transporter sequences, the DeepPPF

dropped from a 0.97 to 0.94 MCC with PSSM encoder and from 0.99 to 0.95 with ESM-1b

encoder. In average, the models dropped around 0.05 in all metrics.

Other aspect verified was the decrease of the difference between the classification of

the TC superfamily and TC family. In particular, when using the transformer encoders, these

classifications became more volatile.

5.2.4 BINARY CLASSIFICATION OF TRANSPORTERS AND NON-TRANSPORTERS

Because of the decrease in the prediction capability of models for the classification of transporters

with non-transporter sequences, we tested the usage of a two stage classification system for the

classification of the transporters. First, a binary representation was used to predict if the protein

was a transporter, and then we would do to predict the TC system of the transporter.

Firstly, we tried the use of the PSSM encoder with different ratios, to find the influence of

the ratio in the binary classification. Here, the number of transporter sequences remains the

same, only fluctuating the number of non-transporter sequences. Also, all models were used to

verify if DeepPPF is able to provide better results as before.

5.2. Transporters case study 73

The table 20 shows the performance achieved by the DeepPPF model. Once again, this

model was capable of achieving slightly better results than the other 3 models. The tables

associated with the remaining 3 models are presented in table 32 in the appendix B.

Table 20 – Performance of DeepPPF on binary classification through PSSM encoder. The A to B ratio
equals to A transporter sequences to B enzyme sequences ratio. The performance is repre-
sented by the metrics Matthews correlation coefficient (MCC), balanced accuracy (BAcc) and
F1 score. The highest metric values are in bold type

Models Metrics 3 to 1 2 to 1 1 to 1 1 to 2 1 to 3

MCC 0.741 0.731 0.760 0.737 0.733

BAcc 0.737 0.687 0.757 0.737 0.750DeepPPF

F1 score 0.937 0.916 0.873 0.825 0.802

In the binary classification, when analyzing the metrics of MCC and BAcc, the best prediction

was achieved when the number of transporter sequences was equal to the number of non-

transporter sequences. Interestingly, the F1 score improves with the addition of non-transporter

sequences. The F1 score gives emphasis to the correct classification of the positive cases

(transporter sequences), which is verified in the confusion matrix of these classifications shown

in figure 25.

Figure 25 – Confusion matrices for binary classification with the PSSM encoder. These confusion
matrices were obtained using the DeepPPF model. The A to B ratio equals to A transporter
sequences to B enzyme sequences ratio.

The difference between ratios was not considered substantial in terms of the metrics

generated, thereby, we used the ratio of one to one for the binary classification with the encoder

ESM-1b and ESM2-650. The table 21 shows the result of the DeepPPF for these encoders.

Contrarily to the previous results, the use of the pretrained transformers does not cause a

significant increase in the metrics obtained for the prediction capability of the models. Figure 26

shows that the confusion matrix is similar to the previous results, with similar numbers of false

positives and false negatives.

5.2. Transporters case study 74

Table 21 – Performance of DeepPPF on binary classification through ESM-1b and ESM2-650 encoders
for 1 transporter sequence to 1 enzyme sequence ratio. The performance is represented by
the metrics Matthews correlation coefficient (MCC), balanced accuracy (BAcc) and F1 score

Models Metrics ESM-1b encoder ESM2-650 encoder

MCC 0.764 0.770

BAcc 0.762 0.770DeepPPF

F1 score 0.878 0.887

Figure 26 – Confusion matrixes for binary classification with the ESM-1b and ESM2-650 encoders. These
confusion matrixes were obtained using the DeepPPF model for the ratio 1 transporter to 1
enzyme.

This indicates that the unremarkable results achieved can be associated more with the

quality of the data instead of the representation capability of the encoder. In other words, the

negative cases were selected randomly from a dataset that contains a very large spectrum of

protein sequences (enzymes, structural proteins and others). The high biological variability of

the non-transporter sequences associated to a low number of sequences used to represent the

possible non-transporter groups could be the leading factor for the decreased performance.

6

C O N C L U S I O N

6.1 MAIN RESULTS AND CONTRIBUTIONS

This work consisted in a study of different methods to obtain a informative representation of

protein sequences for the prediction of protein properties and functions. As case studies,

enzymes and transporter sequences were used.

Firstly, the calculation of protein descriptors was implemented into the Omnium AI platform

and improved in the Propythia package, which was then used in a AutoML pipeline constructed

in the company platform. Afterwards, encoders for the transformation of each amino acid residue

into a vector representation were tested. In total, seven of those encoders were tested and

presented in this thesis. The encoders include: One-hot encoder; BLOSUM encoder; NLF

encoder; Z-scale encoder; PSSM encoder; ProtBert encoder; ESM-1b encoder; ESM2-150

encoder; ESM2-650 encoder. Apart from the PSSM encoder, all others were implemented

in the Omnium AI platform. In the ProPythia package, the encoders One-hot, BLOSUM, NLF

and Z-scale encoders and the protein descriptors were improved or fixed, while the encoders

ESM-1b, ESM2-150 and ESM2-650 were implemented from scratch.

The encoders were tested in deep learning models adapted from the literature, in particular

from DeepPPF, DeepLoc, UDSMProt and ET-GRU. When considering the models used, the

architecture of the adapted DeepPPF achieved most of the best scores across the encoders

tested. Among the remaining adapted models, none stood out.

The one-hot and BLOSUM encoders obtained a lower performance than the remaining.

However, these encoders were capable of generating a reasonable performance in some simpler

tasks, such as the enzyme classification of the EC main class or the classification of TC family.

75

6.1. Main results and contributions 76

The one-hot encoding achieved 0.91 MCC and 0.84 MCC for the EC class classification and TC

family classification, respectively. The BLOSUM encoding achieved 0.89 MCC and 0.80 MCC

for the EC class classification and TC family classification, respectively.

The PSSM encoder was able to achieve a MCC of 0.98 for the EC class classification and

a MCC of 0.97 for the TC family classification. However, the major disadvantages associated to

this encoder, such as being time-consuming and not always being effective in obtaining a profile,

which lead to the usage of the transformers as features extractors.

In the best result, the ProtBert, ESM-1b, ESM2-150 and ESM2-650 achieved an MCC of

0.96, 0.98, 0.96 and 0.99 for the prediction of the TC family classification. Both ESM-1b and

ESM2-650 achieved the best performance, followed by the PSSM and ESM2-150. Lastly, the

ProtBert was only better than the orthogonal and BLOSUM encoder.

