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Abstract

The hydrodynamic approach for plasmonics in graphene

The hydrodynamic model approach to plasmonics is based on the simultaneous solution of Euler’s equa-

tion, Poisson’s equation, and the continuity equation. The quantum mechanical effects enter the model

via the statistical pressure induced by the gas of electrons. It is also a form of including the effect of

nonlocality. The aim of this thesis is to study the dispersion relation of the surface plasmon-polaritons and

the plasmonic wakes created by an external potential, when a graphene sheet is in the vicinity of a metal.

It is known they disperse linearly with the wave vector, therefore are of acoustic nature. This problem has

been studied for normal plasmons, but the study for acoustic plasmons is missing. In the first part of

this thesis, the hydrodynamic model will be used to solve some electrostatic boundary-value problems in

planar geometry, that will give the linear dispersion of the SPPs in graphene near a semi-infinite and finite

nonlocal metal. The study for the metals, gold and titanium, showed that the nonlocal effects are more

visible in titanium, due to its intrinsic proprieties, such as plasmon frequency and background permittivity.

The dielectric separation between graphene and metal also enhances the nonlocal effects. The decrease

of the dielectric thickness increases the nonlocality. Regarding the finite metal, the results show that the

increase of the metal thickness results in a higher energy of the surface plasmon-polaritons in graphene.

In this case, the dispersion is also linear in the wavenumber 𝑘 . The second part encompasses the study of

the induced potential in graphene, due to an external charge moving parallel to graphene in the y-direction

at an height 𝑧0. When graphene is in the vicinity of a dielectric an oscillatory V-shaped pattern was per-

ceived, and the dependence of the angle on the Froude number (or dependence on the velocity of the

external charge) provided two different regions, a constant angle region for low Froude numbers where

the wake angle takes the value of 21◦. This is similar to the Kelvin region, where the angle takes the

constant value of 19.47◦. A transition for a Mach region occurs for a plasmonic Froude number of 2.2,

where the decrease of the angle happens for higher velocities following the law 1/𝑣 . When a local metal
is added to the system, the oscillatory behavior vanishes and a more continuous V-shaped wake appears

in graphene. In this case, the angles follow a quadratic polynomial law, where these decrease with the

increasing Froude number. Studying the phase velocity and the dispersion for the classical water wakes

and the plasmonic wakes it is possible to see two limiting cases for 𝜅 = −1 and 𝜅 = 0, which correspond

to pure gravity waves in deep water and gravity waves in shallow water, respectively. In such manner, it is

possible to make an analogy between gravity waves and the plasmonic waves in graphene.

Keywords: Nonlocality, SPPs, Graphene, Plasmonic wakes, Kelvin region, Mach region
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Resumo

A abordagem do modelo hidrodinâmico à plasmônica é baseada na solução simultânea da equação de

Euler, da equação de Poisson e da equação de continuidade. Os efeitos da mecânica quântica entram no

modelo através da pressão estatística induzida pelo gás de eletrões. É também uma forma de incluir o

efeito da não-localidade. O objetivo desta tese é estudar a relação de dispersão e as perturbações plasmô-

nicas criadas por um potencial externo, quando o grafeno está nas proximidades de um metal. É sabido

que os plasmões dispersam linearmente com o vetor de onda, portanto possuem uma natureza acústica.

Este problema foi estudado para plasmões normais, no entanto falta o estudo para plasmões acústicos.

Na primeira parte desta tese, o modelo hidrodinâmico será usado para resolver alguns problemas eletros-

táticos de valor de fronteira, que darão a dispersão linear dos SPPs quando o grafeno está próximo a um

metal não local semi-finito e finito. O estudo para os metais ouro e titânio mostraram que os efeitos não

locais são mais visíveis no titânio, devido às suas propriedades intrínsecas, como frequência plasmônica

e permissividade de fundo. A separação dielétrica entre o grafeno e o metal, também potencializa os

efeitos não locais. A diminuição da espessura do dielétrico, aumenta a não-localidade. Em relação ao

metal finito, os resultados mostram que o aumento da espessura do metal leva ao aumento da energia

dos plasmões-polaritões de superfície no grafeno. Neste caso, a dispersão também é linear no vetor de

onda 𝑘 . A segunda parte abrange o estudo do potencial induzido no grafeno, devido a uma carga externa

movendo-se paralelamente ao grafeno na direção dos y’s, a uma altura 𝑧0. Quando o grafeno está na

vizinhança de um dielétrico, foi visto um padrão oscilatório em forma de ”V”, e a dependência do ângulo

no número de Froude (ou dependência da velocidade da carga externa) mostra duas regiões diferentes,

a primeira de ângulo constante para números de Froude baixos onde o ângulo do cone é constante e

de valor 21◦. Sendo semelhante à região de Kelvin, onde o ângulo constante toma o valor de 19.47◦.

Observa-se uma transição para a região de Mach ocorre para um número de Froude plasmónico de 2.2,

onde a diminuição do ângulo ocorre para velocidades mais altas seguindo a lei 1/𝑣 . Quando um me-

tal local é adicionado ao sistema, o comportamento oscilatório é quebrado e uma onda em forma de

”V”contínua aparece no grafeno. Neste caso, os ângulos seguem uma lei polinomial quadrática, onde os

ângulos diminuem com o aumento do número de Froude. Estudando a velocidade de fase e a dispersão

para as ondas clássicas na água e as ondas plasmônicas é possível ver dois casos limites para 𝜅 = −1
e 𝜅 = 0, que correspondem a ondas gravíticas puras em águas profundas e ondas gravíticas em águas

rasas, respectivamente. Desta forma, é possível fazer uma analogia entre as ondas gravitacionais e as

ondas plasmônicas no grafeno.

Palavras-chave: Não-localidade, SPPs, Grafeno, Ondas plasmónicas, Região de Kelvin,

Região de Mach
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Introduction

The study of plasmonic and nanoplasmonic in noble metals and semiconductors has become of

the uttermost importance in the latest years. Because of its remarkable electromagnetic, optical, and

thermodynamic proprieties, the study of Surface Plasmon-Polaritons (SPPs) and bulk plasmons have led

to the discovery of groundbreaking technology in many areas of science, overcoming many problems and

limitations of non-plasmonic devices in use. Smaller sizes and higher response speeds will characterize

these new plasmonic technologies. Graphene and plasmonics comes together to develop a new field

of physics known as graphene plasmonics, due to the important proprieties of graphene, such as its 2-

Dimensional (2D) nature, graphene is an excellent material to study the plasmonic effects in tighter regions.

This means that, in graphene, the surface plasmon-polaritons are confined to atomic-size structures where

the nonlocal effects cannot be ignored. The Hydrodynamic Model (HDM) came to life as a new way to

study electron gases and graphene in the light of the nonlocal effects. In this thesis, we will analyze

the hydrodynamic model and its application to graphene by perceiving it as a nearly perfect fluid, in

order to have a hydrodynamic approach to plasmonics in graphene. The thesis will be structured in

the following way: in chapter 1 we will introduce the basics of plasmonic and graphene plasmonic, as

well as the instances of importance of nonlocal effects which play an important role in the optical and

electromagnetic proprieties of plasmons, with the usage of the hydrodynamic model. In chapter 2, we

will perform a mathematical derivation of the HDM for 3-Dimensional (3D) and 2D electron gases in the

electrostatic regime. In chapter 3, we will use the hydrodynamic model as a tool to derive the dispersion

relation of some electrostatic problems in planar geometry. In chapter 4 we will derive the expressions for

the induced potential in graphene when an external particle is moving parallel to it. The study will cover

two cases: graphene in the vicinity of a dielectric and graphene in the vicinity of a nonlocal metal. Finally,

in chapter 5, we will discuss about classical Kelvin and Mach waves and provide an analogy between

water wakes and graphene potential wakes created by the moving external particle, in order to recognize

1



CHAPTER 1. INTRODUCTION

the differences and similarities between the two different phenomena.

1.1 General Topics in Plasmonics

In the latest years, plasmonics and nanoplasmonics have been interesting and sovereign fields of re-

search in physics and nanophotonics. This field of research allows us to see how electromagnetic fields

can be confined to scales no greater than their wavelength dimensions. These light-matter interactions

lead to optical proprieties, giving rise to the main fields of investigation, known as nanophotonics. In

recent years, the emergence of faster, smaller, and more efficient electronic devices brought a new per-

spective and interest in plasmonics and nanophotonics. This has led to the investigation and building

of groundbreaking technology, such as electronic devices, terahertz detectors [1, 2], signal processing

devices, plasmonic integrated circuits [3] and some technological applications in other areas of science

[4]. Although the scientific enthusiasm for plasmonics is relatively new, the unknown discovery of plasma

effects can be attributed to Wood in 1902, due to an effect, which later became known as Wood anomalies

[5]. At the time, these anomalies were considered to be one of the most fascinating phenomena in optics.

Wood anomalies are essential rapid variations in the intensity of the light diffracted spectrum. We can

observe this abnormal phenomenon through the spectrum of visible light diffracted by a metal grating.

Even though it was a remarkable observation at the time, Wood could not find an explanation for the

phenomena. Further work was developed with the aim of explaining these anomalies. Lord Rayleigh, who

stated that the existence of anomalies occurs at a wavelength that corresponds to the transition to a higher

order spectrum, conducted the first experiments on Wood’s anomalies. Rayleigh’s study was of limited

interpretation and the first reappraisal to his study was made by Strong showing that the metal influences

the position of the anomalies [6]. Since the location of the transition is a consequence of the geometry of

the grating, the metal does not influence it. So Rayleigh study was in need of a revision.

Figure 1.1: Representation of an evanescent surface plasmon wave at an interface between a metal and
a dielectric. The wave propagates along the x-axis, without loss of generality.
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1.1. GENERAL TOPICS IN PLASMONICS

Only a few years later, with the subsequent work of Fano, was a theoretical breakthrough on Wood anoma-

lies provided. Fano observed that the origin of the anomalies was due to the excitation of evanescent

surface waves propagating along the metal grating, meaning along the surface of the material [6]. This

was the first step towards a plasmonic description of the phenomena, although further research (see [6, 7]

for more details) was necessary in order to relate these anomalous excitations with the surface plasmons.

Surface plasmons are localized excitations of an electron gas that propagates as waves along an in-

terface of two materials (usually a metal and a dielectric), decaying exponentially away from the interface

(see figure 1.1). It can also be seen as polarization oscillations of metallic nanoparticles. In a way as

plasmons are collective excitation of electrons, metals are the perfect materials to observe these phenom-

ena. From a solid-state physics point of view, metals are known as good conductors. Thus, once we apply

an external field to a metallic system, the electrons with energies near the Fermi level can move freely in

the material. In such case, we can conclude that the metal is a free electron gas bounded to a certain

geometry. Of course, the electrons are moving in a charge ion background where the only interactions are

the instantaneous electron-ion collisions. To get the most basic electromagnetic and optical responses for

a metal, Drude came up with a simple model, having in mind the particularity of considering the metal as

a free electron gas. This model later became known as the Drude model and is stated in the following way

𝜖 (𝜔) = 1 −
𝜔2
𝑝

𝜔2 + 𝑖Γ𝜔 (1.1)

where 𝜔𝑝 =
√
𝑛𝑒2/𝑚𝜖0 is the plasma frequency of the electron gas and Γ is a phenomenological pa-

rameter that counts for the scattering rate of electrons with the ionic background. The plasma frequency

comes from applying an electric field to a thin metallic film that embodies 𝑛 free electrons per unit vol-

ume. This will exert a force on the film, which can be quantified using Newton’s second law of motion

for a single electron with mass𝑚 and an electric charge 𝑒. Recalling that surface plasmons are visible

in the interface between two materials, classically they are possible if one of the two materials has a real

and negative permittivity 𝜖, such as the Drude model provides. The other material is usually taken to be

a dielectric, the most simple being vacuum with real and positive permittivity. For an ideal electron gas,

this is, for Γ = 0, the Drude permittivity is negative for frequencies smaller than the plasma frequency

𝜔𝑝 . As such, one characteristic of the surface plasmons is that the frequency for surface waves to exist

within the interface of the material is taken to be at 𝜔 < 𝜔𝑝 . To find these surface modes, one must find

a solution to Maxwell’s equations, which give rise to longitudinal waves that propagate along the interface

between the two media but are exponentially damped away from the surface. However, the plasmons do

not exist alone, and that is a very interesting point. We know that the usual study of metallic structures

is accompanied by a dielectric, which forms a certain interface. The electrons in the metal are excited to

form plasmons while simultaneously in the dielectric an electromagnetic wave couples to a polarization

excitation in the material, which are known as polaritons. In that case, there is a more general description

of the plasma phenomena, of the evanescent waves that occur in the interface between the two materials.

It is common to describe them as surface plasmon-polaritons (SPPs). The dispersion for the plasmons in
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CHAPTER 1. INTRODUCTION

an air interface, coming from Maxwell’s equations, is seen in figure 1.2.

Figure 1.2: Dispersion relation for the surface plasmon-polaritons (red line) and the volume plasmons
(blue line) for an air and ideal Drude metal (Γ = 0) interface. The red dashed line corresponds to the
asymptotic SPP limit 𝜔/

√
2, the dotted black line is given by 𝜔 = 𝑐𝑘𝑥 and the black dashed line shows

𝜔 = 𝜔𝑝 . This figure was retrieved from [8].

The solution describes two types of behavior: the surface plasmon-polaritons for the frequency interval

of 0 < 𝜔 < 𝜔𝑝/
√
2 (red line) and the volume plasmons for 𝜔 > 𝜔𝑝 . Note that there is no solution for

region 𝜔𝑝/
√
2 < 𝜔 < 𝜔𝑝 (blue line) and the light line is represented by 𝜔 = 𝑐𝑘𝑥 , where it is considered

the propagation of waves to be the x direction. The nonexistence of solutions in this region happens due

to the purely imaginary value of the SPPs wavevector [7]. The volume plasmons represent a propagating

bulk wave in the Drude type metal, where contrary to the surface plasmons, the dielectric function for the

metal 𝜖 (𝜔) is positive. The volume plasmons are collective oscillations within the bulk of the metal, and
the SPPs correspond to electron gas excitations confined at the interface between the two media. Turning

now to the SPPs curve, it lies to the right of the light line (𝜔 = 𝑐𝑘𝑥 ), so this type of plasmons cannot be

excited by direct light, which means there are quite a few methods to couple light to surface plasmons.

Just to name a few, let’s talk about grating coupling [1, 4, 7] and prism coupling [4, 7, 9, 10].

• Grating coupling: in this type of device, the grating array period takes a major part in the in-

creasing of the free surface radiation momentum. The excitation of SPPs occurs from an optical

point of view. That is, when a beam of incident light hits the grating structure, it gives rise to

different diffraction orders that carry increasing momentum contributions. When the momentum

of the diffracted light coincides with the momentum of the surface plasmon-polaritons, the phase-

matching condition is achieved and the SPP excitation takes place.
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• Prism coupling: the base method for this type of coupling is the totally attenuated reflection

method. Here, an optical wave is observed, reflecting at the interface between a prism and a thin

metal layer. This light excites the plasmons in the metal’s surface, and consequently registers a drop

in the intensity of the reflected light. There are two important configurations for this system: the Otto

configuration, which consists of a prism separated from the metal by a thin air gap and the SPPs,

which are found in the interface metal/dielectric. Another is the Kretschmann configuration, which

closes the gap, making the prism come into contact with the metal, where the surface plasmons

propagate on the far side of the metal.

Although plasma oscillations happen in many metals and semiconductors, in this thesis we are in-

terested in the study of plasmonics in graphene. In the latest years, this 2D material has been subject

of many studies and remarkable discoveries, due to its electronic, optical, and mechanical properties,

pursued both by academics and industries. The plasmonics in graphene came with the study of graphene

surface plasmon-polaritons in periodic arrays of graphene ribbons, experimentally discovered by Ju [11]

in 2011. From this study onwards, graphene plasmonics have become the starting point for research in

nanoplasmonics, so it is of considerable importance to understand and talk about the origins of graphene

and its importance to plasmonics.

1.2 Graphene Plasmonics

Graphene is a 2-dimensional material with a thickness of a carbon atom, in a way that comprises a

layer of carbon atoms arranged in a honeycomb lattice (see fig. 1.3). It was discovered by Andre Geim and

Konstantin Novoselov in 2004. Geim and Nosovelov won the Nobel prize in 2010 for experiments carried

out in this two-dimensional material [12]. Their discovery of this material demonstrates how interesting

and adventurous science can be. With only tape, their goal was to exfoliate graffiti in order to reach an

atom layer of carbon. This discovery sparked a whole new interest in 2D materials, but especially in

graphene due to its remarkable proprieties. Stronger than steel and harder than diamond, but still very

flexible, graphene is understood as having an extremely large thermal conductivity, which sustains high

current densities. Therefore, it is a great material to conduct electricity. Its charge carriers are massless

Dirac fermions that obey the Dirac equation [7]

In terms of electronic and optical properties, graphene is a half-filled system. Meaning that the valence

band is filled while the conduction band is empty. Furthermore, from a thigh-binding Hamiltonian analysis,

the energy spectrum for graphene shows to be particle-hole symmetric. The energy spectrum shows us

it is in the Dirac points 𝐾 and 𝐾′ where the valence and conduction band touch each other. This makes

graphene a semiconductor, where the Fermi energy is localised in the Dirac points. These are also the

points of high-symmetry of the system that carry momentum values given by K and K’. The energy bands

of graphene are cone shaped-like and around these symmetry points, it is usual to make a low energy

approximation up to first order of the energy, which leads to a spectrum of the form

5



CHAPTER 1. INTRODUCTION

Figure 1.3: Left: Representation of the real space hexagonal lattice of graphene, with the Wigner-Seitz cell
in pink. The distance between carbon atoms is given by 𝑎0 ≃ 1.42 Å and the hopping integral 𝑡 ≃ −2.7 eV.
The primitive lattice vectors are a1 and a2. Right: First Brillouin zone of graphene, where G1 and G2 are
the reciprocal lattice vectors. Two special points, the Dirac points, are represented in the figure by 𝐾′ and
𝐾 . This figure was retrieved from [7].

𝐸±(k) = ±ℏ𝑣𝐹𝑘 (1.2)

where the Fermi velocity is 𝑣𝐹 = 𝑐/300. With c the velocity of light in vacuum and 𝑘 the momentum

measured regarding the Dirac points. Equation (1.2) also shows that the electrons in graphene behave

as massless Dirac fermions, and that these particles disperse linearly with the momentum near the Dirac

points [13, 14]. From equation (1.2) it is possible to get the Fermi energy simply by finding the energy for

Fermi momentum 𝑘𝐹 , which takes 𝐸𝐹 = ℏ𝑣𝐹𝑘𝐹 .

Another important physical properties of graphene is its optical conductivity, and together with the

linear dispersion, these relate important proprieties of plasmonics and electromagnetic interactions be-

tween external fields and graphene. The conductivity of graphene must be divided into two contributions

in order to study all the potential effects that can occur regarding the band structure of graphene. The con-

tribution from the intraband transition happens within the same band (the conduction or valence band)

and the momentum is not conserved, whereas the interband transitions occur between distinct bands

and the conservation of momentum is verified (see figure 1.4). Further linear analysis of the conductivity

shows us that in the Terahertz (THz) and mid-IR (infrared) frequencies, the Drude model can describe

the optical effects in graphene, which is a local model; therefore, one must promptly ignore the nonlocal

effects. Within this spectral region, and under the usual doping level of graphene (𝐸𝐹 ∼ 0.2− 0.5 eV), the

optical intraband conductivity dominates the electronic processes, while the interband transition can be

neglected. To study effects away from the THz and the mid-IR range, the low energy approximation around

the Dirac points no longer holds, and it becomes necessary to study nonlinear effects as stated in [14].

This research also points out that the low optical absorption of light in graphene and the low sheet resis-

tance elevates graphene to a high position for modern technologies that need transparent and conductive

layers of material, such as touch screens, solar cells, organic Light Emitting Diode (LED) displays, just to

name a few.
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Figure 1.4: Schematic representation of the transitions in the energy bands of graphene. The intraband
transitions happen in the same band (conduction or valence band). The interband transitions occur be-
tween bands. The cross arrow is an example of a transition prohibited by Pauli blocking. This figure was
retrieved from [7].

Plasmonics and graphene physics are two fields of research that have been growing separately, how-

ever, in the last couple of years, the combination of plasmonic effects and graphene has seen a surge

of interest due to the peculiar proprieties of graphene and the range of plasmonic technologies that can

be developed. Since graphene is a 2D material, the intrinsic graphene plasmons are confined to tighter

regions, which will be important when considering nonlocal effects, and can be tuned by gating or dop-

ing of the material, which differs from plasmons in noble metals. Graphene plasmons are encountered

between frequencies of THz and mid-IR, which makes them a great candidate to the construction of pho-

todetectors of Terahertz radiation [14]. Regarding the dispersion of plasmons in graphene, an equation

that describes this optical property can be easily uncovered by finding a solution of Maxwell’s equations

that describes the motion of an electromagnetic wave in graphene. In that order, it becomes necessary to

apply the following boundary conditions to a single monolayer of graphene: the continuity of the tangential

component of the electric field and the discontinuity of the tangential component of the magnetic field in

the interface. Of course, the same analysis has been done for other geometries, such as a double layer of

graphene, plasmonic in graphene ribbons, and plasmons in graphene nanostructures. All this plasmon

research and further mathematical descriptions of this subject are found detailed in [7]. Moreover, all

the electromagnetic properties of graphene are comprehended in its conductivity. If this property is fully

imaginary and the real part vanishes, then the SPPs dispersion in graphene has real solutions, while for

a non-vanishing real part for the conductivity, the dispersion solution has complex values. The dispersion

of graphene SPPs is displayed in figure 1.5 for different values of damping parameters Γ that account for

absorption effects in graphene. From a first analysis, the plasmons in graphene disperse as
√
𝑞, with 𝑞
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being the plasmon momentum. It is also understood that the spectrum curves lie on the right side of the

light lines, and although for the low momentum vector the curve lies on the right, it is still not possible to

excite plasmons with direct light onto graphene as the plasmons cannot be sustained in this region due to

the overdamped regime that is characterized by ℏ𝜔𝑆𝑃𝑃/Γ < 1.

Figure 1.5: Dispersion relation of SPPs for a monolayer of graphene, with different values of the damping
parameter. The dashed lines correspond to the light dispersion for the dielectrics surrounding graphene.
The black dashed line corresponds to the light dispersion in air and the red dashed line corresponds to
the light dispersion in 𝑆𝑖𝑂2. The parameters are: 𝐸𝐹 = 0.45 eV, 𝜖𝑎𝑖𝑟 = 1 and 𝜖𝑆𝑖𝑂2 = 3.9. This figure
was retrieved from [7].

In terms of electronic density 𝑛𝑒 , for graphene the Fermi energy is given by 𝐸𝐹 = ℏ𝑣𝐹𝑘𝐹 , where 𝑘𝐹 ∝ 𝑛1/2𝑒

and so the behavior 𝜔𝑆𝑃𝑃 ∝ 𝑛1/4𝑒 is an exclusive result for graphene. The excitations of SPPs in graphene

can also be achieved through grating coupling and prism coupling [1, 7], like the plasmons in metals and

semiconductors. This will allow us to study electronic devices at the scale of nanoparticles and manipulate

light at the nanoscale. The last years have seen an increase in plasmonic electronic structures that are

steadily approaching the nanometer scale. The field of research of nanoplasmonics analyze the ultra-

confined plasmonic modes in some materials. Graphene is a great candidate for nanoplasmonics, not

only because of its remarkable optical, thermodynamic, and electromagnetic proprieties, but also because

it shows SPPs confined to its nanoscale surface. The search for nanoplasmonic devices is important since

they can overcome some existing obstacles in current electronic systems; the most obvious being the size

of these systems. Plasmonics will then be able to create technology with fast operating speed but with

just a few nanometers in size. Nonetheless, the structures at these sizes may experience effects that local

models cannot describe, such as the Drude model and the local description of graphene’s conductivity up

until now. Thus, it is necessary to introduce the moment where the nonlocal effects will play an important
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role in graphene and metals. Also, finding a suitable nonlocal theory to apply to graphene/metal structures

is of extreme importance to study such effects that go beyond the plasmonic locality.

1.3 Nonlocal theory: a hydrodynamic approach

In the latter sections of this chapter, it was assumed that the Drude model could describe the electro-

magnetic response of metals and semiconductors. Drude came up with a simple model that explains the

motion of an electron in a conductor and the response of an applied electric field and responding current

densities. Furthermore, the Drude model assumes a law of proportionality between the current density at

a given point and the applied electric fields at that exact point. In other words, the Drude model assumes

locality. The same happens to the conductivity of graphene, where it is considered that this conductivity

is a function only of the frequency 𝜔 , which gives rise to a Drude-type local conductivity [7]. However,

the Drude model has its limitations: this model accounts for the contribution of the free electrons in the

conduction band, but at higher frequencies, the Drude model cannot describe the interband transitions

that could occur in conductors. Nevertheless, for lower frequencies, the approximation provided by the

model describes with great accuracy the electromagnetic response of noble metals. Another limitation,

and the most important in our case, has to do with the locality. The Drude model is a local model, so

does not account for nonlocal effects or, in the same manner, spatial dispersion [6]. This means that the

dielectric function in equation (1.1), must also depend on the wavevector 𝑘 to figure out the nonlocality. In

real space, this means that the polarization of the medium at a given point not only depends on the electric

field at that specific point but also within its vicinity, which is why it is necessary a nonlocal theory. The

Local Response Approximation (LRA) neglects the dependence of the wavevector in the dielectric function

by taking the long-wavelength limit, this means k → 0. However, the local model fails to describe some

experimental results for thin metallic films, such as the position and the width of the plasmon resonance

and field enhancement. In that order, the nonlocal effects become important due to the following reasons:

• The system configuration in the study approaches the characteristics of length scales in the range

of nanometers. The field at a given point gains a contribution from the fields in the neighboring

points. In that case, the dielectric function becomes dependent on the wavevector and that affects

the spectrum of plasmonic resonances.

• The LRA does not provide an appropriate description of the systems when the size of the metallic

nanostructures and nanoparticles or the separation between two materials in the study fall between

a few nanometers. This happens, for example, when we have a graphene sheet parallel and in

proximity to a metallic surface [15].

• If the ratio between the wavenumber of the plasmons, 𝑘 , and the Fermi wavenumber, 𝑘𝐹 is smaller

than one (𝑘/𝑘𝐹 ≪ 1) the local model gives an accurate description of the results. However, for

acoustic graphene plasmons and small metallic structures the wavenumber is large compared to
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the wavelength of the radiation of the free space, and the condition 𝑘/𝑘𝐹 > 1, tells that the nonlocal

effects have an important place in the electromagnetic response of the system, which can change

the results predicted by the local model [15, 16].

In [17] it is shown that graphene-metal plasmons (graphene in the vicinity of a metal) have energies in the

mid-IR range of the electromagnetic spectrum with a wavenumber of 200 𝜇m−1, which puts graphene in

the strong nonlocal regime because the nonlocal condition is 𝑘𝑐/𝑘𝐹𝑣𝐹 ∼ 100. This means that the con-

ductivity of graphene must depend on the wavenumber 𝜔 and on the wavevector k to build up the proper

nonlocal effects. However, plasmonic structures, even when small, possess a large number of atoms to

consider. In that order, it was necessary to find an alternative calculation to the nonlocal Drude dielectric

and graphene conductivity functions because of their time-consuming and computational burden. With a

need for an alternative approach to these calculations, a nonlocal model, also known as the hydrodynamic

model it came to light.

To explain the experimental results, Bloch and Jensen introduced a theory that explains the behavior

of an electron gas when in the presence of external fields [15]. The hydrodynamic model allows the

inclusion of nonlocal effects by considering a term that corresponds to the statistical pressure (where

quantum effects are contained) on the position of a particle. The Coulomb interactions arise by coupling

Euler’s equation with Maxwell equations of electromagnetism. The hydrodynamic model can be applied

to a 2D electron gas, which is considered a perfect fluid. However, nonlocal plasmonic effects in the

THz and mid-IR spectral range are not possible for noble metals due to the poor spatial confinement at

these frequencies. In that order, graphene emerges as a new material to study these effects in this specific

spectral range. Themassless Dirac electrons in graphene behave as a nearly perfect fluid, whose electronic

motion is given by the Navier-Stokes equation, from which Euler’s equation follows. This nonlocal model

can characterize the conductivity of graphene and its plasmonic properties. In the following sections, we

will give the mathematical details of the hydrodynamic model and equations that describes this model.

In the lastest years, the hydrodynamic model has become the reference to study the nonlocal effects of

metallic interfaces and metallic nanostructures.
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2
An Hydrodynamic Model

The Hydrodynamic model came about as a quantum nonlocal theory to describe the plasmonic prop-

erties of thin metallic structures, whereas the local-response theory failed to provide a coherent description

of plasmonics in metals [1]. This nonlocal theory allows treating the electrons in a metal as a degenerate

electron gas. The hydrodynamic model is built on three principal equations: Euler’s equation (or equation

of drift motion), the Poisson equation, and the continuity equation. In this chapter, we will see that the

Boltzmann equation is the starting point to derive the hydrodynamic equations and, with the proper bound-

ary conditions for a specific system, these equations will stand useful in providing the plasmonic properties

of metallic nanostructures and nanoparticles. Moreover, it is provided the hydrodynamic information for

2-dimensional systems such as the degenerate 2D electron gas and a graphene layer.

2.1 Boltzman and Euler Equations

The Hydrodynamic Model has its foundations in Boltzmann and Euler’s equations of fluid dynamics.

The study of these equations will provide us with some insight and knowledge into how this model works

and will allow us to reach a set of hydrodynamic equations for an electron gas in the electrostatic regime.

This electron gas can be characterized by a distribution function 𝑓 (r, v)𝑑r𝑑v, which gives us the number
of electrons in the gas having position and velocity centered at r and v when we take into account,

respectively, the small volume 𝑑r and the small velocity range 𝑑v. Considering the case for conservative

forces F = −∇Φ, where Φ is the potential energy, the time evolution of the distribution function 𝑓 (r, v)
is given by the Boltzmann equation

𝜕𝑓

𝜕𝑡
+ v · 𝜕𝑓

𝜕r
+ g · 𝜕𝑓

𝜕v
= 0 (2.1)

11



CHAPTER 2. AN HYDRODYNAMIC MODEL

where g represents the external forces per unit mass. Equation (2.1) is also called the collisionless Boltz-

mann equation. To account for collisions of the electrons in the gas, it is necessary to add a term of the

form Γ(𝑡) to the right-hand side of this equation. However for our purposes, the collision term can be

neglected. The position of the particles as a function of time can be obtained, simply by integrating (2.1)

on the coordinate v. In that order let us take the zero moment of the Boltzmann equation.∫
𝑑v

[
𝜕𝑓 (r, v)
𝜕𝑡

+ v · 𝜕𝑓 (r, v)
𝜕r

+ g · 𝜕𝑓 (r, v)
𝜕v

= 0

]
(2.2)

By introducing the mass density (assuming the same mass m for all particles in the gas) and the velocity

moment, respectively, using the relations

𝜌 (r) =
∫

𝑑v𝑓 (r, v)𝑚 (2.3)

⟨𝑣𝑖⟩ =
1

𝜌 (r)

∫
𝑑v𝑓 (r, v)𝑚𝑣𝑖 (2.4)

then equation (2.2) can be expressed in the form

𝜌 (r)
𝜕𝑡

+ 𝜕

𝜕r
· [𝜌 (r)⟨v⟩] = 0 (2.5)

which is the continuity equation that amounts to the conservation of mass. Note that we have used the

divergence theorem in the last term of equation (2.2), which provides the identity∫
𝑉
𝑑v
𝜕𝑓 (r, v)
𝜕v

=
∫
𝑆∞

𝑓 (r, v)𝑑SV = 0 (2.6)

where 𝑓 (r, v)=0 over a surface at infinity, 𝑆∞.

Let us now consider the first moment of Boltzman equation∫
𝑑vv

[
𝜕𝑓 (r, v)
𝜕𝑡

+ v · 𝜕𝑓 (r, v)
𝜕r

+ g · 𝜕𝑓 (r, v)
𝜕v

= 0

]
(2.7)

This last equation can be simplified by recalling the expressions of mass density (eq. 2.3) and velocity

moment (eq. 2.4) as

𝜕

𝜕𝑡
[𝜌 (r)⟨v⟩] +

∑
𝑖

𝜕

𝜕𝑥𝑖
[𝜌 (r)⟨v𝑣𝑖⟩] − g𝜌 (r) = 0 (2.8)

where the third term was obtained with integration by parts. This last equation is called the momentum

equation and, together with the continuity equation, the Euler equation naturally appears, as we will show.

