
Universidade do Minho
Escola de Engenharia
Departamento de Informática

Beatriz de Freitas Rocha

Automation of companies’ recruitment process

Development of an algorithm capable of ranking
CVs according to job offers

December 2022

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Beatriz de Freitas Rocha

Automation of companies’ recruitment process

Development of an algorithm capable of ranking
CVs according to job offers

Master dissertation
Integrated Master’s in Informatics Engineering

Dissertation supervised by
Pedro Rangel Henriques
Hugo Paulino Santos

December 2022

i

AUTHOR COPYRIGHTS AND TERMS OF USAGE BY THIRD PARTIES

This is an academic work which can be utilized by third parties given that the rules and
good practices internationally accepted, regarding author copyrights and related copyrights.

Therefore, the present work can be utilized according to the terms provided in the license
bellow.

If the user needs permission to use the work in conditions not foreseen by the licensing
indicated, the user should contact the author, through the RepositóriUM of University of
Minho.

License provided to the users of this work

Attribution-NonCommercial
CC BY-NC
https://creativecommons.org/licenses/by-nc/4.0/

ii

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have
not used plagiarism or any form of undue use of information or falsification of results along
the process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the
University of Minho.

Beatriz de Freitas Rocha

A B S T R A C T

This document presents a Thesis and describes the underlying work which was developed
along the second year of the Master Degree in Informatics Engineering offered by Departa-
mento de Informática of Universidade do Minho and accomplished at Syone SBS Software –
Tecnologia e Serviços de Informática, S.A..

In the past few years, some attempts to automatically screening CVs with resource to
Natural Language Processing have been made not only to save recruiters’ time, but also
to spare them the most tedious task of the recruitment process and, consequently, smooth
their job. However, the majority is still very primitive, misclassifies a lot of CVs and needs a
deeper study.

Therefore, the aim of this Master’s Project is precisely to develop an algorithm that is
capable of automatically ranking candidates’ CVs according to their similarity regarding the
job offer they applied for.

Thus, a general architecture was proposed where CVs and job offers are preprocessed, in
order to obtain the respective texts proper to be further processed. That said, two different
approaches were followed, in order to find the similarity between the documents in question.
To do so, the first approach resorted to several Machine Learning algorithms and similarity
measures, while the second approach structured the initial documents to compare their
respective information.

After that, tests were conducted to evaluate both approaches and enable the comparison
between them. Finally, the conclusions were drawn and also reported in this dissertation.

keywords Curriculum Vitae (CV), CV screening, Machine Learning (ML), Natural Lan-
guage Processing (NLP).

iii

R E S U M O

Este documento apresenta uma Tese e descreve o trabalho subjacente que foi desenvolvido
ao longo do segundo ano do Mestrado em Engenharia Informática do Departamento de
Informática da Universidade do Minho e realizado na Syone SBS Software – Tecnologia e
Serviços de Informática, S.A..

Nos últimos anos, algumas tentativas de triagem automática de currículos com recurso
a Processamento de Linguagem Natural foram feitas não só para economizar o tempo
dos recrutadores, mas também para os poupar da tarefa mais entediante do processo de
recrutamento e, consequentemente, suavizar o seu trabalho. Contudo, a maioria ainda é
muito primitiva, classifica incorretamente muitos currículos e necessita de um estudo mais
aprofundado.

Sendo assim, o objetivo deste Projeto de Mestrado é precisamente desenvolver um algo-
ritmo capaz de classificar automaticamente os currículos dos candidatos de acordo com a
sua similaridade relativamente à oferta de emprego a que se candidataram.

Deste modo, foi proposta uma arquitetura geral onde os CVs e as ofertas de emprego
são pré-processados, de forma a obter os respetivos textos adequados para posterior pro-
cessamento. Dito isto, foram seguidas duas abordagens distintas, de forma a encontrar a
semelhança entre os documentos em questão. Para tal, a primeira abordagem recorreu a
diversos algoritmos de Aprendizagem Automática e medidas de similaridade, enquanto a
segunda abordagem estruturou os documentos iniciais para comparar as suas respetivas
informações.

De seguida, foram realizados testes para avaliar ambas as abordagens e possibilitar a
comparação entre elas. Por fim, as conclusões foram tiradas e também relatadas nesta
dissertação.

palavras-chave Aprendizagem Automática, Curriculum Vitae (CV), Processamento de
Linguagem Natural (PLN), triagem de currículos.

iv

C O N T E N T S

1 introduction 1

1.1 Context 1

1.2 Motivation 2

1.3 Objectives 2

1.4 Research hypothesis 2

1.5 Research methodology 3

1.6 Document structure 3

2 state of the art 5

2.1 CV sources and formats 5

2.1.1 Europass 5

2.1.2 LinkedIn profile as a CV 8

2.1.3 Curriculum Lattes 11

2.1.4 CIÊNCIAVITAE 14

2.1.5 Syone’s internal CV 25

2.1.6 Considerations 28

2.1.7 Ontology definition 28

2.2 Semantic information extraction 31

2.2.1 Entities and relationships 31

2.2.2 Information Extraction workflow 32

2.2.3 Named Entity Recognition approaches 34

2.2.4 Information Extraction workflow with spaCy 34

2.3 Similarity algorithms 39

2.3.1 Jaccard Similarity 39

2.3.2 TF-IDF 40

2.3.3 Doc2Vec 40

2.3.4 BERT 42

2.3.5 USE 44

2.3.6 Algorithm comparison 44

2.4 Similarity measures 45

2.4.1 Cosine similarity 45

2.4.2 Euclidean distance 46

2.4.3 Manhattan distance 46

2.4.4 Chebyshev distance 47

2.5 Summary 47

v

contents vi

3 proposed approach 48

3.1 System architecture 48

3.2 Summary 51

4 cvs processing 52

4.1 Text extractor and XML extractor 52

4.2 Knowledge extractor 53

4.3 Document builder 64

4.4 Summary 64

5 similarity algorithm (approach a) 65

5.1 Implementation and results 65

5.2 Summary 79

6 similarity algorithm (approach b) 80

6.1 Implementation and results 80

6.2 Summary 89

7 conclusion 90

a sample job offer 97

b sample cv 99

c json file corresponding to the sample job offer 108

d json file corresponding to the sample cv 112

L I S T O F F I G U R E S

Figure 1 Europass - Personal Information 6

Figure 2 Europass - Work Experience 6

Figure 3 Europass - Education and Training 6

Figure 4 Europass - Personal Skills (part 1) 7

Figure 5 Europass - Personal Skills (part 2) 7

Figure 6 Europass - Additional Information 8

Figure 7 LinkedIn profile as a CV - Summary 8

Figure 8 LinkedIn profile as a CV - Experience 8

Figure 9 LinkedIn profile as a CV - Education 9

Figure 10 LinkedIn profile as a CV - Contact 9

Figure 11 LinkedIn profile as a CV - Top Skills 9

Figure 12 LinkedIn profile as a CV - Languages 9

Figure 13 LinkedIn profile as a CV - Certifications 10

Figure 14 LinkedIn profile as a CV - Honors-Awards 10

Figure 15 LinkedIn profile as a CV - Publications 10

Figure 16 LinkedIn profile as a CV - Patents 10

Figure 17 LinkedIn profile as a CV - Personal Information 10

Figure 18 Curriculum Lattes - Personal Information 11

Figure 19 Curriculum Lattes - Address and Contact 12

Figure 20 Curriculum Lattes - Academic Education 13

Figure 21 Curriculum Lattes - Professional Occupation 13

Figure 22 Curriculum Lattes - Occupation Area 14

Figure 23 CIÊNCIAVITAE - Identification: Personal Information (part 1) 14

Figure 24 CIÊNCIAVITAE - Identification: Personal Information (part 2) 15

Figure 25 CIÊNCIAVITAE - Identification: Personal Information (part 3) 15

Figure 26 CIÊNCIAVITAE - Identification: Contacts (part 1) 15

Figure 27 CIÊNCIAVITAE - Identification: Contacts (part 2) 16

Figure 28 CIÊNCIAVITAE - Identification: Contacts (part 3) 16

Figure 29 CIÊNCIAVITAE - Identification: Contacts (part 4) 17

Figure 30 CIÊNCIAVITAE - Identification: Acting Domains 17

Figure 31 CIÊNCIAVITAE - Identification: Languages 18

Figure 32 CIÊNCIAVITAE - Identification: Summary 18

Figure 33 CIÊNCIAVITAE - Education (part 1) 19

vii

list of figures viii

Figure 34 CIÊNCIAVITAE - Education (part 2) 19

Figure 35 CIÊNCIAVITAE - Education (part 3) 20

Figure 36 CIÊNCIAVITAE - Professional Path (part 1) 20

Figure 37 CIÊNCIAVITAE - Professional Path (part 2) 20

Figure 38 CIÊNCIAVITAE - Projects (part 1) 21

Figure 39 CIÊNCIAVITAE - Projects (part 2) 21

Figure 40 CIÊNCIAVITAE - Projects (part 3) 22

Figure 41 CIÊNCIAVITAE - Projects (part 4) 22

Figure 42 CIÊNCIAVITAE - Productions (part 1) 23

Figure 43 CIÊNCIAVITAE - Productions (part 2) 23

Figure 44 CIÊNCIAVITAE - Productions (part 3) 24

Figure 45 CIÊNCIAVITAE - Activities 24

Figure 46 CIÊNCIAVITAE - Distinctions (part 1) 25

Figure 47 CIÊNCIAVITAE - Distinctions (part 2) 25

Figure 48 Syone’s internal CV - Personal Information 26

Figure 49 Syone’s internal CV - Executive Summary 26

Figure 50 Syone’s internal CV - Professional Experience 26

Figure 51 Syone’s internal CV - Education 27

Figure 52 Syone’s internal CV - Languages 27

Figure 53 Syone’s internal CV - Technologies 28

Figure 54 Entities found in the text 32

Figure 55 Relationships found in the text 32

Figure 56 Information Extraction workflow 33

Figure 57 Text sample and its named entities 37

Figure 58 More complex text sample and its named entities 37

Figure 59 Text sample and its dependency parse tree 38

Figure 60 Jaccard Similarity 39

Figure 61 One-hot encoding 41

Figure 62 Skip-gram 41

Figure 63 CBOW 42

Figure 64 Transformer’s architecture 43

Figure 65 BERT’s architecture 43

Figure 66 USE’s input and output paradigm 44

Figure 67 Cosine similarity 46

Figure 68 General architecture of the system 48

Figure 69 Architecture of approach A 49

Figure 70 Architecture of approach B 50

Figure 71 Text extractor and XML extractor engines’ class diagram 53

list of figures ix

Figure 72 Example of an Education section 54

Figure 73 Separator of each Professional Experience section’s entry 55

Figure 74 Separator of each Education section’s entry 55

Figure 75 Example of a Professional Experience entry without the "Software
and Environments used" field 56

Figure 76 Example of a Professional Experience entry without the "Occupation
or position held" field 56

Figure 77 Example of an Education entry without the "Principal subjects /
occupational skills covered" field 57

Figure 78 Example of an Education entry with multiple "Title of qualification
awarded" fields 57

Figure 79 Example of an Education entry without the "Title of qualification
awarded" field 58

Figure 80 Candidate with an invalid date format 59

Figure 81 Candidate with a date format from which it was not possible to know
whether it was a start date or an end date 59

Figure 82 Candidate using "to" to separate the start date from the end date 60

Figure 83 Candidate using "till" to separate the start date from the end date 60

Figure 84 Knowledge extractor engine’s class diagram (part 1) 63

Figure 85 Knowledge extractor engine’s class diagram (part 2) 63

Figure 86 Knowledge extractor engine’s class diagram (part 3) 63

Figure 87 Document builder engine’s class diagram 64

Figure 88 Graph of math function that returns score based on number of
years 81

L I S T O F TA B L E S

Table 1 Comparison between the algorithms 44

Table 2 CVs chosen for each job offer based on the application of the algo-
rithms 67

Table 3 Intersection of the top 5 CVs chosen by the various algorithms for the
Backend Developer GO job offer 67

Table 4 Intersection of the top 5 CVs chosen by the various algorithms for the
Backend Developer job offer 68

Table 5 Intersection of the top 5 CVs chosen by the various algorithms for the
BE Developer job offer 68

Table 6 Intersection of the top 5 CVs chosen by the various algorithms for the
Business Development Manager job offer 68

Table 7 Intersection of the top 5 CVs chosen by the various algorithms for the
Frontend Developer (Angular) job offer 68

Table 8 Intersection of the top 5 CVs chosen by the various algorithms for the
Frontend Developer (Vue.js) (1) job offer 69

Table 9 Intersection of the top 5 CVs chosen by the various algorithms for the
Frontend Developer (Vue.js) (2) job offer 69

Table 10 Intersection of the top 5 CVs chosen by the various algorithms for the
Infrasctructure Architect and Pre-Sales job offer 69

Table 11 Intersection of the top 5 CVs chosen by the various algorithms for the
IT Recruiter job offer 69

Table 12 Intersection of the top 5 CVs chosen by the various algorithms for the
Junior Developers (1) job offer 70

Table 13 Intersection of the top 5 CVs chosen by the various algorithms for the
ML/Data Engineer job offer 70

Table 14 Intersection of the top 5 CVs chosen by the various algorithms for the
.NET Developer (1) job offer 70

Table 15 Intersection of the top 5 CVs chosen by the various algorithms for the
.NET Developer (2) job offer 70

Table 16 Intersection of the top 5 CVs chosen by the various algorithms for the
QA Engineer job offer 71

Table 17 Intersection of the top 5 CVs chosen by the various algorithms for the
Scrum Master (1) job offer 71

x

list of tables xi

Table 18 Intersection of the top 5 CVs chosen by the various algorithms for the
Scrum Master (2) job offer 71

Table 19 Intersection of the top 5 CVs chosen by the various algorithms for the
Solution Designer - Hardware job offer 72

Table 20 Intersection of the top 5 CVs chosen by the various algorithms for the
Junior Developers (2) job offer 72

Table 21 Intersection of the top 5 CVs chosen by the various algorithms for the
System Administrator job offer 72

Table 22 Intersection of the top 5 CVs chosen by the various algorithms for the
Tech Lead/Senior Frontend job offer 72

Table 23 CVs chosen for each job offer based on the application of the all-
mpnet-base-v2 model 73

Table 24 CVs chosen for each job offer based on the application of the all-
MiniLM-L6-v2 model 74

Table 25 CVs chosen for each job offer based on the application of USE with
Euclidean distance 75

Table 26 CVs chosen for each job offer based on the application of USE with
Manhattan distance 76

Table 27 CVs chosen for each job offer based on the application of USE with
Chebyshev distance 77

Table 28 CVs chosen for each job offer based on the application of TF-IDF to
the preprocessed sample 78

Table 29 CVs chosen for each job offer based on the application of USE to the
preprocessed sample 79

Table 30 Top 5 candidates for the job offer presented in Appendix A 88

L I S T O F L I S T I N G S

2.1 Description of the ontology with no instances 28

2.2 Description of the ontology with instances . 29

2.3 Import library, load English model and create Doc object 34

2.4 Sentence splitting . 35

2.5 Tokenization . 35

2.6 POS tagging . 35

2.7 Lemmatization . 36

2.8 Named Entity Recognition . 37

2.9 Dependency parsing . 37

5.1 Import libraries, modules and functions . 65

5.2 Load the USE’s TF Hub module . 65

5.3 General code approach to apply the algorithm and the similarity measure (in
this case, USE with cosine similarity) . 66

6.1 Dictionary of settings used as an example . 88

C.1 JSON file corresponding to the sample job offer 108

D.1 JSON file corresponding to the sample CV . 112

xii

A C R O N Y M S

A

AI Artificial Intelligence.

B

BERT Bidirectional Encoder Representations from Transformers.

C

CBOW Continuous Bag Of Words.

CV Curriculum Vitae.

D

DAN Deep Averaging Network.

DNN Deep Neural Network.

E

EU European Union.

G

GUI Graphical User Interface.

H

HR Human Resources.

I

IE Information Extraction.

IT Information Technology.

J

xiii

Acronyms xiv

JSON JavaScript Object Notation.

K

KE Knowledge Engineering.

M

ML Machine Learning.

N

NER Named Entity Recognition.

NLP Natural Language Processing.

P

POS Part-Of-Speech.

PV-DBOW Distributed Bag Of Words version of Paragraph Vector.

PV-DM Distributed Memory version of Paragraph Vector.

T

TF-IDF Term Frequency — Inverse Document Frequency.

U

UPOS Universal Part-Of-Speech tag set.

URL Uniform Resource Locator.

USE Universal Sentence Encoder.

1

I N T R O D U C T I O N

In this first chapter of the dissertation, the Master’s Project is introduced along with its
context and motivation. Furthermore, the necessary objectives to complete it are also detailed,
the research hypothesis and the corresponding research methodology are specified and the
document structure is presented.

1.1 context

Recruitment consists in hiring the best candidates for a given job offer according to their
skills and the first task of this process is to screen the CVs of all the job applicants. However,
this can be a very exhausting and tedious chore for recruiters, considering they have to
manually narrow down the most appropriate candidates from an immensely large pool.
(Amin et al., 2019)

As a proof, the screening process can be condensed as stated bellow: (Catherine et al.,
2010)

1. Understand the job offer’s requirements in terms of the skills that are mandatory
(such as certain technologies) and those that are optional, but preferable (for example,
speaking a particular language), the experience criteria if any, the preference for the
location of the candidate, etc.;

2. Go through each and every of the applications and discard those which do not satisfy
the skills required for the job;

3. Out of the remaining candidates, find the best match for the job. To do this, the
recruiter has to read the CVs in detail and compare them with the job offer. In addition,
since the number of candidates who can be interviewed is limited, the recruiter has to
make a relative judgement on them.

Therefore, when using such a sequential and relative selection procedure, manual screen-
ing may miss potentially better candidates for the job opening which, in turn, may result in
a suboptimal pool of potential employees. (Mehta et al., 2013)

1

1.2. Motivation 2

Moreover, with less than 5% of people being selected from these applications, it is
impractical for the recruiters to go through the CVs one by one for these limited number of
openings. (Daryani et al., 2020)

Another problem faced by recruiters is the fact that the CVs do not follow any specific
pattern, i.e., beyond the fact that the CVs are in various formats, such as .pdf, .docx, .jpg, etc.,
they do not have a standard style of presenting their content. As an attempt to solve this
problem, many job portals decided to provide an online form so that the job applicants could
fill up all the information of their CV in a structured manner, creating the so called "candidate
metadata". Nevertheless, this solution requires redundant efforts from the candidates, which
often leads them to fill that template with incomplete information. (Daryani et al., 2020)

1.2 motivation

In the past few years, there have been developed some automatic CV screening tools, in
order to automate that recruitment process task. However, most of them show vulnerabilities:
either in precision, the lack of empirical validation or even the presentation of bias (ending
up discriminating candidates).

Enachescu (2019), for instance, states some negative impacts on the accuracy of the
system. On the other hand, Laumer and Eckhardt (2009), for example, did not validate
their conceptual approach with real unstructured data. Lastly, the American multinational
technology company, Amazon, e.g., developed an Artificial Intelligence (AI) recruiting tool
that was not rating candidates for software developer jobs and other technical posts in a
gender-neutral way (ama).

This Master’s Work entails the creation of a system that will overcome those issues, never
forgetting the principal aim: being capable of screening CVs automatically.

1.3 objectives

The main objective of this Master’s Work is to identify which applicants are most suitable
for a specific job offer. To attain this objective, the steps below will be followed:

• Extract crucial information about the candidates and the job offers;

• Apply a function capable of calculating the similarity between a CV and a job offer.

1.4 research hypothesis

The research hypothesis that will be proved with this Master’s Work is stated bellow:

1.5. Research methodology 3

“It is possible to develop an algorithm capable of automatically matching the most suitable
applicants to a certain job offer”.