The best overall combination to achieve the best performance was the usage of the ESM-1b

encoder with the model adapted of DeepPPF. This combination was able to do a prediction with

a MCC of 0.91, 0.96, 0.97 and 0.98 for prediction of TC class, subclass, family and superfamily.

The transformers from ESM showed the best potential to generate informative representations

of protein sequences.

The transporter binary prediction achieved more limited results, with only 0.77 MCC and

BAcc by using the adapted DeepPPF model combined with the ESM2-650 encoder. This limited

result is probably a consequence of the generated dataset, which may be related to the variety

of the negative cases.

The goals that have been set for this thesis were achieved successfully. During this

thesis, relevant literature regarding DL to protein tasks was reviewed. Methods and deep

learning frameworks for protein representation were tested, and their performance was assessed.

Simultaneously, the frameworks were developed in the frameworks in the OminiumAI platform

and ProPythia package.

6.2. Future perspectives 77

6.2 FUTURE PERSPECTIVES

The great potential for the ESM models as features extractors to represent proteins was shown

during the thesis. This encoder achieved a performance in the transporter classification as has

never been demonstrated in the literature. However, some aspects of this work can be improved.

In future work, the evaluation of different models and more fine-tuning of the models used

can lead to an improvement in the functional classification of proteins. Dimension reduction

methods could also be tested to try to reduce the computer resources required in the usage of

the pretrained transformers. Despite the informative representation that these methods produce,

the computation resources can be a limitation if applied to a larger scale if the computational

resources are not available.

Finally, in the binary classification, a more sophisticated sampling method should be used

to select the negative sequences. The random selection used to select the negative case was

likely a major cause for the not optimal results achieved in this thesis.

B I B L I O G R A P H Y

[1] Laskowski, R. A., Watson, J. D., & Thornton, J. M. (2003). From protein structure to
biochemical function? Journal of Structural and Functional Genomics, 4(2-3), 167–177.

[2] Löchel, H. F., Eger, D., Sperlea, T., & Heider, D. (2020). Deep learning on chaos game
representation for proteins. Bioinformatics, 36(1), 272–279.

[3] Nauman, M., Ur Rehman, H., Politano, G., & Benso, A. (2019). Beyond Homology
Transfer: Deep Learning for Automated Annotation of Proteins. Journal of Grid Computing,
17 (2), 225–237.

[4] Gligorijević, V., Barot, M., & Bonneau, R. (2018). DeepNF: Deep network fusion for
protein function prediction. Bioinformatics, 34(22), 3873–3881.

[5] Liu, B., Li, C.-C., & Yan, K. (2020). DeepSVM-fold: protein fold recognition by combining
support vector machines and pairwise sequence similarity scores generated by deep
learning networks. Briefings in Bioinformatics, 21(5), 1733–1741.

[6] Yusuf, S. M., Zhang, F., Zeng, M., & Li, M. (2021). DeepPPF: A deep learning framework
for predicting protein family. Neurocomputing, 428, 19–29.

[7] Khurana, S., Rawi, R., Kunji, K., Chuang, G. Y., Bensmail, H., & Mall, R. (2018). DeepSol:
A deep learning framework for sequence-based protein solubility prediction. Bioinformat-
ics, 34(15), 2605–2613.

[8] Elbasir, A., Moovarkumudalvan, B., Kunji, K., Kolatkar, P. R., Mall, R., & Bensmail, H.
(2019). Deepcrystal: A deep learning framework for sequence-based protein crystalliza-
tion prediction. Bioinformatics, 35(13), 2216–2225.

[9] Sequeira, A. M., Lousa, D., & Rocha, M. (2021a). Propythia: A python package for protein
classification based on machine and deep learning. Neurocomputing.

[10] Nelson, D. L., & Cox, M. M. (2017). Lehninger principles of biochemistry, seventh edition
(Freeman, Ed.; Seventh Edition).

[11] Chandra, N., & Tyagi, V. K. (2013). Synthesis, properties, and applications of amino
acids based surfactants: A review. Journal of Dispersion Science and Technology, 34(6),
800–808.

[12] Pauling, L., Corey, R. B., & Branson, H. R. (1951). The structure of proteins: Two
hydrogen-bonded helical configurations of the polypeptide chain. Proceedings of the
National Academy of Sciences, 37 (4), 205–211.

[13] Pauling, L., & Corey, R. B. (1951). The Pleated Sheet, A New Layer Configuration of
Polypeptide Chains. Proceedings of the National Academy of Sciences, 37 (5), 251–256.

78

B I B L I O G R A P H Y 79

[14] PERUTZ, M. F., ROSSMANN, M. G., CULLIS, A. F., MUIRHEAD, H., WILL, G., & NORTH,
A. C. T. (1960). Structure of Hæmoglobin: A Three-Dimensional Fourier Synthesis at
5.5-Å. Resolution, Obtained by X-Ray Analysis. Nature, 185(4711), 416–422.

[15] KENDREW, J. C., DICKERSON, R. E., STRANDBERG, B. E., HART, R. G., DAVIES,
D. R., PHILLIPS, D. C., & SHORE, V. C. (1960). Structure of Myoglobin: A Three-
Dimensional Fourier Synthesis at 2 Å. Resolution. Nature, 185(4711), 422–427.

[16] Travers, A. A. (1989). DNA CONFORMATION AND PROTEIN BINDING. Annual Review
of Biochemistry, 58(1), 427–452.

[17] Jianlin Cheng, Tegge, A., & Baldi, P. (2008). Machine Learning Methods for Protein
Structure Prediction. IEEE Reviews in Biomedical Engineering, 1, 41–49.

[18] Ortuño, F., & Rojas, I. (Eds.). (2016). Bioinformatics and Biomedical Engineering (Vol. 965
6). Springer International Publishing.

[19] Jeske, L., Placzek, S., Schomburg, I., Chang, A., & Schomburg, D. (2019). BRENDA in
2019: a European ELIXIR core data resource. Nucleic Acids Research, 47 (D1), D542–
D549.

[20] Li, Y., Wang, S., Umarov, R., Xie, B., Fan, M., Li, L., & Gao, X. (2018). DEEPre: sequence-
based enzyme EC number prediction by deep learning (J. Hancock, Ed.). Bioinformatics,
34(5), 760–769.