First, it is necessary to introduce the tensor 𝜏2𝑖 𝑗 = ⟨𝑣𝑖𝑣 𝑗 ⟩ − ⟨𝑣𝑖⟩⟨𝑣 𝑗 ⟩. The term ⟨𝑣𝑖𝑣 𝑗 ⟩ is the second

moment of the velocity and can be written in an integral form as.

⟨𝑣𝑖𝑣 𝑗 ⟩ =
1

𝜌 (r)

∫
𝑑v𝑓 (r, v)𝑚𝑣𝑖𝑣 𝑗 (2.9)
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by defining the tensor in this way, it will be possible to write the term with the second momentum in

equation (2.8) in terms of products of first moments. Subtracting from the momentum equation [eq.

(2.8)] the continuity equation we obtain, for each component

𝜌 (r)
𝜕⟨𝑣 𝑗 ⟩
𝜕𝑡

+ 𝜌 (r)
∑
𝑖

⟨𝑣𝑖⟩
𝜕⟨𝑣 𝑗 ⟩
𝜕𝑥𝑖

= 𝑔 𝑗𝜌 (r) −
∑
𝑖

𝜕[𝜌 (r)𝜏2𝑖 𝑗 ]
𝜕𝑥𝑖

(2.10)

or in vectorial terms

𝜌 (r) 𝜕⟨v⟩
𝜕𝑡

+ 𝜌 (r)(⟨v⟩ · ∇)⟨v⟩ = g𝜌 (r) − ∇𝑃 (2.11)

This last equation is Euler’s equation of fluid dynamics and it is the starting point for the hydrodynamic

model of plasmons in metals and graphene. Quantum mechanical effects enter this model via the sta-

tistical pressure 𝑃 induced by the electron gas. In addition this pressure is a function of position due to

charge inhomogeneity. Since the statistical pressure depends on the position-dependent charge density,

this model is a good approach to describing nonlocal plasmonic effects in metals and graphene.

2.2 Hydrodynamic Model of a 3D electron gas in the

electrostatic regime

The Hydrodynamic model is a nonlocal theory described by three equations: Euler’s equation (the

equation of motion), the continuity equation, and the Poisson equation. Since this model describes the

behavior of an electron gas when in the presence of external fields, it is natural to think that the hydrody-

namic model combines Euler’s equation of motion [eq. (2.11)] with Maxwell’s equations of electromag-

netism. These equations, when properly linearized, will be capable of providing a nonlocal description of

plasmonics, such as the dispersion of the surface plasmon-polaritons and the potentials created in these

structures. The validity of the hydrodynamic model holds for different nanostructure geometries when pro-

vided with specific boundary conditions for each case. For that, Euler’s equation can be written in terms

of the density of particles in the gas 𝑛(r) where the mass density is 𝜌 (r) =𝑚𝑛(r)

𝑚𝑛(r) 𝜕v
𝜕𝑡

+𝑚𝑛(r)(v · ∇)v = g𝑚𝑛(r) − ∇𝑃 (2.12)

Other physical phenomena, such as electron-phonon and electron-electron interactions, can be introduced

to the study, but only if we consider scattering effects. Then we add the term𝑚𝑛(r)v/𝜏 in the left-hand
side of the previous equation, where 𝜏 is the relaxation time that takes into consideration the momentum

nonconservation of the electrons in the gas. Let us consider now that this gas is being perturbed by an

external electric field E. Since g represents the external forces per unit mass, we have g = −𝑒E/𝑚, where

−𝑒 is the electron charge. In the electrostatic regime we write E = −∇𝜙 (r), so that the external force
can be expressed in terms of the electrostatic potential 𝜙 , which leads to
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𝑚𝑛(r) 𝜕v
𝜕𝑡

+𝑚𝑛(r)(v · ∇)v = 𝑒𝑛(r)∇𝜙 (r) − ∇𝑃 (2.13)

The statistical pressure stored in the kinetic energy of the electron gas gives the simplest estimate for the

pressure. In that case, for a 3D Fermi gas, the determination of the pressure requires the calculation of

the kinetic energy.

𝐾𝑔 = 2𝑉
∫

𝑑k
(2𝜋)3

ℏ2𝑘2

2𝑚
𝜃 (𝑘𝐹 − 𝑘) =

𝑉

5𝜋2

ℏ2𝑘5𝐹
2𝑚

(2.14)

where𝑉 is the volume of the system and 𝑘𝐹 the Fermi wavenumber. The integral can be done in spherical

coordinates, 𝑑k = 𝑘 sin𝜃𝑑𝑘𝑑𝜃𝑑𝜑 , with the azimutal angle integrated into 0 ≤ 𝜑 ≤ 2𝜋 and the polar

angle with integration limits in 0 ≤ 𝜃 ≤ 𝜋 . The Heaviside function states that the upper limit in the

integral in 𝑑𝑘 must be 𝑘𝐹 , so the wavenumber of the particles in the electron gas can never be greater

than the Fermi wavenumber. On the other hand, the total number of particles reads

𝑁𝑒 = 2𝑉
∫

𝑑k
(2𝜋)3𝜃 (𝑘𝐹 − 𝑘) =

𝑉

3𝜋2𝑘
3
𝐹 (2.15)

we solved this last integral in the same way as the integral in equation (2.14). For an electron gas, we can

write the Fermi wavenumber in terms of 𝑁𝑒 and 𝑉 as

𝑘𝐹 =

(
3𝜋2𝑁𝑒
𝑉

)1/3
(2.16)

Then, the kinetic energy is rewritten as

𝐾𝑔 =
1
5𝜋2

ℏ2

2𝑚

(
3𝜋2𝑁𝑒

)5/3
𝑉 −2/3 (2.17)

from where it follows the statistical pressure as

𝑃 = −
𝜕𝐾𝑔

𝜕𝑉
= 𝛾𝑛5/3 (2.18)

where 𝑛(r) is the electron density which is defined as the number of particles per unit volume in the

electron gas, and it is related to this last equation of state with 𝛾 = (1/5) (3𝜋2)2/3(ℏ2/𝑚). The gradient
of the pressure is given by

∇𝑃 =
5
3
𝛾𝑛2/3∇𝑛(r) (2.19)

Finally its possible to describe the hydrodynamic model in the electrostatic limit with the Euler’s equation

[eq. (2.20a)], the Poisson’s equation [eq. (2.20b)] and the continuity equation [eq. (2.20c)] as
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2.2. HYDRODYNAMIC MODEL OF A 3D ELECTRON GAS IN THE ELECTROSTATIC REGIME

𝜕v
𝜕𝑡

+ (v · ∇)v =
𝑒

𝑚
∇𝜙 (r) − 5

3
𝛾

1

𝑚𝑛1/3
∇𝑛(r) (2.20a)

∇2𝜙 = − 𝑒
𝜖0
[𝑛+ − 𝑛(r)] (2.20b)

0 =
𝜕𝑛(r)
𝜕𝑡

+ ∇ · [𝑛(r)v] (2.20c)

we have 𝑛+ as the ionic background charge density neutralizing the electron gas and 𝜖0 as the vacuum

permittivity. To find a solution to these hydrodynamic equations, it becomes necessary to proceed to

their linearization since equation (2.20a) in its form includes nonlinear effects that are unnecessary to the

case in study, in which the applied electric field is a weak perturbation, and linear terms are enough to

describe the potentials and the electronic densities of the electron gas. By the usual linearization method,

we get: 𝑛(r, 𝑡) = 𝑛0 + 𝑛1(r, 𝑡) + 𝑛2(r, 𝑡) + ..., and 𝜙 (r, 𝑡) = 𝜙0(r) + 𝜙1(r, 𝑡) + 𝜙2(r, 𝑡) + ..., the
zeroth-order elements correspond to the electronic density and the static potential in the equilibrium state

(static), where the 𝑛0 is assumed to be constant throughout the homogeneous and infinite electron gas.

The linear case is implicit in the first-order perturbation terms and, assuming 𝑛0 ≫ 𝑛1 ≫ 𝑛2, we can

argue that the linear order is enough to describe the system. Note the velocity v is intrinsic of first order

(linear), there is no current flowing in the static system so 𝑣0 = 0. Which explains the nonlinear character

of the hydrodynamic equations and the necessity to carry out a linearization of the same. With this in

mind, we write the linear hydrodynamic model as:

𝜕v
𝜕𝑡

=
𝑒

𝑚
∇𝜙1(r) −

5
3
𝛾

1

𝑚𝑛1/30

∇𝑛1(r) (2.21)

∇2𝜙1(r) =
𝑒

𝜖0
𝑛1(r) (2.22)

0 =
𝜕𝑛1(r)
𝜕𝑡

+ 𝑛0∇ · v (2.23)

Taking the divergence of the linearized Euler’s equation multiplied by 𝑛0, it becomes more intuitive to use

the Poisson’s equation and the continuity equation to write Euler’s equation as(
𝛽2∇2 − 𝜕2

𝜕𝑡2
− 𝜔2

𝑝

)
𝑛1(r) = 0 (2.24)

where 𝛽 is a parameter that characterizes the nonlocality of the theory and is defined as 𝛽2 = ℏ2𝑘2𝐹/3𝑚2 =

𝑣2𝐹/3 in our model. However, we can consider other sources of nonlocality that take our hydrodynamic

model more realistic, and in that case, the value of the nonlocal parameter will slightly change ([17],[18],[19]).

In the electrostatic regime, the value of 𝛽 obtained in equation (2.24) is considered for low frequencies.

To obtain the local response of the system, nothing is easier than taking 𝛽 → 0. Physically, the nonlocal

parameter tells us the speed of propagation of density disturbances in the electron gas. The wave equation

(2.24) also gives the bulk plasmon frequency 𝜔𝑝 =
√
𝑒2𝑛0/𝑚𝜖0 (see chapter 1.1) and is independent of
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CHAPTER 2. AN HYDRODYNAMIC MODEL

the velocity of light c, but rather depends on the Fermi velocity 𝑣𝐹 of the electron gas. For an infinite and

homogeneous medium the electronic density is given as a plane wave solution 𝑛1(r, 𝑡) = 𝐴𝑒𝑖 (k·r−𝜔𝑡) .

With equation (2.24) the dispersion admits solutions of the form

𝜔𝑏𝑢𝑙𝑘 =
√
𝜔2
𝑝 + 𝛽2𝑘2 (2.25)

Once 𝑛1(r) is determined, the potential follows from equation (2.22), and the velocity from equation

(2.23).

2.2.1 2D electron gas and graphene

In the latter section, we derived the linearized hydrodynamic equations for a 3-dimensional electron

gas. However, it is possible to reproduce the same equations but for 2-dimensional configurations. This

will be important because we want to study some structures where graphene will play an important role.

For 2D structures, the position vector is r = (r∥, 𝑧), with r∥ being the 2D position vector in the plane of the

2D electron gas or in graphene, this is for 𝑧 = 0, while the configurations are chosen to be perpendicular

to the 𝑧-direction. The starting point is once again Euler’s equation

𝑚𝑛(r∥)
𝜕v
𝜕𝑡

+𝑚𝑛(r∥) (v · ∇)v = 𝑒𝑛(r∥)∇𝜙 (r∥, 𝑧 = 0) − 𝛿 (𝑧)∇𝑃 (2.26)

There are some differences between the electron gas and the layer of graphene, so let us calculate the

gradient of the pressure for each case. Note that the calculations are similar to the 3-dimensional electron

gas.

2D electron gas

For a 2D electron gas the kinetic energy reads

𝐾𝑔 = 2𝐴
∫

𝑘𝑑𝑘𝑑𝜃

(2𝜋)2
ℏ2𝑘2

2𝑚
𝜃 (𝑘𝐹 − 𝑘) =

𝐴

𝜋

ℏ2𝑘4𝐹
8𝑚

(2.27)

where 𝐴 is the area of the system. The total number of electrons in the gas is given by

𝑁𝑒 = 2𝐴
∫

𝑘𝑑𝑘𝑑𝜃

(2𝜋)2 𝜃 (𝑘𝐹 − 𝑘) =
𝐴

2𝜋
𝑘2𝐹 (2.28)

we can then write the Fermi momentum in terms of the 2D homogeneous electronic density 𝑛0 = 𝑁𝑒/𝐴
as

𝑘𝐹 =
√
2𝜋𝑛0 (2.29)

It follows that the statistical pressure is given by

𝑃 = −
𝜕𝐾𝑔

𝜕𝐴
= 𝛾2𝐷𝑛

2
0 (2.30)

16



2.2. HYDRODYNAMIC MODEL OF A 3D ELECTRON GAS IN THE ELECTROSTATIC REGIME

where 𝛾2𝐷 = ℏ2𝜋/2𝑚. The calculations were made to a homogeneous 2D electron gas, however; we

are interested in the pressure of the inhomogeneous gas. In that case, for obtaining the gradient of the

pressure, we promote 𝑛0 to a position-dependent on 2D electronic density, that is, 𝑛0 → 𝑛2𝐷 (r∥). With
this assumption, the gradient of the pressure as the form

∇𝑃 = 2𝛾2𝐷𝑛2𝐷 (r∥)∇𝑛2𝐷 (r∥) (2.31)

We now linearize the hydrodynamic equations by assuming 𝑛0 ≫ 𝑛1, then 𝜙 (r∥) ≈ 𝜙0(r∥) + 𝜙1(r∥)
and 𝑛(r∥) ≈ 𝑛0 + 𝑛1(r∥). This leads to the linearized 2-dimensional hydrodynamic equations (Euler’s

equation, Poisson equation and continuity equation)

𝜕v
𝜕𝑡

=
𝑒

𝑚
∇𝜙1(r, 0) −

2𝛾2𝐷
𝑚

∇𝑛1(r∥) (2.32a)

∇2𝜙1(r) =
𝑒

𝜖0
𝛿 (𝑧)𝑛1(r∥, 0) (2.32b)

0 =
𝜕𝑛1(r∥)
𝜕𝑡

+ 𝑛0∇ · v (2.32c)

where we divided Euler’s equation [eq. (2.32a)] by the mass of the electron in the gas 𝑚 and by the

homogeneous electronic density.

Graphene

It is natural to think that to obtain the hydrodynamic equations for graphene we could just change

the mass of the electrons in the 2D electron gas by the effective mass of the electron in graphene𝑚𝑔 =

ℏ𝑘𝐹/𝑣𝐹 . However the previous analysis is not entirely consistent for graphene, as the pressure has a

different functional form from the 2D electron gas, due to the linear dispersion of the electrons in graphene

[17]. Since we are dealing with a 2D material, the method of linearization is the same as the 2D electron

gas. Also, the Fermi momentum in graphene is given by 𝑘𝐹 =
√
𝜋𝑛0, which follows from the calculation

of the number of particles in the graphene layer. It presented the kinetic energy as

𝐾𝑔 = 4𝐴
∫

𝑘𝑑𝑘𝑑𝜃

(2𝜋)2 𝑣𝐹ℏ𝑘 = 𝑣𝐹ℏ
2
3𝜋
𝜋3/2𝑁 3/2

𝑒 𝐴−1/2 (2.33)

where 𝐴 is the area of the graphene layer, 𝑣𝐹 is the Fermi velocity of the electron in graphene and 𝑁𝑒 is

the total number of electrons. In a similar way to the 2D electron gas and assuming a position-dependent

electronic density, we get the gradient of the pressure in the form

∇𝑃 = 𝑣𝐹ℏ
1
2

√
𝜋𝑛(r∥)∇𝑛(r∥) (2.34)

At last the linearized momentum equation (Euler’s equation) in real space can be written in terms of the

effective mass for graphene𝑚𝑔 = ℏ𝑘𝐹/𝑣𝐹 as
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CHAPTER 2. AN HYDRODYNAMIC MODEL

𝜕v
𝜕𝑡

=
𝑒𝑣𝐹
ℏ𝑘𝐹

∇𝜙1(r∥, 0) −
𝑣2𝐹
2𝑛0

∇𝑛1(r∥) (2.35)

The remaining equations are the Poisson’s equation and the continuity equation given by (2.32b) and

(2.32c), respectively.

2.3 Boundary Conditions

In the latter sections, we described the behavior of an electron gas in an infinite system at the lights of

the hydrodynamic model. Now let us recall equation (2.24), this is the wave equation that can be solved

for different geometries by writing the Laplacian in an appropriate system of coordinates. This is a physics

problem known as Boundary Value Problems (BVPs) and it makes necessary to provide some boundary

conditions at the surface of the electron gas to account for the proper solutions for the problems.

In the electrostatic approximation, let us consider an interface 𝑆 with free surface charge density 𝜎 separat-

ing two media with different relative permittivity and a vector n normal to that surface. The first boundary

condition follows from the continuity of the potential at the separation of the two media

𝜙 (𝑚𝑒𝑑𝑖𝑢𝑚 1)
1 (r, 𝑡)

���
𝑆
= 𝜙 (𝑚𝑒𝑑𝑖𝑢𝑚 2)

1 (r, 𝑡)
���
𝑆

(2.36)

The second boundary condition follows from the continuity of the electric displacement vector component

perpendicular to the interface, and since E = ∇𝜙 the condition can be expressed as the continuity of the

normal derivative of the electrostatic potential at the interface 𝑆

𝜖1
𝜕𝜙 (𝑚𝑒𝑑𝑖𝑢𝑚 1)

1 (r, 𝑡)
𝜕𝑛

�����
𝑆

= 𝜖2
𝜕𝜙 (𝑚𝑒𝑑𝑖𝑢𝑚 2)

1 (r, 𝑡)
𝜕𝑛

�����
𝑆

(2.37)

The hydrodynamic model also provides an extra conditions due to the fact that the current flowing, per-

pendicular to the interface 𝑆 , must vanish. In other words, the normal component of the electron velocity

field 𝑣 is zero at 𝑆

𝑛0v · 𝑛̂ = 0 (2.38)

this last condition can be written in a more interesting way. What condition (2.38) tell us, is that the

normal component of the velocity to the surface is zero, and consequently so does the time derivative of

the velocity. Then, by using equation (2.21), the last boundary condition follows as

𝜖0𝜔
2
𝑝

𝑒𝑛0

𝜕𝜙1
𝜕𝑛

�����
𝑆

=
𝛽2

𝑛0

𝜕𝑛1
𝜕𝑛

�����
𝑆

(2.39)

In this way the hydrodynamic equations can be solved with the constrains provided by the boundary

conditions given by equations (2.36), (2.37) and (2.39). Now let us consider that medium 2 is a metallic

system, in this case, the metal dielectric function is given by the Drude model (see chapter 1.1)
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2.3. BOUNDARY CONDITIONS

𝜖 (𝜔) = 𝜖∞ −
𝜔2
𝑝

𝜔2 (2.40)

where 𝜖∞ is a background permittivity that accounts for all the effects that are not provided by the free

electrons, such as high-frequency interband transitions. Note that in equation (2.40) we are not considering

damping effects (Γ = 0). In the hydrodynamic model, it already held all the charges accountable within

the theory, so in this case, for a nonlocal metal the boundary condition that states the continuity of the

normal derivative of the potential [eq. (2.37)] is changed as

𝜖1
𝜕𝜙 (𝑚𝑒𝑑𝑖𝑢𝑚 1)

1 (r, 𝑡)
𝜕𝑛

�����
𝑆

= 𝜖∞
𝜕𝜙 (𝑚𝑒𝑡𝑎𝑙)

1 (r, 𝑡)
𝜕𝑛

�����
𝑆

(2.41)

If we are in the presence of local metal, it is only necessary to substitute 𝜖∞ for 𝜖 (𝜔) in the last equation,
and that is because the Drude model provides a local Drude dielectric function. Whithin the hydrodynamic

equations, we are now in a good position to study the optical properties of some electrostatic configurations

and see how the nonlocal effects are present in the electrostatic systems.
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Plasmonic Nanostructures

In this chapter, we will give use to the nonlocal hydrodynamic theory derived in the last section to solve

and study some electrostatic boundary-value problems. First, we will review the problem of bounded elec-

tron gases in a planar geometry. However, this model can also be generalized to cylindrical and spherical

geometries [18, 20]. The case in the study will be of a semi-infinite and finite metal slab embedded in a

dielectric. Following these cases, it will be interesting to study the problems in electrostatic approximation

involving a 2D electron gas and a graphene layer in vacuum. Finally, the first goal of this thesis will be the

study of the plasmon dispersion and the potentials created in a graphene sheet, when the latter is in the

vicinity of a semi-infinite and finite nonlocal metal. The metals chosen for this last problem are gold and

titanium due to their properties. We solve the problems for a planar geometry in isotropic, homogeneous,

and nonmagnetic media.

3.1 Electrostatic configurations

To obtain the dispersion curves of the plasmons in the structures in study, it is first necessary to deter-

mine the electronic densities 𝑛1(r, 𝑡) and the potentials 𝜙1(r, 𝑡). The wave equation gives the electronic
density, while, with this information, the potential follows directly from Poisson’s equation. Then we just

use the boundary conditions to obtain the plasmon dispersion in the configuration. The dispersion rela-

tion of the plasmons is of outermost importance, as it will give the energy spectrum of the plasmons and

furthermore the frequencies that this type of particles are found. Although this is the standard procedure

for determining the dispersion in metals, the case for the 2D electron gas and the graphene sheet will

be different. First, owing to the polarization of the 2D materials, the boundary condition that states the

continuity of the normal derivative of the electrostatic potential at the interface 𝑆 [eq. (2.37)], will have, in

this case, a discontinuity at the interface, proportional to the electronic density 𝑛1(r∥, 𝑡)
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𝜖1
𝜕𝜙 (𝑚𝑒𝑑𝑖𝑢𝑚 1)

1 (r, 𝑡)
𝜕𝑛

�����
𝑆

− 𝜖2
𝜕𝜙 (𝑚𝑒𝑑𝑖𝑢𝑚 2)

1 (r, 𝑡)
𝜕𝑛

�����
𝑆

=
𝑒

𝜖0
𝑛1(r∥, 𝑡) (3.1)

Where the index 1 states for first-order perturbation terms, found by linearization of the potential and of

the electronic density. To recall we consider the surface 𝑆 at 𝑧 = 0 and r∥ is the in-plane 2D position

vector. For this reason, to solve the hydrodynamic equations we introduce the Fourier transforms in the

2D plane

𝑛1(r∥, 𝑡) =
∫

𝑑𝜔𝑑k
(2𝜋)3𝑛1(k, 𝜔)𝑒

𝑖 (k·r∥−𝜔𝑡) (3.2)

where k is here defined as an in-plane 2D wavevector. It is also needed the Fourier transforms of the

velocity v(r∥, 𝑡) and the potential 𝜙 (r∥, 𝑡). Luckily, they have the same form of the last equation but for

v(k, 𝜔) and 𝜙 (k, 𝜔). Finally, to obtain the dispersion we just use Euler’s equation in the momentum

space. So, by using the Fourier transforms in the hydrodynamic equations, we obtain

− 𝑖𝜔v(k, 𝜔) = 𝑒

𝑚
𝑖k𝜙1(k, 0, 𝜔) − 2

𝛾2𝐷
𝑚
𝑖k𝑛1(k, 𝜔) (3.3a)

− 𝑖𝜔𝑛1(k, 𝜔) + 𝑛0𝑖k · v(k, 𝜔) = 0 (3.3b)(
𝜕2

𝜕𝑧2
− 𝑘2

)
𝜙1(k, 𝑧, 𝜔) =

𝑒

𝜖0
𝛿 (𝑧)𝑛1(k, 𝜔) (3.3c)

Euler’s equation (3.3a) have the constants of the 2D electron gas. For graphene, we have to consider the

pre-factors obtained in equation (2.35). Equation (3.3c) is nothing but Green’s function that will be useful

for chapter 4.

3.1.1 Metal-dielectric interface

Let us assume a planar metal-dielectric interface, with the z coordinate perpendicular to it. The metal

occupies the region 𝑧 < 0 and the dielectric region 𝑧 > 0, so the materials are semi-infinite in both regions

(see figure 3.1). Assuming an electronic density 𝑛1(r) of the form

𝑛1(r) = 𝑛(𝑧)𝑒𝑖 (k·r∥−𝜔𝑡) (3.4)

for 𝑧 < 0 (metal) and zero for 𝑧 > 0 (dielectric), where k = 𝑘𝑥𝑒𝑥 + 𝑘𝑦𝑒𝑦 is the 2D wavenumber and

r∥ = 𝑥𝑒𝑥 + 𝑦𝑒𝑦 is the 2D cartesian position vector. The wave equation given by (2.24) acquires the form(
𝛽2

𝜕2

𝜕𝑧2
− 𝛽2𝑘2 + 𝜔2 − 𝜔2

𝑝

)
𝑛(𝑧) = 0 (3.5)

The solution for this last partial differential equation is chosen as 𝑛(𝑧) = 𝐴𝑒𝛼𝑧 where 𝐴 is a constant to

be determined. It follows from equation (3.5): 𝛼2𝛽2 − 𝛽2𝑘2 + 𝜔2 − 𝜔2
𝑝 = 0 and
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Dielectric
εd

Z

Metal
ε(ω)

0

Figure 3.1: Representation of a metal-dielectric interface. Notice that the metal and the dielectric are
semi-infinite slabs with permissivity 𝜖 (𝜔) and 𝜖𝑑 , respectively.

𝛼2 = 𝑘2 +
𝜔2
𝑝 − 𝜔2

𝛽2
(3.6)

The 𝛼 parameter provides information about the nature of the SPPs. The solutions for the electronic

density correspond to surface plasmons for real values of 𝛼 , since 𝜔 < 𝜔𝑝 . For imaginary values, we

have 𝜔 > 𝜔𝑝 , which corresponds to bulk plasmons.

The electrostatic potencial 𝜙1(r) for this system can also be written with a planar wave ansatz as

𝜙1(r) =

𝑀 (𝑧)𝑒𝑖 (k·r∥−𝜔𝑡) if 𝑧 < 0

𝐷 (𝑧)𝑒𝑖 (k·r∥−𝜔𝑡) if 𝑧 > 0
(3.7)

where the coefficients 𝑀 (𝑧) and 𝐷 (𝑧) can be determined by making use of Poisson’s equation (2.22).

For the metal case (the region with 𝑧 < 0), we have an electronic density given by (3.4), so in this case,

the equation to solve is an inhomogeneous partial differential equation. For the dielectric case (the region

with 𝑧 > 0), since there is not a free electric charge and therefore the electronic density in this region is

zero, then the partial differential equation to be solved is the Laplace equation ∇2𝜙 (r) = 0. With this in

mind, the coefficients are given by

𝑀 (𝑧) = 𝐵𝑒𝛼𝑧 +𝐶𝑒𝑘𝑧

𝐷 (𝑧) = 𝐷𝑒−𝑘𝑧
(3.8)
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Note that the term proportional to C satisfies the Laplace equation, and we built the solutions, knowing

the exponentials must decay as 𝑧 approaches the infinity limits, or else the potentials would have an

exponential growth as |𝑧 | increases. Now let’s focus our attention on the electrostatic potential inside the

metal. It is possible to infer that we are in the presence of a nonlocal metal since the term proportional

to B depends on the nonlocal parameter 𝛽 [see equation (3.4)]. The solution for𝑀 (𝑧) is only valid if the
following condition is verified

𝐴 = (𝛼2 − 𝑘2)𝜖0
𝑒
𝐵 (3.9)

this last equation comes directly from solving Poisson’s equation with the potential inside the metal and

the electronic density 𝑛1(r) given by (3.4). The boundary conditions give the other restrictions at the

interface, where 𝑧 = 0. The boundary condition (2.36) reads

𝐵 +𝐶 = 𝐷 (3.10)

the boundary condition (2.37) gives

𝐵𝛼 +𝐶𝑘 = −𝜖𝑑𝐷𝑘 (3.11)

where 𝜖𝑑 is the dielectric constant for the dielectric. For this case (and for the planar slab in the next

section), we will consider 𝜖∞ = 1, and this choice rests on the fact that we are considering the metal as

a free electron gas. For this reason, there is no polarization effects and high energy interband transitions

contributing to 𝜖∞. So there is no polarization of the medium, and we can use the Drude model described

in terms of a free electron gas. The last boundary condition (2.39) states

𝜖0
𝑒
𝜔2
𝑝 (𝐵𝛼 +𝐶𝑘) − 𝛽2𝐴𝛼 = 0 (3.12)

We end it up with a system of four linear equations and four coefficients to be determined. Manipulating

the equations given by the boundary conditions will provide us with the following equation

𝛼 + 𝜖𝑑𝑘 = (𝜖𝑑 + 1)𝛼𝜔
2

𝜔2
𝑝

(3.13)

For 𝑘 = 0 the solution of the spectrum condition is 𝜔 = 𝜔𝑝/
√
1 + 𝜖𝑑 , as expected for an electrostatic

calculation. In addition, at 𝑘 = 0, there is another solution given by 𝜔 = 𝜔𝑝 , which describes a bulk

mode, (see chapter 1.1) that is, the transparent regime where the radiation propagates throughout the

metal. The general solution of the spectrum condition for a metal-dielectric interface for an arbitrary value

of k reads

𝜔 (𝑘) = 1
2

(
𝛽𝑘 +

√
𝛽2𝑘2 + 2𝜔2

𝑝

)
(3.14)
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Therefore, since in general we have 𝛽𝑘 ≪ 𝜔𝑝 , the dispersion is approximately 𝜔 (𝑘) = 1
2 (𝛽𝑘 +

√
2𝜔𝑝),

that is, linear in the wavenumber. In figure 3.2, the spectrum given by equation (3.14) is depicted together

with the horizontal line that corresponds to the electrostatic limit for the surface plasmon-polaritons in

vacuum as 𝑘 → +∞.

0 2 4 6 8 10
0.700

0.705

0.710

0.715

0.720

0.725

0.730

0.735

Figure 3.2: Spectrum of surface plasmon-polaritons (SPPs) in the electrostatic limit, given by equation
(3.14), for the nonlocal parameters: 𝛽 = 0.001 and 𝛽 = 0.006. The horizontal line at 1/

√
2 is the result

for the electrostatic calculations at 𝑘 = 0 where vacuum is the dielectric medium with 𝜖𝑑 = 1.

The nonlocal effects are visible in figure 3.2. As the nonlocal parameter 𝛽 approaches zero, the dispersion

behavior becomes more like the horizontal line 1/
√
2. This means that the nonlocal effects assist in an

increase of the energy of the surface plasmon-polaritons. The curves presented in figure 3.2 exist with

values lower than the bulk plasmon frequency, that is 𝜔 < 𝜔𝑝 , which means that we are in the presence

of excitations bounded to the interface between the metal and the dielectric, which corresponds to SPPs

(recall chapter 1.1).

3.1.2 Planar Slab

Now that we gathered the dispersion relation of the SPPs for a semi-infinite metallic slab, let’s study

the case for a finite metallic slab embedded in vacuum (𝜖𝑑 = 1). In figure 2 it is presented a representation

for the finite slab with thickness 2𝑎 and with the surface oriented perpendicular to the 𝑧 axis. For the other

directions (𝑥 and 𝑦) the slab is infinite. For this geometry, the potentials and the electronic densities are

given by
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Vacuum 
   εd=1

Z

Metal
 ε(ω)0

a

-a

Figure 3.3: Representation of a finite metal slab with thickness 2𝑎 surrounded by vacuum (𝜖𝑑 = 1).

𝑛1(r, 𝑡) =


0 if 𝑧 < −𝑎
𝑛(𝑧)𝑒𝑖 (k·r∥−𝜔𝑡) if − 𝑎 < 𝑧 < 𝑎

0 if 𝑧 > 𝑎

(3.15)

𝜙1(r, 𝑡) =


𝐷1(𝑧)𝑒𝑖 (k·r∥−𝜔𝑡) if 𝑧 > 𝑎

𝑀 (𝑧)𝑒𝑖 (k·r∥−𝜔𝑡) if − 𝑎 < 𝑧 < 𝑎

𝐷2(𝑧)𝑒𝑖 (k·r∥−𝜔𝑡) if 𝑧 < −𝑎

(3.16)

Similar to the metal-dielectric interface case, let’s solve equation (2.24) in cartesian coordinates, obtaining

for 𝑛1(r, 𝑡)

𝑛1(𝑧) = 𝐴1𝑛0 cosh (𝛼𝑧) +𝐴2𝑛0 sinh (𝛼𝑧) (3.17)

with 𝛼 given by equation (3.6) and 𝑛0 is the static electronic density (see chapter 2.2). As explained in

the last section, the surface plasmon-polaritons will appear for real values of 𝛼 and the bulk plasmons for

imaginary values.