1.5 research methodology

In order to accomplish this Master’s Work, an iterative methodology based on literature
review, solution proposal, implementation and testing will be carried on. To achieve this
approach, the following steps will be performed:

• Bibliographic study to deeply understand the state of the art in CV sources and formats,
Information Extraction (IE) components and steps, Natural Language Processing
algorithms and similarity metrics;

• Synthesis and description of the products of that study;

• Analysis of the sample of CVs and job offers that will be used as a case study;

• Extraction of the important information from those CVs and job offers;

• Implementation of an algorithm where the recruiters will be able to choose the job offer
and the respective candidates and get as a result the x best candidates that applied for
that job, according to the number of applicants they are willing to interview;

• Testing of the developed algorithm and evaluation and discussion of the results.

After the pursuance of these steps, if the results are still not favorable, then iterate all over
again.

1.6 document structure

This document is composed of seven different chapters with the following contents:

1. Introduction - In the first chapter the problem is contextualized and the motivation
to proceed with its resolution is exposed. In addition, the main goals of this work
are detailed and the research hypothesis to be proved is stated. Lastly, the research
methodology containing the steps to be followed is proposed;

2. State of the art - In this chapter the concepts of CV sources and formats, semantic
information extraction, similarity algorithms and similarity measures are studied and
the results of that study are presented;

3. Proposed approach - In the third chapter, a solution to the problem is proposed, which,
in turn, is illustrated with a diagram for better understanding;

1.6. Document structure 4

4. CVs processing - In this chapter the engines responsible for processing the CVs and
the challenges that arose with their development are explained;

5. Similarity algorithm (approach A) - In the fifth chapter the general coding strategy
for calculating the affinity between job offers and CVs in the first similarity algorithm
approach is presented, along with the elucidation of the various techniques applied to
achieve that affinity and their respective results and conclusions;

6. Similarity algorithm (approach B) - In this chapter the second similarity algorithm
approach that was followed to calculate the affinity between job offers and CVs is
explained and the results and conclusions of that approach are presented;

7. Conclusion - The last chapter contains a recap of all the work done throughout this
Master’s Project, the obstacles that emerged during the development of the project,
the conclusions obtained and the future work that could be done in the following
iterations.

2

S TAT E O F T H E A RT

Before proposing an approach to solve the problem under discussion, it is important to
analyze the current state of the art regarding the scope of this Master’s Work. Therefore, in
this second chapter, the concepts of CV sources and formats, semantic information extraction,
similarity algorithms and similarity measures are explored.

2.1 cv sources and formats

A Curriculum Vitae (Latin for "course of life"), as the name implies, is a document containing
the information about an individual’s career, education and skills and it is usually used
when they want to apply to a certain job offer. However, there is still no standard format
globally used and accepted at the moment and, as a result, there are several different types
of CVs, according to the area of expertise or country.

Despite that, there is a set of patterns that can be seen in the various types of CVs.
Therefore, in this section, the Europass (Eur), LinkedIn profile as a CV (Lin), Curriculum
Lattes (Lat), CIÊNCIAVITAE (Cie) and Syone’s internal CV formats will be presented and
analyzed and, after that, an ontology supporting all the information it will be necessary to
extract from each CV will be developed.

2.1.1 Europass

The Europass was created by the Directorate General for Education and Culture of the
European Union so that citizens could follow a common pattern among all the countries of
the European Union (EU). It is a very complete format and can be divided into five main
sections: Personal Information, Work Experience, Education and Training, Personal Skills
and Additional Information.

The first section, Personal Information (Figure 1), contains the individual’s name, picture,
contact information (such as home address, telephone/mobile number, e-mail address,
websites and messaging accounts), sex, date of birth and nationalities. It also contains the
description of the job position they have applied for.

5

2.1. CV sources and formats 6

Figure 1: Europass - Personal Information

The Work Experience section (Figure 2) holds the previous occupations the individual has
had in the past and the respective period of time, company and location in which they had
performed them enumerated chronologically. In addition, the responsibilities the person
had and the sector where they worked are detailed.

Figure 2: Europass - Work Experience

The Education and Training section (Figure 3) is very similar to the previous one. It con-
tains the individual’s qualifications (and corresponding European Qualification Framework
(or other) levels) and, once again, the respective period of time, organization and location in
which they achieved them enumerated chronologically. Moreover, the main subjects covered
are also described.

Figure 3: Europass - Education and Training

2.1. CV sources and formats 7

The next section, Personal Skills (Figure 4 and Figure 5), starts with the individual’s
language skills and the respective proficiency level regarding understanding, speaking and
writing. Then, it also displays the individual’s communication skills, organisational/man-
agerial skills, job-related skills, computer skills and other skills. In the end, the person can
also state whether they have a driving license and, if so, its category.

Figure 4: Europass - Personal Skills (part 1)

Figure 5: Europass - Personal Skills (part 2)

Finally, the last section, Additional Information (Figure 6), has any other information
about the individual that was not stated above and that they might consider relevant to
mention, such as publications, presentations, projects, among others.

2.1. CV sources and formats 8

Figure 6: Europass - Additional Information

2.1.2 LinkedIn profile as a CV

LinkedIn is the world’s largest professional network on the Internet. This platform allows
people to find job opportunities through their profile which showcases past professional
experiences, skills, licenses and certifications, etc.. Currently, it is also possible to export
a person’s LinkedIn profile as a CV which, in turn, has ten main sections: Summary,
Experience, Education, Contact, Top Skills, Languages, Certifications, Honors-Awards,
Publications and Patents.

The Summary section (Figure 7) presents a brief summary about the person. That summary
usually contains a description about their skills, achievements or previous job experiences.

Figure 7: LinkedIn profile as a CV - Summary

The Experience section (Figure 8) contains the previous work experiences with the corre-
sponding start and end dates. It also includes the company’s name, the job role, the country
where they took place and a brief description.

Figure 8: LinkedIn profile as a CV - Experience

2.1. CV sources and formats 9

The Education section (Figure 9) contains the previous education miles which include the
respective school, degree, field and start and end dates.

Figure 9: LinkedIn profile as a CV - Education

The Contact section (Figure 10) contains the person’s contact information, such as address,
mobile number, email and website.

Figure 10: LinkedIn profile as a CV - Contact

The Top Skills section (Figure 11) contains the best skills of the individual.

Figure 11: LinkedIn profile as a CV - Top Skills

The Languages section (Figure 12) contains the individual’s language skills and the
corresponding proficiency level.

Figure 12: LinkedIn profile as a CV - Languages

In the Certifications section (Figure 13) the individual can state the respective certifications
obtained.

2.1. CV sources and formats 10

Figure 13: LinkedIn profile as a CV - Certifications

In the section Honors-Awards (Figure 14) the person can enumerate the honors and
awards earned throughout their life.

Figure 14: LinkedIn profile as a CV - Honors-Awards

The section Publications (Figure 15) contains the title of the publications the individual
has produced.

Figure 15: LinkedIn profile as a CV - Publications

In the section Patents (Figure 16) the person can list all the patents they detain.

Figure 16: LinkedIn profile as a CV - Patents

Lastly, there is one more section with no title which contains the personal information,
these being the name of the person, a brief description and the current location (Figure 17).

Figure 17: LinkedIn profile as a CV - Personal Information

2.1. CV sources and formats 11

2.1.3 Curriculum Lattes

The Curriculum Lattes was created by the National Council for Scientific and Technological
Development to meet the need to bring together in a unique format the academic journey
of students, professors and researchers of higher education in Brazil. Like the Europass,
it can also be divided into five key sections: Personal Information, Address and Contact,
Academic Education, Professional Occupation and Occupation Area.

The Personal Information section (Figure 18) contains the person’s picture, name, date
of birth, nationality, sex and colour or race. If the person does not have an Individual
Registration, the field with the corresponding number can be left blank. However, if the
person does have an Individual Registration, they not only have to fill that field, but they
can also choose whether they want to use a social name or not (and, if so, supply that name).
It also contains the ID and the respective issuing agency, Federative Unit and issue date.
Additionally, it includes the passport number and the corresponding expiration date, issue
date and issuing country. Lastly, it comprehends the parents’ names.

Figure 18: Curriculum Lattes - Personal Information

2.1. CV sources and formats 12

In the second section, Address and Contact (Figure 19), the person can complete the
information about their home and/or professional address. In the first option, the individual
starts by filling their address information (such as country, zip code, street address, district,
city and state) and, finally, their telephone and mobile numbers. In the latter option, the
person has to fill the same information and one additional field where they state their
institution.

Figure 19: Curriculum Lattes - Address and Contact

The next section, Academic Education (Figure 20), can be divided into two subsections:
the completed academic education and the academic education in progress.

In the first subsection, if the actual completed academic education is elementary or high
school, then the individual just needs to fill the name of the institution, the start year and
the end year. Otherwise, if the actual completed academic education is Bachelor Degree,
Master Degree or Doctorate Degree, then the person also has to fill the course, the title of
the final document produced and the respective name of the supervisor. Additionally, they
also need to state whether they had a scholarship and, if so, the funding agency.

The second subsection is very similar. For elementary and high school, the fields to be
filled are the same, except the end year (as expected). For Bachelor Degree, Master Degree
and Doctorate Degree, the fields are also the same except the end year, the final document
information and the scholarship information.

2.1. CV sources and formats 13

Figure 20: Curriculum Lattes - Academic Education

The Professional Occupation section (Figure 21) starts by asking if the person is currently
working. If not, this section can be left blank. Otherwise, the individual needs to state in
what institution they are working (the country field will be automatically filled), the type of
bond, the role and the start year.

Figure 21: Curriculum Lattes - Professional Occupation

The last section, Occupation Area (Figure 22), contains not only the actual occupation
area, but also the individual’s language skills and the respective proficiency level regarding
understanding, reading, speaking and writing.

2.1. CV sources and formats 14

Figure 22: Curriculum Lattes - Occupation Area

2.1.4 CIÊNCIAVITAE

The CIÊNCIAVITAE was created by Foundation for Science and Technology and is directed
to Portuguese or foreign people who work in the academic and research context in Portugal.
One of the main reasons that led to its creation was the need to have a single curriculum
shared by the different stakeholders in the national academic-scientific system. This format
can be divided into seven principal sections: Identification, Education, Professional Path,
Projects, Productions, Activities and Distinctions.

The first section, Identification, has five subsections: Personal Information, Contacts,
Acting Domains, Languages and Summary.

The first subsection, Personal Information (Figure 23, Figure 24 and Figure 25), contains
the person’s picture, name, date of birth and gender. It also contains the person’s citation
name, the type of the author and their identifier.

Figure 23: CIÊNCIAVITAE - Identification: Personal Information (part 1)

2.1. CV sources and formats 15

Figure 24: CIÊNCIAVITAE - Identification: Personal Information (part 2)

Figure 25: CIÊNCIAVITAE - Identification: Personal Information (part 3)

In the second subsection, Contacts (Figure 26, Figure 27, Figure 28 and Figure 29), the
person needs to choose whether the email is personal or professional and declare the
actual email. Then, the person also needs to choose whether the telephone is personal or
professional and select the device, supply the indicative, the number and the extension.
Next and once again, the individual needs to choose whether the address is personal or
professional, write the actual address, the zip code, the location, the county and the country.
Lastly, the individual has to choose the type of website and provide the Uniform Resource
Locator (URL).

Figure 26: CIÊNCIAVITAE - Identification: Contacts (part 1)

2.1. CV sources and formats 16

Figure 27: CIÊNCIAVITAE - Identification: Contacts (part 2)

Figure 28: CIÊNCIAVITAE - Identification: Contacts (part 3)

2.1. CV sources and formats 17

Figure 29: CIÊNCIAVITAE - Identification: Contacts (part 4)

The subsection Acting Domains (Figure 30) contains the knowledge area, the topic and
the keywords.

Figure 30: CIÊNCIAVITAE - Identification: Acting Domains

In the subsection Languages (Figure 31) the individual needs to choose the language,
whether it is their mother tongue and the proficiency levels regarding speaking, reading,
writing, comprehension and peer-review.

2.1. CV sources and formats 18

Figure 31: CIÊNCIAVITAE - Identification: Languages

In the last subsection, Summary (Figure 32), the person can provide a brief description
about theirself.

Figure 32: CIÊNCIAVITAE - Identification: Summary

2.1. CV sources and formats 19

In the next section, Education (Figure 33, Figure 34 and Figure 35), the individual starts
by stating whether the education mile was obtained in Portugal or abroad. Then, they have
to choose the level of education and provide the organization, course and corresponding
code, specialization, description, grade, status and start and end dates. Then, the person can
also supply the dissertation title, its ID, the organization where the thesis was defended and
the information about the supervisors (name and role). Lastly, the knowledge area can also
be included.

Figure 33: CIÊNCIAVITAE - Education (part 1)

Figure 34: CIÊNCIAVITAE - Education (part 2)

2.1. CV sources and formats 20

Figure 35: CIÊNCIAVITAE - Education (part 3)

The next section, Professional Path (Figure 36 and Figure 37), starts with the type of
job, employer, professional bond, professional category, host institution and start and end
dates. Moreover, it has the corresponding activities that can be associated with the Activities
section.

Figure 36: CIÊNCIAVITAE - Professional Path (part 1)

Figure 37: CIÊNCIAVITAE - Professional Path (part 2)

2.1. CV sources and formats 21

The Projects section (Figure 38, Figure 39, Figure 40 and Figure 41) contains the function
and the dates between which they were performed. Moreover, it contains the project’s
title, the description, the type of financing, the start and end dates, the project’s status
and the organization. It also has the information about the financing itself, such as the
financing entity, the financing program and the year of assignment. Finally, it has the
project’s references (including the reference code, the URL and the type of relation), the
information about other participants, the knowledge areas and the keywords.

Figure 38: CIÊNCIAVITAE - Projects (part 1)

Figure 39: CIÊNCIAVITAE - Projects (part 2)

2.1. CV sources and formats 22

Figure 40: CIÊNCIAVITAE - Projects (part 3)

Figure 41: CIÊNCIAVITAE - Projects (part 4)

The Productions section hosts every work the individual has produced and it varies
according to the category and type chosen. In case of a publication in a journal (Figure 42,
Figure 43 and Figure 44), for instance, the individual has to provide the title of the article,
the name of the journal, the section, the volume, the edition, the main and final pages, the
publication date, the country and city of publication and the URL. Next, the person needs
to supply the information about the identifier (the type, the actual identifier and the type
of relation). Then, they also need to state the name to cite and whether it is theirs or from
another author. Lastly, it has the corresponding projects that can be linked from the section
above, the knowledge areas and the keywords.

2.1. CV sources and formats 23

Figure 42: CIÊNCIAVITAE - Productions (part 1)

Figure 43: CIÊNCIAVITAE - Productions (part 2)

2.1. CV sources and formats 24

Figure 44: CIÊNCIAVITAE - Productions (part 3)

Like the previous section, the Activities section shelters a lot of different details about the
activities, according to the type chosen. In the case of tutoring (Figure 45), for example, the
details involve the topic, the start and end dates, the name of the student and the description.

Figure 45: CIÊNCIAVITAE - Activities

The last section, Distinctions (Figure 46 and Figure 47), houses the distinctions’ type, name
and year of the attribution and the promoting entity. Additionally, it contains the country,
the description and the expiration date (if applicable). Lastly, the person can also state the
knowledge areas and the keywords.

2.1. CV sources and formats 25

Figure 46: CIÊNCIAVITAE - Distinctions (part 1)

Figure 47: CIÊNCIAVITAE - Distinctions (part 2)

2.1.5 Syone’s internal CV

At the time of application, candidates to Syone must fill in the company’s internal CV so
that the Human Resources (HR) team has access to the most relevant information for the
hiring process in one single format. This format has six key sections: Personal Information,
Executive Summary, Professional Experience, Education, Languages and Technologies.

The first section, Personal Information (Figure 48), contains the individual’s personal data,
such as name, job description, age and gender.

2.1. CV sources and formats 26

Figure 48: Syone’s internal CV - Personal Information

In the second section, Executive Summary (Figure 49), the person can write a brief
description about theirself.

Figure 49: Syone’s internal CV - Executive Summary

The next section, Professional Experience (Figure 50), contains the individual’s past work
experiences. Therefore, it includes the respective period of time they lasted, the company’s
name, the type of business/sector, the role, the main activities and responsibilities and the
software and environments used.

Figure 50: Syone’s internal CV - Professional Experience

2.1. CV sources and formats 27

The Education section (Figure 51), contains the person’s education and training miles.
Consequently, it includes the start and end dates, the name and type of organization
providing the qualification, the principal subjects/occupational skills covered and the actual
qualification awarded.

Figure 51: Syone’s internal CV - Education

The Languages section (Figure 52) contains a table with all the individual’s language skills
and the corresponding proficiency levels regarding reading, writing and speaking.

Figure 52: Syone’s internal CV - Languages

Finally, the Technologies section (Figure 53) has a table with all the person’s technology
skills regarding programming languages, databases, operating systems and tools and the
corresponding level, duration, start and end dates and description.

2.1. CV sources and formats 28

Figure 53: Syone’s internal CV - Technologies

2.1.6 Considerations

Within this topic, other CV formats were analyzed. The Career Center of the Academic
Format of the University of Washington (Aca), for instance, was one of them, but, like
Curriculum Lattes and CIÊNCIAVITAE, this one aims at people who work in the academic
and research fields and, so, was not worth mentioning in this dissertation. Another CV
format that was explored was the College Art Association’s Visual Artist Format (CAA).
Nevertheless, this is directed to people working in the art field, hence this format was also
not highlighted, assuming that Syone will not be getting applications from these individuals.
Finally, after an extensive research, no more CV formats in vogue were found.

2.1.7 Ontology definition

In order to decide all the information it will be necessary to extract from each CV, an
ontology was created based on Subsection 2.1.5.

Below is the description of the ontology in OntoDL+ (Ont) with no instances and the same
ontology with instances. Note that those instances were based on the CV of Subsection 2.1.2.

1 Ontologia cv

3 c o n c e i t o s {
CurriculumVitae ,

5 Personal Informat ion [name : s t r i n g , j o b D e s c r i p t i o n : s t r i n g , age : s t r i n g , gender
: s t r i n g] ,

2.1. CV sources and formats 29

ExecutiveSummary [d e s c r i p t i o n : s t r i n g] ,
7 P r o f e s s i o n a l E x p e r i e n c e [s t a r t D a t e : s t r i n g , endDate : s t r i n g , company : s t r i n g ,

typeOfBusiness : s t r i n g , job : s t r i n g , a c t i v i t i e s : s t r i n g , t e c h n o l o g i e s : s t r i n g
] ,
Education [s t a r t D a t e : s t r i n g , endDate : s t r i n g , organiza t ion : s t r i n g , s u b j e c t s :
s t r i n g , q u a l i f i c a t i o n : s t r i n g] ,

9 Language [language : s t r i n g , reading : s t r i n g , wri t ing : s t r i n g , verbal : s t r i n g] ,
Technology [technology : s t r i n g , l e v e l : s t r i n g , s t a r t D a t e : s t r i n g , endDate :
s t r i n g , d e s c r i p t i o n : s t r i n g] ,

11 ProgrammingLanguage ,
Database ,

13 OperatingSystem ,
Tool

15 }

17 r e l a c o e s {
has

19 }

21 t r i p l o s {
ProgrammingLanguage = i s a => Technology ;

23 Database = i s a => Technology ;
OperatingSystem = i s a => Technology ;

25 Tool = i s a => Technology ;

27 CurriculumVitae = has => Personal Informat ion ;
CurriculumVitae = has => ExecutiveSummary ;

29 CurriculumVitae = has => P r o f e s s i o n a l E x p e r i e n c e ;
CurriculumVitae = has => Education ;

31 CurriculumVitae = has => Language ;
CurriculumVitae = has => Technology

33 } .