[21] Drew, D., & Boudker, O. (2016). Shared Molecular Mechanisms of Membrane Trans-
porters. Annual Review of Biochemistry, 85(1), 543–572.

[22] Saier, M. H., Reddy, V. S., Tamang, D. G., & Västermark, Å. (2014). The Transporter
Classification Database. Nucleic Acids Research, 42(D1), D251–D258.

[23] Mohammed, M., Khan, M. B., & Bashier, E. B. M. (2016). Machine Learning: Algorithms
and Applications (1st Edition). CRC Press.

[24] Chollet, F. (2017). Deep learning with python (1st). Manning Publications Co.
[25] Somvanshi, M., Chavan, P., Tambade, S., & Shinde, S. V. (2016). A review of machine

learning techniques using decision tree and support vector machine. 2016 International
Conference on Computing Communication Control and automation (ICCUBEA), 1–7.

[26] Christoph, M. A., & Guido, S. (2016). Introduction to machine learning with python: A
guide for data scientists. Oreilly et Associates Inc.

[27] Shrestha, A., & Mahmood, A. (2019). Review of deep learning algorithms and architec-
tures. IEEE Access, 7, 53040–53065.

[28] Raschka, S. (2015). Python machine learning. Packt Publishing.
[29] Guyon, I., & Elisseeff, A. (2006). An introduction to feature extraction. In I. Guyon,

M. Nikravesh, S. Gunn, & L. A. Zadeh (Eds.), Feature extraction: Foundations and
applications (pp. 1–25). Springer Berlin Heidelberg.

[30] Awad, M., & Khanna, R. (2015). Efficient learning machines: Theories, concepts, and
applications for engineers and system designers (1st). Apress.

B I B L I O G R A P H Y 80

[31] Piramuthu, S. (2004). Evaluating feature selection methods for learning in data mining
applications. European Journal of Operational Research, 156(2), 483–494.

[32] Saeys, Y., Inza, I., & Larrañaga, P. (2007). A review of feature selection techniques in
bioinformatics. Bioinformatics, 23(19), 2507–2517.

[33] Singh, A., Thakur, N., & Sharma, A. (2016). A review of supervised machine learning
algorithms. 2016 3rd International Conference on Computing for Sustainable Global
Development (INDIACom), 1310–1315.

[34] Bonaccorso, G. (2017). Machine learning algorithms: A reference guide to popular
algorithms for data science and machine learning. Packt Publishing.

[35] Segaran, T. (2007). Programming collective intelligence: Building smart web 2.0 applica-
tions. O’Reilly Media.

[36] Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding machine learning: From
theory to algorithms (Vol. 978110 7057). Cambridge University Press.

[37] Pérez-Enciso, M., & Zingaretti, L. M. (2019). A guide on deep learning for complex trait
genomic prediction. Genes, 10(7).

[38] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.
[39] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,

Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn: Machine learning in
python. the Journal of machine Learning research, 12, 2825–2830.

[40] Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization.
[41] Sokolova, M., Japkowicz, N., & Szpakowicz, S. (2006). Beyond accuracy, f-score and

roc: A family of discriminant measures for performance evaluation. In A. Sattar & B.-h.
Kang (Eds.), Ai 2006: Advances in artificial intelligence (pp. 1015–1021). Springer Berlin
Heidelberg.

[42] Chicco, D., & Jurman, G. (2020). The advantages of the Matthews correlation coefficient
(MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics,
21(1), 6.

[43] Horak, K. (2017). Classification of surf image features by selected machine learning
algorithms.

[44] Mitchell, T. M. (1997). Machine learning (1st ed.). McGraw-Hill, Inc.
[45] Stevens, E., Antiga, L., & Viehmann, T. (2020). Deep learning with pytorch.
[46] Shinde, P. P., & Shah, S. (2018). A Review of Machine Learning and Deep Learning Ap-

plications. 2018 Fourth International Conference on Computing Communication Control
and Automation (ICCUBEA), 1–6.

[47] Mu, R., & Zeng, X. (2019). A Review of Deep Learning Research. KSII Transactions on
Internet and Information Systems, 13(4), 1738–1764.

[48] Voulodimos, A., Doulamis, N., Doulamis, A., & Protopapadakis, E. (2018). Deep Learning
for Computer Vision: A Brief Review. Computational Intelligence and Neuroscience, 2018,
1–13.

B I B L I O G R A P H Y 81

[49] Albawi, S., Mohammed, T. A., & Al-Zawi, S. (2017). Understanding of a convolutional
neural network. 2017 International Conference on Engineering and Technology (ICET),
1–6.

[50] Yu, Y., Si, X., Hu, C., & Zhang, J. (2019a). A Review of Recurrent Neural Networks: LSTM
Cells and Network Architectures. Neural Computation, 31(7), 1235–1270.

[51] Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation,
9(8), 1735–1780.

[52] Yu, Y., Si, X., Hu, C., & Zhang, J. (2019b). A Review of Recurrent Neural Networks: LSTM
Cells and Network Architectures. Neural Computation, 31(7), 1235–1270.

[53] Singh, S., & Mahmood, A. (2021). The nlp cookbook: Modern recipes for transformer
based deep learning architectures. IEEE Access, 9, 68675–68702.

[54] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L.,
& Polosukhin, I. (2017). Attention is all you need.

[55] Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T.,
Louf, R., Funtowicz, M., Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite, Y., Plu,
J., Xu, C., Le Scao, T., Gugger, S., . . . Rush, A. (2020). Transformers: State-of-the-art
natural language processing. Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing: System Demonstrations, 38–45.

[56] Tunstall, L., von Werra, L., & Wolf, T. (2022). Natural language processing with transform-
ers: Building language applications with hugging face. O’Reilly Media, Incorporated.

[57] Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). Bert: Pre-training of deep
bidirectional transformers for language understanding.

[58] Lüscher, C., Beck, E., Irie, K., Kitza, M., Michel, W., Zeyer, A., Schlüter, R., & Ney, H.
(2019). Rwth asr systems for librispeech: Hybrid vs attention. Interspeech 2019.

[59] Synnaeve, G., Xu, Q., Kahn, J., Likhomanenko, T., Grave, E., Pratap, V., Sriram, A.,
Liptchinsky, V., & Collobert, R. (2020). End-to-end asr: From supervised to semi- super-
vised learning with modern architectures.