Now we determine the potentials with Poisson’s equation (2.22) by solving the appropriate differential

equations for each specific region. The coefficients are then given by
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𝐷1(𝑧) = 𝐷1𝑒
𝑘𝑧 (3.18)

𝑀 (𝑧) = 𝐵1 cosh(𝑘𝑧) +𝐶1 cosh(𝛼𝑧)
+ 𝐵2 sinh(𝑘𝑧) +𝐶1 sinh(𝛼𝑧) (3.19)

𝐷2(𝑧) = 𝐷2𝑒
−𝑘𝑧 (3.20)

Just like the metal-dielectric interface, the potential outside the metal must decay as |𝑧 | → ∞. Inside the

metal, we write the potential as a linear combination of sinh and cosh functions because we have a finite

metal and two surfaces at 𝑧 = ±𝑎. We could also write the solution as exponential functions [20]. The

coefficient for𝑀 (𝑧) remains valid if

𝐶1 =
𝑒

𝜖0

𝑛0
𝛼2 − 𝑘2𝐴1 (3.21)

𝐶2 =
𝑒

𝜖0

𝑛0
𝛼2 − 𝑘2𝐴2 (3.22)

To determine the dispersion for this system we first apply the boundary conditions (2.36) and (2.37) to

the surface of the slab at 𝑧 = ±𝑎.

𝐷1 =
[
sinh(𝑘𝑎) cosh(𝛼𝑎) − 𝛼

𝑘
cosh(𝑘𝑎) sinh(𝛼𝑎)

]
𝐶1

+
[𝛼
𝑘
sinh(𝑘𝑎) cosh(𝛼𝑎) − cosh(𝑘𝑎) sinh(𝛼𝑎)

]
𝐶2 (3.23)

𝐷2 =
[
sinh(𝑘𝑎) cosh(𝛼𝑎) − 𝛼

𝑘
cosh(𝑘𝑎) sinh(𝛼𝑎)

]
𝐶1

−
[𝛼
𝑘
sinh(𝑘𝑎) cosh(𝛼𝑎) − cosh(𝑘𝑎) sinh(𝛼𝑎)

]
𝐶2 (3.24)

𝐵1 = −
[
cosh(𝛼𝑎) + 𝛼

𝑘
sinh(𝛼𝑎)

]
𝑒−𝑘𝑎𝐶1 (3.25)

𝐵2 = −
[
cosh(𝛼𝑎) + 𝛼

𝑘
sinh(𝛼𝑎)

]
𝑒−𝑘𝑎𝐶2 (3.26)

Finally, the dispersion relation for the plasmons for this system within the nonlocal hydrodynamic model

is obtained by applying the last boundary condition (2.39)

𝛼 sinh(𝛼𝑎)
[
𝜔2

𝜔2
𝑝

− 1
2

(
1 − 𝑒−2𝑘𝑎

) (
1 + 𝑘

𝛼 tanh(𝛼𝑎)

)]
𝐴1

±𝛼 cosh(𝛼𝑎)
[
𝜔2

𝜔2
𝑝

− 1
2

(
1 + 𝑒−2𝑘𝑎

) (
1 + 𝑘

𝛼 coth(𝛼𝑎)

)]
𝐴2 = 0 (3.27)
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The finite metal slab contains two types of solutions for the potential: even and odd modes. For an even

mode 𝐴2 = 0 and

Ω2 =
1
2

(
1 − 𝑒−2𝑥

) (
1 + 𝑥

𝑦 tanh(𝑦)

)
(3.28)

On the contrary, for an odd mode 𝐴1 = 0 and the dispersion equation reads

Ω2 =
1
2

(
1 + 𝑒−2𝑥

) (
1 + 𝑥

𝑦 coth(𝑦)

)
(3.29)

To simplify the expressions, we defined some dimensionless variables: Ω = 𝜔/𝜔𝑝 ; 𝑥 = 𝑘𝑎 and 𝜁 =

𝑎𝜔𝑝/𝛽 . In this case, 𝜁 is the nonlocal parameter, but different from 𝛽 this parameter defines the local

case for 𝜁 → ∞, which is also called the non-dispersive limit [18]. Let’s also define the variable 𝑦 =

𝛼𝑎 =
√
𝑥2 − 𝜁 2(Ω2 − 1) which determines the surface plasmon-polaritons modes, for real 𝑦, and the

bulk plasmons modes for imaginary 𝑦. We can find the plasmon dispersion for the even and odd modes

by solving the transcendental equations (3.28) and (3.29).
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Figure 3.4: Dispersion curves in a finite metal slab with thickness 2𝑎 for 𝜁 = 10. (a) Even modes given
by equation (3.28). (b) Odd modes given by equation (3.29). The curve with 𝑛 = 0 corresponds to
the surface mode, while the curves with 𝑛 > 0 corresponds to bulk modes. The dashed curve is the
dispersion for the infinite medium given by equation (2.25).

Let’s now study the dispersion curves presented in figure 3.4. For a fixed wavenumber 𝑘 there is

more than one root to the transcendental equations. In that order, we found all the solutions falling in

the frequency interval 0 ⪕ Ω ⪕ 3. We presented the solutions for the even (a) and the odd (b) modes.

Depicted with the dispersion relations is also computed the dispersion for an infinite homogeneous medium

given by equation (2.25). The first difference between the even and odd modes comes from the frequency

at 𝑘𝑎 = 0. For this frequency, the lowest curves with 𝑛 = 0, which corresponds to surface modes (𝛼 real),

are different from zero in the odd modes dispersion. Actually the surface plasmon dispersion at 𝑘𝑎 = 0

takes the value of 𝜔 ∼ 𝜔𝑝 . For higher values of the wavenumber, the surface mode tends to disperse

similarly to the infinite medium.
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To study the nonlocal effects, we provide it in figure 3.5 the dispersion relation for the surface modes

and the first volume mode (𝑛 = 1) for different values of 𝜁 . Our analysis shows the differences already

known for the surface modes. For the even surface mode, all the curves have a null frequency at 𝑘𝑎 = 0

while for the odd surface modes the dispersion takes 𝜔 ∼ 𝜔𝑝 at 𝑘𝑎 = 0, no matter the value of the

nonlocal parameter 𝜁 . The volume modes are very similar to the even and odd modes. However, when

the nonlocal parameter increases, the curves converge to the non-dispersive case where 𝜁 → ∞ (or

𝛽 → 0), this is the local behavior of the plasmon dispersion. Actually, for this limit, the volume modes

disperse to Ω = 1. For the surface modes, the even and odd curves start to behave, respectively, as

Ω2 =
1
2

(
1 − 𝑒−2𝑥

)
(3.30)

Ω2 =
1
2

(
1 + 𝑒−2𝑥

)
(3.31)

This equations corresponds to the dashed curves in figure 3.5.
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Figure 3.5: Dispersion curves in the slab for different values of the parameter 𝜁 = 𝑎𝜔𝑝/𝛽 (10, 20, 40, 80).
it is represented the surface modes and the volume mode 𝑛 = 1 for the even (left) and odd (right) cases.
The dashed curve corresponds to the non-dispersive model (𝜁 = ∞).

Consider now the induced electrostatic potential 𝜙1(𝑧) in the various regions given by the equation

system (3.16). In figure 3.6, we show the potential profile for the even and odd modes for different values
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of 𝜁 . Each figure shows the potential for the three regions in the study. For 𝑧/𝑎 < −1 and 𝑧/𝑎 > −1, we
have the electrostatic potential in vacuum. For the metal region (−1 < 𝑧/𝑎 < 1 ) the potential is delimited

by the grey vertical lines. To draw the surface mode potential, we normalize them to a specific 𝑧/𝑎 point.
For the even mode, we normalize the potential at 𝑧 = 0 and for the odd surface mode at 𝑧 = 0.5𝑎.

This normalization became necessary to have a better comparison between the different curves. For the

potential in the volume modes, the normalization did not show necessary. It is also interesting to note that

the odd modes possess a node at the center of the slab, which does not occur in the even modes. Once

again, as the nonlocal parameter increases, the potential tends to the non-dispersive limit (dashed line).

Figure 3.6: Electrostatic potential 𝜙1(𝑧) in a slab for various values of 𝜁 (10, 20, 40, 80). To plot the
surface mode we took 𝑘𝑎 = 2 and for the volume modes 𝑘𝑎 = 5. The dashed line corresponds to the
non-dispersive model (𝜁 → ∞).
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3.1.3 2D electron gas

To start the study of 2D materials, let us consider the simple case of a 2D electron gas surrounded by

vacuum with his interface perpendicular to the 𝑧 axis and located at 𝑧 = 0. We now consider the potential

in the momentum space 𝜙1(k, 𝑧, 𝜔), assuming 𝜙1(k, 𝑧, 𝜔) = 𝐴𝑒−𝑘𝑧 for 𝑧 > 0 and 𝜙1(k, 𝑧, 𝜔) = 𝐴𝑒𝑘𝑧

for 𝑧 < 0 (note the potentials satisfy Poisson’s equation (3.3c) in vacuum). The coefficients A and B need

to be determined by the boundary conditions (2.36) and (3.1). Which gives the relations

𝐴 = 𝐵 (3.32)

−𝑘 (𝐴 + 𝐵) = 𝑒

𝜖0
𝑛1(k, 𝜔) (3.33)

which provides

𝐴 = − 𝑒

2𝑘𝜖0
𝑛1(k, 𝜔) (3.34)

With these last new relations, equation (3.3a) gives an expression for the velocity v(k, 𝜔) written in terms
of the electronic density𝑛1(k, 𝜔). At last, the continuity equation (3.3b) with the expression for the velocity
gives

𝜔2 =
𝑛0𝑒

2

2𝜖0𝑚
𝑘 + 𝜋𝑛0

ℏ2𝑘2

𝑚2 (3.35)

which is the well-known expression for the surface plasmons in a 2D electron gas [21]: 𝜔 ∝ 𝑘 at high

wavenumber and 𝜔 ∝
√
𝑘 at small wavenumbers. Here ℏ is the Planck’s constant an 𝑐 the velocity of

light. For low frequencies, the result for the dispersion is only given by the first term, since for realistic

parameters 𝑘 < 𝑘𝐹 . We can write the expression in a simpler and more intuitive form by considering the

electronic density 𝑛0 = 𝑘2𝐹/2𝜋 and the mass of the electron gas as𝑚 = ℏ𝑘𝐹/𝑣𝐹 , where 𝑣𝐹 is the Fermi
velocity. With these definitions, the dispersion for the 2D electrons becomes,

𝜔2 =
𝑒2𝑘𝐹
4𝜋𝜖0ℏ

𝑘 +
𝑣2𝐹
2
𝑘2 (3.36)

In [21] it is seen the dispersion given by equation (3.36). The plasmon dispersion obtained is proportional

to
√
𝑘 and the SPPs are seen in the range of frequencies of Gigahertz (GHz).

3.1.4 Graphene

Obtaining the dispersion of the surface plasmon in graphene is a lot similar to the calculations made for

the 2D electron gas. We consider a graphene sheet (2-dimensional) in vacuum located at 𝑧 = 0 and with

the normal vector parallel to the 𝑧 axis. Of course the potential is the same as before: 𝜙1(k, 𝑧, 𝜔) = 𝐴𝑒−𝑘𝑧

for 𝑧 > 0 and 𝜙1(k, 𝑧, 𝜔) = 𝐴𝑒𝑘𝑧 for 𝑧 < 0. From the boundary conditions follows equations (3.32) and

(3.33), but in this case 𝑛1(k, 𝜔) is the electronic density for graphene. Recalling that
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𝜙1(k, 0, 𝜔) = − 𝑒

2𝑘𝜖0
𝑛1(k, 𝜔) (3.37)

Once more, we apply the potential in Euler’s equation to obtain a relation between the velocity and the

electronic density 𝑛1(k, 𝜔). Then the continuity equation provides the expression for the dispersion

ℏ2𝜔2 = 2𝛼𝐹𝑆𝐸𝐹ℏ𝑐𝑘 +
𝑣2𝐹ℏ

2

2
𝑘2 ≈ 2𝛼𝐹𝑆𝐸𝐹ℏ𝑐𝑘 (3.38)

with the approximate result valid for realistic parameters (𝑘 < 𝑘𝐹 ). The last term in equation (3.38) is the

hydrodynamic correction to the dispersion relation of plasmons in graphene. Recall the Fermi momentum

for graphene 𝑘𝐹 =
√
𝜋𝑛0 and the Fermi energy 𝐸𝐹 = ℏ𝑘𝐹𝑣𝐹 . The fine structure constant is given by

𝛼𝐹𝑆 = 𝑒2/4𝜋𝜖0ℏ𝑐.
In figure 3.7 is represented the dispersion of the surface plasmons in graphene given by equation

(3.38) for different values of the Fermi energy. The energy of the plasmons in graphene it is in the order of

0 − 80 meV as seen in (a), which corresponds to a frequency plasmon in the 0 − 15 terahertz region (b).

As expected, the plasmons have a dispersion proportional to
√
𝑘 for low momentum frequencies, while

for larger 𝑘 the curves tend to a linear dispersion. In [20] is stated that the validity of the hydrodynamic

model is limited to the frequency values of 𝑘𝑣𝐹 ≪ 𝜔 ≪ 𝑘𝐹𝑣𝐹 . The typical value for the homogeneous

electronic density in graphene is in the order of 𝑛0 ⩽ 10−13 cm−2, and the corresponding Fermi energy

must respect the condition 𝐸𝐹 ⩽ 0.4 eV. This will allow us to study the plasmonic properties of graphene

in the THz to a mid-infrared range of frequencies, which is confirmed by figure 3.7 (b).
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Figure 3.7: Dispersion relation [eq. (3.38)] for a single layer of graphene in vacuum for different values of
the Fermi energies 𝐸𝐹 = (0.2, 0.3, 0.4) eV and a typical Fermi velocity of 𝑣𝐹 = 𝑐/300. (a) Dispersion in
terms of energy of the surface plasmons in the graphene layer. (b) Dispersion of plasmons in graphene
regarding frequencies. Plasmonic effects are found in the THz to mid-infrared range of frequencies.

3.2 Graphene-Metal Interface

The electrostatic boundary-value problems solved in the latter sections are already known by literature

[17, 18, 20, 21]. Our attention must go now to the problem of the generation of plasmons in a graphene
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sheet when it is in the vicinity of a metal. At a first approach, this section will focus on the study of

the nonlocal effects in the dispersion of the surface plasmons and the potentials created in graphene for

two different planar configurations: first we will consider a semi-infinite nonlocal metal slab and then we

generalize the results for a finite nonlocal metal slab. To simplify the algebra, graphene will always be

located at 𝑧 = 0 in the next problems.

Graphene in the vicinity of a semi-infinite metal

Let’s then consider a planar configuration perpendicular to the z-axis and infinite for the x and y axis, as

we can see in figure 3.8. The layered heterostructure is embedded in vacuum (𝜖𝑑 = 1). For this geometry,

we have graphene separated from metal through a dielectric of thickness 𝑑 . The metal occupies the region

𝑧 < −𝑑 while the dielectric is placed at −𝑑 < 𝑧 < 0.

Dielectric
εd

Z

Metal
ε(ω)

0

-d

Graphene

Figure 3.8: Schematic representation of graphene in the vicinity of a semi-infinite metal. Between the
graphene sheet and the metal exists a dielectric of thickness 𝑑 and dielectric constant 𝜖𝑑 .

For this planar geometry the electronic density and the potentials are given, respectively, by

𝑛1(r, 𝑡) =


0 if 𝑧 > 0

0 if − 𝑑 < 𝑧 < 0

𝑛(𝑧)𝑒𝑖 (k·r∥−𝜔𝑡) if 𝑧 < −𝑑

(3.39)

𝜙1(r, 𝑡) =


𝑀 (𝑧)𝑒𝑖 (k·r∥−𝜔𝑡) if 𝑧 < −𝑑
𝐷 (𝑧)𝑒𝑖 (k·r∥−𝜔𝑡) if − 𝑑 < 𝑧 < 0

𝐺 (𝑧)𝑒𝑖 (k·r∥−𝜔𝑡) if 𝑧 > 0

(3.40)
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Note that the electronic density for graphene is given by: 𝑛1(r, 𝑡) = 𝛿 (𝑧)𝑛1(r∥, 𝑡), however, for now, we
are interested in the study of the potential for 𝑧 > 0 (in vacuum) where the electronic density is zero, since

there are no charge carriers. Graphene density will play an important role in the boundary conditions as

already seen in section 3.1.4. The term 𝑛(𝑧) in the electronic density of the metal (𝑧 < −𝑑) can be

determined by recalling the differential equation (3.5) and the parameter 𝛼 =
√
𝑘2 + (𝜔2

𝑝 − 𝜔2)/𝛽2 [eq.
(3.6)]. Of course, the local metal is rescued when we take 𝛽 → 0. The differential equation as a solution

of the form

𝑛(𝑧) = 𝑛0𝐴𝑒𝛼𝑧 (3.41)

For the potential, we solve Poisson’s equation [eq. (2.22)] inside the metal, where the electronic density

is given by the last equation, and we solve the Laplace equation for the other regions. This provides

𝑀 (𝑧) = 𝐵𝑒𝛼𝑧 +𝐶𝑒𝑘𝑧 (3.42)

𝐷 (𝑧) = 𝐷𝑒−𝑘𝑧 + 𝐹𝑒𝑘𝑧 (3.43)

𝐺 (𝑧) = 𝐺𝑒−𝑘𝑧 (3.44)

In this case, the boundary conditions must apply to the surfaces at 𝑧 = 0 (graphene/dielectric) and

𝑧 = −𝑑 (metal/dielectric). For the graphene-dielectric interface, the boundary conditions are given by

equations (2.36) and (3.1), this last condition, we already know that due to the polarization of graphene,

the normal derivative of the potential at the interface becomes discontinuous. For the metal-dielectric

interface, we solve equations (2.36) and (2.37) and for the metal, the hydrodynamic model provide us

with equation (2.39). Contrary to the problem of the metal-dielectric interface and the planar slab, we

will consider 𝜖∞ ≠ 1. In this section, we will compare the strength of the nonlocal effects in two distinct

metals: gold (Au) and titanium (Ti). In both cases, the background permittivity is different from 1. Within

this thesis, we will only consider these two metals, even though this study is not restricted to them and we

can extend the theory to other types of metals.

Solving the BCs equations is essential to determine the coefficients in the potentials. In latter elec-

trostatic problems solved, until now, the equations were quite simple to solve through algebraic methods.

However, in this case we are presented with a certain level of complexity, but luckily we have five coef-

ficients for five boundary conditions and so we can use matricial methods to solve the linear system of

equations. This is, it is only necessary to confirm the equality𝑀 ·𝑉 = 𝑁 , where𝑉 is the coefficient matrix

𝑉 = [𝐵,𝐶, 𝐷, 𝐹,𝐺] and 𝑁 the matrix of the free-coefficient terms 𝑁 = [0, 0, 0, (𝑒/𝜖0)𝑛1(k, 𝜔), 0]. The
matrix M is given by
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𝑀 =



𝑒−𝛼𝑑 𝑒−𝑘𝑑 −𝑒𝑘𝑑 −𝑒−𝑘𝑑 0

𝜖∞𝛼𝑒−𝛼𝑑 𝜖∞𝑘𝑒−𝑘𝑑 𝜖𝑑𝑘𝑒
𝑘𝑑 −𝜖𝑑𝑘𝑒−𝑘𝑑 0

0 0 1 1 −1
0 0 𝜖𝑑𝑘 −𝜖𝑑𝑘 −𝑘

(𝜔2/𝜔2
𝑝) (𝛼/𝑘)𝑒 (𝑘−𝛼)𝑑 1 0 0 0


The solution for all coefficients and consequently the potentials can be consulted in appendix A. For our

purposes, we only need the potential in graphene to determine the dispersion of the surface plasmons in

it. By that, in graphene (at 𝑧 = 0) we have

𝜙1(k, 0, 𝜔) = 𝐺 (0) = 𝑒

𝜖0
𝑛1(k, 𝜔) [𝐷 (𝑘,𝜔) + 𝐹 (𝑘,𝜔)] (3.45)

with the auxiliary function 𝐷 (𝑘,𝜔) and 𝐹 (𝑘,𝜔), respectively

𝐷 (𝑘,𝜔) = −
𝜖𝑑 (𝛼𝜔2 − 𝑘𝜔2

𝑝) + 𝛼 (𝜔2
𝑝 − 𝜔2)𝜖∞

𝑘 [𝜖𝑑 (1 − 𝜖𝑑 + 𝑒2𝑑𝑘 (1 + 𝜖𝑑)) (𝛼𝜔2 − 𝑘𝜔2
𝑝) + 𝛼 (𝜖𝑑 − 1 + 𝑒2𝑑𝑘 (1 + 𝜖𝑑)) (𝜔2 − 𝜔2

𝑝)𝜖∞]
(3.46)

𝐹 (𝑘,𝜔) = −
𝑒2𝑑𝑘 (𝜖𝑑 (𝛼𝜔2 − 𝑘𝜔2

𝑝) + 𝛼 (𝜔2 − 𝜔2
𝑝)𝜖∞)

𝑘 [𝜖𝑑 (1 − 𝜖𝑑 + 𝑒2𝑑𝑘 (1 + 𝜖𝑑)) (𝛼𝜔2 − 𝑘𝜔2
𝑝) + 𝛼 (𝜖𝑑 − 1 + 𝑒2𝑑𝑘 (1 + 𝜖𝑑)) (𝜔2 − 𝜔2

𝑝)𝜖∞]
(3.47)

Finally, the potencial (3.45) goes into the Euler’s equation (3.3a) for graphene, and the dispersion relation

follows from the continuity equation (3.3b)

ℏ2𝜔2 =

[
−4𝛼𝐹𝑆ℏ𝑐𝐸𝐹 (𝐷 (𝑘,𝜔) + 𝐹 (𝑘,𝜔)) +

ℏ2𝑣2𝐹
2

]
𝑘2 (3.48)

Figure 3.9 and 3.10 represent the energy spectrum of the surface plasmon-polaritons, given by the last

equation when a graphene layer is in the vicinity of a nonlocal semi-infinite metal. The spectrum is shown

for two different values of the separation between the metal and graphene, this is the dielectric thickness

d. As already said, we consider two different metals, gold (Au) and titanium (Ti). The nonlocal parameter

𝛽 in our model is given by 𝛽 = 𝑣𝐹/
√
3, which for gold and titanium take the values 0.0027𝑐 and 0.0035𝑐,

respectively. Gold is described by the plasma frequency 𝜔𝑝 = 8.84 eV and by the background permittivity

𝜖∞ = 9.84. While for titanium, the parameters are: 𝜔𝑝 = 2.80 eV and 𝜖∞ = 2.2 [15]. In both figures, we

study the impact of the nonlocal effects probed by the metal in the spectrum of the surface plasmons in

graphene and we compare the respective curves with the spectrum for the local case (𝛽 → 0)

For gold and titanium, a linear character describes the spectrum of the surface plasmons. This

means that the SPPs dispersion for graphene in a vicinity of a semi-infinite metal is proportional to the

wavenumber, 𝜔 ∝ 𝑘 . This is in contrast with the spectrum obtained for graphene in vacuum (figure
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3.7), where the plasmons disperse by following the law
√
𝑘 . Looking now at the differences between the

spectrum of the two metals, it is visible that the strength of the nonlocal effects is more enhanced in the

titanium figures, where the dispersion curves has a higher separation when regarding the local spectrum.

Figure 3.9: Spectrum of the graphene surface plasmon-polaritons given by equation (3.48) when in a
graphene-metal interface, where the metal in case was gold. To improve the visualization of the nonlocal
effects it was necessary approximate the spectrum, so note that it does not start at 𝑘 = 0. The dielectric
chosen was silicon dioxide, 𝜖𝑑 = 3.9 and with thickness 𝑑 = 10 nm and 𝑑 = 5 nm. The nonlocal effects
are studied for the nonlocal parameter 𝛽 = 0.0027𝑐. We also computed the local spectrum (𝛽 → 0).
The other parameters are: 𝜔𝑝 = 8.84 eV, 𝜖∞ = 9.84 and 𝐸𝐹 = 0.17 eV.

Figure 3.10: Spectrum of the graphene surface plasmon-polaritons given by equation (3.48) when in a
graphene-metal interface, where the metal in case was titanium. The dielectric chosen was silicon dioxide,
𝜖𝑑 = 3.9 and with thickness 𝑑 = 10 nm and 𝑑 = 5 nm. The nonlocal effects are studied for the nonlocal
parameter 𝛽 = 0.0035𝑐. We also computed the local spectrum (𝛽 → 0). The other parameters are:
𝜔𝑝 = 2.80 eV, 𝜖∞ = 2.20 and 𝐸𝐹 = 0.17 eV.

The nonlocality is more distinguishable in titanium due to their smaller plasma frequency 𝜔𝑝 and back-

ground permittivity 𝜖∞. Actually, we have 𝜔𝑝,𝑇𝑖/𝜔𝑝,𝐴𝑢 ≃ 0.32 and 𝜖∞,𝑇 𝑖/𝜖∞,𝐴𝑢 ≃ 0.22. These two

factors are crucial for the presence of nonlocal effects in the system. Furthermore, in our case we are not

considering relaxation frequencies (𝛾 = 0), however, this variable also plays an important role in the study

of nonlocal effects, more information about this parameter can be found in ref. [15]. All this leads to a
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higher 𝛽 parameter in titanium (𝛽𝑇𝑖/𝛽𝐴𝑢 ≃ 1.29), which enhances the nonlocal effects. These nonlocal

effects are all provenient from the characteristics of the metal, however, the dielectric between the metal

and graphene also plays a role in the nonlocal spectrum. Specifically, in the proximity of the metal and

graphene, or in other words, the thickness 𝑑 of the dielectric change the behavior of the surface plas-

mon dispersion. Figures 3.9 and 3.10 shows the difference between the local and nonlocal spectrum for

𝑑 = 10 nm and 𝑑 = 5 nm, where we observe an increase in the nonlocal effects as the space between

the metal and graphene is decreased. This effect is more perceptible for titanium. This occurs due to

greater spatial confinement of the fields inside the configuration [15]. Nevertheless, when we increase

the thickness of the dielectric spacer, the system tends to behave as local, and we retrieve the dispersion

proportional
√
𝑘 .

Figure 3.11: Potential curves for gold given by equation (3.40) for 𝑘 = 3 𝜇m and 𝛽 = 0.0027𝑐. The
dashed curve corresponds to the local model (𝛽 → 0). Note the continuity of the potentials in all regions.
The right figures show an approximation to the plots on the left, so we can see the potential in the dielectric
where the vertical gray lines represent the dielectric with thickness 𝑑 = 10 nm and 𝑑 = 5 nm. The Fermi
energy has a value of 𝐸𝐹 = 0.17 eV.

Finally, the potentials 𝜙1(𝑧) are represented in figure 3.11 for gold and in figure 3.12 for titanium.

The dielectric has thickness of 𝑑 = 10 nm and 𝑑 = 5 nm, fixing 𝑘 = 3 𝜇m. It is possible to observe the

behavior of the metal for 𝑧 < −𝑑 , where, as expected, approaches zero at infinity and has an exponential
growth as it becomes closer to the dielectric, where at −𝑑 < 𝑧 < 0 we observe a descending and linear

behavior for the potential. In this region, the behavior is linear because we are in a region where 𝑧 ≪ 1

(and, of course, 𝑑 ≪ 1), so we can expand the potential in a Taylor series. In this way, we obtain a
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reasonable approximation by choosing only linear terms (first-order terms). At last, as we move away from

the graphene layer (𝑧 > 0) the potential tends to zero. We also verify the continuity of the potential at all

the interfaces, and for a lower nonlocal parameter 𝛽 , the potential tends towards a local character.

Figure 3.12: Potential curves for titanium given by equation (3.40) for 𝑘 = 3 𝜇m and 𝛽 = 0.0035𝑐.
The dashed curve corresponds to the local model (𝛽 → 0). Note the continuity of the potentials in all
regions. The right figures show an approximation to the plots on the left, in order to study the potential in
the dielectric where the vertical gray lines represent the dielectric thickness of 𝑑 = 10 nm and 𝑑 = 5 nm.
The Fermi energy has a value of 𝐸𝐹 = 0.17 eV.

Graphene in the vicinity of a finite metal

For our last electrostatic problem we retrieve the configuration in figure 3.8 but with the following

additions: we take the metal as finite with thickness 𝑎 and we add a semi-infinite dielectric, with dielectric

constant 𝜖𝑑1 , just below the metal as represented in figure 3.13. In this case, we have: dielectric 1 located

at 𝑧 < −(𝑑 + 𝑎), the finite metal at −(𝑑 + 𝑎) < 𝑧 < −𝑑 , and dielectric 2 at −𝑑 < 𝑧 < 0 just between

the metal and graphene. Like the last problem, the graphene layer is located at 𝑧 = 0. Since now we have

four regions, the electronic density and the potentials for each one will be
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Dielectric 2
εd2

Z

Metal
ε(ω)

0

-d

Graphene

εd1

Dielectric 1
-(d+a)

Figure 3.13: Schematic representation of graphene in the vicinity of a finite metal. Between the graphene
sheet and the metal exists a dielectric (𝜖𝑑2 ) of thickness𝑑 . Just below the metal is positioned a semi-infinite
dielectric (𝜖𝑑1 ).

𝑛1(r, 𝑡) =



0 if 𝑧 < −(𝑑 + 𝑎)
𝑛(𝑧)𝑒𝑖 (k·r∥−𝜔𝑡) if − (𝑑 + 𝑎) < 𝑧 < −𝑑
0 if − 𝑑 < 𝑧 < 0

0 if 𝑧 > 0

(3.49)

𝜙1(r, 𝑡) =



𝐷1(𝑧)𝑒𝑖 (k·r∥−𝜔𝑡) if 𝑧 < −(𝑑 + 𝑎)
𝑀 (𝑧)𝑒𝑖 (k·r∥−𝜔𝑡) if − (𝑑 + 𝑎) < 𝑧 < −𝑑
𝐷2(𝑧)𝑒𝑖 (k·r∥−𝜔𝑡) if − 𝑑 < 𝑧 < 0

𝐺 (𝑧)𝑒𝑖 (k·r∥−𝜔𝑡) if 𝑧 > 0

(3.50)

Through the wave equation (3.5) we now determine the solution for the electronic density as

𝑛(𝑧) = 𝑛0𝐴1 cosh (𝛼𝑧) + 𝑛0𝐴2 sinh (𝛼𝑧) (3.51)

where 𝑛0 is the homogeneous electronic density. Since now we are in the presence of a finite metal, we

have to consider the density solution as a linear combination of both cosh and sinh functions. For the

potential, we solve Poisson’s equation [eq. (2.22)] inside the metal, where the electronic density is given

by the last equation. In the regions with no charge (all except the metal), we solve Laplace’s equation.