Listing 2.1: Description of the ontology with no instances

1 Ontologia cv

3 c o n c e i t o s {
CurriculumVitae ,

5 Personal Informat ion [name : s t r i n g , j o b D e s c r i p t i o n : s t r i n g , age : s t r i n g , gender
: s t r i n g] ,
ExecutiveSummary [d e s c r i p t i o n : s t r i n g] ,

7 P r o f e s s i o n a l E x p e r i e n c e [s t a r t D a t e : s t r i n g , endDate : s t r i n g , company : s t r i n g ,
typeOfBusiness : s t r i n g , job : s t r i n g , a c t i v i t i e s : s t r i n g , t e c h n o l o g i e s : s t r i n g
] ,
Education [s t a r t D a t e : s t r i n g , endDate : s t r i n g , organiza t ion : s t r i n g , s u b j e c t s :
s t r i n g , q u a l i f i c a t i o n : s t r i n g] ,

2.1. CV sources and formats 30

9 Language [language : s t r i n g , reading : s t r i n g , wri t ing : s t r i n g , verbal : s t r i n g] ,
Technology [technology : s t r i n g , l e v e l : s t r i n g , s t a r t D a t e : s t r i n g , endDate :
s t r i n g , d e s c r i p t i o n : s t r i n g] ,

11 ProgrammingLanguage ,
Database ,

13 OperatingSystem ,
Tool

15 }

17 individuos {
personal information ,

19 executivesummary ,
p r o f e s s i o n a l e x p e r i e n c e ,

21 education ,
language ,

23 programminglanguage ,
database ,

25 operatingsystem ,
t o o l

27 }

29 r e l a c o e s {
has

31 }

33 t r i p l o s {
ProgrammingLanguage = i s a => Technology ;

35 Database = i s a => Technology ;
OperatingSystem = i s a => Technology ;

37 Tool = i s a => Technology ;

39 CurriculumVitae = has => Personal Informat ion ;
CurriculumVitae = has => ExecutiveSummary ;

41 CurriculumVitae = has => P r o f e s s i o n a l E x p e r i e n c e ;
CurriculumVitae = has => Education ;

43 CurriculumVitae = has => Language ;
CurriculumVitae = has => Technology ;

45

personal informat ion = i o f => Personal Informat ion [name = " John Doe" ,
j o b D e s c r i p t i o n = " Student a t Univers i ty of Minho" , age = " " , gender = " "] ;

47 executivesummary = i o f => ExecutiveSummary [d e s c r i p t i o n = " Currently , I am a
student a t Univers i ty of Minho . "] ;
p r o f e s s i o n a l e x p e r i e n c e = i o f => P r o f e s s i o n a l E x p e r i e n c e [s t a r t D a t e = "
2018−06−01 " , endDate = " 2019−12−31 " , company = " I n d i t e x " , typeOfBusiness = " " ,

job = " Salesperson " , a c t i v i t i e s = " I was r e s p o n s i b l e f o r s e l l i n g apparel . " ,
t e c h n o l o g i e s = " "] ;

2.2. Semantic information extraction 31

49 education = i o f => Education [s t a r t D a t e = " 2017−01−01 " , endDate = " present " ,
organiza t ion = " Univers i ty of Minho" , s u b j e c t s = " " , q u a l i f i c a t i o n = " Masters ,

Software Engineering "] ;
language = i o f => Language [language = " Engl ish " , reading = " Native or
B i l i n g u a l " , wri t ing = " Native or B i l i n g u a l " , verbal = " Native or B i l i n g u a l "] ;

51 programminglanguage = i o f => ProgrammingLanguage [technology = " " , l e v e l = " " ,
s t a r t D a t e = " " , endDate = " " , d e s c r i p t i o n = " "] ;

database = i o f => Database [technology = " " , l e v e l = " " , s t a r t D a t e = " " ,
endDate = " " , d e s c r i p t i o n = " "] ;

53 operatingsystem = i o f => OperatingSystem [technology = " " , l e v e l = " " ,
s t a r t D a t e = " " , endDate = " " , d e s c r i p t i o n = " "] ;
t o o l = i o f => Tool [technology = " " , l e v e l = " " , s t a r t D a t e = " " , endDate = " " ,
d e s c r i p t i o n = " "]

55 } .

Listing 2.2: Description of the ontology with instances

2.2 semantic information extraction

Semantic information extraction is the process of extracting information from unstructured
textual sources to enable finding entities as well as classifying them. In order to compare the
applicants’ CVs with the job offers, first, it is necessary to extract the relevant information
from them, these being the fields stated in the ontology defined in Subsection 2.1.7. Hence, in
this section, a brief explanation about entities and relationships will be presented, the typical
workflow of Information Extraction will be displayed, the most common Named Entity
Recognition (NER) methodologies will be explained and, lastly, examples of application of
each step of the IE workflow will be shown.

2.2.1 Entities and relationships

Before diving into the Information Extraction workflow, it is important to explain the main
type of structures extracted from an unstructured source: entities and relationships.

Entities are typically noun phrases. The most popular form of entities is named entities,
like proper names, organizations, locations, etc.. Figure 54 shows a text, where "Robert
Callahan" was recognized as a person, "Estearn’s" and "Texas Air Corp." were recognized as
organizations and "Houston" was recognized as a location. (Sarawagi, 2008)

2.2. Semantic information extraction 32

Figure 54: Entities found in the text

Relationships are defined over two or more related entities. Examples of relationships
are "is employee of" between a person and an organization, "location of outbreak" between
a disease and a location, among others. Figure 55 shows the same text, where the rela-
tionship "Employee_Of" occurs between a person and an organization and the relationship
"Located_In" occurs between an organization and a location. (Sarawagi, 2008)

Figure 55: Relationships found in the text

2.2.2 Information Extraction workflow

A typical workflow of Information Extraction consists of the following steps:

1. Sentence splitting - The text is split into sentences resorting to sentence boundary
indicators (question marks, exclamation points, etc.); (Choi et al., 2021)

2.2. Semantic information extraction 33

2. Tokenization - Each sentence is then broken down along a predefined set of delimiters
(such as spaces, commas, dots, etc.) giving rise to tokens which, in turn, are usually
words, digits or punctuation marks; (Sarawagi, 2008)

3. Part-Of-Speech (POS) tagging - After the tokens are generated, a grammatical category
from a fixed set, like a noun, a verb, an adjective, an adverb, an article, a conjunct, a
pronoun or other parts of speech, is assigned to each token; (Sarawagi, 2008)

4. Lemmatization - The various forms of a token (such as "appeared" or "appears") are
mapped to its root form, also known as the lexeme or lemma (e.g., "appear"); (Bird
et al., 2009)

5. Named Entity Recognition - Single tokens and/or sets of tokens are recognized as
organizations, locations, dates, etc.; (Lee et al., 2004)

6. Relationship extraction - Relationships between different entities, such as "is employee
of", "is located in", among others, are extracted. (Bird et al., 2009)

Figure 56 illustrates the pipeline and shows how the above mentioned steps interconnect.

Figure 56: Information Extraction workflow

2.2. Semantic information extraction 34

2.2.3 Named Entity Recognition approaches

According to (Choi et al., 2021), Named Entity Recognition approaches are classified into
two main types:

• Knowledge Engineering (KE), also referred to as rule-based approach, which uses the
domain knowledge of human expertise represented in a machine-understandable form,
i.e., in the form of production rules. In this approach, rules are iteratively constructed
and refined to improve the accuracy of text processing;

• Automatic training, also known as the Machine Learning approach, which uses ML
algorithms, as expected. It requires a large amount of annotated training data.

Comparing the two approaches, it is clear that the efforts required for defining patterns
and developing rules in the first approach are less than those required for annotating a large
amount of training data in the second approach. Moreover, the first one tends to produce a
higher performance, since human expertise results in more accurate patterns. (Choi et al.,
2021)

2.2.4 Information Extraction workflow with spaCy

spaCy (spa) is a modern Python library for industrial-strength Natural Language Processing.
It comes with pretrained pipelines and currently supports tokenization and training for
more than 60 languages. It features state-of-the-art speed and neural network models for
tagging, Named Entity Recognition and more.

Therefore, throughout this subsection, the functionalities of spaCy will be explored and
applied, performing the steps mentioned in Subsection 2.2.2 in the text sample that follows:

Apple is looking at buying U.K. startup for $1 billion.

First of all, the library is imported, the English model is loaded which creates an nlp object
and the text in question is processed with that nlp object which, in turn, creates a Doc (short
for "document") object.

1 import spacy

3 nlp = spacy . load (" en_core_web_sm ")
doc = nlp (" Apple i s looking at buying U.K. s t a r t u p f o r $1 b i l l i o n . ")

Listing 2.3: Import library, load English model and create Doc object

Then, the text is split into sentences.

2.2. Semantic information extraction 35

f o r sent in doc . s e n t s :
2 p r i n t (sent . t e x t)

Listing 2.4: Sentence splitting

In this case, since the text itself consists of a single sentence, the code above results in just
that sentence.

Apple is looking at buying U.K. startup for $1 billion.

After that, that sentence is broken into tokens.

f o r token in doc :
2 p r i n t (token . t e x t)

Listing 2.5: Tokenization

The result contains twelve tokens, including words, symbols, numbers and punctuation
marks.

Apple

is

looking

at

buying

U.K.

startup

for

$

1

billion

.

Next, comes the POS tagging phase where a grammatical category from a fixed set is
assigned to each token.

f o r token in doc :
2 p r i n t (token . t ex t , token . tag_)

Listing 2.6: POS tagging

The result shows the detailed POS tag assigned to each token, including "NNP" (noun,
proper singular), "VBZ" (verb, 3rd person singular present), "VBG" (verb, gerund or present

2.2. Semantic information extraction 36

participle), "IN" (conjunction, subordinating or preposition), "NN" (noun, singular or mass),
"$" (symbol, currency), "CD" (cardinal number) and "." (punctuation mark, sentence closer).
(Pen)

Apple NNP

is VBZ

looking VBG

at IN

buying VBG

U.K. NNP

startup NN

for IN

$ $

1 CD

billion CD

. .

Then, comes the lemmatization phase where the root form of each token in inflectional or
derivational form is derived.

f o r token in doc :
2 p r i n t (token . lemma_)

Listing 2.7: Lemmatization

From the result, it can be seen that "is" was derived as "be", "looking" was derived as
"look" and "buying" was derived as "buy".

Apple

be

look

at

buy

U.K.

startup

for

$

1

billion

.

Later, comes the Named Entity Recognition step where, as the name implies, the tokens
are recognized as named entities.

2.2. Semantic information extraction 37

f o r ent in doc . ents :
2 p r i n t (ent . t ex t , ent . l a b e l _)

Listing 2.8: Named Entity Recognition

The result shows that spaCy found three entities: "Apple" which was recognized as an
organization, "U.K." which was recognized as a geopolitical entity and "$1 billion" which
was recognized as money.

Apple ORG

U.K. GPE

$1 billion MONEY

spaCy also allows visualizing the text sample and its named entities with different colours
through displaCy.

Figure 57: Text sample and its named entities

When applied to a much more complex text sample, it is possible to see the great power
of spaCy. It not only identifies the previous entities, but also recognizes "Steve Jobs", "Steve
Wozniak" and "Ronald Wayne" as people, "weekly" as a date, "University of Minho" as an
organization and "Portugal" as a geopolitical entity.

Figure 58: More complex text sample and its named entities

In addition to the features mentioned so far, spaCy has many more. One of the powerful
functionalities that might be useful in the future is the dependency parsing. In this step, the
dependencies between the tokens (head token and child token) are identified.

f o r token in doc :
2 p r i n t (token . t ex t , token . dep_ , token . head . te x t , token . pos_ ,

[c h i l d f o r c h i l d in token . ch i ldren])

Listing 2.9: Dependency parsing

2.2. Semantic information extraction 38

By the result, it is possible to conclude that "Apple" is a nominal subject with "looking"
being its head token; "is" is an auxiliary verb with "looking" also being its head token;
"looking" is the root of the sentence, which means that it acts as the head of many tokens
("Apple", "is", "at" and "."), but is not a child of any other token; "at" is a preposition with,
once again, "looking" being its head token and "buying" being its child token; "buying" is a
complement of preposition with "at" being its head token and "startup" and "for" being its
child tokens; "U.K." is a compound noun with "startup" being its head token; "startup" is a
direct object with "buying" being its head token and "U.K." being its child token; "for" is a
preposition with "buying" also being its head token and "billion" being its child token; "$" is
a quantifier with "billion" being its head token; "1" is a compound noun with "billion" also
being its head token; "billion" is an object of preposition with "for" being its head token and
"$" and "1" being its child tokens; "." is a piece of punctuation with "looking" being its head
token.

Apple nsubj looking PROPN []

is aux looking AUX []

looking ROOT looking VERB [Apple, is, at, .]

at prep looking ADP [buying]

buying pcomp at VERB [startup, for]

U.K. compound startup PROPN []

startup dobj buying NOUN [U.K.]

for prep buying ADP [billion]

$ quantmod billion SYM []

1 compound billion NUM []

billion pobj for NUM [$, 1]

. punct looking PUNCT []

Like the named entities, spaCy also allows visualizing the text sample (including the
tokens’ simple Universal Part-Of-Speech tag set (UPOS) (UPO) POS tags) and the dependency
parse tree with directed, labeled arcs from head tokens to child tokens through displaCy.

Figure 59: Text sample and its dependency parse tree

2.3. Similarity algorithms 39

2.3 similarity algorithms

The last step of this Master’s Work is comparing the candidates’ CVs with the job offers.
Therefore, in this section of the state of the art, the most popular similarity algorithms
(Jaccard Similarity, Term Frequency — Inverse Document Frequency (TF-IDF), Doc2Vec,
Bidirectional Encoder Representations from Transformers (BERT) and Universal Sentence
Encoder (USE)) will be explored and analyzed.

2.3.1 Jaccard Similarity

Jaccard Similarity is defined as the size of the intersection divided by the size of the union of
the sample sets, which can be represented by the following formula: (Bank and Cole, 2008)

J(A, B) =
|A ∩ B|
|A ∪ B| (1)

Adapting this definition to the problem in question, we can translate Jaccard Similarity as
the ratio between the cardinality of words in common in both documents and the number of
words resulting from the union of both documents. Follows an illustrative example to aid
understanding.

Figure 60: Jaccard Similarity

2.3. Similarity algorithms 40

2.3.2 TF-IDF

TF-IDF measures how much a term (word) is relevant to a document (set of words) in a
collection of documents, which can be represented by the following formula:

TFIDF(t, d) = TF(t, d)× IDF(t) (2)

Term Frequency TF(t, d) measures the number of times term t occurs in document d.
(Jing et al., 2002) However, this depends on the generality of the term and the length of the
document. For example, the term "is" will probably appear more times in a 10000 worded
document than in a 100 worded one, but it is not correct to say that the first document is
more important. Therefore, the absolute frequency is divided by the total number of terms
in the document.

TF(t, d) =
count of t in d

number of terms in d
(3)

Document Frequency DF(t) is the number of documents in which the term t occurs at
least once. (Jing et al., 2002)

DF(t) = occurrence of t in document set (4)

Similarly to Term Frequency, Document Frequency is divided by the total number of
documents N.

The main goal is to know the informativeness of a term, which means that, ideally, the
more common a term is (e.g., stop words, such as “the”, “a”, “an”, “so”, “what”, etc.), the
lower the weight. However, DF(t)

N returns precisely the inverse and, so, it is necessary to
invert this fraction. Still, a large N will result in a huge value for the latter, hence it is
essential to take the log of it which, in turn, originates Inverse Document Frequency IDF(t).

IDF(t) = log(
N

DF(t)
) (5)

2.3.3 Doc2Vec

Doc2Vec, as the name implies, is capable of transforming text documents into a vectorized
form and is heavily based on Word2Vec, as expected. Therefore, first, it is important to
briefly explain the latter.

Like with text documents, words also need to be converted into vectors, so that machines
can understand them. A traditional approach is simply one-hot encode the words, which
results in vectors (whose length is equal to the size of the total unique vocabulary in the

2.3. Similarity algorithms 41

corpus) with only one target element being 1 and the remaining being 0. Conventionally,
these words are encoded in alphabetical order, which means that one-hot vectors for words
starting with "a" will have value 1 at lower indexes while those for words beginning with "z"
will have the same value at higher indexes. However, this approach has, at least, two issues.
First, it is not possible to infer the relationship between two words. For instance, although
they have a similar meaning, "endure" and "tolerate" will have their targets far away from
each other. Additionally, there are a numerous redundant 0 values in the vectors which, in
turn, are wasting a lot of space.

Figure 61: One-hot encoding

Word2Vec is an efficient solution to these problems, because it is a Word Embedding
method and, so, generates a type of mapping that allows words with similar meaning to
have similar representation. It can be divided into two subtypes: skip-gram and Continuous
Bag Of Words (CBOW).

For skip-gram, the input is the target word, while the outputs are the words surrounding
it. For instance, in the sentence “I have a cute cat”, if the input was “a”, the corresponding
output would be “I”, “have”, "cute" and “cat”, assuming the window size is 2.

Figure 62: Skip-gram

2.3. Similarity algorithms 42

CBOW is very similar to skip-gram, except that it swaps the input and outputs, i.e., given
a context, CBOW predicts which word is most likely to appear in it.

Figure 63: CBOW

After understanding Word2Vec, it is easier to understand how Doc2Vec works. As
mentioned before, the goal of Doc2Vec is to create a vector representation of a document.
But unlike words, documents do not come in logical structures, so two variants of skip-gram
and CBOW, respectively, were proposed by (Le and Mikolov, 2014).

The first variant, Distributed Bag Of Words version of Paragraph Vector (PV-DBOW),
instead of using the target word to predict the context words, it uses the paragraph unique
identifier.

The second variant, Distributed Memory version of Paragraph Vector (PV-DM), in addition
to using the context words to predict the target word, it uses the paragraph unique identifier.

2.3.4 BERT

As mentioned before, BERT stands for Bidirectional Encoder Representations from Trans-
formers, so it is important to start by explaining what Transformer is.

Transformer is a deep learning model designed to handle sequential data, such as natural
language, proposed in (Vaswani et al., 2017). However, it does not require the sequential data
to be processed in order, i.e., if the input data is a natural language sentence, Transformer
does not need to process the beginning of it before the end.

Transformer is based on an encoder-decoder architecture that, as expected, comprises
encoders - which consist of a set of encoding layers that process the input iteratively one
layer after another - and decoders - that consist of a set of decoding layers that do the same
thing to the output of the encoder. Thus, when a sentence is passed into Transformer, it is
embedded (mapped to a vector) and transferred into a stack of encoders. The output from

2.3. Similarity algorithms 43

the final encoder is then passed into each decoder block in the decoder stack. The decoder
stack then generates the output.

Figure 64: Transformer’s architecture

After describing Transformer’s architecture, it is now easier to explain BERT’s one. Inside
Transformer, the encoder cells are used to read the input sentence and the decoder cells are
used to predict the output sentence. However, in the case of BERT, since the goal is a model
that reads all the words in the input sentence simultaneously (hence the bidirectional) and
generates some contextualized embeddings that can be used for various NLP tasks, only the
encoder part of Transformer is used.

Figure 65: BERT’s architecture

2.3. Similarity algorithms 44

2.3.5 USE

The Universal Sentence Encoder encodes text into high dimensional vectors that can be used
for numerous natural language tasks.

(Cer et al., 2018) describes two main architecture types: one based on Transformer’s
architecture and another based on Deep Averaging Network (DAN).

The first one builds embeddings using the encoder module of the Transformer architecture
which, as mentioned before, computes a context aware representation of words in the input
sentence.

The second one computes the uni-gram and bi-gram embeddings first and then averages
them to get a single embedding. This is, then, passed to a Deep Neural Network (DNN) to
get a final sentence embedding.

Figure 66: USE’s input and output paradigm

2.3.6 Algorithm comparison

Algorithm Pros Cons

Jaccard Similarity
It is good for cases where

duplication does not matter.

It is highly influenced by the size of
the documents. Large documents can
have a big impact on the similarity as

it could significantly increase the union
whilst keeping the intersection similar.

TF-IDF TF-IDF is simple to calculate.

TF-IDF will suddenly plummet to zero
if the word of interest appears in all

of the documents, even if it only
appears once in each of them.

Doc2Vec It takes word order into account. Accuracy depends on document length.

BERT
Much better model performance

over legacy methods.
It requires huge computational resources.

USE No preprocessing is needed. USE supports only 16 languages.

Table 1: Comparison between the algorithms

2.4. Similarity measures 45

Through the description of each algorithm and the analysis of this table, it is clear that each
of them has its pros and cons, but BERT stands out from the rest as it presents state-of-the-
art results in a wide variety of NLP tasks and, therefore, has been widely used since its
publication.