[60] Parmar, N., Vaswani, A., Uszkoreit, J., Kaiser, Ł., Shazeer, N., Ku, A., & Tran, D. (2018).
Image transformer.

[61] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., & Zagoruyko, S. (2020).
End-to-end object detection with transformers.

[62] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,
Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., & Houlsby, N. (2021).
An image is worth 16x16 words: Transformers for image recognition at scale.

[63] Elnaggar, A., Heinzinger, M., Dallago, C., Rehawi, G., Wang, Y., Jones, L., Gibbs, T.,
Feher, T., Angerer, C., Steinegger, M., Bhowmik, D., & Rost, B. (2021). Prottrans: Towards
cracking the language of life’s code through self-supervised learning. bioRxiv.

[64] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L.,
& Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach.

B I B L I O G R A P H Y 82

[65] Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019). Distilbert, a distilled version of bert:
Smaller, faster, cheaper and lighter.

[66] Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al. (2018). Improving language
understanding by generative pre-training.

[67] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al. (2019). Language
models are unsupervised multitask learners.

[68] Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoyanov, V., &
Zettlemoyer, L. (2019). Bart: Denoising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.

[69] Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W.,
& Liu, P. J. (2019). Exploring the limits of transfer learning with a unified text-to-text
transformer.

[70] Zöller, M. A., & Huber, M. F. (2021). Benchmark and Survey of Automated Machine
Learning Frameworks. Journal of Artificial Intelligence Research, 70, 409–472.

[71] He, X., Zhao, K., & Chu, X. (2021). AutoML: A survey of the state-of-the-art. Knowledge-
Based Systems, 212, 106622.

[72] Zimmer, L., Lindauer, M., & Hutter, F. (2021). Auto-pytorch tabular: Multi-fidelity metalearn-
ing for efficient and robust autodl [also available under https://arxiv.org/abs/2006.13799].
IEEE Transactions on Pattern Analysis and Machine Intelligence, 3079–3090.

[73] Erickson, N., Mueller, J., Shirkov, A., Zhang, H., Larroy, P., Li, M., & Smola, A. (2020).
Autogluon-tabular: Robust and accurate automl for structured data.

[74] Jin, H., Song, Q., & Hu, X. (2019). Auto-keras: An efficient neural architecture search
system. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 1946–1956.

[75] LIN, K., MAY, A. C., & TAYLOR, W. R. (2002). Amino acid encoding schemes from protein
structure alignments: Multi-dimensional vectors to describe residue types. Journal of
Theoretical Biology, 216(3), 361–365.

[76] Jurtz, V. I., Johansen, A. R., Nielsen, M., Almagro Armenteros, J. J., Nielsen, H.,
Sønderby, C. K., Winther, O., & Sønderby, S. K. (2017). An introduction to deep learning
on biological sequence data: examples and solutions. Bioinformatics, 33(22), 3685–3690.

[77] Eddy, S. R. (2004). Where did the blosum62 alignment score matrix come from? Nature
Biotechnology, 22(8), 1035–1036.

[78] Pearson, W. R. (2013). Selecting the right similarity-scoring matrix. Current Protocols in
Bioinformatics, 43(1), 3.5.1–3.5.9.

[79] Sandberg, M., Eriksson, L., Jonsson, J., Sjöström, M., & Wold, S. (1998). New Chem-
ical Descriptors Relevant for the Design of Biologically Active Peptides. A Multivariate
Characterization of 87 Amino Acids. Journal of Medicinal Chemistry, 41(14), 2481–2491.

[80] Nanni, L., & Lumini, A. (2011). A new encoding technique for peptide classification.
Expert Systems with Applications, 38(4), 3185–3191.

B I B L I O G R A P H Y 83

[81] van den Berg, B. A., Reinders, M. J., Roubos, J. A., & de Ridder, D. (2014a). SPiCE: a
web-based tool for sequence-based protein classification and exploration. BMC Bioinfor-
matics, 15(1), 93.

[82] Bonetta, R., & Valentino, G. (2020). Machine learning techniques for protein function
prediction. Proteins: Structure, Function, and Bioinformatics, 88(3), 397–413.

[83] A.Schäffer, A., I.Wolf, Y., P.Ponting, C., V.Koonin, E., Aravind, L., & F.Altschul, S. (1999).
IMPALA: matching a protein sequence against a collection of PSI-BLAST-constructed
position-specific score matrices. Bioinformatics, 15(12), 1000–1011.

[84] Wang, J., Yang, B., Revote, J., Leier, A., Marquez-Lago, T. T., Webb, G., Song, J., Chou,
K.-C., & Lithgow, T. (2017). POSSUM: a bioinformatics toolkit for generating numerical
sequence feature descriptors based on PSSM profiles. Bioinformatics, 33(17), 2756–
2758.

[85] Ding, S., Li, Y., Shi, Z., & Yan, S. (2014). A protein structural classes prediction method
based on predicted secondary structure and psi-blast profile. Biochimie, 97, 60–65.

[86] Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman,
D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database
search programs. Nucleic Acids Research, 25(17), 3389–3402.

[87] Jang, B., Kim, I., & Kim, J. W. (2019). Word2vec convolutional neural networks for
classification of news articles and tweets. PLOS ONE, 14(8), 1–20.

[88] Asgari, E., & Mofrad, M. R. K. (2015). Continuous distributed representation of biological
sequences for deep proteomics and genomics. PLOS ONE, 10(11), 1–15.

[89] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
Ł., & Polosukhin, I. (2017). Attention is all you need. In I. Guyon, U. V. Luxburg, S.
Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett (Eds.), Advances in neural
information processing systems (Vol. 30). Curran Associates, Inc.

[90] Geffen, Y., Ofran, Y., & Unger, R. (2022). Distilprotbert: A distilled protein language
model used to distinguish between real proteins and their randomly shuffled counterparts.
bioRxiv.

[91] Rives, A., Meier, J., Sercu, T., Goyal, S., Lin, Z., Liu, J., Guo, D., Ott, M., Zitnick, C. L.,
Ma, J., & Fergus, R. (2019). Biological structure and function emerge from scaling
unsupervised learning to 250 million protein sequences. bioRxiv.

[92] Rao, R. M., Meier, J., Sercu, T., Ovchinnikov, S., & Rives, A. (2020). Transformer protein
language models are unsupervised structure learners. bioRxiv.