This gives
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𝐷1(𝑧) = 𝐷𝑒𝑘𝑧 (3.52)

𝑀 (𝑧) = 𝐵1 cosh (𝛼𝑧) +𝐶1 cosh (𝑘𝑧) + 𝐵2 sinh (𝛼𝑧) +𝐶2 sinh (𝑘𝑧) (3.53)

𝐷2(𝑧) = 𝐹 cosh (𝑘𝑧) + 𝐸 sinh (𝑘𝑧) (3.54)

𝐺 (𝑧) = 𝐺𝑒−𝑘𝑧 (3.55)

Once again, we apply the boundary conditions stating the continuity of the potential [eq. (2.36)],

the (dis)continuity of the normal derivative of the potential at the interface [eq. (2.37)], for the surfaces:

𝑧 = −(𝑑 + 𝑎) (metal/dielectric 1), 𝑧 = −𝑑 (metal/dielectric 2) and 𝑧 = 0 (graphene/dielectric 2). We

must recall equation (3.1) for the graphene-dielectric interface. Also within the metal we have the boundary

condition (2.39). Similar to the graphene in the vicinity of a semi-infinite metal, we resort to matricial

methods to help us find the coefficients for the potentials. So let’s consider equation𝑀 ·𝑉 = 𝑁 , where we

have the coefficient matrix 𝑉 = [𝐵1, 𝐵2,𝐶1,𝐶2, 𝐷, 𝐸, 𝐹,𝐺] and 𝑛 = [0, 0, 0, 0, 0, (𝑒/𝜖0)𝑛1(k, 𝜔), 0, 0].
The solution for all the coefficients, the matrix𝑀 and the potential auxiliary functions can be consulted in

appendix A. The potential in graphene (𝑧 = 0) is then given by

𝜙1(k, 0, 𝜔) = − 𝑒
𝜖0
𝑛1(k, 𝜔)

[
𝐺1(𝑘,𝜔) +𝐺2(𝑘,𝜔)
𝑇1(𝑘,𝜔) +𝑇2(𝑘,𝜔)

]
(3.56)

Once again, the potential (3.56) goes into the Euler’s equation (3.3a) for graphene, and the dispersion

relation follows from the continuity equation (3.3b)

ℏ2𝜔2 =

[
4𝛼𝐹𝑆ℏ𝑐𝐸𝐹

(
𝐺1(𝑘,𝜔) +𝐺2(𝑘,𝜔)
𝑇1(𝑘,𝜔) +𝑇2(𝑘,𝜔)

)
+
ℏ2𝑣2𝐹
2

]
𝑘2 (3.57)

The spectrum of the SPPs given by the last equation it is represented in figures 3.14 and 3.15. Just like

in the last problem, we show the spectrum for the metals gold (𝛽 = 0.0027𝑐) and titanium (𝛽 = 0.0035𝑐).

The thickness of the dielectric 2 take the values of 𝑑 = 10 nm and 𝑑 = 5 nm, and we show the dispersion

curves for different values of themetal slab thickness. We consider dielectric 1 as vacuum and the dielectric

2 as silicon dioxide (𝜖𝑑 = 3.9). In the figures is also plotted the dispersion for the local semi-infinite metal

case. This assures us that this curve will always give us the lowest energy for the surface plasmons in

graphene, which is in contradiction with the results for the finite metal case, where the energy decreases

as the thickness of the metal slab also decreases. In this case, we were expecting that when decreasing

the thickness of the metal slab, the surface plasmons should start to behave like there is no metal in the

system and their energy should increase, but that was not verified.

The thickness of the dielectric also plays an important role in the increasing energy of the plasmons.

Higher the thickness, the less the effects that the metal will have on the plasmonic waves in graphene

and the plasmon energy will increase, as is seen in figure 3.16. Furthermore, if the dielectric thickness

between graphene and metal is increased, then the metal effects will become more negligible and the

SPPs will start to have a dispersion proportional to
√
𝑘 rather than linear. Since the nonlocal effects are
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Figure 3.14: Dispersion relation of the SPPs given by equation (3.57) in a graphene/metal interface
for the finite metal case (gold). The curves can be observed for different thickness of the metal
𝑎 = (100, 10, 5) nm. In the left figure are drawn the curves for 𝑑 = 10 nm and in the right figure
the curves for 𝑑 = 5 nm. It is also represented the curves for the local semi-infinite metal case (dashed
blue line). Note that the scale does not start at 𝑘 = 0 in order to have a better visualization of the nonlocal
curves. The parameters for gold are: 𝜔𝑝 = 8.84, 𝜖∞ = 9.84 and 𝛽 = 0.0027𝑐. The remaining parame-
ters are: 𝜖𝑑1 = 1 (vacuum), 𝜖𝑑2 = 3.9 (silicon dioxide) and a Fermi energy of 𝐸𝐹 = 0.17 eV.

Figure 3.15: Dispersion relation given of the SPPs by equation (3.57) in a graphene/metal interface for
the finite metal case (titanium). The curves can be observed for different thickness of the metal 𝑎 =
(100, 10, 5) nm. In the left figure are drawn the curves for 𝑑 = 10 nm and in the right figure the curves
for 𝑑 = 5 nm. It is also represented the curves for the local semi-infinite metal case (dashed blue line).
Note that the scale does not start at 𝑘 = 0, in order to have a better visualization of the nonlocal curves.
The parameters for titanium are: 𝜔𝑝 = 2.8, 𝜖∞ = 2.2 and 𝛽 = 0.0035𝑐. The remaining parameters are:
𝜖𝑑1 = 1 (vacuum), 𝜖𝑑2 = 3.9 (silicon dioxide) and a Fermi energy of 𝐸𝐹 = 0.17 eV.

more visible in titanium, we shall focus on this metal henceforth to study the dispersion of the SPPs and

the electrostatic potentials. Note that we also computed the dispersion ℏ𝑣𝐹𝑘 just to check the validity of

the hydrodynamic model, from chapter 3.1.4 we know that the condition ℏ𝑣𝐹𝑘 ≪ ℏ𝜔 must be verified.

The exact dispersion of the SPPs [eq. (3.57)] is very mathematical complex (see appendix A), due

to the high number of parameters and materials in the configuration. In that case, to have a better

understanding of the dispersion behavior, let us proceed to make some approximations. We start by

considering that the metal behave as a perfect metal, this is 𝜖∞ → ∞. In this case, the auxiliary
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Figure 3.16: Dispersion relation of the SPPs given by equation (3.57) in a graphene/metal interface for
the finite metal case (titanium), when the metal thickness has a value of 𝑎 = 10 nm. It is also represented
the curves for the semi-infinite local metal (𝛽 → 0) and the curve ℏ𝑣𝐹𝑘 . In the left figure the curves are
drawn for 𝑑 = 5 nm and in the right figure for 𝑑 = 50 nm. The parameters are: 𝜔𝑝 = 2.8, 𝜖∞ = 2.2,
𝛽 = 0.0035𝑐, 𝜖𝑑1 = 1, 𝜖𝑑2 = 3.9 and 𝐸𝐹 = 0.17 eV.

functions𝐺1 and 𝑇1 do not depend on the background permittivity, so their contribution to the dispersion

is negligible. Regarding the functions𝐺2 and𝑇2, it is seen that they can be written with a term proportional

to 𝜖∞ that sums with a term proportional to 𝜖2∞ in both functions. Since we are taking the infinite limit,

the biggest contribution will come from the quadratic term and the linear term can be neglected. In that

order, the limit becomes

lim
𝜖∞→∞

𝐺2(𝑘,𝜔)
𝑇2(𝑘,𝜔)

=
sin(𝑘𝑑)

𝑘 [𝜖𝑑2 cos(𝑘𝑑) + sin(𝑘𝑑)] (3.58)

where for a small angle approximation 𝑘𝑑 ≪ 1, the dispersion for graphene in the vicinity of a local

provided by equation (3.57) becomes

ℏ2𝜔2 =

(
4𝛼𝐹𝑆ℏ𝑐𝐸𝐹

𝑑

𝜖𝑑2
+
ℏ2𝑣2𝐹
2

)
𝑘2 (3.59)

This equation follows the dispersion of the SPPs in graphene near a local metal, where the separation

between them is small enough and we can consider that the metal is also semi-infinite [22]. Notice that

the last expression does not depend on the metal thickness. In our last approximation, we will try to

recover the expression for graphene in vacuum by considering the limits 𝑎 → 0 and 𝑑 → 0. Of course,

the dielectric constant will be 𝜖𝑑1 = 𝜖𝑑2 = 1 (vacuum). Let us start by obtaining the expression where the

metal thickness approaches zero. In this case, by taking the limit in the hyperbolic sine and cosine terms

of the auxiliary function, this will lead to the appearance of terms linear in 𝑎 and quadratic in 𝑎, this last

ones are neglected due to 𝑎 → 0 so, for this case only the linear terms in the metal thickness contribute

to the dispersion. In that order, we obtain

𝐺1(𝑘) +𝐺2(𝑘)
𝑇1(𝑘) +𝑇2(𝑘)

≈ cosh(𝑘𝑑) + sinh(𝑘𝑑)
2𝑘 cosh(𝑘𝑑) + 2𝑘 sinh(𝑘𝑑) (3.60)
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Finally, within this expression we apply the limit 𝑑 → 0 to obtain 1/2𝑘 and the dispersion for the graphene
SPPs in vacuum is given by

ℏ2𝜔2 = 2𝛼𝐹𝑆ℏ𝑐𝐸𝐹𝑘 +
ℏ2𝑣2𝐹
2
𝑘2 (3.61)

which is the exact expression obtained for a graphene sheet in vacuum given by equation (3.38). This

shows us that the plasmon dispersion obtained when graphene is near a finite metal provide the expected

expressions for graphene near a local semi-infinite metal [eq. (3.59) ] and a graphene sheet in vacuum

[eq. (3.61)] when taking the appropriate limits, respectively. In figure 3.17 is shown the dispersion for this

two limits altogether with the dispersion for graphene in the vicinity of a semi-infinite local metal given by

equation (3.48), which is expected to be the same as the limit spectrum 𝜖∞ → ∞.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0
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Figure 3.17: Spectrum limits of equation (3.57) that corresponds to graphene near a finite metal. For
𝜖∞ → ∞ we obtain the spectrum of a local semi-infinite metal, that corresponds to the semi-infinite
local metal (dashed green line). The dielectric chosen was silicon dioxide (𝜖𝑑2 = 3.9) and a thickness of
𝑑 = 10 nm. The metal chosen was titanium. For the limit 𝑎 → 0 and 𝑑 → 0 we obtain the problem of
graphene in a dielectric, which in this case we choose to be vacuum (𝜖𝑑1 = 𝜖𝑑2 = 1) and this spectrum
agrees with the spectrum of graphene in vacuum represented in figure (3.7). The Fermi energy has a
value of 𝐸𝐹 = 0.17 eV.

At last, we represent the potentials in figure 3.18 for titanium (𝛽 = 0.0035𝑐) with a thickness of

𝑎 = 10 nm. The potentials were drawn by fixing 𝑘 = 3 𝜇m−1 and for a dielectric thickness of 𝑑 = 10 nm

and 𝑑 = 5 nm. It is for 𝑑 = 5 nm that we see a clearer distinction between the local and nonlocal

potentials, because as we decrease the dielectric thickness, the nonlocal effects become more enhanced

due to the higher spatial confinement of the fields. Once again, there is a continuity for the potential in

the various regions.
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Figure 3.18: Electrostatic potential for titanium (Ti) while fixing 𝑘 = 3 𝜇m−1 and 𝑎 = 10 nm The dashed
curve corresponds to the local model (𝛽 → 0). The thickness of the dielectric 2 is 𝑑 = 10 nm (left) and
𝑑 = 5 nm (right). The Fermi energy takes a value of 𝐸𝐹 = 0.17 eV, the dielectric constants are 𝜖𝑑1 = 1
and 𝜖𝑑2 = 3.9. For titanium the parameters are: 𝜔𝑝 = 2.80 and 𝜖∞ = 2.2.
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4
Hydrodynamic Model in the Presence of External

Potentials

In this chapter, we will extend the hydrodynamic model in the electrostatic approximation to describe

the plasmonic effects created by the potential of an external charge in graphene. In the latter chapter, the

intrinsic potentials of the mediums within the hydrodynamic theory provided the characteristic dispersion

curves for the surface plasmons in graphene. Now that we know the typical energy at which the plasmons

occur in graphene, it will be interesting to add an external moving charge to the system to study the outcome

of the potential in graphene. In this thesis, we will study the potential induced in graphene by a particle

moving parallel to it. Of course, the motion perpendicular to the graphene sheet can also be achieved

[17] (or any other motion, for that matter). Furthermore, we derive a simple expression for the induced

potential 𝜙𝑖𝑛 (r∥, 𝑧, 𝜔) due to a moving charge 𝑍𝑒. The following external charge densities describe this
moving charge, regarding the two motion cases

𝜌𝑒𝑥 (r∥, 𝑧, 𝑡) = 𝑍𝑒𝛿 (𝑥)𝛿 (𝑦)𝛿 (𝑧 − 𝑣𝑡) (4.1)

𝜌𝑒𝑥 (r∥, 𝑧, 𝑡) = 𝑍𝑒𝛿 (𝑥)𝛿 (𝑦 − 𝑣𝑡)𝛿 (𝑧 − 𝑧0) (4.2)

where the particle is moving at speed 𝑣 . Note that delta functions define the direction of the motion. In

equation (4.1), the particle has a perpendicular motion to the graphene plane (piercing it). On the other

hand, equation (4.2) describes the parallel motion to the graphene plane at a height 𝑧 = 𝑧0, where we also

considered that the charge moves in the direction of the y-axis. We will determine the potential through

equation (3.3c) having into account the presence of external charges. This equation can be solved with

the Green´s function method and the potentials will be given in the momentum space. Therefore, it is

necessary to perform a Fourier transforms in r and t of the charge densities, which gives
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4.1. MOTION PARALLEL TO THE GRAPHENE SHEET

𝜌𝑒𝑥 (k, 𝑧, 𝜔) = 𝑍𝑒
∫

𝑑𝑡𝑑r∥𝑒
−𝑖 (k·r∥−𝜔𝑡)𝛿 (𝑥)𝛿 (𝑦)𝛿 (𝑧 − 𝑣𝑡) = 𝑍𝑒

𝑣
𝑒𝑖𝜔𝑧/𝑣 (4.3)

𝜌𝑒𝑥 (k, 𝑧, 𝜔) = 𝑍𝑒
∫

𝑑𝑡𝑑r∥𝑒
−𝑖 (k·r∥−𝜔𝑡)𝛿 (𝑥)𝛿 (𝑦 − 𝑣𝑡)𝛿 (𝑧 − 𝑧0) = 2𝜋𝑍𝑒𝛿 (𝑧 − 𝑧0)𝛿 (𝜔 − 𝑘𝑦𝑣) (4.4)

As stated we are interested in the motion parallel to the graphene sheet, thus in the next sections we will

use equation (4.4) to obtain the induced potential in the graphene sheet for two configurations: graphene

in the vicinity of a dielectric and graphene in the vicinity of local metal. The parallel motion of the external

charge will induce a dragging of the surface plasmons in graphene, which will lead to the formation of

plasmonic wakes on the surface of graphene. First, we will have to reconstruct the hydrodynamic model to

account for external charges. The methods to derive the expressions for the external and induced potentials

were first deduced by Fetter in [23].

4.1 Motion Parallel to the Graphene Sheet

The additional presence of external electrostatic forces acting on the electron gas must have a descrip-

tion in the hydrodynamic model. This adds extra terms to Euler’s and Poisson’s equation. The continuity

equation remains unchanged. With this external potential, we get

𝜕v
𝜕𝑡

=
𝑒𝑣𝐹
ℏ𝑘𝐹

∇
[
𝜙1(r∥, 0) + 𝜙𝑒𝑥 (r∥, 0)

]
−
𝑣2𝐹
2𝑛0

∇𝑛1(r∥) (4.5a)

∇2 [𝜙1(r) + 𝜙𝑒𝑥 (r)] = − 𝑒
𝜖0
𝜌𝑒𝑥 (r) +

𝑒

𝜖0
𝛿 (𝑧)𝑛1(r∥, 0) (4.5b)

where𝜙𝑒𝑥 (r∥, 0) is the external potential acting on the electron gas due to the external forces, while 𝜌𝑒𝑥 (r)
is the volume density of external charges. Note that we write the last equations for the parameters in

graphene. To recall, 𝑘𝐹 and 𝑣𝐹 are the Fermi momentum and the Fermi velocity, respectively. 𝑛0 = 𝑘2𝐹/𝜋
is the homogeneous electronic density for graphene. Of course, we can also do it for the 2D electron gas

by using equation (2.32a) instead. Moreover, we are interested in the electronic response of graphene

towards an external force. Performing a Fourier transform of the quantities in equations (4.5a) and (4.5b),

and we obtain

− 𝑖𝜔v(k, 𝜔) = 𝑒𝑣𝐹
ℏ𝑘𝐹

𝑖k𝜙 (k, 0, 𝜔) −
𝑣2𝐹
2𝑛0

𝑖k𝑛1(k, 𝜔) (4.6a)(
𝜕2

𝜕𝑧2
− 𝑘2

)
𝜙 (k, 𝑧, 𝜔) = − 1

𝜖0
𝜌𝑒𝑥 (k, 𝑧, 𝜔) +

𝑒

𝜖0
𝛿 (𝑧)𝑛1(k, 𝜔) (4.6b)

In this equation we defined the total potential as 𝜙 (k, 𝑧, 𝜔) = 𝜙1(k, 𝑧, 𝜔)+𝜙𝑒𝑥 (k, 𝑧, 𝜔), and 𝜌𝑒𝑥 (k, 𝑧, 𝜔)
is the volume density of external charges. The continuity equation remains the same as equation (3.3b).
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CHAPTER 4. HYDRODYNAMIC MODEL IN THE PRESENCE OF EXTERNAL POTENTIALS

To solve equation (4.6b) we use Green’s function method to obtain the potential. The free space Green’s

function is defined as [24] (
𝜕2

𝜕𝑧2
− 𝑘2

)
𝑔(k, 𝑧 − 𝑧′, 𝜔) = −𝛿 (𝑧 − 𝑧′) (4.7)

where it follows the general solution for the potential

𝜙 (k, 𝑧, 𝜔) = 1
𝜖0

∫
𝑑𝑧′𝑔(k, 𝑧 − 𝑧′, 𝜔)𝜌 (k, 𝑧′, 𝜔) (4.8)

where the total volume density of charge is given by

𝜌 (k, 𝑧, 𝜔) = 𝜌𝑒𝑥 (k, 𝑧, 𝜔) − 𝑒𝛿 (𝑧)𝑛1(k, 𝜔) (4.9)

The solution for equation (4.7) gives the usual function (check with appendix B)

𝑔(k, 𝑧 − 𝑧′, 𝜔) = 1
2𝑘
𝑒−𝑘 |𝑧−𝑧

′ | (4.10)

then the total potential in equation (4.8) can be rewritten with the charge densities provided in equation

(4.9) as

𝜙 (k, 𝑧, 𝜔) =
∫

𝑑𝑧′
1

2𝑘𝜖0
𝑒−𝑘 |𝑧−𝑧

′ |𝜌𝑒𝑥 (k, 𝑧′, 𝜔) −
𝑒

2𝑘𝜖0
𝑒−𝑘 |𝑧 |𝑛1(k, 𝜔) (4.11)

which can be thought as 𝜙 (k, 𝑧, 𝜔) = Φ𝑒𝑥 (k, 𝑧, 𝜔) − Φ1(k, 𝑧, 𝜔). We now replace this result in the

hydrodynamic equation (4.6a), obtaining

𝜔v(k, 𝜔) = 𝑒𝑣𝐹
ℏ𝑘𝐹

k [Φ1(k, 0, 𝜔) − Φ𝑒𝑥 (k, 0, 𝜔)] +
𝑣2𝐹
2𝑛0

k𝑛1(k, 𝜔) (4.12)

With this last equation, we obtain the velocity of the electron gas which we plug into the continuity equation.

By that, we obtain an expression for 𝑛1(k, 𝜔) that depends on the external charges. This will allow us to

write the induced potential in terms of 𝜌𝑒𝑥 (k, 𝑧, 𝜔). In this way, the induced and external potentials are

given, respectively, by

Φ𝑖𝑛 (k, 𝑧, 𝜔) = −Φ1(k, 𝑧, 𝜔) =
𝑛0𝑒

2𝑣𝐹
4𝜖20ℏ𝑘𝐹

𝑒−𝑘 |𝑧 |

𝜔2 − 𝜔2
𝑠𝑝𝑝

∫
𝑑𝑧′𝑒−𝑘 |𝑧

′ |𝜌𝑒𝑥 (k, 𝑧′, 𝜔) (4.13)

Φ𝑒𝑥 (k, 𝑧, 𝜔) =
∫

𝑑𝑧′
1

2𝑘𝜖0
𝑒−𝑘 |𝑧−𝑧

′ |𝜌𝑒𝑥 (k, 𝑧′, 𝜔) (4.14)

where 𝜔𝑠𝑝𝑝 is the known dispersion for the surface plasmon-polaritons in graphene. Note the potentials

are a function of the external volume density of charges 𝜌 (k, 𝑧′, 𝜔) in the medium. In that case, we just
plug equation (4.4) for the parallel motion, to obtain the potential induced in graphene by the external

charges
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Φ𝑖𝑛 (k, 𝑧, 𝜔) = 2𝜋𝑍
𝑛0𝑒

3𝑣𝐹
4𝜖20ℏ𝑘𝐹

𝑒−𝑘 ( |𝑧 |+𝑧0)

𝜔2 − 𝜔2
𝑠𝑝𝑝

𝛿 (𝜔 − 𝑘𝑦𝑣) (4.15)

Φ𝑒𝑥 (k, 𝑧, 𝜔) =
2𝜋𝑍𝑒
2𝑘𝜖0

𝑒−𝑘 |𝑧−𝑧0 |𝛿 (𝜔 − 𝑘𝑦𝑣) (4.16)

To obtain the last potentials in real space, we only need to perform an inverse Fourier transform, as will

be done in the next sections.

4.2 Graphene in the vicinity of a dielectric

When graphene is in the vicinity of a dielectric (𝜖𝑑 ), the calculations are similar to graphene in vacuum.

However, in such case, the Green function must differ from that of the free space [eq. (4.10)], moreover,

the method to get the potential remains the same. To determine the potentials when a charge is moving

parallel to a graphene sheet in the vicinity of a dielectric, it is necessary to first calculate the Green’s

function in graphene. By that, we have graphene at 𝑧 = 0 and the dielectric with dielectric constant 𝜖𝑑 at

𝑧 < 0 as seen in figure 4.1. Consider that we have vacuum at 𝑧 > 0.

Dielectric
εd

Z

0

z'

Graphene

I

II

III

Figure 4.1: Graphene in the vicinity of a dielectric configuration. Graphene is at 𝑧 = 0, while the dielectric
is present at 𝑧 < 0. Vacuum (𝜖𝑑 = 1) extends for 𝑧 > 0. We want to find the Green function at an
arbitrary 𝑧′.

Once again, the Green function is defined in equation (4.7). Where we consider an exponential behavior

for these functions

𝑔(𝑧, 𝑧′) =


𝑔𝐼 (𝑧, 𝑧′) = 𝐴(𝑧′)𝑒−𝑘𝑧 if 𝑧 > 𝑧′

𝑔𝐼 𝐼 (𝑧, 𝑧′) = 𝐶1(𝑧′)𝑒−𝑘𝑧 +𝐶2(𝑧′)𝑒𝑘𝑧 if 0 < 𝑧 < 𝑧′

𝑔𝐼 𝐼 𝐼 (𝑧, 𝑧′) = 𝐵(𝑧′)𝑒𝑘𝑧 if 𝑧 < 0

(4.17)
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The Green functions in equation (4.17) must, at all cases, decay as |𝑧 | → ∞. In particular, 𝑔𝐼 (𝑧, 𝑧′)
must decay as 𝑧 tends to positive values of infinity, while 𝑔𝐼 𝐼 𝐼 (𝑧, 𝑧′) decays for negative values of infinity.
Of course, this is like the calculations done in chapter 3 for the potentials, and as in that case, it is also

necessary to apply some boundary conditions to the different regions, as to obtain the coefficients in the

Green function. These conditions are just the continuity of the Green function and the discontinuity of

the normal derivative to the function at the boundaries (the mathematical formulation is clear in appendix

B). Because the Green function is like a point charge potential, only at 𝑧 = 𝑧′ are the derivatives not

continuous. We consider all the remaining charges of the configuration when we calculate the potential

with equation (4.8). Solving the linear system of the equation provided by the boundary conditions we get

for the Green functions

𝑔(𝑧, 𝑧′) =


𝑔𝐼 (𝑧, 𝑧′) = 𝑒−𝑘 (𝑧−𝑧

′)

2𝑘 + 𝑟𝑑 𝑒
−𝑘 (𝑧+𝑧′)

2𝑘 if 𝑧 > 𝑧′

𝑔𝐼 𝐼 (𝑧, 𝑧′) = 𝑟𝑑 𝑒
−𝑘 (𝑧+𝑧′)

2𝑘 + 𝑒𝑘 (𝑧+𝑧
′)

2𝑘 if 0 < 𝑧 < 𝑧′

𝑔𝐼 𝐼 𝐼 (𝑧, 𝑧′) = 𝑡𝑑 𝑒
𝑘 (𝑧−𝑧′)

2𝑘 if 𝑧 < 0

(4.18)

By thinking of the Green functions as propagating waves through the mediums, we can express these with

the ”reflection”(𝑟𝑑 ) and ”transmission”(𝑡𝑑 ) coefficients as

𝑟𝑑 =

(
1 − 𝜖𝑑
1 + 𝜖𝑑

)
(4.19)

𝑡𝑑 =

(
2

1 + 𝜖𝑑

)
(4.20)

We now want the potential created due to the parallel motion of an external particle (at 𝑧 > 0) to the

graphene sheet. Since graphene is at 𝑧 = 0 we want the Green function for this region, so we also admit

𝑧′ = 0. Here 𝑔𝐼 𝐼 (𝑧, 𝑧′) vanishes, because this region cease to exist and the induced potential in graphene
is given by 𝑔𝐼 (𝑧, 𝑧′) and 𝑔𝐼 𝐼 𝐼 (𝑧, 𝑧′). However, if we want the external potential, then we have to consider
0 < 𝑧 < 𝑧′ and we must make use of the Green function 𝑔𝐼 𝐼 (𝑧, 𝑧′). Equation (4.8) demonstrates the

total potential and the external and induced potentials are, respectively

Φ𝑒𝑥 (k, 𝑧, 𝜔) =
1
𝜖0

∫
𝑑𝑧′

(
𝑒𝑘 (𝑧−𝑧

′)

2𝑘
+ 𝑟𝑑

𝑒−𝑘 (𝑧+𝑧
′)

2𝑘

)
𝜌𝑒𝑥 (k, 𝑧′, 𝜔) (4.21)

Φ𝑖𝑛 (k, 𝑧, 𝜔) = −Φ1(k, 𝑧, 𝜔) = − 𝑒
𝜖0
𝑡𝑑
𝑒−𝑘 |𝑧 |

2𝑘
𝑛1(k, 𝜔) (4.22)

Notice that 𝜖𝑑 = 1 then the ”reflection”coefficient is 𝑟𝑑 = 0, and the ”transmission”coefficient obtained

is 𝑡𝑑 = 1, and the potentials in the last equations are reduced to the expressions in equations (4.13) and

(4.14).

Using the results for the potentials in the hydrodynamic equation (4.12), we obtain a relation for the

velocity which, once again, we put in the continuity equation (3.3b) which get us the following equation
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0 = −𝜔2𝑛1(k, 𝜔) + 𝑛0𝑘2
[
− 𝑒𝑣𝐹
ℏ𝑘𝐹

Φ𝑒𝑥 (k, 0, 𝜔) +
(

𝑒2𝑣𝐹
𝑘 (1 + 𝜖𝑑)𝜖0ℏ𝑘𝐹

+
𝑣2𝐹
2𝑛0

)
𝑛1(k, 𝜔)

]
(4.23)

where the term in curve brackets multiplied by 𝑛0𝑘2 is the dispersion of the surface plasmon-polariton

𝜔𝑠𝑝𝑝 , for graphene in this configuration. Recall that we can write the dispersion in terms of the Fermi

energy 𝐸𝐹 = ℏ𝑘𝐹𝑣𝐹 and the fine structure constant 𝛼𝐹𝑆 = 𝑒2/4𝜋𝜖0ℏ𝑐, by considering the homogeneous
electronic density as 𝑛0 = 𝑘2𝐹/𝜋 . So the relation for the SPPs in graphene is given by

𝜔2
𝑠𝑝𝑝 =

4𝛼𝐹𝑆𝐸𝐹ℏ𝑐
(1 + 𝜖𝑑)ℏ2

𝑘 +
𝑣2𝐹
2
𝑘2 (4.24)

Note that if we take 𝜖𝑑 = 1 we have graphene in vacuum and the dispersion obtained through this method

is the same as the one obtained in equation (3.38). Also, resorting to this last equation, we can get the

inhomogeneous electronic density 𝑛1(k, 𝜔) through equation (4.23)

𝑛1(k, 𝜔) = − (2𝛼𝐹𝑆𝐸𝐹ℏ𝑐/𝑒)
ℏ2𝜔2 − ℏ2𝜔2

𝑠𝑝𝑝

𝑘

∫
𝑑𝑧′𝑡𝑑𝑒

−𝑘𝑧 ′𝜌𝑒𝑥 (k, 𝑧′, 𝜔) (4.25)

Since the induced potential in graphene depends on 𝑛1(k, 𝜔) we can write it as

Φ𝑖𝑛 (k, 𝑧, 𝜔) =
1
𝜖0
𝛼𝐹𝑆𝐸𝐹ℏ𝑐

𝑡2
𝑑
𝑒−𝑘 |𝑧 |

ℏ2𝜔2 − ℏ2𝜔𝑠𝑝𝑝

∫
𝑑𝑧′𝑒−𝑘𝑧

′
𝜌𝑒𝑥 (k, 𝑧′, 𝜔) (4.26)

Now we want to study the parallel motion to the graphene sheet, where the volume density of external

charge (4.4) provides

Φ𝑖𝑛 (k, 𝑧, 𝜔) = 2𝜋𝑣2Φ0
𝑡2
𝑑
𝑒−𝑘 (|𝑧 |+𝑧0)

𝜔2 − 𝜔2
𝑠𝑝𝑝

𝛿 (𝜔 − 𝑘𝑦𝑣) (4.27)

where the prefactor Φ0 = 𝑍𝑒
𝜖0
𝛼𝐹𝑆𝐸𝐹 ℏ𝑐
ℏ2𝑣2 has units of electric potential and we defined it to make the potentials

easier to read. Note that the delta function implies that the particle disperses with a frequency given by

𝜔 = 𝑘𝑦𝑣 . Fourier transforming to real space and time equation (4.27), we obtain for Φ𝑖𝑛 (r, 𝑧, 𝑡)

Φ𝑖𝑛 (r, 𝑧, 𝑡) = 𝑣2Φ0

∫ ∞

−∞

𝑑𝜔𝑑k
(2𝜋)2

𝑡2
𝑑
𝑒−𝑘 (|𝑧 |+𝑧0)𝑒𝑖 (r∥ ·k−𝜔𝑡)

𝜔2 − 𝜔2
𝑠𝑝𝑝

𝛿 (𝜔 − 𝑘𝑦𝑣) (4.28)

This last equation finally gives us the potential induced in the surface of the graphene sheet. However, the

expression as such, still needs to be resolved, so as to provide us with results for the problems in question.

We will work out a method to calculate the integral in a more convenient form. The calculation method is

based on a mathematical description given to us by [17], where the Sokhotski-Plemelj formula will allow

us to divide the integral into two distinct new integrals: a principal value integral and an imaginary integral.