To reinforce this idea, some papers linked to Similarity Relatedness (which, in turn,
corresponds to the degree of semantic relatedness between a pair of sentences (Fonseca and
Alvarenga, 2020)) were studied and the conclusion was the same. In fact, (Rodrigues et al.,
2019) claim that they resorted to BERT algorithm; (Santos et al., 2019) state that their solution
is worse than solutions based on Deep Learning, including Transformer based algorithms,
such as BERT; (Fonseca and Alvarenga, 2020) also declare that their BERT based approach
is the best one and (Souza et al., 2019) are willing to take advantage of contextual Word
Embeddings, such as those resulting from the application of BERT algorithm. In other words,
they all apply BERT algorithm and/or imply that its application is advantageous.

2.4 similarity measures

Since most of the explored algorithms are vectorization algorithms (i.e., algorithms that turn
documents into word embeddings), there is a need to explore some similarity measures,
in order to compute the affinity between the vectors corresponding to the CVs and to the
job offers. Therefore, in this last section of the state of the art, some of the most popular
similarity measures in NLP (cosine similarity, Euclidean distance, Manhattan distance and
Chebyshev distance) will be studied.

2.4.1 Cosine similarity

The cosine similarity measures the similarity between two vectors of an inner product space
(Han et al., 2011). It is measured by the cosine of the angle between those vectors (Han et al.,
2011), that is, the dot product of the vectors divided by the product of their lengths (cos) (as
can be seen in Figure 67). The cosine similarity always belongs to the interval [-1,1]. For
example, two proportional vectors have a cosine similarity of 1, two orthogonal vectors have
a similarity of 0 and two opposite vectors have a similarity of -1 (cos).

2.4. Similarity measures 46

Figure 67: Cosine similarity

2.4.2 Euclidean distance

The Euclidean distance finds the distance between any two points in Euclidean space which
are also called Euclidean vectors (vec). It is calculated as the square root of the sum of
the squared differences between the two vectors (mea), which can be represented by the
following formula:

d(u, v) =

√
n

∑
i=1

(ui − vi)2 (6)

2.4.3 Manhattan distance

The Manhattan distance calculates the distance between two real-valued vectors (mea). It is
computed as the sum of the absolute differences between the two vectors (mea), which can
be represented by the following formula:

d(u, v) =
n

∑
i=1

|ui − vi| (7)

2.5. Summary 47

2.4.4 Chebyshev distance

The Chebyshev distance determines the distance between two vectors on a vector space
(che). It is calculated as the greatest of their differences along any coordinate dimension
(che), which can be represented by the following formula:

d(u, v) = max
i

(|ui − vi|) (8)

2.5 summary

In this second chapter, the state of the art regarding the scope of this Master’s Work was
analyzed. In particular, regarding CV sources and formats, the Europass, LinkedIn profile
as a CV, Curriculum Lattes, CIÊNCIAVITAE and Syone’s internal CV were investigated and
the ontology that decides the information to be extracted from each CV was defined. With
respect to semantic information extraction, the concepts of entities and relationships and
the NER approaches were explained along with the presentation of the typical IE workflow.
Lastly, the most popular similarity algorithms (Jaccard Similarity, TF-IDF, Doc2Vec, BERT
and USE) and the most popular similarity measures (cosine similarity, Euclidean distance,
Manhattan distance and Chebyshev distance) were explored. Thus, let us move on to the
presentation of the proposed architecture for the system.

3

P R O P O S E D A P P R O A C H

The objective of this Master’s Project is to develop an algorithm capable of identifying the
most suitable candidates for a given job offer. Therefore, in this chapter, an architecture
proposal for the system was designed and explained, in order to facilitate the understanding
of the entire project.

3.1 system architecture

Figure 68: General architecture of the system

48

3.1. System architecture 49

Figure 68 depicts the general architecture of the proposed software system to be implemented
in this project, in order to accomplish the objectives defined in Chapter 1. The diagram shown
sketches the main blocks of the system and its overall characteristics, without considering
all details or specific aspects that will be further refined. In this architecture, it is shown that
the system will receive a CV (provided in .docx, .pdf, etc. format) which, in turn, will go
through the text extractor engine and/or the XML extractor engine, to extract its text and/or
XML, respectively, and be properly processed in the next phase.

In parallel, the system will also receive a job offer that can be made available in two ways.
It will either receive a file (also provided in .docx, .pdf, etc. format) which, in this case,
will undergo an analogous preprocessing or the user will introduce the job offer’s relevant
information directly.

At this point, the CV’s information plus the job offer’s information will enter a comparator
module that, as the name suggests, compares the CV’s data and the job offer’s requirements
and returns the affinity between them, quantifying how much the individual’s details comply
with the company’s requests.

Keep in mind that, to develop the comparator module, two different approaches will be
tried, aiming at a clear understanding of the pros and cons of each one of them.

Figure 69: Architecture of approach A

3.1. System architecture 50

The architecture of the first approach can be seen in Figure 69. In this architecture, it is
shown that, with regard to the job offer, the first path mentioned in the general architecture
will be followed. Therefore, both the CV text and/or XML and the job offer text and/or XML
will go through an engine that will run a Machine Learning-inspired similarity algorithm
and a similarity measure on these inputs and return the affinity between them.

Figure 70: Architecture of approach B

The architecture of the second approach can be seen in Figure 70. In this architecture, it
is shown that the knowledge, that is, all the relevant information from the CV text and/or
XML (i.e., the attributes associated with the concepts defined in the ontology presented
in Subsection 2.1.7 (Personal Information, Executive Summary, Professional Experience,
Education, Language and Technology)) needs to be extracted, resorting to the knowledge
extractor engine. After the data extraction process, the collected data is gathered and
properly structured in an internal representation that corresponds to the content of the CV
and, from there, the document builder engine creates a structured document (in this case, a
JavaScript Object Notation (JSON) document).

In parallel, in this approach, regarding the job offer, the second path referred to in the
general architecture will be followed, i.e., the user will fill in a form with the relevant
information about the job offer in question (such as the area and education level requested)

3.2. Summary 51

and, the associated interface module, in turn, will return the corresponding structured
document (in this case, a JSON document).

Lastly, the structured documents together with the rules that define the weights of each
requirement will be passed through the similarity algorithm engine which will return the
final output, i.e., the affinity between the CV and the job offer.

The algorithms designed and implemented to achieve the first approach and the second
approach will be described and discussed in detail in Chapter 5 and Chapter 6, respectively.

3.2 summary

In this chapter, it was presented the proposed approach to solve the main challenge. This
approach, in turn, was subdivided into two other approaches that will be tried in order
to assess the pros and cons of each one of them. To sum up, in order to find the affinity
between the CV and the job offer, the first approach will run a ML algorithm and a similarity
measure on the inputs while the second approach will compare the inputs by structuring
them first. With that in mind, let us start by explaining the approaches’ engines involved in
processing CVs.

4

C V S P R O C E S S I N G

This chapter aims to clarify not only the work carried out in terms of CVs processing, but
also to describe the challenges that have arisen along this path. Therefore, in the next
sections, a detailed explanation of the text extractor, XML extractor, knowledge extractor and
document builder engines mentioned in Chapter 3 will be given. Note that the knowledge
extractor and the document builder engines are only used in the comparator module of the
second approach. It should also be noted that, from this chapter onwards, only Syone’s
internal CV format will be considered, but, in the future, other CV formats may be dealt
with following an analogous process.

4.1 text extractor and xml extractor

As shown in the general architecture of the system, it is necessary to extract the text and/or
XML of the document itself.

For that, the Extractor class was developed aided by two subclasses: TextExtractor and
XMLExtractor. As their names imply, the TextExtractor subclass is used to extract the content
of documents in plain text format while the XMLExtractor subclass is used to extract XML
from documents, allowing a more structured analysis. Note that the first one takes advantage
of the Apache Tika library through the bindings provided by a Python package (tik) which,
in turn, is capable of handling different file types, such as .pdf, .docx, etc.. Also note that,
regarding the second one, the logic involves accessing the XML from the .docx files (which
are actually .zip files with all the XML files associated with the document in question), as
the documents to be processed are in this format. If these were in a different file format (like
.pdf), the methodology for extracting their XML would be completely different.

The class diagram of the text extractor and XML extractor engines can be seen in Figure
71.

52

4.2. Knowledge extractor 53

Figure 71: Text extractor and XML extractor engines’ class diagram

4.2 knowledge extractor

After extracting the text and/or XML from each CV, it is now possible to extract its sections
(Personal Information, Executive Summary, Professional Experience, etc.), to later build the
corresponding structured document.

Therefore, first, the Parser class was created followed by one subclass: CVSyoneParser
(capable of extracting information from CVs following Syone’s template). Note that, with
this architecture, in the future, it will be possible to add more subclasses capable of parsing
different CV formats (e.g., EuropassParser specialized in extracting information from Eu-
ropass CVs, LinkedInParser specialized in extracting information from LinkedIn profiles as
CVs, etc.).

Regarding CVSyoneParser, the reasoning for extracting text from the Personal Information,
Executive Summary, Professional Experience, Education and Languages sections turned out
to be always the same: find the word that indicates the beginning of the section and the
word that indicates the end of it (which also indicates the beginning of the next section) and
extract the text between them. To ensure that the captured terms are effectively headings
and not random words throughout the document, these words are searched along with a
newline character. This is done with resource to the re module (re) which provides many
functions to deal with regular expressions.

Let us take a look at an example. Figure 72 shows an example of an Education section
which starts with the keyword "EDUCATION" and ends with the keyword "LANGUAGES"
(which, in turn, symbolizes the beginning of another section). From here, it is possible to
conclude that, in order to extract the Education section’s text, it is necessary to extract the
text between those two keywords.

4.2. Knowledge extractor 54

Figure 72: Example of an Education section

When it came to extracting the fields from the Personal Information section (in this case,
name, job description, age and gender) the logic was similar.

The process started to get more complex in the sections that contained more than one
entry (Professional Experience and Education). Initially, an approach was followed where
the indexes that mark the beginning and the end of all keywords (Dates (from to), Name
and type of organization offering education and training, etc.) were stored in data structures
(in this case, lists). Then, according to the length of those lists, in each iteration, the text of
the different fields was extracted between the indices representing the respective delimiters.
However, this method proved to be impractical because, when some fields were missing, the
length of all data structures was not the same. Therefore, there was a need to embark on

4.2. Knowledge extractor 55

another approach. This time, those entries were divided by the separator "Dates (from to)"
(see how each entry starts with those keywords on Figure 73 and Figure 74).

Figure 73: Separator of each Professional Experience section’s entry

Figure 74: Separator of each Education section’s entry

4.2. Knowledge extractor 56

Then, the main reasoning for extracting the fields from each entry was similar to the
Personal Information section, with special attention to some cases, such as:

• Professional Experience entries without the "Software and Environments used" field;

Figure 75: Example of a Professional Experience entry without the "Software and Environments
used" field

• Professional Experience entries without the "Occupation or position held" field;

Figure 76: Example of a Professional Experience entry without the "Occupation or position held"
field

• Education entries without the "Principal subjects / occupational skills covered" field;

4.2. Knowledge extractor 57

Figure 77: Example of an Education entry without the "Principal subjects / occupational skills
covered" field

• Education entries with multiple "Title of qualification awarded" fields;

Figure 78: Example of an Education entry with multiple "Title of qualification awarded" fields

• Education entries without the "Title of qualification awarded" field;

4.2. Knowledge extractor 58

Figure 79: Example of an Education entry without the "Title of qualification awarded" field

Like the Professional Experience and Education sections, the Languages table also has
several entries (in this case, rows), so, before extracting its fields (Other Languages, Reading
Skills, Writing Skills and Verbal Skills), it was necessary to obtain those rows. After consulting
several CVs, it was found that each row was separated by two newline characters, so the
table text was split on that separator to get them. Finally, to acquire the fields, the rows were
split on a newline character because, once again, this pattern was found to be common to all
CVs.

As for the sections referring to the Technologies table (Programming Languages, Databases,
Operating Systems and Tools) the reasoning turned out to be a little more complex than
manipulating the text extracted by the TextExtractor. In the early stages of development this
was attempted because, like the Languages table, each row appeared to be separated by two
newline characters and each field (Technology, Level, Duration, Date and Detail Description)
appeared to be separated by one newline character. However, it was not that simple. Many
CVs had more than one newline character separating each field or even a newline character
in the middle of each field’s text, which made this approach impossible. So, instead, there
was a need to use the XMLExtractor to extract the XML corresponding to the table and,
consequently, do a much more structured manipulation.

In addition to the obstacles that have been exposed so far, there was another challenge
(common to several sections) related to dates. Take into account that this challenge was
solved with the help of the re module.

First, it was necessary to find the temporary start date and temporary end date for each
date field. However, many problems arose at this stage alone, such as candidates with
invalid date formats, candidates with date formats from which it was not possible to know

4.2. Knowledge extractor 59

whether it was a start date or an end date, among others. Note that these cases were handled
by assigning an empty string to both the final start date and the final end date.

Figure 80: Candidate with an invalid date format

Figure 81: Candidate with a date format from which it was not possible to know whether it was a
start date or an end date

Still at this stage, another problem involved candidates not using the same separator to
break apart the start date from the end date (some used "to", others used "till", etc.). The
solution to this problem consisted in transforming all these different separators into a single
one in common: the hyphen.

4.2. Knowledge extractor 60

Figure 82: Candidate using "to" to separate the start date from the end date

Figure 83: Candidate using "till" to separate the start date from the end date

After this, if the date in question consisted of four digits plus two digits plus two more
digits divided by a separator like a hyphen and followed by any single character (e.g.,
2021-11-02 - now), it was split on the hyphen surrounded by white spaces so that the
temporary start date consisted of everything before (e.g., 2021-11-02) and the temporary end
date consisted of everything after (e.g., now).

If the date in question consisted of two digits followed by characters and two digits
followed by characters followed by four digits separated by a hyphen (e.g., 01 october - 15

june 2011), since it clearly represents a start date and an end date during the same year,
the temporary start date came to consist of everything before the hyphen plus the final
four digits (e.g., 2011-10-01) and the temporary end date came to consist of everything after
the hyphen (e.g., 2011-06-15). If the date in question did not identify with the previous
description (e.g., 2016; 2019-2022), it was split on the hyphen, so that the temporary start
date consisted of everything before the first hyphen occurrence (e.g., 2016; 2019) and the
temporary end date consisted of everything after the last hyphen occurrence (e.g., 2022).
Then, if the temporary start date had a comma or a semicolon (e.g., 2016; 2019), it came to
consist of everything before that comma or semicolon (e.g., 2016). On the other hand, if the
temporary end date had a comma or a semicolon (e.g., 2017; 2018), it came to consist of
everything after that comma or semicolon (e.g., 2018).

4.2. Knowledge extractor 61

If the date in question had the respective start date and end date separated by a comma or
a semicolon (e.g., 2017, 2021), those dates were split on one of those separators (depending
on the case), so that the temporary start date consisted of everything before the separator
(e.g., 2017) and the temporary end date consisted of everything after (e.g., 2021).

If the date in question consisted of two digits plus four digits divided by a slash followed
by two digits plus four digits divided by a slash (e.g., 04/2017 07/2017), the temporary start
date came to consist of the first group (e.g., 04/2017) and the temporary end date came to
consist of the last group (e.g., 07/2017).

If the date in question consisted of four digits followed by four digits (e.g., 2020 2021),
the temporary start date came to consist of the first group of four digits (e.g., 2020) and the
temporary end date came to consist of the last group of four digits (e.g., 2021).

If the date in question consisted of four digits plus four more digits separated by a slash
(e.g., 2020/2021), the temporary start date came to consist of everything before the slash (e.g.,
2020) and the temporary end date came to consist of everything after the slash (e.g., 2021).

If the date in question did not identify with any of these cases (e.g., 2018), both the start
date and the end date became equal to it.

Once having the temporary start and end dates, it was necessary to deal with each one of
them individually. Bear in mind that most cases were handled with the help of the datetime
module (dat, b) and the dateparser library (dat, a).

Regarding the temporary start date:

• If it only consisted of four digits (e.g., 2021), the final start date came to consist of these
four digits as the year, plus January as the month and 1 as the day (e.g., 2021-01-01),
since if one only has access to the year, it makes sense that the final start date is the
first day of the first month of that year;

• If it consisted of two digits plus four digits divided by a separator like a hyphen
(e.g., 09-2020), since that usually represents the month and the year, respectively, the
final start date came to consist of those digits plus the first day of the month (e.g.,
2020-09-01);

• If it consisted of four digits plus two digits plus two more digits divided by a separator
like a hyphen (e.g., 2021-10-29), since that usually represents the year, the month and
the day, respectively, the final start date remained the same;

• If it consisted of word characters plus two digits separated by a slash (e.g., oct/21),
since that usually represents the month and the year, respectively, the final start date
came to consist of those word characters and digits plus the first day of the month (e.g.,
2021-10-01);

4.2. Knowledge extractor 62

• If it did not identify with any of these cases nor did it contain "ccna v7.0" (since there
is a temporary start date equal to that) (e.g., 02/03/2021), the final start date remained
pretty much the same, except for a change in the separators and order (e.g., 2021-03-02);

As for the temporary end date:

• If the candidate used words that indicated that the professional experience, education
or technology in question had not yet ended, such as "current", "today", "at this
moment", etc., the final end date became "present";

• If the temporary end date consisted of four digits (e.g., 2022) and those four digits
corresponded to the current year, the final end date also became "present";

• If the temporary end date consisted of the description given in the first case listed
for the temporary start date and those four digits were greater than 1900 (since there
are temporary end dates like 218 which are clearly typos), the final end date was
calculated analogously, except for the month and the day which became December
and 31, respectively (e.g., 2021-12-31);

• If the temporary end date consisted of the description given in the second case listed
for the temporary start date, the final end date was calculated analogously, except for
the day which became the last day of the month in question (e.g., 2020-09-30);

• If the temporary end date consisted of the description given in the third case listed for
the temporary start date, the final end date was calculated analogously;

• If the temporary end date consisted of the description given in the fourth case listed
for the temporary start date, the final end date was calculated analogously, except for
the day which became the last day of the month in question (e.g., 2021-10-31);

• If the temporary end date did not identify with any of these cases and did not consist
of five digits (since there are temporary end dates like 20222 which are also typos) nor
did it contain "networks" (since there is a temporary end date equal to "introduction
to networks") (e.g., 23/01/2021), the final end date remained pretty much the same,
except for a change in the separators and order (e.g., 2021-01-23). Note that if this
resulting date was greater than or equal to the current date (e.g., 31/12/2022), the final
end date became "present".

Finally, the class diagram of the knowledge extractor engine can be seen in Figure 84,
Figure 85 and Figure 86.

4.2. Knowledge extractor 63

Figure 84: Knowledge extractor engine’s class diagram (part 1)

Figure 85: Knowledge extractor engine’s class diagram (part 2)

Figure 86: Knowledge extractor engine’s class diagram (part 3)

4.3. Document builder 64

4.3 document builder

Finally, the DocumentBuilder class was created to produce the structured document (in this
case, a JSON document) corresponding to each CV. This is done by traversing the internal
document representation and merging all sections of the CV together.

The structured document corresponding to the sample CV shown in Appendix B, which
is returned by the document builder engine, can be seen in Appendix D.

The class diagram of this engine is shown in Figure 87.

Figure 87: Document builder engine’s class diagram

4.4 summary

In this fourth chapter, the engines involved in processing CVs mentioned in the previous
chapter (text extractor, XML extractor, knowledge extractor and document builder) were
explained along with the obstacles that arose with their development. As such, it is possible
to proceed to the description and discussion of the algorithms designed and implemented
to achieve the first approach also presented in Chapter 3.

5

S I M I L A R I T Y A L G O R I T H M (A P P R O A C H A)

In this chapter of the dissertation, the engine that compares the CV and the job offer in the
first approach presented in Chapter 3 is explained, starting by the elucidation of the general
coding approach and following with the presentation of the techniques attempted and the
respective results which, in turn, are also discussed.

5.1 implementation and results

Let us start by showing the application of USE with cosine similarity to unpreprocessed
documents. Please, bear in mind that, for the other techniques that were applied, the
methodology changes very little.

First of all, all of the libraries, modules and functions that will be needed are imported.