[93] Rao, R., Liu, J., Verkuil, R., Meier, J., Canny, J. F., Abbeel, P., Sercu, T., & Rives, A.
(2021). Msa transformer. bioRxiv.

[94] Meier, J., Rao, R., Verkuil, R., Liu, J., Sercu, T., & Rives, A. (2021). Language models
enable zero-shot prediction of the effects of mutations on protein function. bioRxiv.

[95] Hsu, C., Verkuil, R., Liu, J., Lin, Z., Hie, B., Sercu, T., Lerer, A., & Rives, A. (2022).
Learning inverse folding from millions of predicted structures. bioRxiv.

B I B L I O G R A P H Y 84

[96] Thumuluri, V., Almagro Armenteros, J. J., Johansen, A. R., Nielsen, H., & Winther, O.
(2022). DeepLoc 2.0: multi-label subcellular localization prediction using protein language
models. Nucleic Acids Research, 50(W1), W228–W234.

[97] Singh, J., Litfin, T., Singh, J., Paliwal, K., & Zhou, Y. (2022a). SPOT-Contact-LM: improving
single-sequence-based prediction of protein contact map using a transformer language
model. Bioinformatics, 38(7), 1888–1894.

[98] Lee, E. Y., Fulan, B. M., Wong, G. C. L., & Ferguson, A. L. (2016). Mapping membrane
activity in undiscovered peptide sequence space using machine learning. Proceedings
of the National Academy of Sciences, 113(48), 13588–13593.

[99] Boareto, M., Yamagishi, M. E., Caticha, N., & Leite, V. B. (2012). Relationship between
global structural parameters and Enzyme Commission hierarchy: Implications for function
prediction. Computational Biology and Chemistry, 40, 15–19.

[100] Ganapathiraju, M., Klein-Seetharaman, J., Balakrishnan, N., & Reddy, R. (2004). Char-
acterization of protein secondary structure. IEEE Signal Processing Magazine, 21(3),
78–87.

[101] Cheng, J., Randall, A. Z., Sweredoski, M. J., & Baldi, P. (2005). SCRATCH: a protein
structure and structural feature prediction server. Nucleic Acids Research, 33(suppl 2),
W72–W76.

[102] Amidi, A., Amidi, S., Vlachakis, D., Paragios, N., & Zacharaki, E. I. (2016). A machine
learning methodology for enzyme functional classification combining structural and
protein sequence descriptors. Bioinformatics and Biomedical Engineering, 728–738.

[103] Hawkins, T., Chitale, M., Luban, S., & Kihara, D. (2009). PFP: Automated prediction of
gene ontology functional annotations with confidence scores using protein sequence
data. Proteins: Structure, Function, and Bioinformatics, 74(3), 566–582.

[104] Gao, R., Wang, M., Zhou, J., Fu, Y., Liang, M., Guo, D., & Nie, J. (2019). Prediction
of Enzyme Function Based on Three Parallel Deep CNN and Amino Acid Mutation.
International Journal of Molecular Sciences, 20(11), 2845.

[105] Lee, I., Keum, J., & Nam, H. (2019). DeepConv-DTI: Prediction of drug-target interactions
via deep learning with convolution on protein sequences (J. M. Briggs, Ed.). PLOS
Computational Biology, 15(6), 1–21.

[106] Notin, P., Dias, M., Frazer, J., Hurtado, J. M., Gomez, A. N., Marks, D., & Gal, Y. (2022).
Tranception: Protein fitness prediction with autoregressive transformers and inference-
time retrieval. In K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari, G. Niu, & S. Sabato
(Eds.), Proceedings of the 39th international conference on machine learning (pp. 16990–
17017, Vol. 162). PMLR.

[107] Singh, J., Litfin, T., Singh, J., Paliwal, K., & Zhou, Y. (2022b). SPOT-Contact-LM: improving
single-sequence-based prediction of protein contact map using a transformer language
model. Bioinformatics, 38(7), 1888–1894.

B I B L I O G R A P H Y 85

[108] Hong, Y., Lee, J., & Ko, J. (2022). A-Prot: protein structure modeling using MSA trans-
former. BMC Bioinformatics, 23(1), 93.

[109] Høie, M. H., Kiehl, E. N., Petersen, B., Nielsen, M., Winther, O., Nielsen, H., Hallgren, J.,
& Marcatili, P. (2022). NetSurfP-3.0: accurate and fast prediction of protein structural
features by protein language models and deep learning. Nucleic Acids Research, 50(W1),
W510–W515.

[110] Monteiro, N. R., Oliveira, J. L., & Arrais, J. P. (2022). Dtitr: End-to-end drug–target binding
affinity prediction with transformers. Computers in Biology and Medicine, 147, 105772.

[111] Wang, Z., Combs, S. A., Brand, R., Calvo, M. R., Xu, P., Price, G., Golovach, N., Salawu,
E. O., Wise, C. J., Ponnapalli, S. P., & Clark, P. M. (2022). LM-GVP: an extensible
sequence and structure informed deep learning framework for protein property prediction.
Scientific Reports, 12(1), 6832.

[112] Singh, J., Litfin, T., Singh, J., Paliwal, K., & Zhou, Y. (2021). Spot-contact-single: Improving
single-sequence-based prediction of protein contact map using a transformer language
model. bioRxiv.

[113] Wang, K., Zhou, R., Li, Y., & Li, M. (2021). DeepDTAF: a deep learning method to predict
protein–ligand binding affinity. Briefings in Bioinformatics, 22(5).

[114] Kim, G. B., Gao, Y., Palsson, B. O., & Lee, S. Y. (2021). DeepTFactor: A deep learning-
based tool for the prediction of transcription factors. Proceedings of the National Academy
of Sciences, 118(2), e2021171118.

[115] Semwal, R., Aier, I., Tyagi, P., & Varadwaj, P. K. (2021). DeEPn: a deep neural network
based tool for enzyme functional annotation. Journal of Biomolecular Structure and
Dynamics, 39(8), 2733–2743.

[116] Cai, Y., Wang, J., & Deng, L. (2020). SDN2GO: An Integrated Deep Learning Model for
Protein Function Prediction. Frontiers in Bioengineering and Biotechnology, 8.

[117] Wang, D., Liu, D., Yuchi, J., He, F., Jiang, Y., Cai, S., Li, J., & Xu, D. (2020). MusiteDeep: a
deep-learning based webserver for protein post-translational modification site prediction
and visualization. Nucleic Acids Research, 48(W1), W140–W146.