Before we start the calculation of the integral, let us compute the phase velocity 𝑣𝑝 = 𝜔/𝑘 of the plasmons
in graphene
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𝑣𝑝 =

√
𝑎𝑘

𝑘
=

(𝜔
𝑎

)𝜅
(4.29)

with 𝜅 = −1. Thus, plasmons in graphene behave as gravity waves [25], with an acceleration 𝑎. The

argument of the 𝛿 -function in equation (4.28) implies that 𝜔 = 𝑘𝑣 cos𝜃 , which also gives us the following

condition

cos𝜃 =
𝜔

𝑣𝑘
=
𝑣𝑝

𝑣
≤ 1 (4.30)

by that, the velocity 𝑣 of the charge must be larger than 𝑣𝑝 . Using 𝜔 =
√
𝑎𝑘 , we must also have

𝑎

𝑣2
≤ 𝑘 (4.31)

This means that the 𝑘 integral has domain 𝑘 ∈ [𝑎/𝑣2,∞[. Now that we have defined the domain of

integration of the potential integral in equation (4.28), let us write it in polar coordinates for simplicity

Φ𝑖𝑛 (r∥, 𝑧, 𝑡) = 𝑣2𝑡2𝑑Φ0

∫ 2𝜋

0

𝑑𝜃

2𝜋

∫ ∞

0

𝑘𝑑𝑘

2𝜋
𝑒−𝑘 (|𝑧 |+𝑧0)𝑒𝑖𝑘 [𝑟 cos(𝜃−𝜃

′)−𝑣𝑡 cos𝜃 ]

(𝑘𝑣 cos𝜃 )2 + 𝑖sgn(cos𝜃 )𝜂 − 𝑎𝑘 (4.32)

In this last integral we made some important considerations, where the polar angle 𝜃 is the angle that

the vector k makes with the y-axis. While the angle 𝜃 ′ is the polar angle of r∥ , and by that end the scalar

product k ·r is given by 𝑘𝑟 cos(𝜃−𝜃 ′). Note that the delta function implies𝜔 = 𝑘𝑦𝑣 , but the y-component

of k can be written as 𝑘𝑦 = 𝑘 cos𝜃 . To treat the dispersion of the surface plasmon-polaritons in graphene

[eq. (4.24)], we know that for real parameters (𝑘 ≪ 𝑘𝐹 ) the hydrodynamic term can be neglected. So we

get 𝜔2
𝑠𝑝𝑝 = 𝑎𝑘 , where 𝑎 = 4𝛼𝐹𝑆𝐸𝐹 ℏ𝑐

(1+𝜖𝑑 )ℏ2 is a parameter with units of acceleration and characterizes the 2D

electron gas in graphene. Finally, to solve the integral in the complex plane we get the term 𝑖sgn(cos𝜃 )𝜂,
where 𝜂 → 0 and sgn(cos𝜃 ) is the sign function for cosine. Equation (4.29) can be resolved by using

the Sokhotski-Plemelj theorem

Φ𝑖𝑛 (r∥, 𝑧, 𝑡) = 𝑡2𝑑Φ0

∫ 2𝜋

0

𝑑𝜃

2𝜋

⨏ ∞

0

𝑑𝑘

2𝜋
𝑒−𝑘𝜇𝑒𝑖𝑘𝜈

𝑘 cos2 𝜃 − 𝑎/𝑣2

− 𝑖𝜋𝑡2𝑑Φ0

∫ 2𝜋

0

𝑑𝜃

2𝜋

∫ ∞

0

𝑑𝑘

2𝜋
𝑒−𝑘𝜇𝑒𝑖𝑘𝜈sgn(cos𝜃 )𝛿 (𝑘 cos2 𝜃 − 𝑎/𝑣2) (4.33)

where the symbol
⨏

stands for the principal value of the integral. The parameters 𝜇 and 𝜈 are given by

𝜇 = |𝑧 | + 𝑧0 (4.34)

𝜈 = [𝑟 cos(𝜃 − 𝜃 ′) − 𝑣𝑡 cos𝜃 ] (4.35)

Now let’s perform a variable change of the form 𝑘 cos2 𝜃 −𝑎/𝑣2 = 𝜅, then the last integral can be written
as
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Φ𝑖𝑛 (r∥, 𝑧, 𝑡) = Φ0𝑡
2
𝑑

∫ 2𝜋

0

𝑑𝜃

(2𝜋)2
𝑒−𝑓 (𝜃 )

cos2 𝜃

⨏ ∞

−𝑎/𝑣2
𝑑𝜅
𝑒−𝑣

2 𝑓 (𝜃 )𝜅/𝑎

𝜅

− 𝑖𝜋𝑡2𝑑Φ0

∫ 2𝜋

0

𝑑𝜃

(2𝜋)2
𝑒−𝑓 (𝜃 )

cos2 𝜃
sgn(cos𝜃 ) (4.36)

In this case the sign function constrains the limits of integration, that is, if the cosine function is positive

the sign function takes the value of +1 within the integration limits [−𝜋/2, 𝜋/2], while for negative values
of cos𝜃 the sign function takes −1 in the range of integration [𝜋/2, 3𝜋/2]. We also defined the function
𝑓 (𝜃 ) as

𝑓 (𝜃 ) = 𝑎

cos2 𝜃𝑣2
[𝜇 − 𝑖𝜈 (𝜃 )] (4.37)

with 𝜇 and 𝜈 defined in equations (4.34) and (4.35), respectively. The principal value of the integral in 𝜅

is a known special function, called the exponential integral function Ei(𝑥). So we write the integral as

Figure 4.2: Top: Dispersion relation of the graphene SPPs, when in the vicinity of a dielectric given by
equation (4.24) in terms of energy (left) and frequency (right). The green curve corresponds to the particle
dispersion that follows the law 𝜔 = 𝑘𝑣 , along the direction of the moving particle (y-axis). Note that the
velocity of the moving particle 𝑣 gives the slope of the spectrum. Bottom: Induced electrostatic potential
along the direction of propagation of the moving particle. The parameters are: an electronic density of
105 𝜇m−2 which gives a Fermi energy of 𝐸𝐹 = 0.37 eV ,𝑣 = 0.1𝑐, 𝑧0 = 0.01 𝜇m and 𝑡 = 0 s. The plots
show the curves for two distinct values of the dielectric constant, 𝜖𝑑 = 1 and 𝜖𝑑 = 2.
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Φ𝑖𝑛 (r∥, 𝑧, 𝑡) = 𝑡2𝑑Φ0

∫ 2𝜋

0

𝑑𝜃

(2𝜋)2
𝑒−𝑓 (𝜃 )

cos2 𝜃
Ei[𝑓 (𝜃 )]

− 𝑖𝜋𝑡2𝑑Φ0

∫ 2𝜋

0

𝑑𝜃

(2𝜋)2
𝑒−𝑓 (𝜃 )

cos2 𝜃
sgn(cos𝜃 ) (4.38)

In figure 4.2 we can see the spectrum of the surface plasmon-polaritons in graphene given by equation

(4.24) in terms of energy and frequency of the plasmons plotted with the external particle dispersion given

by 𝜔 = 𝑘𝑣 . See that if we change the velocity of the external particle, this will also change the slope of

this curve (since it is given by 𝑣 ). From the particle dispersion, we see it intercepts the SPPs dispersion

in graphene, when in the vicinity of a dielectric, at 𝑘/𝑘𝐹 = 0.00488 for 𝜖𝑑 = 1, corresponding to a SPP

wavelength of 𝜆𝑠𝑝𝑝 = 2𝜋/𝑘 = 2.3 𝜇m. The successive crest of the potential in vacuum (blue line),

gives value of △𝑦 ≈ 2.3 𝜇m which matches well with the value obtained by the dispersion plot. For

the case were 𝜖𝑑 = 2 the interception occurs at 𝑘/𝑘𝐹 = 0.00322, corresponding to a SPP wavelength

of 𝜆𝑠𝑝𝑝 = 2𝜋/𝑘 = 3.48 𝜇m, which, as expected, matches the successive crests in the potential of the

orange line, where △𝑟 ≈ 3.48 𝜇m. If we change the velocity of the particle, those interceptions will

occur at different values, and consequently, this will also change the wavelength of the SPP as it alters

the distance between crests in the potential. Some transversal and longitudinal cuts were also made

to represent the induced potential. Hence if the coordinate 𝑦 is fixed to a certain value, then we get a

transversal representation of the potential for all values of the coordinate 𝑥 . Meanwhile, in the longitudinal

cut, what is fixed is the coordinate 𝑥 and the potential is represented for all values of 𝑦. In figure 4.3

is represented the transverse (left) and longitudinal potential (right), for the fixed values 𝑦0 = −10 𝜇m
and 𝑥0 = 0 𝜇m, respectively. These representations also allow us to see the oscillatory character of the

potential.

Figure 4.3: Induced potential in graphene given by equation (4.38). The left figure shows the transversal
cut for 𝑦0 = −10 𝜇m, while the right figure shows the longitudinal cut for 𝑥0 = 0 𝜇m. The longitudinal
cut allows us to observe the oscillatory nature of the potential, which is in agreement with method 1. The
potentials were obtained with the parameters: 𝐸𝐹 = 0.17 eV, 𝑣 = 0.1𝑐 and 𝑧0 = 1 𝜇m for graphene in
vacuum (𝜖𝑑 = 1).
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4.3 Graphene in the vicinity of a local metal

For our last electrostatic problem, it will be interesting to study the parallel motion of an external

charge to a graphene sheet when this last is in the vicinity of a local metal. Note that for a local metal,

the nonlocal parameter 𝛽 is zero, so the electrostatic potential in the metal will only be proportional to

𝑒𝑘𝑧𝑒𝑖 (k·r∥−𝜔𝑡) . Even though the metal is local, the system will still provide nonlocal effects due to the

presence of graphene. Since we now add a metal region to the system, we will have to calculate the Green

function taking this material into consideration. The configuration for this problem is represented in figure

4.4, where we have graphene at 𝑧 = 0. The dielectric slab has thickness 𝑑 for 0 < 𝑧 < −𝑑 and the metal

region is semi-infinite at 𝑧 < 0. Like in the last problem, for 𝑧 > 0 we have vacuum.

Metal
ε(ω)

-d

Dielectric
εd

Z

0

z'

Graphene

I

II

III

IV

Figure 4.4: Configuration for graphene in the vicinity of a local metal. Graphene is located at 𝑧 = 0, while
in-between graphene and the metal is present a dielectric with thickness 𝑑 and dielectric constant 𝜖𝑑 . The
local metal is semi-infinite at 𝑧 < −𝑑 . The Vacuum (𝜖𝑑 = 1) extends for 𝑧 > 0. We want to find the Green
function at an arbitrary 𝑧′.

With the Green function defined in equation (4.7), we can write for each region

𝑔(𝑧, 𝑧′) =



𝑔𝐼 (𝑧, 𝑧′) = 𝐴(𝑧′)𝑒−𝑘𝑧 if 𝑧 > 𝑧′

𝑔𝐼 𝐼 (𝑧, 𝑧′) = 𝐵1(𝑧′)𝑒−𝑘𝑧 + 𝐵2(𝑧′)𝑒𝑘𝑧 if 0 < 𝑧 < 𝑧′

𝑔𝐼 𝐼 𝐼 (𝑧, 𝑧′) = 𝐷1(𝑧′)𝑒−𝑘𝑧 + 𝐷2(𝑧′)𝑒𝑘𝑧 if − 𝑑 < 𝑧 < 0

𝑔𝐼𝑉 (𝑧, 𝑧′) = 𝑀 (𝑧′)𝑒𝑘𝑧 if 𝑧 < −𝑑

(4.39)

The Green functions in equation (4.17) must, at all cases, decay as |𝑧 | → ∞. In particular, 𝑔𝐼 (𝑧, 𝑧′) must
decay as 𝑧 tends to positive values of infinity, while 𝑔𝐼𝑉 decays for negative values of infinity. To obtain the
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coefficients in Green’s functions, we already know from the last section what boundary conditions should

be applied. Having that in mind, we have a local metal with dielectric function given by 𝜖 (𝜔) [eq. (2.40)].
Solving the linear system of the equations provided by the boundary conditions we obtain for the Green

functions

𝑔(𝑧, 𝑧′) =



𝑔𝐼 (𝑧, 𝑧′) = 𝑒−𝑘 (𝑧−𝑧
′)

2𝑘 + 𝑒−𝑘 (𝑧+𝑧
′)

2𝑘

(
𝑟𝐷+𝑟𝑑𝑒2𝑘𝑑
𝑟𝑑𝑟𝐷+𝑒2𝑘𝑑

)
if 𝑧 > 𝑧′

𝑔𝐼 𝐼 (𝑧, 𝑧′) = 𝑒−𝑘 (𝑧+𝑧
′)

2𝑘

(
𝑟𝐷+𝑟𝑑𝑒2𝑘𝑑
𝑟𝑑𝑟𝐷+𝑒2𝑘𝑑

)
+ 𝑒𝑘 (𝑧−𝑧

′)

2𝑘 if 0 < 𝑧 < 𝑧′

𝑔𝐼 𝐼 𝐼 (𝑧, 𝑧′) = 𝑒−𝑘 (𝑧+𝑧
′)

2𝑘

(
𝑡𝑑𝑟𝐷

𝑟𝑑𝑟𝐷+𝑒2𝑘𝑑
)
+ 𝑒𝑘 (𝑧−𝑧

′)

2𝑘

(
𝑡𝑑𝑒

2𝑘𝑑

𝑟𝑑𝑟𝐷+𝑒2𝑘𝑑
)

if − 𝑑 < 𝑧 < 0

𝑔𝐼𝑉 (𝑧, 𝑧′) = 𝑒𝑘 (𝑧−𝑧
′)

2𝑘

(
𝑡𝑑𝑡𝐷𝑒

2𝑘𝑑

𝑟𝑑𝑟𝐷+𝑒2𝑘𝑑
)

if 𝑧 < −𝑑

(4.40)

Where 𝑟𝑑 and 𝑡𝑑 are the ”reflection”and ”transmission”coefficients given by equations (4.19) and (4.20),

respectively. However, the presence of the metal will provide a new type of ”reflection”and ”transmis-

sion”coefficients, because of the Drude dielectric function

𝑟𝐷 =

(
𝜖𝑑 − 𝜖 (𝜔)
𝜖𝑑 + 𝜖 (𝜔)

)
(4.41)

𝑡𝐷 =

(
2𝜖𝑑

𝜖𝑑 + 𝜖 (𝜔)

)
(4.42)

where 𝑟𝐷 and 𝑡𝐷 are functions of 𝜔 .

Let us now study the potential created due to the parallel motion of an external particle (at 𝑧 > 0)

to the graphene sheet, when this last is in the vicinity of a local metal. For the induced potential, we

will assume 𝑧′ = 0 and the Green function that will contribute to the potential will be 𝑔𝐼 (𝑧, 𝑧′). For the
external potential, we are interested in region 𝐼 𝐼 so we use 𝑔𝐼 𝐼 (𝑧, 𝑧′). Note that we have followed the same
reasoning as in the problem of graphene near a dielectric. By that, the total potential is given by equation

(4.8) and the external and induced potentials are, respectively

Φ𝑒𝑥 (k, 𝑧, 𝜔) =
1
𝜖0

∫
𝑑𝑧′

[
𝑒𝑘 (𝑧−𝑧

′)

2𝑘
+ 𝑒

−𝑘 (𝑧+𝑧 ′)

2𝑘

(
𝑟𝐷 + 𝑟𝑑𝑒2𝑘𝑑
𝑟𝑑𝑟𝐷 + 𝑒2𝑘𝑑

)]
𝜌𝑒𝑥 (k, 𝑧′, 𝜔) (4.43)

Φ𝑖𝑛 (k, 𝑧, 𝜔) = −Φ1(k, 𝑧, 𝜔) = − 𝑒
𝜖0
𝑡𝑑
𝑒−𝑘𝑧

2𝑘

(
𝑟𝐷 + 𝑒2𝑘𝑑
𝑟𝑑𝑟𝐷 + 𝑒2𝑘𝑑

)
𝑛1(k, 𝜔) (4.44)

Using the results for the potentials in the hydrodynamic equation (4.12), we obtain a relation for the

velocity which, once again, we put in the continuity equation (3.3b) and obtain

0 = −𝜔2𝑛1(k, 𝜔)

+ 𝑛0𝑘2
[
− 𝑒𝑣𝐹
ℏ𝑘𝐹

Φ𝑒𝑥 (k, 0, 𝜔) +
(

𝑒2𝑣𝐹
(1 + 𝜖𝑑)𝜖0ℏ𝑘𝐹

(
𝑟𝐷 + 𝑒2𝑘𝑑
𝑟𝑑𝑟𝐷 + 𝑒2𝑘𝑑

)
1
𝑘
+
𝑣2𝐹
2𝑛0

)
𝑛1(k, 𝜔)

]
(4.45)
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In the same way as graphene in the vicinity of a dielectric (section 4.2), the dispersion for the SPPs in this

configuration is given in the last equation, by the expression in curve brackets multiplied by 𝑛0𝑘2, which

gives

𝜔2
𝑠𝑝𝑝 =

[
4𝛼𝐹𝑆𝐸𝐹ℏ𝑐
(1 + 𝜖𝑑)ℏ2

(
𝑟𝐷 (𝜔) + 𝑒2𝑘𝑑
𝑟𝑑𝑟𝐷 (𝜔) + 𝑒2𝑘𝑑

)
1
𝑘
+
𝑣2𝐹
2

]
𝑘2 (4.46)

Note that we write the dispersion in terms of the Fermi energy 𝐸𝐹 = ℏ𝑘𝐹𝑣𝐹 and the fine structure constant

𝛼𝐹𝑆 = 𝑒2/4𝜋𝜖0ℏ𝑐, by considering the homogeneous electronic density as 𝑛0 = 𝑘2𝐹/𝜋 . The inhomoge-
neous electronic density is now easily obtained through equation (4.45), where the external potential for

this configuration is expressed in equation (4.43)

𝑛1(k, 𝜔) = − (2𝛼𝐹𝑆𝐸𝐹ℏ𝑐/𝑒)
ℏ2𝜔2 − ℏ2𝜔2

𝑠𝑝𝑝

𝑘

∫
𝑑𝑧′𝑡𝑒−𝑘𝑧

′
(
𝑟𝐷 (𝜔) + 𝑒2𝑘𝑑
𝑟𝑑𝑟𝐷 (𝜔) + 𝑒2𝑘𝑑

)
𝜌𝑒𝑥 (k, 𝑧′, 𝜔) (4.47)

By that, the induced potential of graphene in the vicinity of a local metal is given by

Φ𝑖𝑛 (k, 𝑧, 𝜔) =
1
𝜖0
𝛼𝐹𝑆𝐸𝐹ℏ𝑐

𝑡2
𝑑
𝑒−𝑘𝑧

ℏ2𝜔2 − ℏ2𝜔2
𝑠𝑝𝑝

(
𝑟𝐷 (𝜔) + 𝑒2𝑘𝑑
𝑟𝑑𝑟𝐷 (𝜔) + 𝑒2𝑘𝑑

) ∫
𝑑𝑧′𝑒−𝑘𝑧

′
𝜌𝑒𝑥 (k, 𝑧′, 𝜔) (4.48)

Now we want to study the parallel motion to the graphene sheet, where the volume density of external

charge (4.4) provides

Φ𝑖𝑛 (k, 𝑧, 𝜔) = 2𝜋𝑣2Φ0
𝑡2
𝑑
𝑒−𝑘 (𝑧+𝑧0)

ℏ2𝜔2 − ℏ2𝜔2
𝑠𝑝𝑝

(
𝑟𝐷 (𝜔) + 𝑒2𝑘𝑑
𝑟𝑑𝑟𝐷 (𝜔) + 𝑒2𝑘𝑑

)
𝛿 (𝜔 − 𝑘𝑦𝑣) (4.49)

Remember the delta-function implies that the particle disperses with a frequency given by 𝜔 = 𝑘𝑦𝑣 and

the prefactor Φ0 given by Φ0 = 𝑍𝑒
𝜖0
𝛼𝐹𝑆𝐸𝐹 ℏ𝑐
ℏ2𝑣2 . Fourier transforming to real space and time equation (4.27),

we obtain for Φ𝑖𝑛 (r, 𝑧, 𝑡)

Φ𝑖𝑛 (r, 𝑧, 𝑡) = 𝑣2Φ0

∫ ∞

−∞

𝑑𝑘𝑥𝑑𝑘𝑦

(2𝜋)2
𝑡2
𝑑
𝑒−𝑘 (𝑧+𝑧0)𝑒𝑖 (r·k−𝑘𝑦𝑣𝑡)

𝜔2 − 𝜔2
𝑠𝑝𝑝

(
𝑟𝐷 (𝜔) + 𝑒2𝑘𝑑
𝑟𝑑𝑟𝐷 (𝜔) + 𝑒2𝑘𝑑

)
𝛿 (𝜔 − 𝑘𝑦𝑣) (4.50)

Now we are in a position to develop the induced potential in graphene. The calculations are similar to those

of the last section, however, in this case, we will have to find an approximate solution to the 𝜔𝑠𝑝𝑝 , since

equation (4.46) is not analytical and its solutions are found numerically. But the method to determine

the potential is the same. Once again, let us compute the phase velocity 𝑣𝑝 = 𝜔/𝑘 of the plasmons in

graphene. Since we know the dispersion is linear in the wavenumber 𝑘 , the phase velocity will be the

slope of the spectrum represented in figure 4.5 (of course, the slope will change for different parameters).

Note that this is true only if the dispersion is linear, which only happens for small dielectric thickness 𝑑 ,

as such we write 𝜔𝑠𝑝𝑝 = 𝑣0𝑘 , where 𝑣0 is the slope of the spectrum and the phase velocity. By that, we

can write
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𝑣𝑝 = 𝑣0𝜔
𝜅 (4.51)

with 𝜅 → 0. If we increase the dielectric thickness, we will have a plasmon dispersion of the form
√
𝑘 ,

and the value of 𝜅 will be the same as in the graphene in the vicinity of a dielectric case (𝜅 = −1). The
argument of the 𝛿 -function implies that 𝜔 = 𝑘𝑣 cos𝜃 , which also gives us the lower limit for the integral

in 𝑘

cos𝜃 =
𝜔

𝑣𝑘
= 1 ⇔ 𝜔𝑠𝑝𝑝 (𝑘) = 𝑣𝑘 (4.52)

In figure 4.5, the dispersion is only equal to 𝑣𝑘 at 𝑘 = 0. The equality shown in equation (4.52) won’t be

satisfied, provided that the dispersion of the SPPs remains linear in the wavevector 𝑘 . So, we can perform

the integral in 𝑘 in the domain 𝑘 ∈]0,∞[. Once again, let us start by taking the potential integral in

equation (4.50) and write it in polar coordinates

Φ𝑖𝑛 (r∥, 𝑧, 𝑡) = 𝑣2𝑡2𝑑Φ0

∫ 2𝜋

0

𝑑𝜃

2𝜋

∫ ∞

0

𝑘𝑑𝑘

2𝜋
𝑒−𝑘 ( |𝑧 |+𝑧0)𝑒𝑖𝑘 [𝑟 cos(𝜃−𝜃

′)−𝑣𝑡 cos𝜃 ]

(𝑘𝑣 cos𝜃 )2 + 𝑖sgn(cos𝜃 )𝜂 − 𝜔2
𝑠𝑝𝑝

×
(
𝑟𝐷 (𝑘𝑣 cos𝜃 ) + 𝑒2𝑘𝑑
𝑟𝑑𝑟𝐷 (𝑘𝑣 cos𝜃 ) + 𝑒2𝑘𝑑

)
(4.53)

For this integral, we can already infer some important differences between the metal configuration and the

dielectric configuration that provide the induced potential (4.29). First of all, the dispersion for the SPPs in

graphene is proportional to
√
𝑘 in the graphene/dielectric case, while for the graphene/metal structure,

if the distance between the metal and graphene is small enough, then the dispersion is proportional to 𝑘 ,

as we have already seen in section 3.2. The last difference is also due to the presence of metal, moreover,

it has to do with the Drude dielectric function 𝜖𝐷 (𝜔), which allows the appearance of a Drude type term
in equation (4.53). The other terms and parameters in this integral are obtained in the same way as in

section 4.2. The first step in calculating the integral is to obtain an analytical form for the surface plasmon-

polaritons dispersion. Luckily, it is possible to expand 𝑟𝐷 in powers of 𝜔 , since 𝜔 ≪ 𝜔𝑝 . In that way, the

dispersion of the SPPs only depends on the wavenumber 𝑘 . So we approximate equation (4.46) in the

following way

𝜔2
𝑠𝑝𝑝 ≈

1
4ℏ𝜖𝑑 (𝜖𝑑 − 1)

[
−𝐷 (𝑘) +

√
(𝐷 (𝑘))2 + 𝐹 (𝑘)

]
(4.54)

where we define some auxiliary functions

𝐷 (𝑘) = 8𝛼𝐹𝑆𝐸𝐹𝑐𝜖𝑑 (1 + 𝜖𝑑)𝑘 +
𝜔2
𝑝 [𝜖𝑑 − 1 + 𝑒2𝑑𝑘 (1 + 𝜖𝑑)]

ℏ
− 𝑣2𝐹ℏ𝜖𝑑 (𝜖𝑑 − 1)𝑘2 (4.55)

𝐹 (𝑘) = 4𝜔2
𝑝ℏ

−1𝑘𝜖𝑑 (𝜖𝑑 − 1) [8𝛼𝐹𝑆𝐸𝐹𝑐 (𝑒2𝑑𝑘 − 1) (1 + 𝜖𝑑) + 𝑘ℏ𝑣2𝐹 (𝜖𝑑 − 1 + 𝑒2𝑑𝑘 (1 + 𝜖𝑑))] (4.56)
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It is possible to see in figure 4.5 that equation (4.54) gives us a very good approximation to the spectrum

of the surface plasmon in graphene, in a way that provides the same behavior as the exact solution given

by equation (4.46) for the plasmons. Altogether, the figure also shows the particle dispersion (𝜔 = 𝑘𝑣 ).
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Figure 4.5: Dispersion relation for the surface plasmon-polaritons in graphene when in a vicinity of a local
metal. We built the spectrum based on the energy (left) and frequency (right) of the plasmons. Depicted
with the exact solution [eq. (4.46)] the approximate solution given by equation (4.54) and the external
particle dispersion (𝜔 = 𝑘𝑣 ) are also represented. The parameters are: 𝐸𝐹 = 0.37 eV, 𝑣 = 0.1𝑐,
𝑧0 = 1 𝜇m and a dielectric thickness of 𝑑 = 0.01 𝜇m in vacuum (𝜖𝑑 = 1). The dispersion was plotted
having into consideration the titanium as the metal: 𝜔𝑝 = 2.80 and 𝜖∞ = 2.20.

Now we apply the sokhotsky-Plemelj formula to the equation (4.53) we get for the induced potential

in graphene

Φ𝑖𝑛 (r∥, 𝑧, 𝑡) = 𝑣2𝑡2𝑑Φ0

⨏ 2𝜋

0

𝑑𝜃

2𝜋

∫ ∞

0

𝑑𝑘

2𝜋
𝑒−𝑘𝜇𝑒𝑖𝑘𝜈

𝑘𝑣2 cos2 𝜃 − 𝜔2
𝑠𝑝𝑝

(
𝑟𝐷 (𝑘𝑣 cos𝜃 ) + 𝑒2𝑘𝑑
𝑟𝑟𝐷 (𝑘𝑣 cos𝜃 ) + 𝑒2𝑘𝑑

)
− 𝑖𝜋𝑣2𝑡2𝑑Φ0

∫ 2𝜋

0

𝑑𝜃

2𝜋

∫ ∞

0

𝑑𝑘

2𝜋
𝑒−𝑘𝜇𝑒𝑖𝑘𝜈

(
𝑟𝐷 (𝑘𝑣 cos𝜃 ) + 𝑒2𝑘𝑑
𝑟𝑟𝐷 (𝑘𝑣 cos𝜃 ) + 𝑒2𝑘𝑑

)
sgn(cos𝜃 )𝛿 (𝑘𝑣2 cos2 𝜃 − 𝜔2

𝑠𝑝𝑝)

(4.57)

where the parameters 𝜇 and 𝜈 are the same as (4.34) and (4.35), respectively. To solve the principal

value, it is necessary to find out the poles of the function contained in the integral, in this case, we have to

solve (𝑘 cos(𝜃 )𝑣)2−𝜔2
𝑠𝑝𝑝 = 0 for 𝜃 . Then the poles are the set of angles which 𝜃 ∈ (arccos(𝜔𝑆𝑃𝑃

𝑘𝑣 ), 𝜋 −
arccos(𝜔𝑆𝑃𝑃

𝑘𝑣 ), 𝜋 + arccos(𝜔𝑆𝑃𝑃
𝑘𝑣 ), 2𝜋 − arccos(𝜔𝑆𝑃𝑃

𝑘𝑣 )). The next step is to simplify the imaginary integral
by solving the polar integral with the delta function. In this case, we call for the following function

𝑔(𝑘, 𝜃 ) = 𝑘𝑒−𝑘𝛽𝑒𝑖𝑘𝛾
(
𝑟𝐷 (𝑘𝑣 cos𝜃 ) + 𝑒2𝑘𝑑
𝑟𝑟𝐷 (𝑘𝑣 cos𝜃 ) + 𝑒2𝑘𝑑

)
(4.58)

and the imaginary integral becomes

−𝑖𝜋𝑣2𝑡2𝑑Φ0

∫ 2𝜋

0

𝑑𝜃

2𝜋

∫ ∞

0

𝑑𝑘

2𝜋
𝑔(𝑘, 𝜃 )sgn(cos𝜃 )𝛿 ((𝑘𝑣 cos𝜃 )2 − 𝜔2

𝑠𝑝𝑝) (4.59)
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Having in mind the sign term, the polar integral can be written in two parts

2
∫ 𝜋/2

0
𝑑𝜃𝑔(𝑘, 𝜃 )

4∑
𝑖=1

𝛿 (𝜃 − 𝜃𝑖)
|2𝑣2𝑘2 cos𝜃𝑖 sin𝜃𝑖 |

− 2
∫ 𝜋

𝜋/2
𝑑𝜃𝑔(𝑘, 𝜃 )

4∑
𝑖=1

𝛿 (𝜃 − 𝜃𝑖)
|2𝑣2𝑘2 cos𝜃𝑖 sin𝜃𝑖 |

(4.60)

where we have used the following mathematical property

𝛿 (𝑓 (𝜃 )) −→
𝑁∑
𝑖=1

𝛿 (𝜃 − 𝜃𝑖)
1

|𝑓 ′(𝜃𝑖) |
(4.61)

The factor of two appears in each integral because we are only dealing with cosine functions, and in that

case, the sign function will provide that for the region of integration where cos𝜃 has the same sign, the

value of the integral will be the same. At last, we need to look at the angles 𝜃𝑖 to see which one falls in the

angle interval of integration. The integral is zero for the angles 𝜃𝑖 that are not in the range of the limits of

integration. In that case figure 7, shows us that for 𝜃 ∈
[
0, 𝜋2

]
only 𝜃1 contributes for the integral and for

𝜃 ∈
[
𝜋
2 , 𝜋

]
only 𝜃2 gives a solution different from zero. This means that the solution of the polar integral

is

𝑔(𝑘, 𝜃1)
|𝑣2𝑘2 cos𝜃1 sin𝜃1 |

− 𝑔(𝑘, 𝜃2)
|𝑣2𝑘2 cos𝜃2 sin𝜃2 |

(4.62)
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Figure 4.6: Contribution of the polar angles for each interval of the polar integral (4.59). The black
lines represented in the figures are the polar angles 𝜃𝑖 = (𝜃1, 𝜃2, 𝜃3, 𝜃4) = 𝜃 ∈ (arccos(𝜔𝑆𝑃𝑃

𝑘𝑣 ), 𝜋 −
arccos(𝜔𝑆𝑃𝑃

𝑘𝑣 ), 𝜋 + arccos(𝜔𝑆𝑃𝑃
𝑘𝑣 ), 2𝜋 − arccos(𝜔𝑆𝑃𝑃

𝑘𝑣 )). Only the angles 𝜃1 and 𝜃2 are in the range of the
limits of integration, however, the factor of 2 in the integral covers the polar angles of the upper branch
(𝜃3 and 𝜃4). The parameters are the same as in figure 4.5.

Finally, the induced potential when graphene is in the vicinity of a local metal is given by
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Φ𝑖𝑛 (r, 𝑧, 𝑡) = 𝑣2𝑡2𝑑Φ0

∫ 2𝜋

0

𝑑𝜃

2𝜋

⨏ ∞

0

𝑘𝑑𝑘

2𝜋
𝑒−𝑘𝛽𝑒𝑖𝑘𝛾

(𝑘𝑣 cos𝜃 )2 − 𝜔2
𝑠𝑝𝑝

(
𝑟𝐷 (𝑘𝑣 cos𝜃 ) + 𝑒2𝑘𝑑
𝑟𝑟𝐷 (𝑘𝑣 cos𝜃 ) + 𝑒2𝑘𝑑

)
− 𝑖𝑣2𝑡2𝑑Φ0

∫ ∞

0

𝑑𝑘

4𝜋

(
𝑔(𝑘, 𝜃1)

|𝑣2𝑘2 cos𝜃1 sin𝜃1 |
− 𝑔(𝑘, 𝜃2)
|𝑣2𝑘2 cos𝜃2 sin𝜃2 |

)
(4.63)

Figure 4.7: Induced electrostatic potential along the direction of propagation of the moving particle given
by equation (4.63). The parameters are: an electronic density of 105𝜇𝑚−2 which gives a Fermi energy of
𝐸𝐹 = 0.37eV ,𝑣 = 0.1𝑐, 𝑧0 = 1 𝜇m ,𝑡 = 0 s and for a dielectric thickness of 𝑑 = 0.01 𝜇m. The plots
show the curves for two distinct values of the dielectric constant, 𝜖𝑑 = 1 and 𝜖𝑑 = 2. Note that in this
problem the potential is continuous rather than oscillatory, like in the graphene in the vicinity of a dielectric
problem.