1 import pandas as pd
import tensorflow_hub as hub

3 from sklearn . metr i cs . pairwise import c o s i n e _ s i m i l a r i t y
from u t i l s import get_cvs , get_ jobs , highlight_max

5

from s y e x t r a c t o r . e x t r a c t o r s . t e x t _ e x t r a c t o r import T e x t E x t r a c t o r

Listing 5.1: Import libraries, modules and functions

Then, the Universal Sentence Encoder’s TF Hub module is loaded.

module_url = " ht tps :// tfhub . dev/google/universa l −sentence −encoder/4 "
2

model = hub . load (module_url)

Listing 5.2: Load the USE’s TF Hub module

After that, the previously defined model is applied to each job offer’s text in order to
obtain their respective word embeddings. Then, the same process is repeated for each CV.
Next, the cosine similarity is applied to those word embeddings to calculate the affinity

65

5.1. Implementation and results 66

between them and the results are saved into a dataframe. Finally, the best CV for each job
offer is highlighted.

1 row_values = { }
data = []

3

f o r job in g e t _ j o b s () :
5 job_vec = model ([T e x t E x t r a c t o r (" . . / data/ j o b _ o f f e r s /"+ job) . ge t_content ()])

f o r cv in get_cvs () :
7 cv_vec = model ([T e x t E x t r a c t o r (" . . / data/cvs/"+cv) . ge t_content ()])

row_values . update ({ cv : c o s i n e _ s i m i l a r i t y (job_vec , cv_vec) [0] [0] })
9 data . append (row_values . copy ())

11 df = pd . DataFrame (data , index = g e t _ j o b s ())

13 df . s t y l e . highlight_max (c o l o r = ' l i g h t g r e e n ' , a x i s = 1)

Listing 5.3: General code approach to apply the algorithm and the similarity measure (in this case,
USE with cosine similarity)

Having the general approach when it comes to code, it is now possible to apply the various
algorithms explored in Section 2.3 to the existing sample data and evaluate the respective
results, so that the one that gives the most accurate outcome can be chosen. It should be
noted that the sample to be taken into account contains twenty job offers and one hundred
and sixteen CVs, which means that, of the algorithms explored, it was not possible to apply
Doc2Vec, since this algorithm needs to be trained and there is a limited amount of data.
Also note that the candidates presented throughout this document have been anonymized,
in order to ensure their privacy.

First of all, Jaccard Similarity, TF-IDF, BERT and USE were applied to the whole sample
without any preprocessing, in order to find the most adequate CV for each job offer. Note
that, TF-IDF was applied using the scikit-learn library (skl). Besides that, take into account
that TF-IDF, BERT and USE are vectorization algorithms, therefore, after the vectorization
of the CV and the job offer in question, it was necessary to apply a similarity measure to
compute the affinity between the vectors (in this case, cosine similarity, which was also
applied using the scikit-learn library). Lastly, bear in mind that there already are BERT
models tuned to be used for sentence/text embedding generation, so, initially, the bert-base-
nli-mean-tokens model (ber) from SentenceTransformers library (Sen) was applied. Like
with BERT, there are also pre-trained Universal Sentence Encoder models available, so TF2.0
Saved Model (v4) (Ten, a) from TensorFlow Hub (Ten, b) was employed.

The CVs chosen for each job offer based on the application of these algorithms can be
found in Table 2. Analyzing the results of this table, it appears that, for the same job offer,
the same CV was rarely chosen by the different algorithms.

5.1. Implementation and results 67

Job offer Jaccard Similarity TF-IDF
BERT

(bert-base-nli-mean-tokens)
USE

Backend Developer GO Sharon Rodgers Daniel Jacobson David Johnson Jennifer Ortiz
Backend Developer Sharon Rodgers Brenda Lynch Tyler Garza Richard Brady

BE Developer Amanda Johnson Brenda Lynch Katherine Norris Troy Hobbs
Business Development Manager Edward Walters Sean Smith Edward Walters Bethany Guerrero
Frontend Developer (Angular) Carolyn Hall Daniel Wilcox Sharon Rodgers Jennifer Ortiz
Frontend Developer (Vue.js) (1) Robert Harris Brenda Lynch Sharon Rodgers Jennifer Ortiz
Frontend Developer (Vue.js) (2) Carolyn Hall Brenda Lynch Sharon Rodgers Jennifer Ortiz

Infrastructure Architect and Pre-Sales Edward Walters Sean Smith Rachel Tucker Donald Shaffer
IT Recruiter William Thomas Benjamin Patel Benjamin Patel Bethany Guerrero

Junior Developers (1) Daniel Wilcox David Johnson Katherine Norris Patrick Carter
ML/Data Engineer Mary Roy Thomas Dixon Tyler Garza Thomas Dixon
.NET Developer (1) Robert Harris Daniel Wilcox Katherine Norris Brandy Taylor
.NET Developer (2) William Thomas Daniel Wilcox Vincent Carrillo Ann Hicks

QA Engineer Edward Walters Katherine Bullock Tyler Garza Katherine Bullock
Scrum Master (1) Edward Walters Sean Smith Edward Walters Donald Shaffer
Scrum Master (2) Edward Walters Brenda Lynch David Johnson Edward Walters

Solution Designer - Hardware Carrie Yodes Sean Smith Carrie Yodes Bethany Guerrero
Junior Developers (2) Daniel Wilcox David Johnson Katherine Norris Patrick Carter
System Administrator Daniel Wilcox Sarah Nichols Christopher Christian Sarah Nichols

Tech Lead/Senior Frontend Daniel Wilcox Ashley Moss Tyler Garza Ashley Moss

Table 2: CVs chosen for each job offer based on the application of the algorithms

As the candidate chosen for each job offer varies greatly from algorithm to algorithm, it
was tried to cross the 5 best CVs chosen by each algorithm for each job offer, in order to
verify if there were candidates in common. The result of crossing the 5 best CVs chosen
by the various algorithms for each job offer can be found in the Table 3, Table 4, Table 5,
Table 6, Table 7, Table 8, Table 9, Table 10, Table 11, Table 12, Table 13, Table 14, Table 15,
Table 16, Table 17, Table 18, Table 19, Table 20, Table 21 and Table 22. It can be seen that
some algorithms do have some candidates in common for certain job offers. However, those
intersections still vary a lot between each other.

Algorithm Jaccard Similarity TF-IDF BERT USE

Jaccard Similarity
Sharon
Rodgers,
Carrie Yodes

TF-IDF
Thomas
Dixon

BERT
USE

Table 3: Intersection of the top 5 CVs chosen by the various algorithms for the Backend Developer
GO job offer

5.1. Implementation and results 68

Algorithm Jaccard Similarity TF-IDF BERT USE

Jaccard Similarity Carrie Yodes
Sharon
Rodgers,
Carrie Yodes

TF-IDF Carrie Yodes
Brenda Lynch,
Jennifer Ortiz

BERT
USE

Table 4: Intersection of the top 5 CVs chosen by the various algorithms for the Backend Developer
job offer

Algorithm Jaccard Similarity TF-IDF BERT USE
Jaccard Similarity Robert Harris

TF-IDF

Thomas
Dixon,
Troy Hobbs,
Brenda Lynch,
Jennifer Ortiz

BERT
USE

Table 5: Intersection of the top 5 CVs chosen by the various algorithms for the BE Developer job offer

Algorithm Jaccard Similarity TF-IDF BERT USE

Jaccard Similarity
Edward Wal-
ters

TF-IDF Wendy Brown
Bethany Guer-
rero

BERT
USE

Table 6: Intersection of the top 5 CVs chosen by the various algorithms for the Business Development
Manager job offer

Algorithm Jaccard Similarity TF-IDF BERT USE

Jaccard Similarity
Sharon
Rodgers

TF-IDF Ashley Moss
Troy Hobbs,
Brenda Lynch

BERT
USE

Table 7: Intersection of the top 5 CVs chosen by the various algorithms for the Frontend Developer
(Angular) job offer

5.1. Implementation and results 69

Algorithm Jaccard Similarity TF-IDF BERT USE
Jaccard Similarity Carrie Yodes Carrie Yodes Carrie Yodes

TF-IDF Carrie Yodes
Ashley Moss,
Brenda Lynch,
Carrie Yodes

BERT Carrie Yodes
USE

Table 8: Intersection of the top 5 CVs chosen by the various algorithms for the Frontend Developer
(Vue.js) (1) job offer

Algorithm Jaccard Similarity TF-IDF BERT USE

Jaccard Similarity
Sharon
Rodgers

TF-IDF Ashley Moss Brenda Lynch
BERT
USE

Table 9: Intersection of the top 5 CVs chosen by the various algorithms for the Frontend Developer
(Vue.js) (2) job offer

Algorithm Jaccard Similarity TF-IDF BERT USE

Jaccard Similarity Carrie Yodes
Edward Wal-
ters, Carrie
Yodes

Carrie Yodes

TF-IDF Carrie Yodes Carrie Yodes
BERT Carrie Yodes
USE

Table 10: Intersection of the top 5 CVs chosen by the various algorithms for the Infrasctructure
Architect and Pre-Sales job offer

Algorithm Jaccard Similarity TF-IDF BERT USE

Jaccard Similarity
Benjamin Pa-
tel

Brandy Taylor,
Benjamin Pa-
tel

Brandy Taylor,
Benjamin Pa-
tel

TF-IDF
Benjamin Pa-
tel

Benjamin Pa-
tel

BERT
Brandy Taylor,
Benjamin Pa-
tel

USE

Table 11: Intersection of the top 5 CVs chosen by the various algorithms for the IT Recruiter job offer

5.1. Implementation and results 70

Algorithm Jaccard Similarity TF-IDF BERT USE

Jaccard Similarity Daniel Wilcox
Sharon
Rodgers

TF-IDF
BERT
USE

Table 12: Intersection of the top 5 CVs chosen by the various algorithms for the Junior Developers (1)
job offer

Algorithm Jaccard Similarity TF-IDF BERT USE

Jaccard Similarity
Vanessa Fer-
guson

TF-IDF

Thomas
Dixon,
Patrick Carter,
Christopher
Jimenez

BERT
USE

Table 13: Intersection of the top 5 CVs chosen by the various algorithms for the ML/Data Engineer
job offer

Algorithm Jaccard Similarity TF-IDF BERT USE

Jaccard Similarity
Sharon
Rodgers,
Robert Harris

TF-IDF Virginia Berry
BERT
USE

Table 14: Intersection of the top 5 CVs chosen by the various algorithms for the .NET Developer (1)
job offer

Algorithm Jaccard Similarity TF-IDF BERT USE
Jaccard Similarity

TF-IDF Troy Nguyen
BERT
USE

Table 15: Intersection of the top 5 CVs chosen by the various algorithms for the .NET Developer (2)
job offer

5.1. Implementation and results 71

Algorithm Jaccard Similarity TF-IDF BERT USE

Jaccard Similarity
Katherine Bul-
lock

Katherine Bul-
lock

TF-IDF

Katherine Bul-
lock, Nicholas
Perkins, Sean
Smith, Brenda
Lynch

BERT
USE

Table 16: Intersection of the top 5 CVs chosen by the various algorithms for the QA Engineer job offer

Algorithm Jaccard Similarity TF-IDF BERT USE

Jaccard Similarity
Sara Larson,
Sean Smith

Edward Wal-
ters

Jeffrey Ed-
wards, Sean
Smith

TF-IDF Sean Smith
BERT
USE

Table 17: Intersection of the top 5 CVs chosen by the various algorithms for the Scrum Master (1) job
offer

Algorithm Jaccard Similarity TF-IDF BERT USE

Jaccard Similarity
Edward Wal-
ters, Stephen
Campbell

Edward Wal-
ters

Edward Wal-
ters

TF-IDF
Edward Wal-
ters

Edward Wal-
ters, Sean
Smith

BERT
Edward Wal-
ters

USE

Table 18: Intersection of the top 5 CVs chosen by the various algorithms for the Scrum Master (2) job
offer

5.1. Implementation and results 72

Algorithm Jaccard Similarity TF-IDF BERT USE

Jaccard Similarity
Wendy
Brown, Carrie
Yodes

Wendy
Brown, Carrie
Yodes

TF-IDF
Wendy
Brown, Carrie
Yodes

BERT
USE

Table 19: Intersection of the top 5 CVs chosen by the various algorithms for the Solution Designer -
Hardware job offer

Algorithm Jaccard Similarity TF-IDF BERT USE

Jaccard Similarity Daniel Wilcox
Sharon
Rodgers

TF-IDF
BERT
USE

Table 20: Intersection of the top 5 CVs chosen by the various algorithms for the Junior Developers (2)
job offer

Algorithm Jaccard Similarity TF-IDF BERT USE
Jaccard Similarity

TF-IDF
Sharon
Rodgers

Sarah Nichols

BERT
USE

Table 21: Intersection of the top 5 CVs chosen by the various algorithms for the System Administrator
job offer

Algorithm Jaccard Similarity TF-IDF BERT USE

Jaccard Similarity Daniel Wilcox
Sharon
Rodgers

TF-IDF Ashley Moss
Ashley Moss,
Jennifer Ortiz,
Carolyn Hall

BERT Ashley Moss
USE

Table 22: Intersection of the top 5 CVs chosen by the various algorithms for the Tech Lead/Senior
Frontend job offer

5.1. Implementation and results 73

However, it was found that the bert-base-nli-mean-tokens model is obsolete and, therefore,
produces low quality sentence embeddings. Thus, it was necessary to apply another model.
For that, the all-mpnet-base-v2 (all, a) model (also from SentenceTransformers library) was
chosen, since it has the highest average performance according to (Pre).

The CVs chosen for each job offer based on the application of this model can be found in
Table 23. Analyzing the results of this table, it can be seen that, for each job offer, each CV
chosen is different when compared to the previous model, except for the Scrum Master (1)
job offer.

Job offer
BERT

(all-mpnet-base-v2)
Backend Developer GO Andrew Long

Backend Developer Tiffany Orozco
BE Developer Sharon Rodgers

Business Development Manager Sean Smith
Frontend Developer (Angular) Tiffany Orozco
Frontend Developer (Vue.js) (1) Tiffany Orozco
Frontend Developer (Vue.js) (2) Tiffany Orozco

Infrastructure Architect and Pre-Sales John Richard
IT Recruiter Roger Barrett

Junior Developers (1) Tiffany Orozco
ML/Data Engineer Thomas Dixon
.NET Developer (1) Troy Nguyen
.NET Developer (2) Ann Hicks

QA Engineer Katherine Bullock
Scrum Master (1) Edward Walters
Scrum Master (2) Edward Walters

Solution Designer - Hardware Hannah Santos
Junior Developers (2) Tiffany Orozco
System Administrator Cynthia Williams

Tech Lead/Senior Frontend Tiffany Orozco

Table 23: CVs chosen for each job offer based on the application of the all-mpnet-base-v2 model

Despite being the one with the best average performance, the all-mpnet-base-v2 model is
also one of the slowest, as expected. Thus, the all-MiniLM-L6-v2 (all, b) model (also from
SentenceTransformers library) was applied as well, since it is one of the models with the
best average performance/speed ratio (also according to (Pre)).

The CVs chosen for each job offer based on the application of this model can be found
in Table 24. Analyzing the results of this table, it can be seen that, for each job offer, each
CV chosen is different when compared to the previous two models, except for the Frontend
Developer (Angular) job offer which has the same candidate chosen for this and for the
all-mpnet-base-v2 model.

5.1. Implementation and results 74

Job offer
BERT

(all-MiniLM-L6-v2)
Backend Developer GO Tyler Garza

Backend Developer Ashley Moss
BE Developer Jennifer Ortiz

Business Development Manager Melissa Thompson
Frontend Developer (Angular) Tiffany Orozco
Frontend Developer (Vue.js) (1) Ashley Moss
Frontend Developer (Vue.js) (2) Ashley Moss

Infrastructure Architect and Pre-Sales Carolyn Hall
IT Recruiter Katherine Turner

Junior Developers (1) Garret Anderson
ML/Data Engineer Jennifer Ortiz
.NET Developer (1) Katherine Turner
.NET Developer (2) Katherine Turner

QA Engineer Jennifer Ortiz
Scrum Master (1) Jennifer Ortiz
Scrum Master (2) Jessica Thompson

Solution Designer - Hardware Terry Medina
Junior Developers (2) Garret Anderson
System Administrator Roger Barrett

Tech Lead/Senior Frontend Jennifer Ortiz

Table 24: CVs chosen for each job offer based on the application of the all-MiniLM-L6-v2 model

In addition to the experiments performed with cosine similarity, the remaining similarity
measures mentioned in Section 2.4 were also applied, in order to verify if there was any
change in the results.

Therefore, first, the USE algorithm with Euclidean distance was applied and the respective
results can be seen in Table 25. From its analysis, it is observable that there are no changes
when compared to the table with the results obtained from the application of the same
algorithm with cosine similarity.

5.1. Implementation and results 75

Job offer USE
Backend Developer GO Jennifer Ortiz

Backend Developer Richard Brady
BE Developer Troy Hobbs

Business Development Manager Bethany Guerrero
Frontend Developer (Angular) Jennifer Ortiz
Frontend Developer (Vue.js) (1) Jennifer Ortiz
Frontend Developer (Vue.js) (2) Jennifer Ortiz

Infrastructure Architect and Pre-Sales Donald Shaffer
IT Recruiter Bethany Guerrero

Junior Developers (1) Patrick Carter
ML/Data Engineer Thomas Dixon
.NET Developer (1) Brandy Taylor
.NET Developer (2) Ann Hicks

QA Engineer Katherine Bullock
Scrum Master (1) Donald Shaffer
Scrum Master (2) Edward Walters

Solution Designer - Hardware Bethany Guerrero
Junior Developers (2) Patrick Carter
System Administrator Sarah Nichols

Tech Lead/Senior Frontend Ashley Moss

Table 25: CVs chosen for each job offer based on the application of USE with Euclidean distance

Then, the same algorithm was applied with Manhattan distance and the corresponding
results can be seen in Table 26. Although there are many results in common when compared
with the application of this algorithm with cosine similarity and Euclidean distance, it
appears that the tables are no longer identical.

5.1. Implementation and results 76

Job offer USE
Backend Developer GO Jennifer Ortiz

Backend Developer Brenda Lynch
BE Developer Troy Hobbs

Business Development Manager Bethany Guerrero
Frontend Developer (Angular) Jennifer Ortiz
Frontend Developer (Vue.js) (1) Jennifer Ortiz
Frontend Developer (Vue.js) (2) Jennifer Ortiz

Infrastructure Architect and Pre-Sales Donald Shaffer
IT Recruiter Bethany Guerrero

Junior Developers (1) Virginia Berry
ML/Data Engineer Thomas Dixon
.NET Developer (1) Ann Hicks
.NET Developer (2) Ann Hicks

QA Engineer Katherine Bullock
Scrum Master (1) Donald Shaffer
Scrum Master (2) Edward Walters

Solution Designer - Hardware Donald Shaffer
Junior Developers (2) Virginia Berry
System Administrator Sarah Nichols

Tech Lead/Senior Frontend Jennifer Ortiz

Table 26: CVs chosen for each job offer based on the application of USE with Manhattan distance

Finally, this algorithm was applied with Chebyshev distance and the respective results
can be seen in Table 27. It is clear that this table is the one that most differs from the others,
with the exception of a few cases.

5.1. Implementation and results 77

Job offer USE
Backend Developer GO Sean Smith

Backend Developer Jeffrey Edwards
BE Developer Patrick Carter

Business Development Manager Donald Shaffer
Frontend Developer (Angular) Richard Brady
Frontend Developer (Vue.js) (1) Richard Brady
Frontend Developer (Vue.js) (2) Richard Brady

Infrastructure Architect and Pre-Sales Donald Shaffer
IT Recruiter Patrick Carter

Junior Developers (1) Patrick Carter
ML/Data Engineer Thomas Dixon
.NET Developer (1) Patrick Carter
.NET Developer (2) Michael Clark

QA Engineer Richard Brady
Scrum Master (1) Sean Smith
Scrum Master (2) Donald Shaffer

Solution Designer - Hardware Jennifer Hicks
Junior Developers (2) Patrick Carter
System Administrator Jessica Thompson

Tech Lead/Senior Frontend Richard Brady

Table 27: CVs chosen for each job offer based on the application of USE with Chebyshev distance

After all these experiments with the entire sample of CVs and job offers without any
preprocessing, it was decided to do some tests with each of the sections of the CVs and the
job offers in their entirety, in order to verify if there were any changes in the results. For
this, the main reasoning was to apply the Jaccard Similarity to each section of the CV and to
the entire job offer and, then, calculate the average of these results which, in turn, brings
the similarity between the CV and the job offer in question. Then, these calculations were
applied to the first job offer and to each CV and it was found that the results are different
(with this approach the chosen candidate is Steven Moreno and with the previous approach
the chosen candidate is Sharon Rodgers, as seen in Table 2).