[118] Strodthoff, N., Wagner, P., Wenzel, M., & Samek, W. (2020). UDSMProt: universal deep
sequence models for protein classification (Y. Ponty, Ed.). Bioinformatics, 36(8), 2401–
2409.

[119] Zhang, F., Song, H., Zeng, M., Li, Y., Kurgan, L., & Li, M. (2019). DeepFunc: A Deep
Learning Framework for Accurate Prediction of Protein Functions from Protein Sequences
and Interactions. PROTEOMICS, 19(12).

[120] Kulmanov, M., & Hoehndorf, R. (2019). DeepGOPlus: improved protein function predic-
tion from sequence (L. Cowen, Ed.). Bioinformatics, 36(2), 422–429.

[121] Ryu, J. Y., Kim, H. U., & Lee, S. Y. (2019). Deep learning enables high-quality and
high-throughput prediction of enzyme commission numbers. Proceedings of the National
Academy of Sciences, 116(28), 13996–14001.

B I B L I O G R A P H Y 86

[122] Sureyya Rifaioglu, A., Doğan, T., Jesus Martin, M., Cetin-Atalay, R., & Atalay, V. (2019).
DEEPred: Automated Protein Function Prediction with Multi-task Feed-forward Deep
Neural Networks. Scientific Reports, 9(7344).

[123] Taju, S. W., & Ou, Y.-Y. (2019). DeepIon: Deep learning approach for classifying ion trans-
porters and ion channels from membrane proteins. Journal of Computational Chemistry,
40(15), 1521–1529.

[124] Le, N. Q. K., Yapp, E. K. Y., & Yeh, H.-Y. (2019). ET-GRU: using multi-layer gated recurrent
units to identify electron transport proteins. BMC Bioinformatics, 20(1), 377.

[125] Seo, S., Oh, M., Park, Y., & Kim, S. (2018). DeepFam: deep learning based alignment-free
method for protein family modeling and prediction. Bioinformatics, 34(13), i254–i262.

[126] Hashemifar, S., Neyshabur, B., Khan, A. A., & Xu, J. (2018). Predicting protein–protein
interactions through sequence-based deep learning. Bioinformatics, 34(17), i802–i810.

[127] Almagro Armenteros, J. J., Sønderby, C. K., Sønderby, S. K., Nielsen, H., & Winther,
O. (2017). DeepLoc: prediction of protein subcellular localization using deep learning
(J. Hancock, Ed.). Bioinformatics, 33(21), 3387–3395.

[128] van den Berg, B. A., Reinders, M. J., Roubos, J. A., & de Ridder, D. (2014b). SPiCE: a
web-based tool for sequence-based protein classification and exploration. BMC Bioinfor-
matics, 15(1), 93.

[129] Brandes, N., Ofer, D., & Linial, M. (2016). ASAP: a machine learning framework for local
protein properties [baw133]. Database, 2016.

[130] Liu, B., Wu, H., Zhang, D., Wang, X., & Chou, K.-C. (2017). Pse-analysis: A python pack-
age for dna/rna and protein/ peptide sequence analysis based on pseudo components
and kernel methods. Oncotarget, 8(8), 13338–13343.

[131] Müller, A. T., Gabernet, G., Hiss, J. A., & Schneider, G. (2017). modlAMP: Python for
antimicrobial peptides. Bioinformatics, 33(17), 2753–2755.

[132] Muhammod, R., Ahmed, S., Md Farid, D., Shatabda, S., Sharma, A., & Dehzangi, A.
(2019). PyFeat: a Python-based effective feature generation tool for DNA, RNA and
protein sequences. Bioinformatics, 35(19), 3831–3833.

[133] Liu, B., Gao, X., & Zhang, H. (2019). BioSeq-Analysis2.0: an updated platform for
analyzing DNA, RNA and protein sequences at sequence level and residue level based
on machine learning approaches. Nucleic Acids Research, 47 (20), e127–e127.

[134] Chen, Z., Zhao, P., Li, F., Marquez-Lago, T. T., Leier, A., Revote, J., Zhu, Y., Powell,
D. R., Akutsu, T., Webb, G. I., Chou, K.-C., Smith, A. I., Daly, R. J., Li, J., & Song, J.
(2019). iLearn: an integrated platform and meta-learner for feature engineering, machine-
learning analysis and modeling of DNA, RNA and protein sequence data. Briefings in
Bioinformatics, 21(3), 1047–1057.

[135] Chen, Z., Zhao, P., Li, C., Li, F., Xiang, D., Chen, Y.-Z., Akutsu, T., Daly, R., Webb, G.,
Zhao, Q., Kurgan, L., & Song, J. (2021). iLearnPlus: a comprehensive and automated

B I B L I O G R A P H Y 87

machine-learning platform for nucleic acid and protein sequence analysis, prediction and
visualization. Nucleic Acids Research, 49(10), e60–e60.

[136] Sequeira, A. M., Lousa, D., & Rocha, M. (2021b). ProPythia: A Python Automated
Platform for the Classification of Proteins Using Machine Learning. Advances in Intelligent
Systems and Computing, 1240 AISC, 32–41.

[137] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M.,
Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., . . . Chintala, S. (2019). Pytorch: An
imperative style, high-performance deep learning library. In H. Wallach, H. Larochelle, A.
Beygelzimer, F. d’Alché-Buc, E. Fox, & R. Garnett (Eds.), Advances in neural information
processing systems (Vol. 32). Curran Associates, Inc.

[138] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S.,
Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard,
M., Jozefowicz, R., Jia, Y., Kaiser, L., Kudlur, M., . . . Zheng, X. (2015). TensorFlow,
Large-scale machine learning on heterogeneous systems.

[139] Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., Niculae, V.,
Prettenhofer, P., Gramfort, A., Grobler, J., Layton, R., VanderPlas, J., Joly, A., Holt, B., &
Varoquaux, G. (2013). API design for machine learning software: Experiences from the
scikit-learn project. ECML PKDD Workshop: Languages for Data Mining and Machine
Learning, 108–122.

[140] The pandas development team. (n.d.). pandas-dev/pandas: Pandas.
[141] Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau,

D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van
Kerkwijk, M. H., Brett, M., Haldane, A., Fernández del Rı́o, J., Wiebe, M., Peterson, P.,
. . . Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585, 357–362.