Contrary to the case of the dielectric, the potential of graphene in the vicinity of a local metal is not

oscillatory, but rather presents a peak and then goes from zero to higher values of 𝑟 . This means that

the metal breaks the oscillatory behavior of the potential, as seen in figure 4.7. However, this happens

because the dispersion relation of the SPPs plays an important role in the potential’s behavior.

Let us recall the dispersion for graphene in the vicinity of a dielectric (fig. 4.2), in this case, the spectrum

is proportional to
√
𝑘 and the potential is oscillatory, but when we add metal to the configuration, the

dispersion changes to a behavior proportional to 𝑘 and the potential ceases to present an oscillatory

nature. Moreover, when we increase the thickness 𝑑 of the dielectric, the dispersion tends to
√
𝑘 and the

oscillations in the graphene surface are recovered. This argument was also confirmed by [25] where the

differences of waves propagating on the surface of the water are directly related to the dispersion of those

waves in the media.

The transversal and longitudinal cuts for the induced potential are represented in figure 4.8. The

longitudinal representation shows us that the presence of the metal altogether with a small enough sepa-

ration between the metal and graphene, suffices for the potential to behave more continuously, rather than
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CHAPTER 4. HYDRODYNAMIC MODEL IN THE PRESENCE OF EXTERNAL POTENTIALS

Figure 4.8: Induced potential in graphene given by equation (4.63). The transversal cut (left) was done for
𝑦0 = −15 𝜇m and the longitudinal cut (right) for 𝑥0 = 0 𝜇m. In this case, the longitudinal representation
shows the break of the oscillatory behavior. The potentials were obtained with the parameters: 𝐸𝐹 =
0.17 eV, 𝑣 = 0.1𝑐, 𝑧0 = 1 𝜇m and for a dielectric thickness of 𝑑 = 0.01 𝜇m with a dielectric constant of
𝜖𝑑 = 1. The metal chosen was titanium: 𝜔𝑝 = 2.80 eV and 𝜖∞ = 2.20.

present an oscillatory nature. In appendix 3, we show that the integrals in equation (4.63) have approxi-

mately the same numerical value and we can use only the second integral multiplied by a factor of two to

compute the induced potential. This becomes necessary, because the second integral is computationally

faster to evaluate than the first integral.
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Plasmonic Kelvin and Mach wakes

In the previous chapter, we deduced the expressions for the induced potential in graphene created by

an external particle moving parallel to it, with constant velocity 𝑣 (along the y-axis). The presence of this

external particle will give rise to plasmonic wakes on the surface of graphene. Our aim for this chapter

is to study the shape and the proprieties of this type of wakes. In [17] the same study was conducted

for graphene in vacuum, and it was uncovered that the external particle creates a V-shape pattern on the

surface of graphene. By that it is possible to make an analogy with the waves created on the surface of a

liquid, having been disturbed by a moving object at a uniform pace (like the external particle for graphene).

The half-angle that encloses this V-shape wake is commonly known to be of arcsin(1/3) = 19.47◦, which

means that the angle of the wake remains constant, at any speed of the moving object. Since this angle

was first proved by Lord Kelvin, this type of waves are known as Kelvin waves. However, recent studies

have suggested that the angle decreases with the increase of the velocity of the moving perturbation. The

measure of the angles for different velocities of the moving perturbation will let us know, where the Kelvin

region ends and where another one begins. It was found that for higher velocities the angle decreases

with the law 1/𝑣 , which is indicative of the Mach type waves [25–28]. We are now interested to see, if

these studies for the classical Kelvin and Mach waves can be transferred to the plasmonic wakes created

on the surface of graphene, for the configurations of the previous chapter. Furthermore, we will study the

half-angle of the V-shaped potential, in order to make a parallelism between the Kelvin and Mach wakes

in graphene. Firstly, within this chapter, we will discuss about classical Kelvin and Mach waves, so as to

have a starting point in the study of this type of wakes in graphene. In particular, the plasmonic wakes

will be analyzed in two cases: graphene in the vicinity of a dielectric and graphene in the vicinity of a local

metal (the same configurations in chapter 4).

61



CHAPTER 5. PLASMONIC KELVIN AND MACH WAKES

5.1 Classical Kelvin and Mach wakes

Let us consider a plane-free surface of steady liquid in equilibrium and in a gravitational field. This

field is characterized by the gravitational field strength 𝑔. To the surface of the liquid, a moving external

disturbance can be applied in order to disturb the state of equilibrium of the liquid at a given point. The

effects of this perturbation will then extend to the entire surface and a specific pattern will appear on

the surface of the liquid. This pattern depends on the shape and on the motion of the object, which is

perturbing the surface. Since we wish to study the parallel motion of an external perturbation in graphene,

it is quite clear that we have to analyze and understand the parallel motion on the surface of a liquid, where

the moving object has a rectilinear motion. For simplicity, let us consider the surface of the water. When

a perturbation is applied, this will create water wakes, which will propagate through all the free surface.

Various studies describe this type of wakes by looking at the waves produced by a moving ship or by a

duck swimming in a pond with velocity 𝑣 [28]. It is not only interesting to study this physical phenomenon

in water, but it is also a fairly suitable method to probe the surface of soft systems, where some usual

techniques, such as electron microscopy, impose some constraints. In the paper [29] it is precisely shown

that, a moving tip with speed 𝑣 parallel to the surface of the soft system will induce a local distortion, which

will dissipate in the liquid surface through the form of waves. The study was also made for a point-like

particle, such as an electron or a proton moving at a nanoscale distance from the surface, similar to our

plasmonic problem [30].

A moving ship with velocity 𝑣 traveling along a calm water surface creates a V-shaped wave moving in

an opposite direction from that of the moving ship. These waves have some properties that make them a

very interesting object of study. One of the theories that explains the propagation and creation of this type

of wake pattern is the Kelvin theory, which studies Kelvin type waves. However, some studies suggest that

this theory only works for small velocities of the ship. This implies that as the velocity increases, the waves

cannot be described by the Kelvin theory but by another one called Mach theory, which studies Mach type

of waves. We will now analyze these two theories in order to understand when we can use them and

how the waves are affected by the velocity of the moving perturbation. Note that to create these types of

waves we could choose a different perturbation other than the ship, as long as the perturbation was able

to create waves on the surface of the water. The majority of the studies use the waves created by ships

because it is easy to obtain real satellite images (see figure 5.1) from these waves as well as distinguish

the different structures in the ship wakes depending on different velocities of the ship. Furthermore, we

will define an important parameter that describes the drag (also related to the velocity) of the wave. This

parameter is the Froude number, which is adimensional

𝐹 =
𝑣√
𝑔𝐿

(5.1)

where 𝑔 is the gravitational acceleration and 𝐿 is the hull length of the ship. The Froude number will help

us interpret the moment when the transition between a Kelvin wave and the Mach wave occurs, for what
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Froude number, and consequently for what velocity the waves change their behavior.

A Kelvin wave pattern is composed of two types of waves: transverse waves and divergent waves.

Transverse waves are waves that appear in the middle of the ship’s wake and are aligned perpendicular

to the ship’s course, following its crests. Divergent waves belong in the outer region, on the sides of

the wave pattern, where the wave behaves differently from those in the middle region (figure 5.1 right).

It was observed in [28] that the amplitudes of the transverse and divergent waves depend directly on

the Froude number (5.1). This implies that, as the Froude number increases (increasing velocities), the

amplitude of the divergent wave dominates the wake pattern, and the amplitude of the transverse wave

becomes increasingly smaller, looking like it vanishes for higher Froude numbers. Therefore, for high

Froude numbers, we are expecting a wave pattern dominated by divergent waves. Another propriety of this

type of wave is the wake angle, which is the opening angle of the wake cone. Kelvin theory suggests that

the half-angle that encloses the Kelvin wave is constant, independent of the velocity of the ship (or any

other perturbation), and takes the value

𝜃𝐾 = arctan

(
1
√
8

)
≈ 19.47◦ (5.2)

Figure 5.1: (Left) Real image of ship wake created on the surface of the water by a ship traveling with
velocity 𝑣 . 𝛼 is the wake angle defined from the slope of the dashed yellow line, which gives the maximum
amplitude of the wake. The wake angle is half of the angle of the wave produced by the ship for a Froude
number 𝐹 = 0.15. Figure adapted from [27]. (Right) Wave pattern of a moving ship at 𝐹 = 0.26. There
are some wave structures represented in the figure, such as the wave crest and the wave trough that
correspond to the maximum and minimum amplitudes of the wave, respectively, and the wavelength 𝐿𝑤 .
It is also possible to see that half of the cone angle is the Kelvin angle of about 19.47◦ (total angle of
38.93◦). Figure retrieved from [31].

However, some recent observations and calculations have shown that for fast-moving ships, the angle

of the wave decreases with velocity [27]. The decrease in the angle can be explained by assuming that

a ship cannot generate a wavelength greater than its hull length. However, this hypothesis is still not well

established and is open to questioning. Another explanation for the decrease of the wake angle resides

in the fact that the wave pattern is defined by the location of its highest peaks, which means that for
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fast-moving ships, the highest peaks don’t lie on the outermost divergent waves anymore, resulting in a

smaller apparent angle. This also happens, because when the Froude number increases, so does the

velocity and the ship enters the planning regime and moves away less mass of water, which results in a

smaller apparent angle. In figure 5.2, various waves produced by the ship for different Froude numbers

are represented. We see that for higher Froude numbers the highest peaks of the wakes no longer lie on

the outermost divergent waves, which means that the angle of the ship wakes decreases as the velocity of

the ship increases.

Figure 5.2: Plan view of the ship wakes produced for different Froude numbers. The solid red dots
represent the highest peaks, and the black line is the best fit for those points. Clearly, for higher Froude
numbers, the highest peaks do not lie anymore in the outermost divergent waves. For an easy comparison,
the figures are scaled as 𝑦 = 𝑦/𝐹 2 and 𝑥 = 𝑥/𝐹 2. This figure was retrieved from [26].

This clearly demonstrates a transition from the Kelvin regime to a different regime. In figure 5.3 we see

that for higher velocities, the angle of the cone follows the law 𝐹−1 (or 1/𝑣 ) which is consistent with the

Mach regime, where the wake angles follow this specific law. For smaller Froude numbers, the Kelvin

regime behavior is clearly perceived, as the wake angles are constant and their numerical value is very

close to the Kelvin angle (accounting for the error, the numerical angle interval is within the Kelvin angle).

Therefore, it is clear that a transition between these two regimes mirrors a change of behavior for a specific
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Froude number.

From figure 5.3 the Froude numbers in the range 0.8 < 𝐹 < 3 are in the Kelvin region, where the

angles are constant and slightly below the Kelvin angle. For Froude numbers bigger than 4 there is a

transition to the Mach region where the angles decrease by the law 𝐹−1. This is consistent with figure 5.2

(c) and (d), where half of the cone angle decreases with the increase of the Froude number.

Figure 5.3: Apparent wake angles 𝜃𝑎𝑝𝑝 in degrees as a function of the Froude number. The blue line is
the best fit to the angles for the Mach region as it follows the law 𝐹−1. The black dashed line is Kelvin’s
angle 19.47◦. The green dot-dashed curve is the root mean squared error, scaled by 𝐹 2. Figure retrieved
from [26].

It is important to notice that the description of such waves presented in this chapter was assumed to

be linear and the perturbation on the water was created by a single source (in this case a ship). However,

in [26] is also studied the problem for nonlinear solutions as well for other kinds of sources, like source

doublets. In the nonlinear regime, the apparent wake angle increase and becomes greater than the Kelvin

angle.

In the following sections of this chapter, we will provide a mathematical description for this type of

wakes, starting with the study of the dispersion of water waves and then proceeding to get an expression

for the surface displacement brought by the moving ship.

5.1.1 Dispersion of water waves

The complexity of studying the formation and the dispersion of water waves, in particular those caused

by a moving disturbance, is well known, due to external and internal factors. Such factors, like the surface

tension and the depth of the water, can lead to complicating dispersion for the waves we wish to study.

Not to mention that the study of ships in open air can be rather difficult due to winds and perturbations
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of the water, which can cause turbulence and, in that way, interfere with the wake pattern produced by a

moving ship. However, let us consider the perfect conditions for the observation of these wakes. In that

case, the dispersion relation between angular frequency and the wave number 𝑘 is given by [25, 32]

𝜔2(𝑘) =
(
𝑔𝑘 + 𝜎𝑘

3

𝜌

)
tanh(𝑘ℎ) (5.3)

where 𝑔 is the gravitational field strength, 𝜎 the surface tension, 𝜌 the density of the water, and ℎ the

water depth. Equation (5.3) provides us with waves of different characteristics, regarding the parameters

chosen: if the surface tension is null on the interface air-water (𝜎 = 0), we are in the presence of pure

gravity waves. While for 𝜎 ≠ 0 the capillary gravity waves dominate the wave pattern.

For pure gravity waves short compared to the depth of the water, that is ℎ → ∞, we get the limit

limℎ→∞ tanh(𝑘ℎ) = 1 and the dispersion relation (5.3) reduces to

𝜔2(𝑘) = 𝑔𝑘 (5.4)

The phase velocity can now be taken through 𝑣𝑝 = 𝜔/𝑘 , which gives

𝑣𝑝 =

√
𝑔

𝑘
=
𝑔

𝜔
=

(
𝜔

𝑔

)−1
(5.5)

This is a lot similar to the phase velocity of plasmons in graphene in the vicinity of a dielectric (section 4.2),

obtained in equation (4.37). That is why we consider that plasmons behave as gravity waves in graphene

with acceleration given by 𝑎 = 4𝛼𝐹𝑆𝐸𝐹 ℏ𝑐
(1+𝜖𝑑 )ℏ2 . Where 𝛼𝐹𝑆 is the fine structure constant, 𝐸𝐹 is the Fermi energy,

and 𝜖𝑑 is the dielectric constant.

For pure gravity waves with wavelengths greater than the water depth, we have tanh(𝑘ℎ) ≈ 𝑘ℎ, we
get for the dispersion relation

𝜔2 = 𝑔ℎ𝑘2 (5.6)

and the phase velocity 𝑣𝑝 is given by

𝑣𝑝 =
√
𝑔ℎ =

√
𝑔ℎ𝜔0 (5.7)

Once again, we can make an analogy with the phase velocity of graphene in the vicinity of a local metal

[equation (4.51)]. Where the phase velocity is equal to the group velocity 𝑣𝑔 = 𝜕𝜔/𝜕𝑘 . In the problem

described in the last chapter, the phase velocity was given by 𝑣0, which we obtained as the slope of the

plasmonic spectrum in figure 4.5. The slope can be taken as 𝜕𝜔/𝜕𝑘 so we infer that the phase velocity

is equal to the group velocity for gravity waves in shallow water depth and for the graphene in the vicinity

of a local metal. For gravity waves of any kind, the waves created are V-shaped waves that stretch behind

the moving object. With this study, we can already see, that this kind of wake pattern will appear on the

surface of graphene when an external particle is moving parallel to it, as we will analyze in the next section.

For capillary gravity waves (𝜎 ≠ 0) in deep water, the dispersion (5.3) gets the form
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𝜔2 =
𝜎𝑘3

𝜌
(5.8)

where we neglect 𝑔𝑘 in comparison to the capillary term. Of course, this gives a phase velocity of

𝑣𝑝 =

√
𝜎𝑘

𝜌
=

(
𝜔𝜎

𝜌

)1/3
(5.9)

If we define the limiting cases for 𝜅 = 0,−1, 1/3 then, the general phase velocity for water waves can
be written as

𝑣𝑝 = 𝑣0

(
𝜔

𝜔0

)𝜅
(5.10)

where 𝑣0 and𝜔0 are constants: for pure gravity waves in deep water (𝜅 = −1) we get 𝑣0𝜔0 = 𝑔, for gravity

waves in shallow water (𝜅 = 0) the constants are 𝑣0 =
√
𝑔ℎ and finally, for capillary waves (𝜅 = 1/3) the

phase velocity gives 𝑣30/𝜔0 = 𝜎/𝜌 . The authors of [25] also found an expression to calculate the Kelvin
angle, which is based on the geometry of the wakes and the group velocity. For the wake half-angle, it was

discovered

𝜃𝐾 = arctan

(
1
2

√
1

𝜅 (𝜅 − 1)

)
(5.11)

What this expression tells us, is that the kelvin angle depends on the type of wake that we are studying.

For 𝜅 = −1 the angle is of 𝜃𝐾 = 19.47◦, which is the angle found by Kelvin. In opposite, for 𝜅 = 0 the

Kelvin angle occurs at 𝜃𝐾 = 90◦. However, for this last limit, the pattern wakes only develops at longer

times and becomes less evident, further losing its meaning.

The dispersion relation for the limiting cases (𝜅 = 0,−1, 1/3), altogether with the exact solution [eq.
(5.3)] can be seen in figure 5.4. It shows us that for pure gravity waves in infinite water depth (𝜅 = −1),
the spectrum follows the law

√
𝑘 , just like graphene in the vicinity of a dielectric. For gravity waves in

shallow water (𝜅 = 0), the waves are linear in the wavenumber, similar to when we add a local metal to

a graphene configuration. This tells us we can make an analogy between these waves and the plasmonic

cases studied in chapter 4.

5.1.2 Surface displacement

A mathematical approach is necessary to have a better understanding of the V-shape wave pattern

generated by a moving perturbation. For that, we will determine the shape of the surface displacement

generated by a pressure field 𝑝 (𝑥,𝑦). Let us also consider a moving perturbation traveling in 𝑥 -direction
with velocity 𝑣 . The free equilibrium surface is the plane 𝑥𝑦 and the z-axis is oriented perpendicular to the

surface. We want to find the displacement of the free 𝑥𝑦 surface, 𝑧 = 𝜁 (𝑥,𝑦, 𝑡), from the equilibrium

position. Assuming an irrotational fluid motion [29], the velocity can be expressed as a velocity potential
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Figure 5.4: Relation dispersion of water waves for the exact (dashed red curve) and for the limiting cases
(𝜅 = 0,−1, 1/3) given by equations (5.6), (5.4) and (5.8), respectively. The exact solution is given
by equation (5.3). The left figure shows the exact dispersion (red dashed curve) for a water depth of
ℎ = 5 mm, which for smaller wavenumbers follows the dispersion of gravity waves in shallow water. For
the right figure, we have a depth of ℎ = 1 m, and the dispersion behaves as a pure gravity wave in an
infinite water depth. The surface water-air tension admitted was 𝜎 = 72 mN/m [33] and the density of
water 𝜌 = 1000 kg/m3. The gravity acceleration is the known 9.8 m/s2.

𝑣 = ∇𝜑 . The problem is to find the velocity potential, 𝜑 (𝑥,𝑦, 𝑧), and then proceed to find the surface

displacement 𝜁 (𝑥,𝑦, 𝑡). We will thoroughly follow the calculations and the notation made by [26], however,

for extensive readings and calculations, wemust look at [31]. The velocity potential is determined by solving

Laplace’s equation

∇2𝜑 =
𝜕2𝜑

𝜕𝑥2
+ 𝜕

2𝜑

𝜕𝑦2
+ 𝜕

2𝜑

𝜕𝑧2
= 0 (5.12)

where 𝑧 < 𝜁 (𝑥,𝑦) for the nonlinear case or 𝑧 < 0 for the linear case. Also, we have the following

boundary conditions [26, 34]

𝜑𝑥𝜁𝑥 + 𝜑𝑦𝜁𝑦 = 𝜑𝑧 (5.13)

(𝜑2
𝑥 + 𝜑2

𝑦 + 𝜑2
𝑧 ) +

2𝜁

𝐹 2
+ 𝛿𝑝 (𝑥,𝑦) = 1 (5.14)

both for 𝑧 = 0. Here we have 𝜁 =
√
𝜁𝑥 + 𝜁𝑦 and the Froude number given by (5.13). Where the term

𝛿𝑝 (𝑥,𝑦) is, in addition to the atmospheric pressure, the applied pressure on the surface. For ease of

notation, the subscripts on this last equation and the following equations are the partial derivatives in order

of the coordinate represented. These last two equations are nonlinear and work for 𝑧 < 𝜁 (𝑥,𝑦). Equation
(5.13) is the kinematic condition, that states there is no current flowing through the free surface, while

equation (5.14) is the dynamic condition that combines Bernoulli’s equation with constant atmospheric

pressure on the free surface, 𝜁 (𝑥,𝑦) [26]. Since we have been talking about the linear theory (even the
hydrodynamic model was linearized), it is important to provide the linear version of the last two conditions
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𝜁𝑦 = 𝜙𝑧 (5.15)

𝜙𝑦 +
𝜁

𝐹 2
= 1 (5.16)

for 𝑧 = 0. This problem also gives us a special set of conditions, known as far-field conditions [26, 31],

and these states (
𝜕𝜑
𝜕𝑥 ,

𝜕𝜑
𝜕𝑦 ,

𝜕𝜑
𝜕𝑧

)
→ (1, 0, 0), 𝜁 → 0 as 𝑥, 𝑧 → −∞ (5.17)

The condition for 𝑥 indicates that the gravity wave cannot propagate ahead of the disturbance, while for 𝑧

the condition indicates a uniform flow stream in the infinitely deep limit. These conditions are known as

the far-field boundary conditions. Finally, following Peter study [34], the linearization provides the exact

solution for the shape of the Kelvin and Mach waves given by

𝜁 (𝑥,𝑦) = − 𝜖𝐹 2sgn(𝑥)
𝜋2

∫ 𝜋/2

0
cos𝜃

∫ ∞

0

𝑘𝑒−𝑘 |𝑥 | cos(𝑘𝑦 sin𝜃 )𝑔(𝑘, 𝜃 )
𝐹 4𝑘2 + cos2 𝜃

𝑑𝑘𝑑𝜃

+ 𝜖𝐻 (𝑥)
𝜋

∫ ∞

−∞
𝜉𝑒−𝐹

2𝜉2 cos(𝑥𝜉) cos(𝑦𝜉𝜆)𝑑𝜆 (5.18)

where

𝑔(𝑘, 𝜃 ) = 𝐹 2𝑘 sin(𝑘 cos𝜃 ) + cos𝜃 cos(𝑘 cos𝜃 ) (5.19)

𝜉 (𝜆) =
√
𝜆2 + 1
𝐹 2

(5.20)

The parameter 𝜖 = 𝑚/(𝑣𝐿2) is the dimensionless source strength, where𝑚 is the source strength. For

the linear case, 𝜖 ≪ 1. We also have sgn(𝑥) as the signal function and H(𝑥) as the Heaviside function.
The wave pattern can be obtained by making a numerical evaluation of the equation (5.18) and it was

found that the second integral dominates the first integral far downstream. So, the wave pattern appears

to be stationary. In that order, it is possible to provide an analytical approximation to the wave pattern. For

large 𝑟 =
√
𝑥2 + 𝑦2 we get the far-field approximation in polar coordinates

𝜁 (𝑟, 𝜃 ) ∼ 𝑎1(𝑟, 𝜃 ) cos
(
𝑟𝑔(𝜆1(𝜃 ), 𝜃 ) +

𝜋

4

)
+ 𝑎2(𝑟, 𝜃 ) cos

(
𝑟𝑔(𝜆2(𝜃 ), 𝜃 ) −

𝜋

4

)
(5.21)

where we define the following auxiliary functions
𝜆1(𝜃 ) = −1+

√
1−8 tan2 𝜃
4 tan𝜃 𝜆2(𝜃 ) = −1−

√
1−8 tan2 𝜃
4 tan𝜃

𝑓 (𝜆) =
√
𝜆2+1
𝐹 2

𝑒
𝜆2+1
𝐹2 𝑔(𝜆, 𝜃 ) =

√
𝜆2+1
𝐹 2

(cos𝜃 + 𝜆 sin𝜃 )

(5.22)
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Finally, the functions 𝑎1(𝑟, 𝜃 ) and 𝑎2(𝑟, 𝜃 ) describe the transverse and divergent waves, respectively. Of
course, as the Froude number increases, the wave pattern is mainly composed of divergent waves. These

functions are given by

𝑎1(𝑟, 𝜃 ) =
√

2
𝜋

𝜖 𝑓 (𝜆1(𝜃 ))√
𝑟
��� 𝜕2𝑔(𝜆1 (𝜃 ),𝜃 )𝜕2𝜆

��� (5.23)

𝑎2(𝑟, 𝜃 ) =
√

2
𝜋

𝜖 𝑓 (𝜆2(𝜃 ))√
𝑟
��� 𝜕2𝑔(𝜆2 (𝜃 ),𝜃 )𝜕2𝜆

��� (5.24)

Since the contribution from 𝑎2(𝑟, 𝜃 ) dominates the development of the wave pattern, we can make a small
angle (𝜃 ≪ 1) perturbation to this amplitude [26, 28], which gives

𝑎2(𝑟, 𝜃 ) ≈
𝜖

2𝐹
√
𝜋𝑟

(
𝜃−3/2 + 7

4
𝜃 1/2 + ...

)
𝑒 (𝜃

−2+2/3+...)/4𝐹 2 (5.25)

To find the maximum angle of the wave pattern, we just differentiate equation (5.25) concerning 𝜃 and set

the result to zero so as to obtain the angle as

𝜃𝑎𝑝𝑝 ≈
1

√
3𝐹

(5.26)

as 𝐹 → ∞. This last expression for the angle shows us that the angle does not follow the constant Kelvin

angle, and thus a new regime appears. We already know that the Mach theory tells us that for higher

Froude numbers, the wave angle follows the law 𝐹−1. As such it was expected that this approximation

would turn exactly that. The question that remains is if the two theories studied in this section could be

transferred to the plasmonic case, to study the Kelvin and Mach waves in graphene.

5.2 Kelvin and Mach wakes in graphene

Let us recall the electrostatic problems solved in chapter 4. We discovered that when an external

particle is moving parallel to a graphene sheet, this will lead to oscillations of the electron gas that will give

rise to plasmonic wakes. For our final goal, we wish to understand the shape of the potential created in

graphene and see if the angle of the wake follows the theories for ship waves in water, and at what Froude

number the transition between Kelvin and Mach theory occurs. In that way, we will study the wake pattern

and the aperture angles for two distinct cases: graphene in the vicinity of a dielectric and graphene in the

vicinity of a local metal. The external particle is moving parallel to graphene at a height 𝑧0 with velocity 𝑣

in the 𝑦-direction. In the following section, we will show the density plots for the potential using equations

(4.35) and (4.63), for the dielectric and local metal cases, respectively. This will give the plan view of

the wake induced in graphene for different Froude numbers. To calculate the wake angle, the maximum

point of the transverse cut for the potential must be determined (figures 4.3 and 4.8). This is similar to
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the criterion used in [26], where the wake angle is given by the best fit of the highest peak points and the

center line (𝑦 = 0).

5.2.1 Graphene in the vicinity of a dielectric

When graphene is in the vicinity of a dielectric (configuration 4.1) we know that the induced potential

created by an external particle will create a wake pattern characterized by an oscillatory behavior (see fig.

4.2). The integral form in equation (4.35) gives the induced potential in graphene. The shape of the wake

pattern is given by the potential plots in figure 5.5.

Figure 5.5: Wake pattern of the induced electrostatic potential, in units of Φ0, given by equation (4.35),
when graphene is in the vicinity of a dielectric. The top figures show the density plots for a particle moving
at a height 𝑧0 = 1 𝜇m above graphene. The bottom ones represent the potential created by the traveling
particle at 𝑧0 = 0.1 𝜇m. In this figure, the oscillatory behavior of the induced potential is visible. Note the
presence of the transverse and divergent waves in the pattern, which makes this case very similar to the
ship wakes generated in the water. The velocity of the moving particle is given by 𝑣 = 0.1𝑐 and a Fermi
energy of 𝐸𝐹 = 0.17 eV.

71



CHAPTER 5. PLASMONIC KELVIN AND MACH WAKES

The V-shape pattern in graphene shows us a behavior similar to the water waves created by a moving

perturbation (see figure 5.2). Where the electron gas excitation gains an oscillatory nature. In figure 5.5 it

is also possible to see the transverse and divergent waves that compose the pattern, for two values of the

dielectric constant: 𝜖𝑑 = 1 (vacuum) and 𝜖𝑑 = 2. We observe that the wavelength of the wake increases

as the dielectric constant of the dielectric material increases and the apparent wake angle 𝜃𝑎𝑝𝑝 becomes

slightly smaller. Note that the potential fluctuations are more outstanding in the bottom figures because in

such case, the external particle is moving closer to graphene (𝑧0 = 0.1 𝜇m). That makes the transverse

and divergent waves more distinguishable in this case. In figure 5.6 we present the V-shape pattern for

higher Froude numbers (or higher velocities). The first observable difference from the wakes in figure 5.5

is that the transverse wakes cease to exist, and it is only seen in the divergent waves the pattern. In terms

of the wake angle, it becomes evident that it does not remain constant, as the Kelvin theory states, but

rather decreases with the increase of the Froude number, which can be an indication of a transition to the

Mach theory. However, it is necessary to study the wake angle for different values of the particle velocity.

Figure 5.6: Wake pattern of the induced electrostatic potential, in units of Φ0, given by equation (4.35) for
different Froude numbers: 𝐹𝑝𝑙 = 2.7 (left) and 𝐹𝑝𝑙 = 4.5 (right), which corresponds to an external particle
velocity (𝑧0 = 1 𝜇m) of 𝑣 = 0.3𝑐 and 𝑣 = 0.5𝑐, respectively. Qualitatively is possible to see a decrease in
the wake angle for higher Froude numbers and the dominance of the divergent waves in the wake pattern.
The Fermi energy is of 𝐸𝐹 = 0.17 eV.

The apparent angle 𝜃𝑎𝑝𝑝 is the half opening angle of the wake pattern. To obtain the angle we can

just use simple geometry intuition, by finding the point in 𝑥 (and fixing a point in 𝑦) that corresponds to

the maximum aperture of the cone. In that order, the tangent gives the angle of the wake pattern, such as

tan𝜃𝑎𝑝𝑝 =
𝑥

𝑦
(5.27)

Of course, this method can originate some systematic errors. That happens because of our difficulty in

understanding where the maximum aperture of the cone is, since this method depends on our perception

of the wake pattern. This can lead to an uncertainty value for the wake angle. However, we can complement
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Table 1: Apparent half wake angle 𝜃𝑎𝑝𝑝 (in degrees) of the cone produced by the moving plasmons in
graphene induced by an external particle with parallel motion at a height 𝑧0 = 1 𝜇m. The Fermi energy
of the electron gas is 𝑒𝐹 = 0.17 eV. The last line of the table gives the Froude number for this problem
obtained to the expression 𝐹𝑝𝑙 =

√
𝑣2/𝑧0𝑎.

𝑣/𝑐 0.075 0.1 0.125 0.15 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.8 0.9
𝜃𝑎𝑝𝑝 22.6 22.6 21.7 21.3 20.1 19.0 17.7 14.4 11.9 9.2 8.3 7.5 6.0
𝐹𝑝𝑙 0.67 0.89 1.1 1.3 1.8 2.2 2.7 3.6 4.5 5.4 6.3 7.2 8.0

this method with another one, that states that the angle of the wake pattern is given by the line that passes

through the highest peaks of the wake and the center line 𝑥 = 0. The apparent angles 𝜃𝑎𝑝𝑝 of the wake

cone, for different velocities are depicted in table 1. For each velocity, the Froude number 𝐹𝑝𝑙 =
√
𝑣2/𝑧0𝑎

is also shown, calculated for 𝑧0 = 1 𝜇m. To recall 𝑎𝑑 is a parameter with units of acceleration and

characterizes the 2D electron gas in graphene, given by 𝑎 = 4𝛼𝐹𝑆𝐸𝐹 ℏ𝑐
(1+𝜖𝑑 )ℏ2 . A graphical representation of the

angles in the table is found in figure 5.7, where the half wake angle is plotted with the respective plasmonic

Froude number, 𝐹𝑝𝑙 .

Figure 5.7: Graphical representation of half angle of the plasmonic cone for graphene in the vicinity of
a dielectric for 𝜖𝑑 = 1 (vacuum), given by table 1. There is a transition from a Kelvin-type wake to a
Mach-type wake at 𝐹𝑝𝑙 ∼ 2.2 as the Froude number increases. The other parameters were: 𝐸𝐹 = 0.17 eV
and 𝑧0 = 1 𝜇m. The dashed black line corresponds to the angle given by 𝜃 = 1/(𝛿𝐹𝑝𝑙 ) and 𝛿 = 0.020,
which only holds for angles in the Mach region. The dashed blue line is the Kelvin angle given by Kelvin’s
theory (𝜃𝐾 = 19.47◦). The dashed grey line is a fit performed to the angles enclosed in the Kelvin region,
with an angle value of 𝜃𝑎𝑝𝑝 = 21◦. The transition between the two regions occurs at the interception of
the dashed black and grey lines.