In addition to the previous experience, another approach where the documents were
preprocessed was also tried, in order to verify if there was any change in the results. The
preprocessing consisted essentially of six steps (which were applied using the re module
and the spaCy library):

• Normalization of line endings and extra white space removal;

• Tokenization;

5.1. Implementation and results 78

• Stop words removal (which consists in removing the words that occur commonly
across all the documents in the corpus, such as articles and pronouns which, in turn,
have no significance in some of the NLP tasks (Hardeniya et al., 2016));

• Lemmatization;

• Lower casing;

• Punctuation removal.

The CVs chosen for each job offer based on the application of TF-IDF with cosine similarity
to the preprocessed sample data can be found in Table 28. Comparing these results with the
results of Table 2, it is possible to verify that there are only four matches between job offers
and CVs in common.

Job offer TF-IDF
Backend Developer GO Eileen Smith

Backend Developer Jennifer Ortiz
BE Developer Brenda Lynch

Business Development Manager Donald Shaffer
Frontend Developer (Angular) William Thomas
Frontend Developer (Vue.js) (1) Ashley Moss
Frontend Developer (Vue.js) (2) William Thomas

Infrastructure Architect and Pre-Sales Sara Larson
IT Recruiter Wendy Coleman

Junior Developers (1) Brenda Lynch
ML/Data Engineer Thomas Dixon
.NET Developer (1) Troy Nguyen
.NET Developer (2) Troy Nguyen

QA Engineer Katherine Bullock
Scrum Master (1) Edward Walters
Scrum Master (2) Edward Walters

Solution Designer - Hardware Melissa Thompson
Junior Developers (2) Brenda Lynch
System Administrator Sharon Rodgers

Tech Lead/Senior Frontend Ashley Moss

Table 28: CVs chosen for each job offer based on the application of TF-IDF to the preprocessed sample

The CVs chosen for each job offer based on the application of USE with cosine similarity
to the preprocessed sample data can be found in Table 29. This table shows that the results
of applying this technique are completely different from the results presented in Table 2.

5.2. Summary 79

Job offer USE
Backend Developer GO Garret Anderson

Backend Developer Luis Baxter
BE Developer William Thomas

Business Development Manager Edward Walters
Frontend Developer (Angular) Carolyn Hall
Frontend Developer (Vue.js) (1) Carolyn Hall
Frontend Developer (Vue.js) (2) Carolyn Hall

Infrastructure Architect and Pre-Sales Wendy Coleman
IT Recruiter Brandy Taylor

Junior Developers (1) William Thomas
ML/Data Engineer Timothy Lee
.NET Developer (1) Robert Harris
.NET Developer (2) Terry Medina

QA Engineer Pamela Gutierrez
Scrum Master (1) Ronald Cooper
Scrum Master (2) Sean Smith

Solution Designer - Hardware Benjamin Patel
Junior Developers (2) William Thomas
System Administrator Cynthia Williams

Tech Lead/Senior Frontend William Thomas

Table 29: CVs chosen for each job offer based on the application of USE to the preprocessed sample

Note that this approach was applied only to TF-IDF and USE, as these algorithms are the
ones that choose the most candidates in common, as seen above.

At this point, it is possible to conclude that it is not feasible to choose a particular
technique among those presented, given the discrepancy observed in the results and the lack
of plausibility in them (in fact, most candidates chosen for the different job offers according
to the different techniques made no sense).

5.2 summary

In this chapter, the general coding approach to apply the similarity algorithms explored
in Section 2.3 (with the exception of Doc2Vec) and the similarity measures explored in
Section 2.4, in order to achieve the first approach described in Chapter 3 was explained and
the results of their application were presented and discussed. At the end of this study, it
was concluded that it was not possible to choose any of the techniques attempted, mainly
because the results were not reasonable. That being said, let us move on to the description
and discussion of the algorithm designed and implemented to achieve the second approach
presented in Chapter 3 as well.

6

S I M I L A R I T Y A L G O R I T H M (A P P R O A C H B)

In this chapter, the engine that compares the CV and the job offer in the second approach
presented in Chapter 3 is explained and the results of its application are discussed.

6.1 implementation and results

In this approach, and similarly to the CVs, it was also necessary to extract a structured
document from each job offer. However, unlike the CVs, the existing job offers do not follow
a pattern and, for that reason, it was not possible to follow the approach described in Section
4.1, Section 4.2 and Section 4.3. Instead, it was necessary to create a form so that the HR
team could fill in the necessary information regarding the job offer and, from there, the
respective structured document could be generated. For instance, suppose the HR team
filled out the form based on the job offer from Appendix A. In this case, the corresponding
structured document would be the JSON document from Appendix C.

Having the form, it was necessary to create a logic to calculate the percentage of similarity
between a job offer and a CV. This logic involved calculating the score obtained by the
candidate in each section (in this case, Professional Experience, Education, Languages and
Technologies) and also calculating the maximum score that the candidate could obtain in
those same sections. After that, the first score is divided by the latter, in order to give the
percentage obtained by the candidate in each section. Then, each value is multiplied by the
respective weight assigned to the section in question (since a section can have a different
importance according to the job offer) and, finally, the sum of each product results in such
percentage of similarity between a job offer and a CV.

That said, it is important to mention that the reasoning for calculating the score obtained
by the candidate in each section is common to all sections, since it is always subdivided
into two other calculations: calculation of the score obtained by each professional experi-
ence/education/language/technology found and calculation of the score obtained by each
professional experience/education/language/technology not found.

80

6.1. Implementation and results 81

Thus, and starting with the Professional Experience section, it is worth recalling that,
although a job offer may ask for experience in a specific role (such as Machine Learning
Engineer), other roles may be related and, therefore, also valuable (such as Data Engineer,
Data Scientist, etc.). As a consequence, it was found useful to have a document for each
related role, that is, for the Machine Learning Engineer role there will be a document with
those keywords, plus Data Engineer, Data Scientist, etc., for the IT Recruiter role there
will be a document with those keywords, plus Head of Human Resources, etc. and so on.
Furthermore, it was concluded that the score based on the number of years a candidate has
held a role should increase towards a limit, not only because the difference between 1 and
5 years should be much more significant than the difference between 10 and 15 years, for
example, since there is a point where there is not much more to learn, but also because
that limit is necessary to find the maximum score that the candidate can obtain in this
section, since there is not a maximum number of years of experience a person can have.
The function in question and the respective graph can be seen below. Notice how the curve
grows exponentially until approximately x = 10 and, from there, it becomes much less steep,
getting closer and closer to the value 25.

f (x) = 25
(

1 − 1
x + 1

)
(9)

Figure 88: Graph of math function that returns score based on number of years

That said, regarding the calculation of the score obtained for each professional experience
found, for each Professional Experience entry of the job offer, the respective document related
to the role in question is opened and if any of the keywords existing in that document is
found in any Professional Experience entry of the CV, one of the following applies:

• If the duration field exists in the job offer and the duration field in the CV (which is
calculated using the start date and the end date with the help of the dateparser library
and the dateutil module (dat, c)) is equal to or greater than the required duration, 1

is added to the value resulting from subtracting the duration in the job offer to the
duration in the CV and f (x) is applied to this result, so that the candidate is valued;

6.1. Implementation and results 82

• If the duration field exists in the job offer and the duration field in the CV is less than
the required duration, the symmetric of f (x) is applied to the absolute value resulting
from subtracting the duration in the job offer to the duration in the CV, so that the
candidate is devalued;

• If the duration field does not exist in the job offer, f (x) is applied to the duration in the
CV, so that the candidate is valued (since, in this case, all experience must be valued).

On the other hand, with regard to the calculation of the score obtained for each professional
experience not found, a methodology similar to that explained above is applied to verify if
any role of any Professional Experience entry of the job offer (or similar) is not found in any
Professional Experience entry of the CV and, if so, one of the following applies:

• If the duration field exists in the job offer, the symmetric of f (x) is applied to the value
in that field, since, in this calculation, the candidate always needs to be devalued;

• If the duration field does not exist in the job offer, the candidate receives -10 points
(because, as mentioned before, they have to be devalued).

Finally, when it comes to calculating the maximum score that the candidate could obtain
in this section, since the calculation of the score obtained for each professional experience
found always resorts to f (x), that maximum score equals to 25 points (limit of the function)
for each Professional Experience entry of the job offer.

Continuing with the Education section, it is worth recalling that, like with the Profes-
sional Experience section, although a job offer may ask for a certain education level in a
specific field, other fields may be related and, therefore, also valuable. For that reason,
the methodology involving documents with related fields was also used in this section.
Furthermore, please note that a candidate may have more than one level of education for the
same required field, i.e., imagine that the job offer asks for a Bachelor Degree in Computer
Science and the candidate not only satisfies this requirement, but also has a Master Degree
in Computer Science. In this case, only the latter should be considered, as it not only meets
the requirement, but also exceeds it (note that a Master Degree is a higher education level
than a Bachelor Degree). Lastly, keep in mind that for each education level a numerical
value was mapped, in order to be able to relativize the different levels and make calculations
between them. Note that each numerical value represents the typical number of years the
respective education level generally lasts plus the numerical value of the previous education
level (Bachelor Degree was mapped to 3, Post-Graduation was mapped to 4 and so on).

That said, with regard to the calculation of the score obtained for each education found,
for each Education entry of the job offer, a methodology similar to that explained for the
Professional Experience section is applied to verify if any field of any Education entry of the
job offer (or similar) is found in any Education entry of the CV and, if so, the maximum

6.1. Implementation and results 83

level of education in that field is extracted from the CV. In this situation, one of the following
applies:

• If the maximum education level in the CV is equal to or greater than the education
level in the job offer and the candidate has finished the degree, 1 is added to the value
resulting from subtracting the latter to the first, so that the candidate is valued;

• If the maximum education level in the CV is less than the education level in the job
offer and the candidate has finished the degree, the latter is subtracted to the first, in
order to devalue the candidate;

• If the maximum education level in the CV is equal to or greater than the education level
in the job offer and the candidate has not finished the degree, the latter is subtracted
to the first, so that the candidate is valued (but not as much as in the first case);

• If the maximum education level in the CV is less than the education level in the
job offer and the candidate has not finished the degree, 1 is subtracted to the value
resulting from subtracting the latter to the first, so that the candidate is devalued (even
more than in the second case);

On the contrary, when it comes to the calculation of the score obtained for each education
not found, for each Education entry of the job offer, a methodology similar to that explained
for the Professional Experience section is applied to verify if any field of any Education entry
of the job offer (or similar) is not found in any Education entry of the CV and, if so, the
candidate receives the symmetric of the result of adding 1 to the education level requested
in the job offer, in order to devalue the candidate (evidently, even more than a candidate
who has a degree in the required field, but a lower education level).

At last, with regard to the calculation of the maximum score that the candidate could
obtain in this section, similarly to the first case in the explanation of the calculation of the
score obtained for each education found (which is the one that results in the highest score),
for each Education entry of the job offer, 1 is added to the value resulting from subtracting
the level of education requested to the maximum level of education (in this case, Doctorate
Degree which, in turn, is equivalent to 10).

Proceeding with the Languages section, take into account that, in this case, there are only
five possible language levels, so, for the same reasons pointed out for the Education section,
a numerical value was also mapped to each of those levels (Basic was mapped to 1, Average
was mapped to 2, Good was mapped to 3, Very Good was mapped to 4 and Native was
mapped to 5). In addition, all CVs have a proficiency level regarding reading, writing and
speaking, so the average of these three values was used as the language level of the CV, in
order to be able to compare with the language level of the job offer.

6.1. Implementation and results 84

That said, with regard to the calculation of the score obtained for each language found, it
is verified whether the language for each Language entry of the job offer is found in any
Language entry of the CV and, if so, one of the following applies:

• If the language is required and the language level in the CV is equal to or greater than
the language level in the job offer, 1 is added to the value resulting from subtracting
the latter to the first, so that the candidate receives 1 point in case they have the same
language level, 2 points in case they have one language level above, etc. and, therefore,
is valued;

• If the language is required and the language level in the CV is less than the language
level in the job offer, the latter is subtracted to the first, so that the candidate receives
-1 point in case they have one language level below, -2 points in case they have two
language levels below, etc. and, so, is devalued;

• If the language is not required, 0.5 is added to the result of dividing the result of
subtracting the language level in the job offer to the language level in the CV by 10, so
that the candidate receives 0.4 if they have one language level below, 0.5 if they have
the same language level, 0.6 if they have one language level above, etc., so that the
candidate is never devalued, but does not obtain a greater appreciation than in the
first case.

In contrast, with regard to the calculation of the score obtained for each language not
found, it is verified whether the language for each Language entry of the job offer is not
found in any Language entry of the CV and, if so and if that language is required, the
candidate receives the symmetrical of the language level required by the job offer, as they
should only be devalued for the required languages that they do not have.

Finally, when it comes to the calculation of the maximum score that the candidate could
obtain in this section, for each Language entry in the job offer, there are two possible
situations:

• In case that language is required, a similar approach to the one explained in the first
case of the calculation of the score obtained for each language found (which, for
required languages, is the one that results in the highest score) is applied, that is, 1 is
added to the value resulting from subtracting the language level required by the job
offer to the maximum language level (in this case, and as explained before, Native);

• In case that language is not required, a similar approach to the one explained in the
third case of the calculation of the score obtained for each language found is applied,
i.e., 0.5 is added to the result of dividing the result of subtracting the language level
required by the job offer to the maximum language level by 10.

6.1. Implementation and results 85

Last but not least, let us take a look at the Technologies section. First of all, this section
is subdivided into several subsections (Programming Languages, Databases, Operating
Systems and Tools) which, in turn, and as for each section, may also have a different
importance according to the job offer and, therefore, must have weights assigned to them
as well. On top of that, it is important to mention that all of those subsections are very
similar to each other, as they all have analogous fields. Thus, both the calculation of the
score obtained for each technology (programming language, database, operating system or
tool) found and the calculation of the score obtained for each technology not found were
done in such a generic way that they can be used by all of those subsections. Taking these
two considerations into account, it is easy to see that the calculation of the score obtained
by the candidate in this section will involve the calculation of the score obtained by each
technology found and also the calculation of the score obtained by each technology not
found (as expected), but, now, for each Technologies subsection and, then, multiplying these
results by the respective weights mentioned above. In addition, in this case, there are only
five possible technology levels, so, once again, for the same reasons pointed out for the
Education section, a numerical value was also mapped to each of those levels (Basic was
mapped to 1, Average was mapped to 2, Good was mapped to 3, Very Good was mapped to
4 and Advanced was mapped to 5). Furthermore, unlike the previously mentioned sections,
each subsection of this section has not just one, but two fields that play a major role when it
comes to calculating scores. These fields are related to the technology level and duration and,
therefore, in this case, the score calculations will always take these two parcels into account.
Moreover, f (x) was also used in this section for reasons analogous to those explained for
the Professional Experience section.

Having that in mind, as to the calculation of the score obtained for each technology found,
it is verified whether each entry in the Technologies subsection in question of the job offer is
found in any entry in the Technologies subsection in question of the CV and, if so, one of
the following applies:

• If the technology is required:

– Regarding the score related to the technology level, there are two possible cases:

* If the technology level in the CV is equal to or greater than the technology
level in the job offer, 1 is added to the value resulting from subtracting
the latter to the first, in order to value the candidate (as explained for the
Languages section);

* If the technology level in the CV is less than the technology level in the job
offer, the latter is subtracted to the first, in order to devalue the candidate
(once again, as explained for the Languages section);

6.1. Implementation and results 86

– Regarding the score related to the duration, there are three possible cases (similar
to those explained for the Professional Experience section):

* If the duration field exists in the job offer and the duration field in the CV
(which, once more, is calculated using the start date and the end date with
the help of the dateparser library and the dateutil module) is equal to or
greater than the required duration, 1 is added to the value resulting from
subtracting the duration in the job offer to the duration in the CV and f (x) is
applied to this result, so that the candidate is valued;

* If the duration field exists in the job offer and the duration field in the CV
is less than the required duration, the symmetric of f (x) is applied to the
absolute value resulting from subtracting the duration in the job offer to the
duration in the CV, so that the candidate is devalued;

* If the duration field does not exist in the job offer, f (x) is applied to the
duration in the CV, so that the candidate is valued (since, in this case, all
experience must be valued).

• If the technology is not required:

– Regarding the score related to the technology level, an analogous calculation to
that explained for not required languages is applied here, so that the candidate
always receives an appreciation, but not as much as if it was a required technology;

– Regarding the score related to the duration, there are three possible cases:

* If the duration field exists in the job offer and the duration field in the CV is
equal to or greater than the required duration, just 0.5 is added to the value
resulting from subtracting the latter to the first and f (x) is applied to this
result, in order to value the candidate, but, once more, not as much as if it
was a required technology;

* If the duration field exists in the job offer and the duration field in the CV is
less than the required duration, the candidate receives 0 points, so that they
are not valued (since they do not satisfy the requirements regarding this field)
nor devalued (since the technology in question is not required);

* If the duration field does not exist in the job offer, 0.5 is multiplied by the
result of applying f (x) to the duration in the CV, so that the candidate is
valued, but, anew, not as much as if it was a required technology;

Meanwhile, as to the calculation of the score obtained for each technology not found, it is
verified whether each entry in the Technologies subsection in question of the job offer is not
found in any entry in the Technologies subsection in question of the CV and, if so and if

6.1. Implementation and results 87

that technology is required (because, once again, the candidate should only be devalued for
the required technologies that they do not have), one of the following applies:

• If the duration field exists in the job offer, the candidate receives the symmetric of the
result of adding the technology level required by the job offer to the result of applying
f (x) to the duration required by the job offer;

• If the duration field does not exist in the job offer, the candidate receives just the
symmetric of the technology level required by the job offer.

Ultimately, regarding the calculation of the maximum score that the candidate could
obtain in this section, for each entry of each Technologies subsection of the job offer, there
are two possible situations:

• In case that technology is required, 25 points, which is the limit of the function always
used in the calculation of the score obtained for each technology found regarding the
score related to the duration, are added to the result of applying a similar approach
to the one explained in the first case of the calculation of the score obtained for each
technology found regarding the score related to the technology level, that is, 1 is added
to the value resulting from subtracting the technology level required by the job offer to
the maximum technology level (in this case, and as explained before, Advanced);

• In case that technology is not required, 25 points, which come from a similar scenario
to the one explained above, are added to the result of applying a similar approach to
the one explained in the calculation of the score obtained for each technology found
regarding the score related to the technology level, that is, 0.5 is added to the result of
dividing the result of subtracting the technology level required by the job offer to the
maximum technology level by 10.

After that, all the maximum scores computed for each Technologies subsection have to be
multiplied by the respective weights mentioned above (and, of course, all the results are
added together to, then, give the maximum score that the candidate could obtain in the
Technologies section).

Having the calculation of the score obtained by the candidate in each section and the
calculation of the maximum score that the candidate could obtain in those same sections, it
is now possible to calculate the percentage of similarity between a job offer and a CV, as
explained at the beginning of this chapter, paying special attention to the case in which the
maximum score that the candidate can obtain is 0 (which results in a percentage of 0, as it is
not possible to divide by this value) and to the case in which the final calculation results in
a negative value (which also results in a percentage of 0, because there can be no negative
percentages).

6.1. Implementation and results 88

At this stage, it is important to rank the candidates according to the job offer they applied
for from best to worst according to their percentage of similarity and display only the best x,
x being a configurable parameter that is stored in a dictionary of settings along with the
weights mentioned throughout this chapter (which, of course, are also configurable).