[142] Rives, A., Meier, J., Sercu, T., Goyal, S., Lin, Z., Liu, J., Guo, D., Ott, M., Zitnick, C. L.,
Ma, J., & Fergus, R. (2021). Biological structure and function emerge from scaling
unsupervised learning to 250 million protein sequences. Proceedings of the National
Academy of Sciences, 118(15), e2016239118.

[143] Howard, J., & Ruder, S. (2018). Universal language model fine-tuning for text classifica-
tion.

[144] Dalkiran, A., Rifaioglu, A. S., Martin, M. J., Cetin-Atalay, R., Atalay, V., & Doğan, T. (2018).
ECPred: a tool for the prediction of the enzymatic functions of protein sequences based
on the EC nomenclature. BMC Bioinformatics, 19(1), 334.

[145] Amidi, S., Amidi, A., Vlachakis, D., Paragios, N., & Zacharaki, E. I. (2017). Automatic
single- and multi-label enzymatic function prediction by machine learning. PeerJ, 5(3),
16.

[146] Wang, W., Peng, Z., & Yang, J. (2022). Single-sequence protein structure prediction
using supervised transformer protein language models. bioRxiv.

A
S U P P O R T W O R K

A.1 MULTI-CLASSIFICATION OF TRANSPORTERS WITH NON-TRANSPORTERS

Table 22 – Performance of all models for TC main class prediction (with non-transporters) through one-
hot, BLOSUM and PSSM encoders. The performance is represented by the metrics Matthews
correlation coefficient (MCC), balanced accuracy (BAcc) and precision (Prec). The highest
metric values determined by each encoder and between the models are indicated in bold

Models Metrics One-hot encoder BLOSUM encoder PSSM encoder

DeepPPF

MCC 0.509 0.544 0.809

BAcc 0.315 0.337 0.761

Prec 0.617 0.633 0.858

DeepLoc

MCC 0.428 0.548 0.750

BAcc 0.281 0.432 0.626

Prec 0.560 0.653 0.816

UDSMProt

MCC 0.561 0.520 0.763

BAcc 0.451 0.407 0.714

Prec 0.677 0.651 0.823

ET-GRU

MCC 0.558 0.544 0.781

BAcc 0.411 0.386 0.578

Prec 0.668 0.662 0.839

88

A.1. Multi-classification of transporters with non-transporters 89

Table 23 – Performance of DeepPPF on TC subclass, family and superfamily classification (with non-
transporters) through one-hot, BLOSUM and PSSM encoders. The performance is repre-
sented by the metrics Matthews correlation coefficient (MCC), balanced accuracy (BAcc) and
precision (Prec). The highest metric values determined by each encoder and between the
classification tasks are indicated in bold

Classification
task

Metrics One-hot encoder
BLOSUM
encoder

PSSM encoder

TC subclass

MCC 0.500 0.550 0.805

BAcc 0.297 0.296 0.601

Prec 0.580 0.621 0.843

TC family

MCC 0.746 0.715 0.943

BAcc 0.631 0.603 0.900

Prec 0.772 0.736 0.956

TC superfamily

MCC 0.645 0.676 0.865

BAcc 0.499 0.564 0.838

Prec 0.682 0.698 0.889

Table 24 – Performance of DeepLoc on TC subclass, family and superfamily classification (with non-
transporters) through one-hot, BLOSUM and PSSM encoders. The performance is repre-
sented by the metrics Matthews correlation coefficient (MCC), balanced accuracy (BAcc) and
precision (Prec). The highest metric values determined by each encoder and between the
classification tasks are indicated in bold

Classification
task

Metrics One-hot encoder
BLOSUM
encoder

PSSM encoder

TC subclass

MCC 0.485 0.561 0.746

BAcc 0.300 0.374 0.602

Prec 0.566 0.637 0.796

TC family

MCC 0.589 0.721 0.868

BAcc 0.471 0.625 0.783

Prec 0.632 0.728 0.884

TC superfamily

MCC 0.512 0.729 0.875

BAcc 0.444 0.653 0.848

Prec 0.559 0.731 0.903

A.1. Multi-classification of transporters with non-transporters 90

Table 25 – Performance of UDSMProt on TC subclass, family and superfamily classification (with non-
transporters) through one-hot, BLOSUM and PSSM encoders. The performance is repre-
sented by the metrics Matthews correlation coefficient (MCC), balanced accuracy (BAcc) and
precision (Prec). The highest metric values determined by each encoder and between the
classification tasks are indicated in bold

Classification
task

Metrics One-hot encoder
BLOSUM
encoder

PSSM encoder

TC subclass

MCC 0.522 0.508 0.772

BAcc 0.336 0.379 0.651

Prec 0.605 0.614 0.814

TC family

MCC 0.637 0.689 0.893

BAcc 0.508 0.604 0.819

Prec 0.688 0.733 0.917

TC superfamily

MCC 0.647 0.562 0.849

BAcc 0.603 0.483 0.830

Prec 0.707 0.600 0.859

Table 26 – Performance of ET-GRU on TC subclass, family and superfamily classification (with non-
transporters) through one-hot, BLOSUM and PSSM encoders. The performance is repre-
sented by the metrics Matthews correlation coefficient (MCC), balanced accuracy (BAcc) and
precision (Prec). The highest metric values determined by each encoder and between the
classification tasks are indicated in bold

Classification
task

Metrics One-hot encoder
BLOSUM
encoder

PSSM encoder

TC subclass

MCC 0.556 0.542 0.756

BAcc 0.348 0.301 0.500

Prec 0.625 0.607 0.794

TC family

MCC 0.652 0.678 0.892

BAcc 0.513 0.563 0.832

Prec 0.652 0.688 0.913

TC superfamily

MCC 0.650 0.692 0.844

BAcc 0.530 0.567 0.793

Prec 0.678 0.703 0.856

A.1. Multi-classification of transporters with non-transporters 91

Table 27 – Performance of DeepPPF on TC family and superfamily classification (with non-transporters)
through ProtBert, ESM-1b, ESM2-150 and ESM2-650 encoders. The performance is repre-
sented by the metrics Matthews correlation coefficient (MCC), balanced accuracy (BAcc) and
precision (Prec). The highest metric values determined by each encoder and between the
classification tasks are indicated in bold