From this figure, it is clear that there are two distinct regions with different behaviors. In the Kelvin
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region, the angle of the plasmonic wake pattern is almost constant and with a value of 𝜃𝑎𝑝𝑝 = 21◦ (grey

line), which is slightly above the Kelvin angle of 𝜃𝐾 = 19.47◦ (blue line) produced in water waves. For

𝐹𝑝𝑙 ≫ 1 the wake angle starts to change behavior and the angles start to decrease by following the

law 1/𝐹𝑝𝑙 , which indicates a Mach-type region. In that order, we study the angles by producing a fitting

function of the type

𝜃𝑎𝑝𝑝 ≈
1
𝛿

√
𝑧0𝑎

𝑣2
=
1
𝛿

1
𝐹𝑝𝑙

(5.28)

that gives the apparent wake angles as the Froude number increases. A transition from the Kelvin region

to the Mach region is clear at 𝐹𝑝𝑙 ∼ 2.2 (red line), where 𝛿 is a real constant that was found to be the

order of 𝛿 = 0.020 for 𝜖𝑑 = 1 (vacuum). These results are consistent with the study of the formation of

plasmonic wakes in graphene provided by [17].

5.2.2 Graphene in the vicinity of a local metal

For graphene in the vicinity of a local metal (configuration 4.4) the oscillatory behavior of the plasmons

in graphene vanishes and a rather continuous nature will become more distinct. We already studied this

phenomenon in chapter 4.3. Equation (4.63) gave the results in figure 4.7, which precisely shows the

continuous nature of the potential. In a similar manner to the problem of graphene in the vicinity of a

dielectric we show, in figure 5.8, a plan view of the plasmonic wakes in graphene in the presence of a

local metal for different dielectric thickness 𝑑 and different dielectric constants 𝜖𝑑 .

From the density plots, it is possible to infer the cease of the oscillatory behavior of the potential in

graphene but is replaced by a somewhat continuous behavior in the cone. Note that in this case there are

not any transverse and divergent waves in the pattern. All these differences come from the presence of the

metal, which is chosen to be titanium. If the distance between the metal and the graphene sheet (in other

words, the dielectric thickness 𝑑) increases, it is expected the appearance of the oscillatory nature of the

plasmons in graphene, due to the weak effect that the metal will provide to the configuration. However, for

the dielectric thickness chosen (𝑑 = 0.01 𝜇m and 𝑑 = 0.1 𝜇m) the effects of the metal are quite evident
as seen in figure 5.8. We also observe that the wake angle decreases with the increase of the dielectric

thickness 𝜖𝑑 , just like in the case of graphene in the vicinity of a dielectric. The dielectric thickness 𝑑 , also

plays an important role in the variation of the wake angle, in such a way that for 𝑑 = 0.01 𝜇m the cone

angle is smaller than for 𝑑 = 0.1 𝜇m. This means that the wake angle is greater for a higher separation

between the metal and graphene.

To study the V-shaped pattern of the potential created in graphene, in figure 5.9, it is shown the

wake pattern for two different velocities of the external particle. Similar to graphene near a dielectric, the

wake angle decreases with the increase of the velocity of the particle (and with the increase of the Froude

number). However, the continuous nature of the potential remains, even for higher particle speeds. It

remains to be seen if, in such case, we can depict a Kelvin and Mach region by measuring the half angle
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of the V-shaped pattern. In tables 2 and 3, the apparent wake angles for different velocities, and an

external particle height of 𝑧0 = 1 𝜇m and 𝑧0 = 0.1 𝜇m are respectively presented.

Figure 5.8: Wake pattern of the induced electrostatic potential, in units of Φ0, given by equation (4.63),
when graphene is in the vicinity of a local metal. The top figures show the density plots for a distance
between metal and graphene of 𝑑 = 0.01 𝜇m. The bottom ones represent the potential created in
graphene for a dielectric thickness of 𝑑 = 0.1 𝜇m. It is possible to understand the continuous nature of
the potential in all plots and the nonexistence of transverse and divergent waves. The wake angles are
smaller for a higher dielectric constant 𝜖𝑑 and a smaller separation of metal/graphene 𝑑 . The velocity of
the moving particle is 𝑣 = 0.1𝑐, the Fermi energy is of 𝐸𝐹 = 0.17 eV and the external particle is moving
at a height of 𝑧0 = 1 𝜇m above graphene. The chosen metal was titanium: 𝜔𝑝 = 2.80 eV and 𝜖∞ = 2.2.

In figure 5.10 is represented how the half wake angle of the potential cone created by an external

particle moving parallel to graphene at a distance 𝑧0 = 1 𝜇m from it, changes with the plasmonic Froude

number. Contrary to the dielectric case, there is not a Kelvin region and a Mach region visible in the whole

domain. However, following an inverse quadratic law where the best fit to the angle points has to do the

law 1/𝛿0 + 1/𝛿1𝐹𝑝𝑙 + 1/𝛿2𝐹 2𝑝𝑙 , or in other words, the half angle of the wake pattern in graphene near a
metal can be taken as

𝜃𝑎𝑝𝑝 ≈ 3.87 + 9.92
𝐹𝑝𝑙

+ 0.77

𝐹 2
𝑝𝑙

(5.29)
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where 𝛿0 = 0.26, 𝛿1 = 0.10 and 𝛿2 = 1.30. In this case there is no transition for a different angle

behavior, since there are no Kelvin and Mach regions. Also, from equation (5.11) the Kelvin angle was

expected to be at 𝜃𝐾 = 𝜋/2, because in this case 𝜅 = 0, which means that the angle increases for

lower Froude numbers. Of course, for lower Froude numbers the linear and quadratic terms have a bigger

contribution to the angle and as such their value increases. For higher Froude numbers the quadratic

term has a small contribution to the angle and equation (5.29) is dominated by linear and the constant

terms. This behavior was also perceived in classical water waves in [35]. In this study, a disturbance

with a certain length 𝐿 and a width 𝐵 was considered, as for axisymmetric disturbances the aspect ratio

parameter 𝐴 = 𝐿/𝐵 must be one. The Kelvin and Mach regions are reached, which means the angle

starts to behave consistently, and for higher speeds it scales as 𝜃𝑎𝑝𝑝 ∝ 𝐹−1
𝑝𝑙
. In the case where 𝐴 ≫ 1,

we find ourselves in the presence of nonaxisymmetric disturbances and angle scales as 𝜃𝑎𝑝𝑝 ∝ 𝐹−2
𝑝𝑙
,

which show the quadratic nature of some water wakes. For figure 5.11 the apparent angles of the wake

pattern in graphene for a particle traveling at a height 𝑧0 = 0.1 𝜇m above graphene are drawn. In this

case, the whole domain can be described by the law 1/𝑣 [equation (5.28]. Once again, the Kelvin region
ceases to exist and the angles are contained within the Mach region, where the angle is given, once again,

by equation (5.28), with 𝛿 = 0.027. As the velocity of the external particle increases, and consequently

the Froude number, the apparent wake angle 𝜃𝑎𝑝𝑝 decreases, such as in the dielectric case.

Figure 5.9: Wake pattern of the induced electrostatic potential, in units of Φ0, given by equation (4.63) for
different Froude numbers: 𝐹𝑝𝑙 = 2.7 (left) and 𝐹𝑝𝑙 = 4.5 (right), which corresponds to an external particle
velocity (𝑧0 = 1 𝜇m) of 𝑣 = 0.3𝑐 and 𝑣 = 0.5𝑐, respectively. Qualitatively it is possible to see a decrease in
the wake angle for higher Froude numbers. The parameters are: Fermi energy of 𝐸𝐹 = 0.17 eV, dielectric
thickness of 𝑑 = 0.01 𝜇m in vacuum (𝜖𝑑 = 1). The chosen metal was titanium: 𝜔𝑝 = 2.80 eV and
𝜖∞ = 2.2.
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Table 2: Apparent half wake angle 𝜃𝑎𝑝𝑝 (in degrees) of the cone produced by the moving plasmons in
graphene induced by an external particle with parallel motion at a height 𝑧0 = 1 𝜇m. The Fermi energy of
the electron gas is of 𝐸𝐹 = 0.17 eV and the dielectric thickness of 𝑑 = 0.01 𝜇m for vacuum (𝜖𝑑 = 1). The
last line of the table gives the Froude number for this problem obtained to the expression 𝐹𝑝𝑙 =

√
𝑣2/𝑧0𝑎.

𝑣/𝑐 0.04 0.055 0.07 0.08 0.09 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
𝜃𝑎𝑝𝑝 37.3 27.1 21.8 19.4 17.5 16.0 9.2 7.2 6.6 6.1 5.8 5.6 5.5 5.4
𝐹𝑝𝑙 0.36 0.49 0.63 0.72 0.81 0.89 1.8 2.7 3.6 4.5 5.4 6.3 7.2 8.1
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Figure 5.10: Graphical representation for the apparent angle 𝜃𝑎𝑝𝑝 , given by table 2, of the plasmonic cone
for graphene in the vicinity of a local metal for 𝑧0 = 1 𝜇m. In this case, there is no Kelvin or Mach region in
the whole domain. The angles follow a quadratic law given by 1/𝛿0 + 1/𝛿1𝐹𝑝𝑙 + 1/𝛿2𝐹 2𝑝𝑙 , with 𝛿0 = 0.26,
𝛿1 = 0.10 and 𝛿2 = 1.30. The parameters considered are: 𝐸𝐹 = 0.17 eV, 𝑑 = 0.01 𝜇m and 𝜖𝑑 = 1. For
titanium: 𝜔𝑝 = 2.80eV and 𝜖∞ = 2.20.

Table 3: Apparent half wake angle 𝜃𝑎𝑝𝑝 (in degrees) of the cone produced by the moving plasmons in
graphene induced by an external particle with parallel motion at a height 𝑧0 = 0.1 𝜇m. The Fermi energy
of the electron gas is of 𝑒𝐹 = 0.17 eV and the dielectric thickness of𝑑 = 0.01 𝜇m for vacuum (𝜖𝑑 = 1). The
last line of the table gives the Froude number for this problem obtained to the expression 𝐹𝑝𝑙 =

√
𝑣2/𝑧0𝑎.

𝑣/𝑐 0.03 0.05 0.07 0.09 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8
𝜃𝑎𝑝𝑝 44.8 26.6 19.1 14.5 13.0 8.6 6.4 4.3 3.2 2.6 2.0 1.8 1.6
𝐹𝑝𝑙 0.84 1.4 2.0 2.5 2.8 4.2 5.6 8.4 11.3 14.0 16.9 19.7 22.5

5.3 Classical Wakes and Plasmonic Wakes

To finalize the study of the plasmonic wakes in graphene it is necessary to analyze the V-shape pattern

and compare it to the wakes produced in water. Even more, we proceed to see the major similarities and

differences between the classical and plasmonic wakes. This will allow us to understand the influence of
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Figure 5.11: Graphical representation for the apparent angle 𝜃𝑎𝑝𝑝 , given by table 3, of the plasmonic cone
for graphene in the vicinity of a local metal for 𝑧0 = 0.1 𝜇m. In this case, the only theory that describes
the angle behavior is the Mach theory, 𝜃 = 1/(𝛿𝐹𝑝𝑙 ), where 𝛿 = 0.027 . The parameters considered are:
𝐸𝐹 = 0.17 eV, 𝑑 = 0.01 𝜇m and 𝜖𝑑 = 1. For titanium: 𝜔𝑝 = 2.80 eV and 𝜖∞ = 2.20.

the dispersion relation and the problem parameters in the shape of this type of wakes. In figure 5.12, it is

shown a 3D representation for the problems we want to compare. The first one is the classical wakes that

originated on the surface of the water by a moving source traveling in the 𝑦-direction. For water waves, the

parameters in question are the gravity acceleration, 𝑔, the height of the water, ℎ, and the velocity of the

source producing the waves. The plasmonic configurations are the same as the ones studied in chapter

4. For graphene in the vicinity of a semi-infinite dielectric (configuration (b)), we have the acceleration of

the electron gas 𝑎 = 4𝛼𝐹𝑆𝐸𝐹 ℏ𝑐
(1+𝜖𝑑 )ℏ2 , in graphene. The moving charge is placed at a height 𝑧0 and moves with

velocity 𝑣𝑦 . When graphene is in the vicinity of a local metal (configuration (c)) we add an extra parameter

to the problem, which is the dielectric thickness 𝑑 .

In section 5.1.1 we study the dispersion relation of water waves, where it was shown that the phase

velocity is related to the angular frequency as 𝑣𝑝 ∝ 𝜔𝜅 . For pure gravity waves in deep water the dispersion
is proportional to

√
𝑘 [equation 5.4], which means that the phase velocity is proportional to the inverse

of the angular frequency, 𝑣𝑝 ∝ 𝜔−1, which means that 𝜅 = −1. This provides an analogy with the

electrostatic problem of graphene in the vicinity of a dielectric, where the dispersion relation is given by

equation (4.24) and like pure gravity waves the dispersion is proportional to
√
𝑘 and the phase velocity is

proportional to the inverse of𝜔 . As such, we can think of the plasmonic wake pattern as being similar to the

wake pattern of pure gravity waves in deep water. Let us consider figure 5.13, where the calculated wakes

for pure gravity waves and the plasmonic wakes for graphene in the vicinity of a dielectric are calculated.

Both waves have the similarity of having 𝜅 = −1, which in other words, means that both wakes follow the

law 𝑣𝑝 ∝ 𝜔−1. The left 3D density plots show us the wakes created by an external particle moving parallel
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Figure 5.12: Representation of the configurations in the classical and plasmonic problems. In (a) the figure
shows a perturbation moving in the y-direction in the water, which has a height ℎ regarding the bottom
land. The plasmonic configuration (b) represents graphene in the vicinity of a dielectric, with an external
particle moving with velocity 𝑣𝑦 at a height 𝑧0 from the graphene sheet. Configuration (c) is characterized
by graphene in the vicinity of a local metal with a dielectric separation of thickness 𝑑 . Once again, we have
an external charge moving with velocity 𝑣𝑦 at a height 𝑧0 from graphene.

to graphene at a height 𝑧0 = 0.1 𝜇m, and the right density plots are the calculated pattern for pure gravity

waves in deep water [25]. In the top panel, the wakes are generated by disturbances moving slower than

those from the bottom panels. The clear similarities are given by the decrease of the V-shape pattern

angle as the velocity increases and there are present transverse and divergent waves in both cases. This

indicates that once we have graphene in the vicinity of a dielectric, an analogy can be made with pure

gravity waves in shallow water. Here the semi-infinite dielectric plays the part of the deep water, where

ℎ → ∞.

Let us now take a look at when graphene is in the vicinity of a local metal. In this case, the dispersion

is linear in the wavenumber 𝑘 , which means that the phase velocity is constant and equal to the group

velocity of the waves. The same happens for gravity waves in shallow water [equation (5.6)], that is, for

gravity waves with wavelengths greater than the water depth. So when the dispersion of the waves is

linear in 𝑘 , then this limiting case is characterized by having 𝜅 = 0, for both problems. In figure 5.14, the

classical wake pattern for 𝜅 close to zero and the analogous problem for the plasmonic wakes are shown.

The classical wakes were computed with 𝜅 = −0.1. This choice is due to the impossibility of having

𝜅 = 0. These type of waves always show features for 𝜅 > 0, because very short capillary waves cannot be

avoided even when reducing the surface tension 𝜎 to low values. However, this value of 𝜅 is very close to
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Figure 5.13: Wake pattern for the plasmonic (left) and classical (right) cases. Both patterns show similar
structures, typical of the limiting case 𝜅 = −1, which are the oscillatory behavior and the presence of
transverse and divergent waves. The bottom figures show disturbances speeds higher than the top ones,
which bring a decrease on the wake angle. The case of graphene in the vicinity of a dielectric is similar to
water wakes in deep water. For the plasmonic case the parameters are: 𝐸𝐹 = 0.17 eV and 𝑧0 = 0.1 𝜇m.
Right figures retrieved from [25].

zero and will allow us to study the wakes in this regime. This means that we have a parameter 0 < 𝛿 ≪ 1

which changes the dispersion relation to 𝜔 ∝ 𝑘1−𝛿 and, consequently the phase velocity takes the form

𝑣𝑝 = 𝜔/𝑘 ∝ 𝑘−𝛿 . In this case 𝛿 = −𝜅 = 0.1. For the plasmonic case, we are expecting the same to

happen. However, let us study two different regimes: the first regime for 𝑑 ≪ 𝑧0 corresponds to the case

of shallow water, while the second regime 𝑑 ≫ 𝑧0 corresponds to the deep water case. This is the same

as saying that when the dielectric separation between metal and graphene increases then the influence

of the metal in the system begins to decrease and we recover the oscillatory behavior of the potential

and consequently the limiting case of 𝜅 = −1, which is analogous to the case of pure gravity waves in

deep water. The similarities between the two wake patterns are visible in the continuous wake that the

perturbations create on the surface of the water and on the surface of graphene, which means that when
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graphene is in the vicinity of a local metal and 𝑑 ≪ 𝑧0 the dispersion is linear in the wavenumber and

the plasmonic configuration can be seen as waves in shallow water. In the classical case the depth is

controlled by the height, ℎ of the water, while for the plasmonic case what controls the shallow nature is

the dielectric thickness, 𝑑 , and the distance of the external particle and graphene, 𝑧0. For the regime of

𝑑 ≫ 𝑧0 we retrieve the oscillatory plasmonic shape in graphene, which implies the same behavior as pure

gravity waves in deep water, as seen in figure 5.15 where we compare the two different regimes.

Figure 5.14: Graphical representation of the wake pattern in graphene near a metal (left) and the water
wake pattern (right) for the limiting case 𝜅 = −0.1. This corresponds to water wakes in shallow water.
Both shapes show us a continuous behavior in the central cone. In the water wake there are waves forming
in the outer region of the pattern which is analogous to the bluest region in the plasmonic wake. For the
plasmonic wake the parameters are: 𝑣 = 0.1𝑐, 𝐸𝐹 = 0.17 eV, 𝑑 = 0.01 𝜇m and 𝑧0 = 1 𝜇m. The chosen
metal was titanium. The right figure retrieved from [25].

From this chapter, a connection between the shape pattern of classical water waves and the plasmonic

wakes propagating in graphene and created by an external charge moving parallel to it is visible. This

reinforces the argument that the dispersion of the water waves and the surface plasmon-polaritons in

graphene play an essential role in the shape of the wake pattern produced on the surface of the mediums.

In such manner, the hydrodynamic model can be seen as a way to understand not only the nonlocal effects

in materials at the nanoscale but also provide a connection between the classical and plasmonic world,

which can lead to very interesting results, such as the ones obtained in this thesis. Finally, these results

can lead to a more profound understanding of the optical and electromagnetic proprieties of plasmonic

nanostructures, specifically how nonlocal graphene behave in the presence of external potentials and how

we can use these results to boost the search for faster and more compact nanotechnology.
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Figure 5.15: Graphical representation of the wake pattern in graphene near a metal for 𝑑 ≪ 𝑧0 (left) and
𝑑 ≫ 𝑧0 (right). For the limiting case 𝜅 = 0 we are in the shallow water regime, where 𝑑 = 0.01 𝜇m
and 𝑧0 = 1 𝜇m. When we increase the dielectric thickness, there is a regime inversion and the oscillatory
behavior is recovered, because we now have 𝑑 = 1 𝜇m and 𝑧0 = 0.1 𝜇m and this case is analogous to
water wakes in deep water. The parameters are: 𝑣 = 0.1𝑐 and 𝐸𝐹 = 0.17 eV. The chosen metal was
titanium.
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Conclusion

The hydrodynamic model is a nonlocal theory that couples the Euler equation with Maxwell’s equations

of electromagnetism, and it is constituted by the following equations: Euler’s equation, Poisson equation,

and the continuity equation. This model is generalized for an electron gas (regarding the spatial dimen-

sion). However, it is possible to consider various geometries composed of metals, semiconductors, and

dielectric materials where the model remains valid if supported by specific boundary conditions for each

geometry. The main goal of this thesis was to make use the hydrodynamic model to analyze the plasmonic

nonlocal effect in graphene, considering an electrostatic approximation for the electron gas. Various planar

geometries in the form of slabs oriented perpendicular to the z-axis and infinite in all the other directions

were studied. Through a first approach, the nonlocal effects in the spectrum of the surface plasmon-

polaritons and on the electrostatic potentials in some problems, such as a semi-infinite and finite metal

slab embedded in vacuum were analyzed. For a graphene sheet in vacuum and a 2D electron gas, it was

recovered the known dispersion of the SPPs, which are proportional to the square root of the wavenumber

𝑘 . Literature was already aware of these problems. The additional problems came with graphene in the

vicinity of a nonlocal metal. When graphene is in the vicinity of a semi-infinite metal, the dispersion of the

SPPs presents a linear nature, rather than a 𝜔 ∝
√
𝑘 behavior like graphene in vacuum. As graphene is

moved away from the metal, that is, the dielectric separation increases, it was verified that the SPPs show

higher energies from a higher dielectric thickness. Therefore, the further graphene is from the metal, the

greater the growth in terms of surface plasmon energy. However, when increasing the dielectric sepa-

ration, the nonlocal metal will start to behave more like a local metal. For graphene near a finite metal

with thickness 𝑎, it was seen a linear dispersion for different values of the thickness 𝑎. Moreover, the en-

ergy of the plasmons decrease with the decrease of the metal slab thickness, which is a counter intuitive

result, because as the metal thickness decrease the spectrum of the SPPs should be the one obtained

for graphene near a semi-infinite metal. However, when we take the limit of the background permittivity
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to infinity it is retrieved the case of a semi-infinite local metal. Also, taking the limit of the dielectric and

metal thicknesses going to zero and consider the dielectrics as vacuum, it was recovered the expression

for graphene in vacuum, as it was expected. These studies were made for the metals gold and titanium

and it was uncovered that the nonlocality in metals depends on some parameters, such as the dielectric

separation 𝑑 , the background permittivity 𝜖∞, the plasmon frequency 𝜔𝑝 and the relaxation frequencies

Γ. Due to its intrinsic proprieties, titanium shows an enhanced nonlocal behavior when compared to gold.

Furthermore, it was study the effect of an external charge moving parallel to a graphene sheet (in the

y-direction) at a height 𝑧0 for two configurations: graphene in the vicinity of a dielectric and graphene in

the vicinity of a local metal. The goal of the external charge was to see the induced potential created in the

graphene sheet and study the pattern of the wakes produced in it so as to compare it to the classical pattern

created by water waves. When graphene is near a dielectric, an oscillatory pattern in graphene was created.

This means that in this structure the plasmonic wakes demonstrate a V-shaped pattern format, just like a

disturbance perturbing the water at linear flow. The wake was shown for charge velocities of 𝑧0 = 1 𝜇m

and 𝑧0 = 0.1 𝜇m. In both cases, it was possible to recognize two types of waves: the divergent waves

at the outer region of the wake and the transverse waves at the center region of the pattern. To study

the dependence of the wake angle on the velocity of the external particle, an adimensional parameter,

known as the Froude number, which is proportional to the charge velocity was used. By considering

graphene in vacuum, the half-wake angle of the potential cone, induced in the graphene sheet, is constant

for lower Froude numbers with a value of 21◦. However, this behavior changes for a Froude number of

2.2. This constant angle behavior is indicative of the Kelvin region, which happens in water wake patterns.

According to Kelvin’s theory, the half angle of the wake created on the surface of the water is constant and

equal to 19.47◦. For Froude numbers greater than 2.2 the angle of the cone decreases with 1/𝑣 , which
corresponds to a Mach wave typical behavior. Moreover, when increasing the dielectric value constant,

the wake angle decreases for the same Froude numbers. When the charge is closer to graphene, the

angle of the wake also decreases due to the greater approximation. It is when graphene is near a local

metal that interesting results occur. In this case, the potential does not show an oscillatory behavior

but rather a V-shaped potential, which presents a potential peak that tends to a continuous behavior for

graphene points further away from the charge. Regarding the angle of the cone and the pattern angle, for

𝑧0 = 1𝜇𝑚, there is no Kelvin or Mach region, however the angles follow a polynomial law that is quadratic

for all Froude numbers. The angle does not remain constant for lower velocities, but rather increases as

the Froude number decreases. This could be due to the dispersion relation being different in each case,

that is, for graphene near a dielectric, the dispersion of the plasmons is proportional to the square root

of 𝑘 , while in the case of the local metal the dispersion is linear in the wave vector. In such manner, the

dispersion allows us to make an analogy between the classical wake and the plasmonic wake. That is,

by studying the phase velocity of the waves, it was found for the limiting cases 𝜅 = −1 and 𝜅 = 0, that

these correspond to pure gravity waves in deep water and gravity waves in shallow water, respectively. Just

like water waves in deep water, when graphene is near a dielectric, the SPP dispersion is proportional to√
𝑘 . This provides similarities between this type of wakes and the induced wakes in graphene. Both are
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oscillatory and formed by transverse and divergent waves. There is also a transition between the Kelvin

theory and the Mach theory for a specific Froude number. For graphene near a metal, the limiting case is

at 𝜅 = 0 and for 𝑑 ≪ 𝑧0, due to the linear dispersion, which makes this plasmonic problem analogous

to gravity waves in shallow water. When the dielectric thickness is increased at a value 𝑑 ≫ 𝑧0 the

influence of the metal decreases and the behavior of the potential starts to be oscillatory once again. The

dispersion becomes proportional to
√
𝑘 and the regime changes to 𝜅 = −1, just like pure gravity waves in

deep water. In conclusion, it was verified that within the hydrodynamic model it is possible to retrieve the

nonlocal effects in nanostructures of metals and graphene, which are strongly influenced by some material

parameters. Specifically, this work permitted the study of acoustic graphene plasmons, which disperse

linearly in the wavenumber, by introducing the metal to a graphene configuration. Further research will

still be necessary in order to understand the full applications of the nonlocal character of metals and

graphene in nanoplasmonics. It still is necessary to understand why the problem of graphene near a

finite nonlocal metal is giving counter intuitive results. Furthermore, it should be interesting to provide

the same methods in this thesis, but for different hetero-structures geometries, such as cylindrical and

spherical configurations, rather than just planar slabs. However, before that, the study must be completed

by figuring out the plasmonic physics and the consequences of a charge moving perpendicular to graphene

in the vicinity of a metal. Also, for the external charge configuration, a local metal has always been used,

nonetheless it would be interesting to analyze the effects that a nonlocal metal can provide to the wake

pattern. On a more practical basis, the next step should be the development of an experimental setup so

as to test the results obtained in this thesis. At last, this research has allowed us to infer the optical and

electromagnetic proprieties of graphene and metallic nanostructures close to each other, which is a way

to enhance the nonlocal effects.
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A
Plasmonic Electrostatic Calculations

In this appendix, we show the explicit calculations of the boundary conditions and electrostatic coeffi-

cients, necessary to obtain the dispersion relation of the surface plasmon-polaritons for the two electrostatic

problems studied in chapter 3.2: graphene in the vicinity of semi-infinite metal and graphene in the vicinity

of a finite metal. The electrostatic configurations for these problems are given by figures 3.8 and 3.13.

Following the same line of though of chapter 3.2 regrading the application of the boundary conditions we

get

𝜙𝑚𝑒𝑡𝑎𝑙1 (−𝑑) = 𝜙𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐1 (−𝑑) (A.1)

𝜖∞
𝜕𝜙𝑚𝑒𝑡𝑎𝑙1 (−𝑑)

𝜕𝑧
= 𝜖𝑑

𝜕𝜙𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐1 (−𝑑)
𝜕𝑧

(A.2)

𝜙𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐1 (0) = 𝜙𝑔𝑟𝑎𝑝ℎ𝑒𝑛𝑒1 (0) (A.3)

𝜕𝜙
𝑔𝑟𝑎𝑝ℎ𝑒𝑛𝑒
1 (0)
𝜕𝑧

− 𝜖𝑑
𝜕𝜙𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐1 (0)

𝜕𝑧
=
𝑒

𝜖0
𝑛1(k, 𝜔) (A.4)

where 𝜖∞ and 𝜖𝑑 are the background permittivity and the dielectric constant, respectively. To the latter

equations we apply the potential coefficients given in equations (3.42), (3.43) and (3.44), that correspond

to metal, dielectric and graphene, respectively. This will lead to

𝐵𝑒−𝛼𝑑 +𝐶𝑒−𝑘𝑑 = 𝐷𝑒𝑘𝑑 + 𝐹𝑒−𝑘𝑑 (A.5)

𝜖∞
[
𝛼𝐵𝑒−𝛼𝑑 + 𝑘𝐶𝑒−𝑘𝑑

]
= 𝜖𝑑

[
−𝑘𝐷𝑒𝑘𝑑 + 𝑘𝐹𝑒−𝑘𝑑

]
(A.6)
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𝐷 + 𝐹 = 𝐺 (A.7)

−𝑘𝐺 − 𝜖𝑑 [−𝑘𝐷 + 𝑘𝐹 ] = 𝑒

𝜖0
𝑛2𝐷,1(k, 𝜔) (A.8)

Recall that 𝛼 is a nonlocal parameter given by equation (3.6). The hydrodynamic model provides an extra

boundary conditions, that states the null current of the electron gas at the normal direction of the interface.

In mathematical terms this means

𝜖0𝜔
2
𝑝

𝑒𝑛0

𝜕𝜙 (𝑚𝑒𝑡𝑎𝑙)
1

𝜕𝑧
=
𝛽2

𝑛0

𝜕𝑛(𝑚𝑒𝑡𝑎𝑙)1

𝜕𝑧
(A.9)

where 𝜔𝑝 is the plasma frequency, 𝑛0 the homogeneous electronic density and 𝛽 the nonlocal parameter.