That said, applying the developed algorithm to the same one hundred and sixteen CVs
referred to in Chapter 5 according to the job offer presented in Appendix A with the
configurations shown below, leads to the results presented in Table 30.

1 c o n f i g u r a t i o n = {
" l i m i t " : 5 ,

3 " weights " : {
" s e c t i o n s " : {

5 " p r o f e s s i o n a l _ e x p e r i e n c e " : { " weight " : 0 . 2 5 } ,
" education " : { " weight " : 0 . 2 5 } ,

7 " languages " : { " weight " : 0 . 2 5 } ,
" t e c h n o l o g i e s " : {

9 " weight " : 0 . 2 5 ,
" su bse c t i ons " : {

11 " programming_languages " : { " weight " : 0 . 2 5 } ,
" databases " : { " weight " : 0 . 2 5 } ,

13 " operat ing_systems " : { " weight " : 0 . 2 5 } ,
" t o o l s " : { " weight " : 0 . 2 5 } ,

15 } ,
} ,

17 }
} ,

19 }

Listing 6.1: Dictionary of settings used as an example

Candidate Percentage of Similarity (2 d.p.)
Thomas Dixon 71.71%
Patrick Carter 58.21%

Ashley Lawrence 35.37%
Christopher Jimenez 28.66%

Melvin Fields 20.62%

Table 30: Top 5 candidates for the job offer presented in Appendix A

These results were examined both in terms of calculations and in terms of order and, from
there, it was concluded that they are plausible. It should be noted that most of these candi-
dates have experience in the field of Machine Learning, have a degree in Computer Science
or similar, demonstrate fluency in English and satisfy some of the necessary technologies,
which makes them more suitable for the job offer in question.

6.2. Summary 89

6.2 summary

In this sixth chapter, the similarity algorithm engine of the second approach presented in
Chapter 3 was explained in detail. After testing the algorithm, it was concluded that the
results were plausible and, therefore, it was feasible to solve the initial problem. At this
point, it is finally possible to summarize all the work and present the conclusions achieved
throughout this Master’s Project.

7

C O N C L U S I O N

This Master’s Project is entitled "Automation of companies’ recruitment process: develop-
ment of an algorithm capable of ranking CVs according to job offers" and was proposed by
Syone SBS Software - Tecnologia e Serviços de Informática, S.A., since its Human Resources
team (in particular, the recruitment crew) was facing an enormous work load when it came
to screening CVs.

This Master’s Project aims to prove the underlying research hypothesis “It is possible to
develop an algorithm capable of automatically matching the most suitable applicants to a
certain job offer”. For that, several tasks were performed:

1. Analysis of different types of CVs (such as Europass, LinkedIn profile as a CV, Curricu-
lum Lattes, CIÊNCIAVITAE and Syone’s internal CV) and development of an ontology
defining the information necessary to fully characterize a CV;

2. Study of the typical components (entities and relationships) and steps (sentence
splitting, tokenization, POS tagging, lemmatization, NER and relationship extraction)
involved in the Information Extraction process;

3. Exploration and comparison of the most popular similarity algorithms (Jaccard Simi-
larity, TF-IDF, Doc2Vec, BERT and USE);

4. Research of some of the most popular similarity measures (cosine similarity, Euclidean
distance, Manhattan distance and Chebyshev distance);

5. Description of the proposed architecture for the system;

6. Implementation of the first four engines in charge of processing the CVs and discussion
of the problems that came along;

7. Application of the previously studied similarity algorithms (and similarity measures)
as a first approach to calculate the affinity between a job offer and a CV;

8. Development of another approach to calculate this affinity.

90

91

In the following paragraphs, the aforementioned phases will be summarized and the
challenges that have arisen and the conclusions drawn in each phase will be revisited. Finally,
some suggestions that may be followed as future work will be presented.

Regarding the first phase, several CV formats in vogue were analyzed, in order to compare
the information required by each one of them. It was found that, although there were
certain fields and patterns in common (for instance, they all required some data concerning
the work experience and education and, usually, the former came after the latter), some
were better suited to a certain area of expertise and/or country than others. Bear in mind
that, in addition to the CV formats mentioned, others were analyzed (such as the College
Art Association’s Visual Artist Format). However, it was found that, once again, these
formats were very targeted to certain areas of expertise and these, in turn, were outside the
Information Technology (IT) domain. Therefore, Syone was unlikely to receive such CVs
and, so, they were not deeply explored or discussed. After that large research concerning
CV sources and formats, an ontology based on Syone’s internal CV was developed, in order
to identify the information it was necessary to extract from each CV.

In terms of the second phase, it was necessary to explore the various components and
stages of Information Extraction, as they could be necessary to extract information from
CVs and job offers. First, the main type of structures extracted from an unstructured source
(entities and relationships) were studied and it was concluded that entities are typically noun
phrases, like proper names, organizations, etc. and that relationships are defined over two or
more related entities, like "is employee of" between a person and an organization, etc.. Then,
the typical workflow of IE was studied and it was found that it consists of sentence splitting
(where the text is divided into sentences), tokenization (where each sentence is broken
down according to a set of delimiters generating tokens), POS tagging (where a grammatical
category is assigned to each token), lemmatization (where the various forms of a token
are mapped to its root form), NER (where tokens are recognized as people, organizations,
etc.) and relationship extraction (where relationships between entities are identified and
collected). After that, it was found that NER approaches are classified into two main types,
these being Knowledge Engineering (which uses domain knowledge of human expertise
represented in a machine-understandable form) and automatic training (which uses ML
algorithms), and that the first approach not only requires less effort to define patterns and
develop rules when compared to the effort required to annotate a large amount of training
data in the second approach, but also tends to produce a higher performance, since human
expertise results in more accurate patterns. Finally, a Python library that provides the
functionalities to perform all these steps called spaCy was also explored.

Moreover, when it comes to the third phase, the most popular similarity algorithms were
explored and compared, in order to apply them to the CVs and job offers and, consequently,
find the affinity between them. To summarize, it was found that Jaccard Similarity is defined

92

as the size of the intersection divided by the size of the union of the sample sets; TF-IDF
measures how much a term is relevant to a document in a collection of documents; Doc2Vec
is capable of transforming text documents into a vectorized form and is heavily based on
Word2Vec; BERT is based on Transformers and generates contextualized embeddings from
the input words and USE encodes text into high dimensional vectors. After comparing
all these algorithms, it is clear that each of them has its pros and cons, but BERT stands
out from the rest as it presents state-of-the-art results in a wide variety of NLP tasks and,
therefore, has been widely used since its publication.

As to the last phase of the research part, the most popular similarity measures were
investigated, in order to apply them to the vectorization algorithms mentioned before. To
recap, the cosine similarity is measured by the cosine of the angle between two vectors; the
Euclidean distance is calculated as the square root of the sum of the squared differences
between two vectors; the Manhattan distance is computed as the sum of the absolute
differences between two vectors and the Chebyshev distance is calculated as the greatest of
the differences between two vectors along any coordinate dimension.

With respect to the fifth phase, an architecture for the system was proposed. In the
proposed architecture, the system receives a CV which goes through a text extractor engine
and/or a XML extractor engine to extract its text and/or XML, respectively. In parallel, it
either receives a file corresponding to the job offer which, in this case, undergoes the same
preprocessing or the user introduces the job offer’s relevant information via an appropriate
interface. Then, both the CV’s information and the job offer’s information go through a
module that compares them and returns the respective affinity. To do so, two different
approaches were tried, aiming at a clear understanding of the pros and cons of each one
of them. In the first approach, regarding the job offer, the first path mentioned before is
followed, which means that both the CV text and/or XML and the job offer text and/or
XML go through an engine that runs a ML algorithm followed by a similarity measure, in
order to compute the affinity between those two inputs. In the second approach, the CV text
and/or XML passes through the knowledge extractor engine, so that it extracts its relevant
information (Personal Information, Executive Summary, etc.) and, after that, the document
builder engine merges all the extracted information to generate the corresponding structured
document. In parallel, regarding the job offer, the second path mentioned before is followed,
that is, the user fills in a form with the job offer’s relevant information and the associated
interface module returns the corresponding structured document. Lastly, the structured
documents together with the rules that define the weights for each requirement are handed
over to the similarity algorithm engine which, in turn, returns the affinity between the two
documents.

Note that, from the sixth phase onwards, it was decided to deal only with Syone’s CV
format, but, in future iterations, other CV formats may be handled following a similar

93

approach. In this phase, the implementation of the text extractor, XML extractor, knowledge
extractor and document builder engines (i.e., CVs processing phase) was explained and the
main challenges that came along the process were pointed out. First of all, the text extractor
engine was created to extract the content of documents in plain text format while the XML
extractor engine was created to extract XML from documents, allowing a more structured
analysis. Then, regarding the knowledge extractor engine, the main logic to collect the
information from each section involved the following steps:

• For the Personal Information, Executive Summary, Professional Experience, Education
and Languages sections:

– Extract the text from each section. This involved, first, extracting the text from
the document using the text extractor engine and, then, finding the word that
indicates the beginning of the section and the word that indicates the end of it
and, finally, extracting the text between them;

– Extract the fields from each section (such as name, job description, etc.). For the
Personal Information section, the logic was similar to the one explained above.
However, for the Professional Experience and Education sections, it was a little
bit different, as they have multiple entries. Thus, each entry was divided on the
keyword that indicates the beginning of it (in this case, "Dates (from to)") and,
then, each field was extracted following an approach similar to the one used
for the Personal information. Finally, the Languages section also has several
entries, but, since it is a table, some patterns were found and made the extraction
somewhat easier. It was noticed that its rows were separated by two newline
characters (so the table was split on this delimiter, in order to get the entries) and,
within each row, each field was separated by a newline character (so these were
extracted by splitting each entry on that delimiter).

• For the sections referring to the Technologies table (Programming Languages, Databases,
Operating Systems and Tools), since this table does not follow any pattern (unlike
the Languages table), it was necessary to use the XML extractor to extract the XML
corresponding to the table and, consequently, have access to the table’s components
and be able to do a much more structured manipulation.

Lastly, the document builder engine was created to produce the structured document
corresponding to each CV which was done by, essentially, merging all sections extracted
before together.

Bear in mind that this was one of the most challenging phases of the project, as it
was necessary to overcome several obstacles inherent to natural language. In fact, many
candidates had missing or duplicate fields which, in itself, was a big problem. In addition,
the fact that some candidates filled in the fields incorrectly (such as typing a newline

94

character in the middle of a field’s text) made it very difficult to extract information from
the Technologies table. Finally, the biggest obstacle came with the date fields, as many
candidates did not follow the same date format, did not fill in valid dates, did not specify
the start/end date, etc..

In the penultimate phase, before presenting the results from the application of the similar-
ity algorithms previously studied, the general coding approach to achieve those results was
briefly explained. After explaining that, those similarity algorithms were applied, with the
exception of the Doc2Vec algorithm, since this one needs to be trained and there was a lim-
ited amount of data (twenty job offers and one hundred and sixteen CVs), i.e., only Jaccard
Similarity, TF-IDF, BERT and USE were applied. Note that the last three are vectorization
algorithms and, therefore, it was necessary to apply the similarity measures also previously
studied (cosine similarity, Euclidean distance, Manhattan distance and Chebyshev distance)
to the generated vectors, in order to compute the affinity between them. That said, first of
all, so that the most adequate CV for each job offer was found, Jaccard Similarity, TF-IDF
(with cosine similarity), BERT (bert-base-nli-mean-tokens from SentenceTransformers library
with cosine similarity) and USE (TF2.0 Saved Model (v4) from TensorFlow Hub with cosine
similarity) were applied to the whole sample and it was observed that the same CV was
rarely chosen by the different algorithms. After that, the five best CVs returned by these
same algorithms for each job offer were crossed, in order to verify if there were candidates
in common and, although this was verified for some cases, the majority of the intersections
varied greatly from each other. Then, it was found that the bert-base-nli-mean-tokens model
was obsolete, so the all-mpnet-base-v2 model (also from SentenceTransformers library),
which has the highest average performance, was applied instead and the results were totally
different when compared to the previous model (except for the Scrum Master (1) job offer).
Despite being the one with the best average performance, this algorithm is also one of
the slowest, so the all-MiniLM-L6-v2 model (also from SentenceTransformers library) was
applied as well, since it is one of the models with the best average performance/speed ratio
and the results were also different when compared to the previous two models (except
for the Frontend Developer (Angular) job offer which has the same candidate chosen for
this and for the preceding model). Next, to see if there was any change in the results, the
remaining similarity measures (Euclidean distance, Manhattan distance and Chebyshev
distance) were applied with the USE algorithm and it was seen that there were no changes
with the first measure, there were some changes with the second measure and there were
a lot of changes with the third one. After all these experiments with the unpreprocessed
documents, in order to see if there were any changes in the results, it was decided to apply
Jaccard Similarity to each section of each CV and to the first job offer in its entirety and,
then, calculate the average of these results to find the similarity between them and it was
verified that the chosen candidate for this and for the previous approach (Jaccard Similarity

95

with the unpreprocessed documents) is different. Additionally, and also to see if there were
any changes in the results, TF-IDF with cosine similarity and USE with cosine similarity
(which were the algorithms that chose the most candidates in common, according to their
intersections) were applied to the preprocessed documents (this preprocessing consisted
of normalization of line endings and extra white space removal, tokenization, stop words
removal, lemmatization, lower casing and punctuation removal) and, while for the first algo-
rithm there were four matches comparing with the same approach with the unpreprocessed
documents, for the second algorithm the results were completely different. After all this, it
was concluded that it was not possible to choose one of the techniques previously applied,
because the results were very discrepant and most of the candidates chosen for each job
offer by each algorithm were not suited for them.

On the other hand, in the last phase, a different approach was tried. Here, the main logic
to compute the affinity between a job offer and a CV involved the following steps:

• Calculating the score obtained by the candidate in each section (which, in turn, is
subdivided into the calculation of the score obtained by each professional experience/e-
ducation/language/technology found and the calculation of the score obtained by
each professional experience/education/language/technology not found);

• Calculating the maximum score that the candidate could obtain in those same sections;

• Dividing the former by the latter, in order to get the percentage obtained by the
candidate in each section;

• Multiplying each value by the respective weight assigned to the section in question
(which is configurable);

• Summing each product to obtain such percentage of similarity between a job offer and
a CV.

Then, according to this percentage of similarity, the candidates were ranked from best to
worst in relation to the job offer they applied for and only the best x were displayed (x also
being a configurable parameter). Note that this approach takes advantage of the structured
documents corresponding to the CVs and the job offers.

That said, the algorithm was tested, in particular, with the job offer presented in Appendix
A and the one hundred and sixteen CVs that were made available, with the same weight for
each section and subsection (in this case, 0.25) and a limit equal to 5. This way, the algorithm
returned the 5 most suitable CVs for the job offer in question and, after analyzing the results,
it was concluded that these were plausible choices (notice how the candidate who is in first
place, whose CV, in turn, is found in the Appendix B, satisfies most of the requirements of
the job offer).

96

Also notice that these results, effectively, make sense, unlike the previous approach where
the results not only varied from technique to technique, but also returned candidates who
were not suitable for the job offers in question. In particular, for the job offer in Appendix
A, were returned candidates who have a background in DevOps, for example, which has
nothing to do with the Machine Learning expertise required. These unfortunate results
might be explained by the fact that the similarity algorithms used in the first approach deal
with the documents as a whole, which means that certain requirements demanded by the job
offer for a specific field may be found, but in the wrong field, which conducts to misleading
results.

So, it is fair to conclude that the Master’s Work here reported proved that it is possible to
develop an algorithm capable of automatically matching the most suitable applicants to a
certain job offer.

However, as future work, there are some details that, in my opinion, could be added to
make this algorithm more robust. In the first place, candidates who present more skills than
those requested should be valued. Furthermore, it would be interesting to give a negligible
value to candidates who, despite not meeting the requirements in terms of programming
languages, have experience in similar programming languages (for example, if the job offer
asks for Java, but, instead, the candidate has Python, which can also be used for object-
oriented programming, they should be valued). Additionally, it may be helpful to provide
details on the attributes of the analyzed CV that match the requirements of the job offer.
Moreover, it would be useful to develop a Graphical User Interface (GUI), so that users
(in this case, the HR team) could interact with the algorithm in a much more intuitive and
pleasant way. Lastly, although this Master’s Project has been more directed towards Syone’s
CV format, in future iterations, and as said before, it would be interesting to adapt this work
to other CV formats, such as Europass CVs, LinkedIn profiles as CVs, etc. and, consequently,
being able to handle more and more formats.

A
S A M P L E J O B O F F E R

This appendix shows a sample job offer.

97

ML/Data Engineer

Job description

We're looking for a Data engineer to join a major client!

Requirements

What do I need to bring?

 Proven experience as MLE/DE
 BSc in Computer Science or a similar field, with a very solid Spark and

Python programming experience; Scala is a plus - for creating data
pipelines that will fuel machine learning models in an Azure Databricks
based environment

 Proven experience with the engineering aspects of popular machine
learning practices, libraries, and platforms - such as the ones that
allow serving and productionasing machine learning models

 Acquaintance with CD4ML and MLOps, software design patterns and
RESTful APIs

 Main tech stack: Databricks, Spark, Airflow, MLflow, MLeap, Kafka,
Delta Lake and Azure ADLS (Parquet, Avro), Azure Devops.

 Proficient in code versioning tools: Github
 Strong English communicator;
 Comfortable with an Agile methologies (Scrum, Kanban) using Jira Agile

What can Syone offer me?

 Integration in an organization with profound and sustained growth and
involvement in pioneering projects with innovative technological
solutions;

 Strong IT training plans;
 Professional evolution with intervention in ambitious technological

projects, both national and internationally.

B
S A M P L E C V

This appendix shows a sample CV.

99

•

•

•

•

•

•

•

•

•

•

•

•

•

ISCTE-IUL

•

•

•

•

•

•

•

GS1 Portugal

•

•

KCSIT – Timwe Group

•

•

IT Sector – Millenium BCP

•

•

•

Java Good 3Y
Python Good 4Y
Scala Average 8M
Javascript Basic 1Y
.NET Basic 1Y6M
Outsystems Average 1Y2M
HTML Average 1Y8M
CSS Average 1Y8M

PostgreSQL Good 2Y
Oracle Good 2Y

MSSQL Average 6M
Big data databases Average 3 years

Linux (Ubuntu,
CentOS)

Good 6Y

Windows Very Good 6Y

Intellij Idea Good 3Y

C
J S O N F I L E C O R R E S P O N D I N G T O T H E S A M P L E J O B O F F E R

This appendix shows the JSON file corresponding to the sample job offer presented in
Appendix A.

1 {

2 "professional_experience": [

3 {

4 "duration": null,

5 "occupation": "MLE/DE"

6 }

7],

8 "education": [

9 {

10 "is_finished": true,

11 "area": "Computer Science",

12 "level": "BSc"

13 }

14],

15 "languages": [

16 {

17 "language": "English",

18 "level": "Very Good",

19 "is_required": true

20 }

21],

22 "technologies": {

23 "programming_languages": [

24 {

25 "name_programming": "Python",

26 "level_programming": "Very Good",

27 "duration_programming": null,

108

109

28 "is_required": true

29 },

30 {

31 "name_programming": "Scala",

32 "level_programming": "Good",

33 "duration_programming": null,

34 "is_required": false

35 }

36],

37 "databases": [],

38 "operating_systems": [],

39 "tools": [

40 {

41 "name_tool": "Spark",

42 "level_tool": "Very Good",

43 "duration_tool": null,

44 "is_required": true

45 },

46 {

47 "name_tool": "Azure Databricks",

48 "level_tool": "Good",

49 "duration_tool": null,

50 "is_required": true

51 },

52 {

53 "name_tool": "Airflow",

54 "level_tool": "Good",

55 "duration_tool": null,

56 "is_required": true

57 },

58 {

59 "name_tool": "MLflow",

60 "level_tool": "Good",

61 "duration_tool": null,

62 "is_required": true

63 },

64 {

65 "name_tool": "MLeap",

110

66 "level_tool": "Good",

67 "duration_tool": null,

68 "is_required": true

69 },

70 {

71 "name_tool": "Kafka",

72 "level_tool": "Good",

73 "duration_tool": null,

74 "is_required": true

75 },

76 {

77 "name_tool": "Delta Lake",

78 "level_tool": "Good",

79 "duration_tool": null,

80 "is_required": true

81 },

82 {

83 "name_tool": "Azure ADLS",

84 "level_tool": "Good",

85 "duration_tool": null,

86 "is_required": true

87 },

88 {

89 "name_tool": "Azure Devops",

90 "level_tool": "Good",

91 "duration_tool": null,

92 "is_required": true

93 },

94 {

95 "name_tool": "Github",

96 "level_tool": "Very Good",

97 "duration_tool": null,

98 "is_required": true

99 },

100 {

101 "name_tool": "Jira",

102 "level_tool": "Good",

103 "duration_tool": null,

111

104 "is_required": true

105 }

106]

107 }

108 }

Listing C.1: JSON file corresponding to the sample job offer

D
J S O N F I L E C O R R E S P O N D I N G T O T H E S A M P L E C V

This appendix shows the JSON file corresponding to the sample CV presented in Appendix
B.