Classification
task

Metrics
ProtBert
encoder

ESM-1b
encoder

ESM2-150
encoder

ESM2-650
encoder

MCC 0.893 0.950 0.906 0.943

BAcc 0.814 0.900 0.827 0.888TC family

Prec 0.914 0.962 0.936 0.954

MCC 0.922 0.932 0.917 0.922

BAcc 0.892 0.934 0.913 0.904TC superfamily

Prec 0.936 0.943 0.927 0.937

Table 28 – Performance of DeepLoc on TC family and superfamily classification (with non-transporters)
through ProtBert, ESM-1b, ESM2-150 and ESM2-650 encoders. The performance is repre-
sented by the metrics Matthews correlation coefficient (MCC), balanced accuracy (BAcc) and
precision (Prec). The highest metric values determined by each encoder and between the
classification tasks are indicated in bold

Classification
task

Metrics
ProtBert
encoder

ESM-1b
encoder

ESM2-150
encoder

ESM2-650
encoder

MCC 0.836 0.924 0.867 0.925

BAcc 0.745 0.869 0.812 0.857TC family

Prec 0.879 0.937 0.891 0.936

MCC 0.823 0.886 0.859 0.912

BAcc 0.768 0.867 0.806 0.878TC superfamily

Prec 0.838 0.900 0.854 0.925

A.1. Multi-classification of transporters with non-transporters 92

Table 29 – Performance of UDSMProt on TC family and superfamily classification (with non-transporters)
through ProtBert, ESM-1b, ESM2-150 and ESM2-650 encoders. The performance is repre-
sented by the metrics Matthews correlation coefficient (MCC), balanced accuracy (BAcc) and
precision (Prec). The highest metric values determined by each encoder and between the
classification tasks are indicated in bold

Classification
task

Metrics
ProtBert
encoder

ESM-1b
encoder

ESM2-150
encoder

ESM2-650
encoder

MCC 0.824 0.918 0.880 0.905

BAcc 0.748 0.845 0.812 0.840TC family

Prec 0.868 0.929 0.905 0.921

MCC 0.880 0.933 0.906 0.891

BAcc 0.824 0.932 0.895 0.876TC superfamily

Prec 0.879 0.943 0.919 0.910

Table 30 – Performance of ET-GRU on TC family and superfamily classification (with non-transporters)
through ProtBert, ESM-1b, ESM2-150 and ESM2-650 encoders. The performance is repre-
sented by the metrics Matthews correlation coefficient (MCC), balanced accuracy (BAcc) and
precision (Prec). The highest metric values determined by each encoder and between the
classification tasks are indicated in bold

Classification
task

Metrics
ProtBert
encoder

ESM-1b
encoder

ESM2-150
encoder

ESM2-650
encoder

MCC 0.856 0.905 0.874 0.893

BAcc 0.761 0.838 0.800 0.822TC family

Prec 0.872 0.916 0.905 0.915

MCC 0.849 0.902 0.901 0.922

BAcc 0.791 0.862 0.866 0.870TC superfamily

Prec 0.866 0.918 0.911 0.936

Table 31 – Performance of DeepPPF on TC class and subclass classification through ESM-1b encoder.
The performance is represented by the metrics Matthews correlation coefficient (MCC), bal-
anced accuracy (BAcc) and precision (Prec).

Model Metrics TC class TC subclass

MCC 0.903 0.887

BAcc 0.903 0.813DeepPPF

Prec 0.927 0.910

B
D E TA I L S O F R E S U LT S

B.1 BINARY CLASSIFICATION OF TRANSPORTERS AND NON-TRANSPORTERS

Table 32 – Performance of DeepLoc, UDSMProt and ET-GRU on binary classification through PSSM
encoder. The A to B ratio equals to A transporter sequences to B enzyme sequences ratio. The
performance is represented by the metrics Matthews correlation coefficient (MCC), balanced
accuracy (BAcc) and F1 score

Models Metrics 3 to 1 2 to 1 1 to 1 1 to 2 1 to 3

MCC 0.738 0.676 0.709 0.700 0.683

BAcc 0.686 0.650 0.708 0.696 0.672DeepLoc

F1 score 0.940 0.898 0.859 0.799 0.760

MCC 0.693 0.670 0.712 0.705 0.736

BAcc 0.654 0.653 0.711 0.686 0.721UDSMProt

F1 score 0.929 0.895 0.860 0.798 0.800

MCC 0.721 0.632 0.744 0.694 0.724

BAcc 0.678 0.586 0.743 0.688 0.726ET-GRU

F1 score 0.935 0.888 0.874 0.795 0.794

93

	1 Introduction
	1.1 Motivation and context
	1.2 Objectives
	1.3 Thesis Organization

	2 State of the art
	2.1 Proteins
	2.1.1 Amino acid residues
	2.1.2 From amino acids to proteins
	2.1.3 Proteins structure
	2.1.4 Case studies

	2.2 Machine Learning and Deep Learning
	2.2.1 Unsupervised Learning
	2.2.2 Supervised Learning
	2.2.3 Deep learning models
	2.2.4 Automated Machine Learning

	2.3 Deep Learning applied to Protein sequence classification
	2.3.1 Sequence encoding
	2.3.2 Relevant work on Protein Classification
	2.3.3 Tools for building protein classification algorithms
	2.3.4 Relevant packages and tools

	3 Methods and Software Development
	3.1 Processing and encoding of protein sequences
	3.1.1 Protein descriptors
	3.1.2 Substitution matrix
	3.1.3 Position Score matrix
	3.1.4 Transformer encoding

	3.2 Deep Learning models

	4 Development
	4.1 OmniumAI
	4.2 OmniumAI and ProPythia methods implementation
	4.2.1 Feature extractors
	4.2.2 OmniumAI pipeline

	4.3 Training and evaluation of the encoders

	5 Results and Discussion
	5.1 Enzymes case study
	5.1.1 Collection of enzyme sequences
	5.1.2 Classification of Enzymes

	5.2 Transporters case study
	5.2.1 Collection of transporter sequence
	5.2.2 Classification of transporters
	5.2.3 Classification of transporters with non-transporters sequences
	5.2.4 Binary classification of transporters and non-transporters

	6 Conclusion
	6.1 Main results and contributions
	6.2 Future perspectives

	A Support work
	A.1 Multi-classification of transporters with non-transporters

	B Details of results
	B.1 Binary classification of transporters and non-transporters