The first order electronic density 𝑛1 is given by equation (3.41). This boundary condition give rise to the

expression

𝜔2
𝑝

[
𝛼𝐵𝑒−𝛼𝑑 + 𝑘𝐶𝑒−𝑘𝑑

]
+ (𝜔2 − 𝜔2

𝑝)𝛼𝐵𝑒−𝛼𝑑 = 0 (A.10)

Dividing this last equation by 𝜔2
𝑝 we obtain

𝐶 = −𝜔
2

𝜔2
𝑝

𝛼

𝑘
𝑒 (𝑘−𝛼)𝑑𝐵 (A.11)

At last, we derived the expressions that allow us to construct the coefficient matrix𝑀 presented in chapter

3.2. The solution for all coefficients is then given by

𝐵(𝑘,𝜔) =
2𝜖𝑑𝜔2

𝑝𝑒
𝑑 (𝑘+𝛼)

𝜖𝑑 (1 − 𝜖𝑑 + 𝑒2𝑑𝑘 (1 + 𝜖𝑑)) (𝛼𝜔2 − 𝑘𝜔2
𝑝) + 𝛼 (𝜖𝑑 − 1 + 𝑒2𝑑𝑘 (1 + 𝜖𝑑)) (𝜔2 − 𝜔2

𝑝)𝜖∞
(A.12)

𝐶 (𝑘,𝜔) = − 2𝜖𝑑𝛼𝑒2𝑑𝑘𝜔2

𝑘 [𝜖𝑑 (1 − 𝜖𝑑 + 𝑒2𝑑𝑘 (1 + 𝜖𝑑)) (𝛼𝜔2 − 𝑘𝜔2
𝑝) + 𝛼 (𝜖𝑑 − 1 + 𝑒2𝑑𝑘 (1 + 𝜖𝑑))(𝜔2 − 𝜔2

𝑝)𝜖∞]
(A.13)

𝐷 (𝑘,𝜔) = −
𝜖𝑑 (𝛼𝜔2 − 𝑘𝜔2

𝑝) + 𝛼 (𝜔2
𝑝 − 𝜔2)𝜖∞

𝑘 [𝜖𝑑 (1 − 𝜖𝑑 + 𝑒2𝑑𝑘 (1 + 𝜖𝑑)) (𝛼𝜔2 − 𝑘𝜔2
𝑝) + 𝛼 (𝜖𝑑 − 1 + 𝑒2𝑑𝑘 (1 + 𝜖𝑑)) (𝜔2 − 𝜔2

𝑝)𝜖∞]
(A.14)

𝐹 (𝑘,𝜔) = −
𝑒2𝑑𝑘 (𝜖𝑑 (𝛼𝜔2 − 𝑘𝜔2

𝑝) + 𝛼 (𝜔2 − 𝜔2
𝑝)𝜖∞)

𝑘 [𝜖𝑑 (1 − 𝜖𝑑 + 𝑒2𝑑𝑘 (1 + 𝜖𝑑)) (𝛼𝜔2 − 𝑘𝜔2
𝑝) + 𝛼 (𝜖𝑑 − 1 + 𝑒2𝑑𝑘 (1 + 𝜖𝑑)) (𝜔2 − 𝜔2

𝑝)𝜖∞]
(A.15)
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𝐺 (𝑘,𝜔) = −
(1 + 𝑒2𝑑𝑘)(𝛼𝜔2 − 𝑘𝜔2

𝑝)𝜖𝑑 + 𝛼 (−1 + 𝑒2𝑑𝑘)(𝜔2 − 𝜔2
𝑝)𝜖∞

𝑘 [𝜖𝑑 (1 − 𝜖𝑑 + 𝑒2𝑑𝑘 (1 + 𝜖𝑑)) (𝛼𝜔2 − 𝑘𝜔2
𝑝) + 𝛼 (𝜖𝑑 − 1 + 𝑒2𝑑𝑘 (1 + 𝜖𝑑)) (𝜔2 − 𝜔2

𝑝)𝜖∞]
(A.16)

Then the potentials in the momentum space take the form

𝜙1(k, 𝑧, 𝜔) =


𝑒
𝜖0
𝑛1(k, 𝜔) [𝐵(𝑘,𝜔)𝑒𝛼𝑧 +𝐶 (𝑘,𝜔)𝑒𝑘𝑧] if 𝑧 < −𝑑

𝑒
𝜖0
𝑛1(k, 𝜔) [𝐷 (𝑘,𝜔)𝑒−𝑘𝑧 + 𝐹 (𝑘,𝜔)𝑒𝑘𝑧] if − 𝑑 < 𝑧 < 0

𝑒
𝜖0
𝑛1(k, 𝜔) [𝐷 (𝑘,𝜔) + 𝐹 (𝑘,𝜔)]𝑒−𝑘𝑧 if 𝑧 > 0

(A.17)

Now let us take a look at the problem of graphene in the vicinity of a finite metal of thickness 𝑎, which

is given by configuration 3.13. In this case, the boundary condition to apply take the form

𝜙𝑚𝑒𝑡𝑎𝑙1 (−𝑑 − 𝑎) = 𝜙𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 11 (−𝑑 − 𝑎) (A.18)

𝜖∞
𝜕𝜙𝑚𝑒𝑡𝑎𝑙1 (−𝑑 − 𝑎)

𝜕𝑧
= 𝜖𝑑1

𝜕𝜙𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 11 (−𝑑 − 𝑎)
𝜕𝑧

(A.19)

𝜙𝑚𝑒𝑡𝑎𝑙1 (−𝑑) = 𝜙𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 21 (−𝑑) (A.20)

𝜖∞
𝜕𝜙𝑚𝑒𝑡𝑎𝑙1 (−𝑑)

𝜕𝑧
= 𝜖𝑑2

𝜕𝜙𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 21 (−𝑑)
𝜕𝑧

(A.21)

𝜙𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 21 (0) = 𝜙𝑔𝑟𝑎𝑝ℎ𝑒𝑛𝑒1 (0) (A.22)

𝜕𝜙
𝑔𝑟𝑎𝑝ℎ𝑒𝑛𝑒
1 (0)
𝜕𝑧

− 𝜖𝑑2
𝜕𝜙𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 21 (0)

𝜕𝑧
=
𝑒

𝜖0
𝑛1(k, 𝜔) (A.23)

The hydrodynamic model provides the boundary condition described in equation (A.9), but in this case

it has to be solves in the boundaries at 𝑧 = −(𝑑 + 𝑎) and 𝑧 = −𝑑 . By using the potentials expressed
in equations (3.52), (3.53), (3.54) and (3.55) in these boundary conditions it is found the coefficient

expressions

𝐵1 cosh(𝛼 (𝑑+𝑎)) +𝐶1 cosh(𝑘 (𝑑+𝑎))−𝐵2 sinh(𝛼 (𝑑+𝑎))−𝐶2 sinh(𝑘 (𝑑+𝑎)) = 𝐷𝑒−𝑘 (𝑑+𝑎) (A.24)

𝜖∞ [−𝐵1𝛼 sinh(𝛼 (𝑑 + 𝑎)) −𝐶1𝑘 sinh(𝑘 (𝑑 + 𝑎)) + 𝐵2𝛼 cosh(𝛼 (𝑑 + 𝑎)) +𝐶2𝑘 cosh(𝑘 (𝑑 + 𝑎))]
= 𝜖𝑑1𝑘𝐷𝑒

−𝑘 (𝑑+𝑎) (A.25)
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𝐵1 cosh(𝛼𝑑) +𝐶1 cosh(𝑘𝑑) − 𝐵2 sinh(𝛼𝑑) −𝐶2 sinh(𝑘𝑑) = 𝐹 cosh(𝑘𝑑) − 𝐸 sinh(𝑘𝑑) (A.26)

𝜖∞ [−𝐵1𝛼 sinh(𝛼𝑑) −𝐶1𝑘 sinh(𝑘𝑑) + 𝐵2𝛼 cosh(𝛼𝑑) +𝐶2𝑘 cosh(𝑘𝑑)]
= 𝜖𝑑2 (−𝐹𝑘 sinh(𝑘𝑑) + 𝐸𝑘 cosh(𝑘𝑑)) (A.27)

𝐹 = 𝐺 (A.28)

−𝐺𝑘 − 𝜖𝑑2𝐸𝑘 =
𝑒

𝜖0
𝑛2𝐷,1(k, 𝜔) (A.29)

𝜔2

𝜔2
𝑝

𝛼 [𝐵2 cosh(𝛼 (𝑑 + 𝑎)) − 𝐵1 sinh(𝛼 (𝑑 + 𝑎))]

+ 𝑘 [𝐶2 cosh(𝑘 (𝑑 + 𝑎)) −𝐶1 sinh(𝑘 (𝑑 + 𝑎))] = 0 (A.30)

𝜔2

𝜔2
𝑝

𝛼 [𝐵2 cosh(𝛼𝑑) − 𝐵1 sinh(𝛼𝑑)] + 𝑘 [𝐶2 cosh(𝑘𝑑) −𝐶1 sinh(𝑘𝑑)] = 0 (A.31)

In a similar way as graphene in the vicinity of a semi-infinite metal, due to the complexity of the latter linear

equation, it is necessary to solve the linear system of equations through matricial methods. In that order,

we solve equation 𝑀 · 𝑉 = 𝑁 to obtain the coefficient matrix 𝑉 = [𝐵1, 𝐵2,𝐶1,𝐶2, 𝐷, 𝐸, 𝐹,𝐺], with 𝑁
the matrix of the free-coefficient terms 𝑁 = [0, 0, 0, 0, 0, (𝑒/𝜖0)𝑛1(k, 𝜔), 0, 0]. The matrix M is given by

𝑀 =



cosh(𝛼 (𝑑 + 𝑎)) − sinh(𝛼 (𝑑 + 𝑎)) cosh(𝑘 (𝑑 + 𝑎))
−𝜖∞𝛼 sinh(𝛼 (𝑑 + 𝑎)) 𝜖∞𝛼 cosh(𝛼 (𝑑 + 𝑎)) −𝜖∞𝑘 sinh(𝑘 (𝑑 + 𝑎))

cosh(𝛼𝑑) − sinh(𝛼𝑑) cosh(𝑘𝑑)
−𝜖∞𝛼 sinh(𝛼𝑑) 𝜖∞𝛼 cosh(𝛼𝑑) −𝜖∞𝑘 sinh(𝑘𝑑)

0 0 0

0 0 0

−𝜔2

𝜔2
𝑝
𝛼 sinh(𝛼 (𝑑 + 𝑎)) 𝜔2

𝜔2
𝑝
𝛼 cosh(𝛼 (𝑑 + 𝑎)) −𝑘 sinh(𝑘 (𝑑 + 𝑎))

−𝜔2

𝜔2
𝑝
𝛼 sinh(𝛼𝑑) 𝜔2

𝜔2
𝑝
𝛼 cosh(𝛼𝑑) −𝑘 sinh(𝑘𝑑)

. . .
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− sinh(𝑘 (𝑑 + 𝑎)) −𝑒−𝑘 (𝑑+𝑎) 0 0 0

𝜖∞𝑘 cosh(𝑘 (𝑑 + 𝑎)) −𝜖𝑑1𝑘𝑒−𝑘 (𝑑+𝑎) 0 0 0

− sinh(𝑘𝑑) 0 sinh(𝑘𝑑) − cosh(𝑘𝑑) 0

𝜖∞𝑘 cosh(𝑘𝑑) 0 −𝜖𝑑2𝑘 cosh(𝑘𝑑) 𝜖𝑑2𝑘 sinh(𝑘𝑑) 0

0 0 0 1 −1
0 0 −𝜖𝑑2𝑘 0 −𝑘

𝑘 cosh(𝑘 (𝑑 + 𝑎)) 0 0 0 0

𝑘 cosh(𝑘𝑑) 0 0 0 0


By solving the linear system of equation with matrix M and matrix 𝑁 , the solution for all the coefficients

follow from matrix𝑉 . The potential in graphene (at 𝑧 = 0) is in this way given by equation (3.56), with the

auxiliary functions given by

𝐺1(𝑘,𝜔) = 𝜖𝑑1𝜖𝑑2 cosh(𝑘𝑑) [ − 2𝑘𝛼𝜔2𝜔2
𝑝 (−1 + cosh(𝑘𝑎) cosh(𝛼𝑎))

+
(
𝛼2𝜔4 + 𝑘2𝜔4

𝑝

)
sinh(𝑘𝑎) sinh(𝛼𝑎)

]
(A.32)

𝐺2(𝑘,𝜔) = 𝛼𝜖∞(𝜔2 − 𝜔2
𝑝)

[ (
𝜖𝑑2 cosh(𝑘𝑑) + 𝜖𝑑1 sinh(𝑘𝑑)

) (
−𝑘𝜔2

𝑝 cosh(𝛼𝑎) sinh(𝑘𝑎)

+ 𝛼𝜔2 cosh(𝑘𝑎) sinh(𝛼𝑎)
)
+𝛼𝜖∞(𝜔2 − 𝜔2

𝑝) sinh(𝑘𝑎) sinh(𝑘𝑑) sinh(𝛼𝑎)
]

(A.33)

𝑇1(𝑘,𝜔) = 𝜖𝑑1𝜖𝑑2𝑘 (cosh(𝑘𝑑) + 𝜖𝑑2 sinh(𝑘𝑑))(
−2𝑘𝛼𝜔2𝜔2

𝑝 (−1 + cosh(𝑘𝑎) cosh(𝛼𝑎)) +
(
𝛼2𝜔4 + 𝑘2𝜔4

𝑝

)
sinh(𝑘𝑎) sinh(𝛼𝑎)

)
(A.34)

𝑇2(𝑘,𝜔) =

𝛼𝜖∞𝑘 (𝜔2 − 𝜔2
𝑝)

[
−((1 + 𝜖𝑑1)𝜖𝑑2 cosh(𝑘𝑑) + (𝜖𝑑1 + 𝜖2𝑑2) sinh(𝑘𝑑))

(
𝑘𝜔2

𝑝 cosh(𝛼𝑎) sinh(𝑘𝑎)

−𝛼𝜔2 cosh(𝑘𝑎) sinh(𝛼𝑎)
)
+ 𝛼𝜖∞(𝜔2 − 𝜔2

𝑝) sinh(𝑘𝑎) sinh(𝛼𝑎) (𝜖𝑑2 cosh(𝑘𝑑) + sinh(𝑘𝑑))
]

(A.35)

By this way, the matricial method provides the solution for the coefficients in the electrostatic potential,

necessary to determine the spectrum of the surface plasmon-polaritons in graphene, like is done explicitly

in chapter 3.2.
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B
Green’s Functions

The Green’s functionmethod is a simpler mathematical way to solve differential equations that contains

an inhomogeneous term or in other words a source term, just like Poisson equation. In this thesis, we

made use of the Green’s functions to solve the differential equation (4.6b), where the left-hand side of

this equation is the source term that has a contribution from the external charges and the electrostatic

charges intrinsic to the materials. In this appendix we will show the equations and the boundary conditions

that give rise the solution provided by equations (4.10), (4.18) and (4.40), that correspond to the Green’s

functions for graphene in vacuum, graphene near a dielectric and graphene near a local metal.

Graphene in the vicinity of a dielectric

To start let us see the case of graphene in a dielectric, with constant permittivity 𝜖𝑑 and the dielectric

present at 𝑧 < 0 as seen in figure 4.1. To find the solution of equation (4.6b) we need to impose boundary

conditions to the Green’s function based on the geometry of the problem. The boundary conditions are

given by

𝑔𝐼 (𝑧′, 𝑧′) = 𝑔𝐼 𝐼 (𝑧′, 𝑧′) (B.1)

𝜕𝑔𝐼 (𝑧′, 𝑧′)
𝜕𝑧

− 𝜕𝑔𝐼 𝐼 (𝑧′, 𝑧′)
𝜕𝑧

= −1 (B.2)

𝑔𝐼 𝐼 (0, 𝑧′) = 𝑔𝐼 𝐼 𝐼 (0, 𝑧′) (B.3)

𝜕𝑔𝐼 𝐼 (0, 𝑧′)
𝜕𝑧

= 𝜖𝑑
𝜕𝑔𝐼 𝐼 𝐼 (0, 𝑧′)

𝜕𝑧
(B.4)
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The oscillatory form of the Green’s functions is shown in equation (4.17), by substitution in these last

boundary conditions we obtain the following explicit set of equations

𝐴(𝑧′)𝑒−𝑘𝑧 ′ = 𝐶1(𝑧′)𝑒−𝑘𝑧
′ +𝐶2(𝑧′)𝑒𝑘𝑧

′
(B.5)

𝑘𝐴(𝑧′)𝑒−𝑘𝑧 ′ − 𝑘𝐶1(𝑧′)𝑒−𝑘𝑧
′ + 𝑘𝐶2(𝑧′)𝑒𝑘𝑧

′
= 1 (B.6)

𝐶1(𝑧′) +𝐶2(𝑧′) = 𝐵(𝑧′) (B.7)

−𝑘𝐶1(𝑧′) + 𝑘𝐶2(𝑧′) =
1
𝜖𝑑
𝑘𝐵(𝑧′) (B.8)

Solving this linear system of equation, we obtain the following coefficients

𝐴(𝑧′) = 𝑒𝑘𝑧
′

2𝑘
+

(
1 − 𝜖𝑑
1 + 𝜖𝑑

)
𝑒−𝑘𝑧

′

2𝑘
(B.9)

𝐵(𝑧′) = 1
(1 + 𝜖𝑑)𝑘

𝑒−𝑘𝑧
′

(B.10)

𝐶1(𝑧′) =
(
1 − 𝜖𝑑
1+𝜖𝑑

)
1
2𝑘
𝑒−𝑘𝑧

′
(B.11)

𝐶2(𝑧′) =
1
2𝑘
𝑒−𝑘𝑧

′
(B.12)

This lead to the solution for the Green’s function, when graphene is in the vicinity of a dielectric as seen

in equation (4.18). To obtain the expression for a graphene sheet in vacuum, we simply compute 𝜖𝑑 = 1

in the last expressions. This will lead to 𝑔𝐼 𝐼 (𝑧, 𝑧′) = 𝑔𝐼 𝐼 𝐼 (𝑧, 𝑧′), and the Green function in this case can
be expressed like equation (4.10). Where the modulus assures the different solution for the two distinct

regions (𝑧 > 𝑧′ and 𝑧 < 𝑧′)

Graphene in the vicinity of a local metal

Now for the graphene near a local metal the procedure is similar, but in this case we will have a

new boundary conditions at the interface metal/dielectric, that correspond to the regions 𝐼𝑉 and 𝐼 𝐼 𝐼 ,

respectively. Just like the configuration in figure 4.4. For this geometry the boundary conditions are

𝑔𝐼 (𝑧′, 𝑧′) = 𝑔𝐼 𝐼 (𝑧′, 𝑧′) (B.13)

𝜕𝑔𝐼 (𝑧′, 𝑧′)
𝜕𝑧

− 𝜕𝑔𝐼 𝐼 (𝑧′, 𝑧′)
𝜕𝑧

= −1 (B.14)

95



APPENDIX B. GREEN’S FUNCTIONS

𝑔𝐼 𝐼 (0, 𝑧′) = 𝑔𝐼 𝐼 𝐼 (0, 𝑧′) (B.15)

𝜕𝑔𝐼 𝐼 (0, 𝑧′)
𝜕𝑧

= 𝜖𝑑
𝜕𝑔𝐼 𝐼 𝐼 (0, 𝑧′)

𝜕𝑧
(B.16)

𝑔𝐼 𝐼 𝐼 (−𝑑, 𝑧′) = 𝑔𝐼𝑉 (−𝑑, 𝑧′) (B.17)

𝜖𝑑
𝜕𝑔𝐼 𝐼 𝐼 (−𝑑, 𝑧′)

𝜕𝑧
= 𝜖 (𝜔) 𝜕𝑔𝐼𝑉 (−𝑑, 𝑧

′)
𝜕𝑧

(B.18)

where 𝜖 (𝜔) is the Drude dielectric function given by equation (2.40). Solving the boundary conditions

with the Green functions presented in equation (4.39), we have

𝐴(𝑧′)𝑒−𝑘𝑧 ′ = 𝐶1(𝑧′)𝑒−𝑘𝑧
′ +𝐶2(𝑧′)𝑒𝑘𝑧

′
(B.19)

𝑘𝐴(𝑧′)𝑒−𝑘𝑧 ′ − 𝑘𝐶1(𝑧′)𝑒−𝑘𝑧
′ + 𝑘𝐶2(𝑧′)𝑒𝑘𝑧

′
= 1 (B.20)

𝐶1(𝑧′) +𝐶2(𝑧′) = 𝐵1(𝑧′) + 𝐵2(𝑧′) (B.21)

−𝐶1(𝑧′) +𝐶2(𝑧′) = 𝜖𝑑 (−𝐵1(𝑧′) + 𝐵2(𝑧′)) (B.22)

𝐵1(𝑧′)𝑒𝑘𝑑 + 𝐵2(𝑧′)𝑒−𝑘𝑑 = 𝐷 (𝑧′)𝑒−𝑘𝑑 (B.23)

𝜖𝑑
(
−𝐵1(𝑧′)𝑒𝑘𝑑 + 𝐵2(𝑧′)𝑒−𝑘𝑑

)
= 𝜖 (𝜔)𝐷 (𝑧′)𝑒−𝑘𝑑 (B.24)

The coefficients in the last equations are obtained by solving the linear system through matricial methods

in a similar way that was solved in chapter 3 and in appendix A, for the electrostatic problems of graphene

near a semi-infinite and finite nonlocal metal, respectively. This leads to

𝐴(𝑧′) = 𝑒−𝑘𝑧
′

2𝑘

(
𝑟𝐷 + 𝑟𝑑𝑒2𝑘𝑑
𝑟𝑑𝑟𝐷 + 𝑒2𝑘𝑑

+ 𝑒2𝑘𝑧 ′
)

(B.25)

𝐵1(𝑧′) =
𝑒−𝑘𝑧

′

2𝑘

(
𝑡𝑑𝑟𝐷

𝑟𝑑𝑟𝐷 + 𝑒2𝑘𝑑

)
(B.26)

𝐵2(𝑧′) =
𝑒−𝑘𝑧

′

2𝑘

(
𝑡𝑑𝑒

2𝑘𝑑

𝑟𝑑𝑟𝐷 + 𝑒2𝑘𝑑

)
(B.27)

𝐶1(𝑧′) =
𝑒−𝑘𝑧

′

2𝑘

(
𝑟𝐷 + 𝑟𝑑𝑒2𝑘𝑑
𝑟𝑑𝑟𝐷 + 𝑒2𝑘𝑑

)
(B.28)
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𝐶2(𝑧′) =
𝑒−𝑘𝑧

′

2𝑘
(B.29)

𝐷 (𝑧′) = 𝑒−𝑘𝑧
′

2𝑘

(
𝑡𝑑𝑡𝐷𝑒

2𝑘𝑑

𝑟𝑑𝑟𝐷 + 𝑒2𝑘𝑑

)
(B.30)

These coefficients give rise to the Green’s functions admitted in equation (4.40). The Green function

method provides, in this way the solution for Poisson’s equation. This leads to the determination of the

external charge potential and the potential induced in graphene by that external charge, as is stated in

chapter 4.
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C
Graphene/Metal Induced Potential Integral

When graphene is in the vicinity of a local metal, the potential induced in the graphene sheet by

an external charge moving with velocity 𝑣 in the y-direction can be computationally burden, due to the

numerical solution of the integral. The potential integral in equation (4.63) can be separated into the

integrals 𝐼1 and 𝐼2, with

𝐼1 = 𝑣
2𝑡2𝑑

∫ 2𝜋

0

𝑑𝜃

2𝜋

⨏ ∞

0

𝑘𝑑𝑘

2𝜋
𝑒−𝑘𝛽𝑒𝑖𝑘𝛾

(𝑘𝑣 cos𝜃 )2 − 𝜔2
𝑠𝑝𝑝

(
𝑟𝐷 (𝑘𝑣 cos𝜃 ) + 𝑒2𝑘𝑑
𝑟𝑟𝐷 (𝑘𝑣 cos𝜃 ) + 𝑒2𝑘𝑑

)
(C.1)

𝐼2 = −𝑖𝑣2𝑡2𝑑
∫ ∞

0

𝑑𝑘

4𝜋

(
𝑔(𝑘, 𝜃1)

|𝑣2𝑘2 cos𝜃1 sin𝜃1 |
− 𝑔(𝑘, 𝜃2)
|𝑣2𝑘2 cos𝜃2 sin𝜃2 |

)
(C.2)

Computing these integrals separately, show us that 𝐼1 is more time consuming than 𝐼2. Luckily, both

potential have the same form, which means that present a peak of potential and then become continuous.

Regarding their numerical value, it was seen that both integral are approximately equal to each other, this

is |𝐼1 | = |𝐼2 |. Since their value is equal and 𝐼2 is computationally faster than 𝐼1 we can obtain the induced
potential only by using the second integral, this is

Φ𝑖𝑛 (r, 𝑧, 𝑡) = 2𝐼2 (C.3)

To make our point clearer, in the following tables is computed the numerical values for the integrals 𝐼1
and 𝐼2, for different values of the external charge velocity 𝑣 , for various values of the polar coordinate 𝑟 ,

different dielectric thickness 𝑑 and external charge height 𝑧0. In table 7 it is also computed the integrals

for different angles of 𝜃 ′. To recall this variable is the polar angle of r (see chapter 4.2). The tables show

us that equation (C.3) is a good approximation to the induced potential where the ratio between the two

integrals show that the values for 𝐼1 and 𝐼2 are very close to each other and we can consider 𝐼1 + 𝐼2 = 2𝐼2
in a good approximation. In all cases the dielectric constant chosen was 𝜖𝑑 = 1 (vacuum).
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Table 4: Numerical Value for the integrals in equation (4.63), for different velocities. The parameters
were: 𝑑 = 0.01 𝜇m and 𝑧0 = 1 𝜇m and 𝜃 ′ = 𝜋 . Note that for every velocity the potential can be seen as
Φ𝑖𝑛 (r, 𝑧, 𝑡) = 2𝐼2 approximately. For every 𝑟 the values for 𝐼1 and 𝐼2 are very close to each other and we
can consider 𝐼1 + 𝐼2 = 2𝐼2 in a good approximation.

𝑣/𝑐 𝑟 [𝜇m] |𝐼1 | |𝐼2 | |𝐼1 |
|𝐼2 |

|𝐼1 |+|𝐼2 |
2|𝐼2 |

1 0.0019 0.0029 0.66 0.83
3 0.0033 0.0038 0.87 0.93

0.05 6 0.0023 0.0026 0.89 0.94
10 0.0015 0.0017 0.88 0.94
12 0.0013 0.0014 0.93 0.96
15 0.0011 0.0012 0.93 0.96
1 0.0021 0.0031 0.68 0.84
2 0.0047 0.0054 0.87 0.94

0.1 5 0.0070 0.0073 0.96 0.98
8 0.0061 0.0063 0.97 0.98
10 0.0053 0.0055 0.96 0.98
15 0.0039 0.0041 0.95 0.98
1 0.0022 0.0031 0.71 0.85
2 0.0055 0.0062 0.88 0.94

0.3 4 0.0112 0.0116 0.97 0.98
8 0.0186 0.0188 0.99 0.99
10 0.0204 0.0205 ∼1 ∼1
15 0.0214 0.0215 ∼1 ∼1
4 0.0118 0.0122 0.97 0.98
8 0.0222 0.0224 0.99 ∼1

0.5 15 0.0328 0.0329 ∼1 ∼1
20 0.0355 0.0356 ∼1 ∼1
25 0.0356 0.0357 ∼1 ∼1
30 0.0345 0.345 ∼1 ∼1
5 0.0151 0.0155 0.97 0.99
10 0.0294 0.0296 0.99 ∼1

0.9 20 0.0507 0.0508 ∼1 ∼1
30 0.0614 0.0615 ∼1 ∼1
40 0.0645 0.0645 ∼1 ∼1
50 0.0632 0.0632 ∼1 ∼1
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Table 5: Numerical Value for the integrals in equation (4.63), for different velocities. The parameters were:
𝑑 = 0.01 𝜇m and 𝑧0 = 0.1 𝜇m and 𝜃 ′ = 𝜋 . Note that for every velocity the potential can be seen as
Φ𝑖𝑛 (r, 𝑧, 𝑡) = 2𝐼2 approximately. For every 𝑟 the values for 𝐼1 and 𝐼2 are very close to each other and we
can consider 𝐼1 + 𝐼2 = 2𝐼2 in a good approximation.

𝑣/𝑐 𝑟 [𝜇m] |𝐼1 | |𝐼2 | |𝐼1 |
|𝐼2 |

|𝐼1 |+|𝐼2 |
2|𝐼2 |

1 0.0154 0.0173 0.89 0.95
3 0.0054 0.0060 0.90 0.95

0.05 6 0.0027 0.0030 0.90 0.95
10 0.0016 0.0018 0.89 0.94
12 0.0014 0.0015 0.93 0.97
15 0.0011 0.0012 0.92 0.96
1 0.0546 0.0563 0.97 0.99
2 0.0309 0.0317 0.98 0.99

0.1 5 0.0128 0.0131 0.98 0.99
8 0.0080 0.0082 0.98 0.99
10 0.0064 0.0066 0.97 0.99
15 0.0043 0.0044 0.98 0.99
1 0.1945 0.1960 0.99 ∼1
2 0.2040 0.2048 ∼1 ∼1

0.3 4 0.1324 0.1328 ∼1 ∼1
8 0.0709 0.0711 ∼1 ∼1
10 0.0572 0.0574 ∼1 ∼1
15 0.0384 0.0386 ∼1 ∼1
4 0.3146 0.3147 ∼1 ∼1
8 0.1891 0.1893 ∼1 ∼1

0.5 15 0.1056 0.1057 ∼1 ∼1
20 0.0798 0.0799 ∼1 ∼1
25 0.0641 0.0641 ∼1 ∼1
30 0.0535 0.0536 ∼1 ∼1
5 0.6396 0.6402 ∼1 ∼1
10 0.4582 0.4585 ∼1 ∼1

0.9 20 0.2527 0.2528 ∼1 ∼1
30 0.1716 0.1717 ∼1 ∼1
40 0.1296 0.1296 ∼1 ∼1
50 0.1040 0.1040 ∼1 ∼1
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Table 6: Numerical Value for the integrals in equation (4.63), for different velocities. The parameters
were: 𝑑 = 0.1 𝜇m and 𝑧0 = 1 𝜇m and 𝜃 ′ = 𝜋 . Note that for every velocity the potential can be seen as
Φ𝑖𝑛 (r, 𝑧, 𝑡) = 2𝐼2 approximately. For every 𝑟 the values for 𝐼1 + 𝐼2 = 2𝐼2 are very close to each other and
we can consider 𝐼1 = 𝐼2 in a good approximation.

𝑣/𝑐 𝑟 [𝜇m] |𝐼1 | |𝐼2 | |𝐼1 |
|𝐼2 |

|𝐼1 |+|𝐼2 |
2|𝐼2 |

1 0.0077 0.0122 0.63 0.82
3 0.0049 0.0053 0.93 0.96

0.05 6 0.0027 0.0028 0.96 0.98
10 0.0016 0.0017 0.94 0.97
12 0.0014 0.0014 1 1
15 0.0011 0.0011 1 1
1 0.0138 0.0267 0.52 0.76
2 0.0196 0.0298 0.66 0.83

0.1 5 0.0120 0.0169 0.71 0.86
8 0.0079 0.0111 0.71 0.86
10 0.0064 0.0089 0.72 0.86
15 0.0043 0.0060 0.72 0.86
1 0.0174 0.0263 0.66 0.83
2 0.0411 0.0479 0.86 0.93

0.3 4 0.0649 0.0688 0.94 0.97
8 0.0580 0.0600 0.97 0.98
10 0.0504 0.0520 0.97 0.99
15 0.0365 0.0376 0.97 0.99
4 0.0856 0.0894 0.96 0.98
8 0.1129 0.1149 0.98 0.99

0.5 15 0.0905 0.0916 0.99 0.99
20 0.0735 0.0743 0.99 0.99
25 0.0610 0.0616 0.99 0.99
30 0.0519 0.0524 0.99 ∼1
5 0.1186 0.1217 0.97 0.99
10 0.1893 0.1909 0.99 ∼1

0.9 20 0.1913 0.1921 ∼1 ∼1
30 0.1519 0.1524 ∼1 ∼1
40 0.1214 0.1218 ∼1 ∼1
50 0.1001 0.1004 ∼1 ∼1
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APPENDIX C. GRAPHENE/METAL INDUCED POTENTIAL INTEGRAL

Table 7: Numerical Value for the integrals in equation (4.63), for different velocities. The parameters were:
𝑑 = 0.01 𝜇m, 𝑧0 = 1 𝜇m, 𝜃 ′ = 3 (for velocities of 0.05𝑐 and 0.1𝑐) and 𝜃 ′ = 3.1 (for velocities of 0.3𝑐
and 0.8𝑐). Note that for every velocity the potential can be seen as Φ𝑖𝑛 (r, 𝑧, 𝑡) = 2𝐼2 approximately. For
every 𝑟 the values for 𝐼1 and 𝐼2 are very close to each other and we can consider 𝐼1 + 𝐼2 = 2𝐼2 in a good
approximation.

𝑣/𝑐 𝑟 [𝜇𝑚] |𝐼1 | |𝐼2 | |𝐼1 |
|𝐼2 |

|𝐼1 |+|𝐼2 |
2|𝐼2 |

1 0.0017 0.0028 0.61 0.80
3 0.0032 0.0038 0.84 0.92

0.05 6 0.0024 0.0028 0.86 0.93
10 0.0017 0.0019 0.90 0.95
12 0.0014 0.0016 0.89 0.94
15 0.0012 0.0013 0.92 0.96
1 0.0019 0.0029 0.66 0.83
2 0.0039 0.0046 0.85 0.92

0.1 5 0.0053 0.0057 0.93 0.97
8 0.0055 0.0057 0.97 0.98
10 0.0054 0.0055 0.98 0.99
15 0.0049 0.0050 0.98 0.99

1 0.0022 0.0031 0.71 0.85
2 0.0054 0.0060 0.90 0.95

0.3 4 0.0104 0.0108 0.96 0.98
8 0.0157 0.0159 0.99 0.99
10 0.0167 0.0169 0.99 0.99
15 0.0176 0.0177 0.99 ∼1
5 0.0133 0.0136 0.98 0.99
10 0.0187 0.0189 0.99 ∼1

0.8 15 0.0170 0.0172 0.99 0.99
20 0.0124 0.0124 1 1
25 0.0071 0.0071 1 1
30 0.0021 0.0022 0.95 0.98
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