1 {

2 "personal_information": {

3 "name": "Thomas Dixon",

4 "job": "Machine Learning Engineer",

5 "age": "30",

6 "gender": "Male"

7 },

8 "executive_summary": "The consultant is taking a PhD in Computer Vision in

University of Coimbra and hold a master's degree in computer science and

Business Management from ISCTE and a bachelor's degree in Computer Science

and Engineering from Instituto Polytechnic of Castelo Branco. The

consultant started the career in 2014 at IT Sector (Millenium BCP project)

as a Java developer. In 2016, changed to GS1, to work with Outsystems, as

fullstack developer. Between 2017 and 2019, assumed functions as Data

Scientist and Machine Learning Engineer. The consultant was responsible for

developing a Document classification system, where was able to obtain 70%

of accuracy on a multi-label classification problem using TF-IDF and SVM

and worked on an object detection module for automated document parsing (

PDFs) using state of the art Deep Learning techniques. At Celfocus as a

Machine Learning Engineer, was responsible for building and developing

multi label classification models, building machine learning algorithms,

creation of pipeline and a classification model for anomaly detection in

Set up Boxes, using Isolation Forest. Regularly works with Graphs to solve

problems like costumer churn and client segmentation. Currently, works at

Syone managing and leading a team of machine learning composed by 5 members

, present the work done to stakeholders other than that he is working on a

retail client where was responsible to maintain and create new machine

112

113

learning pipelines. The consultant gives python training and architecture

new proposals. The consultant is a team-player and teammate, a good

communicator, that enjoys apply to projects that everyone is committed

working towards the same goal.",

9 "professional_experience": [

10 {

11 "date_from_professional": "2021-05-01",

12 "date_to_professional": "present",

13 "company_name": "Syone",

14 "occupation": "Lead Machine learning Engineer",

15 "sector": "Consultancy",

16 "activities": "During this experience, the consultant was

responsible for the following activities: \n Responsible for leading a team

with 5 members on 2 different projects: customer churn in

telecommunications and building an NLP module that classify sentiment and

extract Entities from phrases;\n Responsible for Cognitive Board where

specific tasks are assigned to each member of the team\n Responsible for

the architecture of the previously modules and designing a REST API to

interact with the modules and integrate with other services;\n Responsible

for mentoring two team members during an internship where was created a

scrapping and classification algorithms. The purpose was to create an

algorithm that gives the best cv match against job offers;\n Responsible to

maintain and add multiple machine learning models in production (

Databricks);\n Development of NLP model to predict whether a review need to

answer or not;",

17 "software_used": "Python, Databricks, MLFlow, Azure Service Studio,

FastAPI Jupyter notebooks, Jira, Gitlab."

18 },

19 {

20 "date_from_professional": "2019-10-01",

21 "date_to_professional": "2021-05-31",

22 "company_name": "Celfocus",

23 "occupation": "Machine learning Engineer",

24 "sector": "Telecommunications",

25 "activities": "During this experience, the consultant was

responsible for the following activities: \n Responsible for building and

developing multi label classification models to classify user requests.

with multi hierarchical levels, three levels. The first level had 17

114

categories, we achieve a F-score of 78% on testing set. On the second level

we achieve a F-Score of 60%. We use, TF-IDF, SVM, Naive Bayes, Random

Forest, and KNN to create our models;\n Responsible for building

unsupervised machine learning algorithms (Standard Deviation from average,

MAD, Z-score, Grubbs), and the creation of pipeline for anomaly detection;\

n Responsible for mentoring one team member in a time series data science

project where we tested unsupervised models MAD, ARIMA, Isolation Forest;\n

Responsible for creating new business value proposals and presenting them

to stakeholders;\n Development of classification model to detect anomalies

in in Set up Boxes using Isolation Forest.",

26 "software_used": "Python, Scala, Apache Spark, Jira, Pyspark, AWS (

S3, EMR), GitLab, Zeppelin, Jupyter Notebooks, Python Bokeh."

27 },

28 {

29 "date_from_professional": "2019-09-01",

30 "date_to_professional": "2020-02-29",

31 "company_name": "ISCTE-IUL",

32 "occupation": "Instructor",

33 "sector": "Teaching",

34 "activities": "During this experience, the consultant was

responsible for the following activities: \n Responsible for create lecture

contents and teaching hands-on classes on Big Data Algorithms.",

35 "software_used": "Apache Spark"

36 },

37 {

38 "date_from_professional": "2017-05-01",

39 "date_to_professional": "2019-10-31",

40 "company_name": "Novabase",

41 "occupation": "Data Scientist and Machine Learning Engineer",

42 "sector": "Finance",

43 "activities": "During this experience, the consultant was

responsible for the following activities: \n Responsible for proposal

creation, status report, in a python module for categorize, project

management documents using Heuristics (specific keywords) and machine

learning techniques (Data Extraction, Data cleaning, TF-IDF, SVM, RF, DT);\

n Mentoring in a 1-month internship in a data science project whereas the

main purpose is evaluating if the house prices will be increase or decrease

;\n Create a parser library to convert PDF, Image, HTML files into Data

115

Objects, Using Heuristics (Regex, Keywords) and Deep Learning for object

detection localization using Faster R-CNN, SSD, YOLO networks;\n Bug fixing

and code refactor on a document platform, which classify documents using

machine learning techniques NLP.",

44 "software_used": "Java, Python, Deep Learning, Image Processing,

Tensorflow."

45 },

46 {

47 "date_from_professional": "2016-04-01",

48 "date_to_professional": "2017-05-31",

49 "company_name": "GS1 Portugal",

50 "occupation": "Full stack developer",

51 "sector": "Retail",

52 "activities": "During this experience, the consultant was

responsible for the following activities: \n Developed a tracking platform

system for food products that come from different countries and are mixed.

e.g.: sausage production.",

53 "software_used": "Outsystems, .Net, JavaScript, CSS, HTML5."

54 },

55 {

56 "date_from_professional": "2015-04-01",

57 "date_to_professional": "2016-04-30",

58 "company_name": "KCSIT - Timwe Group",

59 "occupation": "Backend developer",

60 "sector": "Telecommunications",

61 "activities": "During this experience, the consultant was

responsible for the following activities: \n Developing Billing Api's

integrated with Mobile Operators in order to charge clients when they by

some content on our platform.",

62 "software_used": "Java, Shell Scripting, REST, SOAP, SVN, JUnit,

Tomcat Junit"

63 },

64 {

65 "date_from_professional": "2014-07-01",

66 "date_to_professional": "2015-04-30",

67 "company_name": "IT Sector - Millenium BCP",

68 "occupation": "Backend developer",

69 "sector": "Finance",

116

70 "activities": "During this experience, the consultant was

responsible for the following activities: \n Incident Analysis in Mobile

and Web Channels of the bank;\n Developing new features and web services

for web and mobile consumption. Ongoing maintenance.",

71 "software_used": "Java, Shell Scripting, SOAP, JUnit, TFS."

72 }

73],

74 "education": [

75 {

76 "date_from_education": "2021-01-01",

77 "date_to_education": "present",

78 "organisation": "University of Coimbra",

79 "subjects": "",

80 "qualification": "PhD in Eletrotechnical Engineering -

Specialization in Computer Vision"

81 },

82 {

83 "date_from_education": "2017-01-01",

84 "date_to_education": "2020-12-31",

85 "organisation": "ISCTE-IUL - University of Lisbon",

86 "subjects": "",

87 "qualification": "Master's Degree in Computer Science and Business

management"

88 },

89 {

90 "date_from_education": "2010-01-01",

91 "date_to_education": "2014-12-31",

92 "organisation": "IPCB Institute Polytechnic of Castelo Branco",

93 "subjects": "",

94 "qualification": "B.S in Computer Science and Engineering"

95 }

96],

97 "languages": [

98 {

99 "language": "Portuguese",

100 "reading": "Native",

101 "writing": "Native",

102 "speaking": "Native"

117

103 },

104 {

105 "language": "English",

106 "reading": "Very Good",

107 "writing": "Very Good",

108 "speaking": "Very Good"

109 },

110 {

111 "language": "Spanish",

112 "reading": "Basic",

113 "writing": "Basic",

114 "speaking": "Basic"

115 },

116 {

117 "language": "German",

118 "reading": "Basic",

119 "writing": "Basic",

120 "speaking": ""

121 }

122],

123 "technologies": {

124 "programming_languages": [

125 {

126 "name_programming": "Java",

127 "level_programming": "Good",

128 "date_from_programming": "2014-01-01",

129 "date_to_programming": "2016-12-31",

130 "description_programming": ""

131 },

132 {

133 "name_programming": "Python",

134 "level_programming": "Good",

135 "date_from_programming": "2017-01-01",

136 "date_to_programming": "present",

137 "description_programming": ""

138 },

139 {

140 "name_programming": "Scala",

118

141 "level_programming": "Average",

142 "date_from_programming": "2021-01-01",

143 "date_to_programming": "2021-12-31",

144 "description_programming": ""

145 },

146 {

147 "name_programming": "Javascript",

148 "level_programming": "Basic",

149 "date_from_programming": "2017-01-01",

150 "date_to_programming": "2017-12-31",

151 "description_programming": ""

152 },

153 {

154 "name_programming": ".NET",

155 "level_programming": "Basic",

156 "date_from_programming": "2016-01-01",

157 "date_to_programming": "2017-12-31",

158 "description_programming": ""

159 },

160 {

161 "name_programming": "Outsystems",

162 "level_programming": "Average",

163 "date_from_programming": "2016-01-01",

164 "date_to_programming": "2017-12-31",

165 "description_programming": ""

166 },

167 {

168 "name_programming": "HTML",

169 "level_programming": "Average",

170 "date_from_programming": "2016-01-01",

171 "date_to_programming": "2017-12-31",

172 "description_programming": ""

173 },

174 {

175 "name_programming": "CSS",

176 "level_programming": "Average",

177 "date_from_programming": "2016-01-01",

178 "date_to_programming": "2017-12-31",

119

179 "description_programming": ""

180 }

181],

182 "databases": [

183 {

184 "name_database": "PostgreSQL",

185 "level_database": "Good",

186 "date_from_database": "2018-01-01",

187 "date_to_database": "2019-12-31",

188 "description_database": ""

189 },

190 {

191 "name_database": "Oracle",

192 "level_database": "Good",

193 "date_from_database": "2014-01-01",

194 "date_to_database": "2016-12-31",

195 "description_database": ""

196 },

197 {

198 "name_database": "MSSQL",

199 "level_database": "Average",

200 "date_from_database": "2021-01-01",

201 "date_to_database": "2021-12-31",

202 "description_database": ""

203 },

204 {

205 "name_database": "Big data databases",

206 "level_database": "Average",

207 "date_from_database": "2018-01-01",

208 "date_to_database": "present",

209 "description_database": ""

210 }

211],

212 "operating_systems": [

213 {

214 "name_osys": "Linux (Ubuntu, CentOS)",

215 "level_osys": "Good",

216 "date_from_osys": "",

120

217 "date_to_osys": "",

218 "description_osys": ""

219 },

220 {

221 "name_osys": "Windows",

222 "level_osys": "Very Good",

223 "date_from_osys": "",

224 "date_to_osys": "",

225 "description_osys": ""

226 }

227],

228 "tools": [

229 {

230 "name_tool": "Intellij Idea",

231 "level_tool": "Good",

232 "date_from_tool": "",

233 "date_to_tool": "",

234 "description_tool": ""

235 },

236 {

237 "name_tool": "VS code",

238 "level_tool": "Good",

239 "date_from_tool": "",

240 "date_to_tool": "",

241 "description_tool": ""

242 }

243]

244 }

245 }

Listing D.1: JSON file corresponding to the sample CV

B I B L I O G R A P H Y

Academic-careers-cvs-2017.pdf. https://cdn.uconnectlabs.com/wp-content/uploads/

sites/25/2016/06/Academic-Careers-CVs-2017.pdf. Accessed: 2021-11-30.

Caa guidelines | standards & guidelines | caa. https://www.collegeart.org/

standards-and-guidelines/guidelines/visual-art-cv. Accessed: 2021-11-30.

Ciência vitae. https://cienciavitae.pt/. Accessed: 2021-11-15.

Home | europass. https://europa.eu/europass/pt. Accessed: 2021-11-15.

Plataforma lattes. https://lattes.cnpq.br/. Accessed: 2021-11-15.

Linkedin portugal: entre ou cadastre-se. https://pt.linkedin.com/. Accessed: 2021-11-22.

Ontodl+. https://epl.di.uminho.pt/~gepl/GEPL_DS/OntoDL/index.html. Accessed: 2021-
11-24.

Penn treebank ii tag set | clips. https://web.archive.org/web/20190206204307/https:

//www.clips.uantwerpen.be/pages/mbsp-tags. Accessed: 2021-12-14.

Pretrained models — sentence-transformers documentation. https://www.sbert.net/docs/
pretrained_models.html. Accessed: 2022-06-03.

Sentencetransformers documentation — sentence-transformers documentation. https://
www.sbert.net/. Accessed: 2022-05-23.

Tensorflow hub. https://tfhub.dev/google/universal-sentence-encoder/4, a. Accessed:
2022-05-25.

Tensorflow hub. https://www.tensorflow.org/hub, b. Accessed: 2022-05-25.

Universal pos tags. https://universaldependencies.org/u/pos/. Accessed: 2021-12-20.

sentence-transformers/all-mpnet-base-v2 · hugging face. https://huggingface.co/

sentence-transformers/all-mpnet-base-v2, a. Accessed: 2022-06-03.

sentence-transformers/all-minilm-l6-v2 · hugging face. https://huggingface.co/

sentence-transformers/all-MiniLM-L6-v2, b. Accessed: 2022-06-07.

121

https://cdn.uconnectlabs.com/wp-content/uploads/sites/25/2016/06/Academic-Careers-CVs-2017.pdf
https://cdn.uconnectlabs.com/wp-content/uploads/sites/25/2016/06/Academic-Careers-CVs-2017.pdf
https://www.collegeart.org/standards-and-guidelines/guidelines/visual-art-cv
https://www.collegeart.org/standards-and-guidelines/guidelines/visual-art-cv
https://cienciavitae.pt/
https://europa.eu/europass/pt
https://lattes.cnpq.br/
https://pt.linkedin.com/
https://epl.di.uminho.pt/~gepl/GEPL_DS/OntoDL/index.html
https://web.archive.org/web/20190206204307/https://www.clips.uantwerpen.be/pages/mbsp-tags
https://web.archive.org/web/20190206204307/https://www.clips.uantwerpen.be/pages/mbsp-tags
https://www.sbert.net/docs/pretrained_models.html
https://www.sbert.net/docs/pretrained_models.html
https://www.sbert.net/
https://www.sbert.net/
https://tfhub.dev/google/universal-sentence-encoder/4
https://www.tensorflow.org/hub
https://universaldependencies.org/u/pos/
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

BIBLIOGRAPHY 122

Amazon scraps secret ai recruiting tool that showed bias against women. https://www.

reuters.com/article/us-amazon-com-jobs-automation-insight-idUSKCN1MK08G.
Accessed: 2021-11-09.

sentence-transformers/bert-base-nli-mean-tokens · hugging face. https://huggingface.co/
sentence-transformers/bert-base-nli-mean-tokens. Accessed: 2022-05-23.

Chebyshev distance. https://en.wikipedia.org/wiki/Chebyshev_distance. Accessed:
2022-07-12.

Cosine similarity. https://en.wikipedia.org/wiki/Cosine_similarity. Accessed: 2022-
07-11.

dateparser — python parser for human readable dates - dateparser 1.1.0 documentation.
https://dateparser.readthedocs.io/en/latest/, a. Accessed: 2022-04-08.

datetime — basic date and time types - python 3.10.7 documentation. https://docs.python.
org/3/library/datetime.html, b. Accessed: 2022-04-07.

dateutil - powerful extensions to datetime — dateutil 2.8.2 documentation. https:

//dateutil.readthedocs.io/en/stable/, c. Accessed: 2022-08-10.

4 distance measures for machine learning. https://machinelearningmastery.com/

distance-measures-for-machine-learning/. Accessed: 2022-07-12.

re — regular expression operations — python 3.10.7 documentation. https://docs.python.
org/3/library/re.html. Accessed: 2022-03-03.

scikit-learn: machine learning in python — scikit-learn 1.1.1 documentation. https://

scikit-learn.org/stable/. Accessed: 2022-05-19.

spacy · industrial-strength natural language processing in python. https://spacy.io/.
Accessed: 2021-12-14.

Github - chrismattmann/tika-python: Tika-python is a python binding to the apache tika™
rest services allowing tika to be called natively in the python community. https:

//github.com/chrismattmann/tika-python. Accessed: 2022-03-01.

Calculate distance between two vectors of different length -
stack overflow. https://stackoverflow.com/questions/9314576/

calculate-distance-between-two-vectors-of-different-length. Accessed:
2022-07-12.

Sujit Amin, Nikita Jayakar, Sonia Sunny, Pheba Babu, M. Kiruthika, and Ambarish Gurjar.
Web application for screening resume. In 2019 International Conference on Nascent
Technologies in Engineering (ICNTE), page 1, 2019.

https://www.reuters.com/article/us-amazon-com-jobs-automation-insight-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight-idUSKCN1MK08G
https://huggingface.co/sentence-transformers/bert-base-nli-mean-tokens
https://huggingface.co/sentence-transformers/bert-base-nli-mean-tokens
https://en.wikipedia.org/wiki/Chebyshev_distance
https://en.wikipedia.org/wiki/Cosine_similarity
https://dateparser.readthedocs.io/en/latest/
https://docs.python.org/3/library/datetime.html
https://docs.python.org/3/library/datetime.html
https://dateutil.readthedocs.io/en/stable/
https://dateutil.readthedocs.io/en/stable/
https://machinelearningmastery.com/distance-measures-for-machine-learning/
https://machinelearningmastery.com/distance-measures-for-machine-learning/
https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://spacy.io/
https://github.com/chrismattmann/tika-python
https://github.com/chrismattmann/tika-python
https://stackoverflow.com/questions/9314576/calculate-distance-between-two-vectors-of-different-length
https://stackoverflow.com/questions/9314576/calculate-distance-between-two-vectors-of-different-length

BIBLIOGRAPHY 123

Jacob Bank and Benjamin Cole. Calculating the jaccard similarity coefficient with map
reduce for entity pairs in wikipedia. In Wikipedia Similarity Team, page 5, 2008.

Steven Bird, Ewan Klein, and Edward Loper. Natural Language Processing with Python. O’Reilly
Media, Inc., 2009.

Rose Catherine, Karthik Visweswariah, Vijil Chenthamarakshan, and Nanda Kambhatla.
Prospect: A system for screening candidates for recruitment. In Proceedings of the 19th
ACM International Conference on Information and Knowledge Management, page 2, 2010.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St. John, Noah
Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, Yun-Hsuan Sung, Brian
Strope, and Ray Kurzweil. Universal sentence encoder. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing: System Demonstrations,
pages 1–7, 2018.

Yongsun Choi, Minh Duc Nguyen, and Thomas N. Kerr. Syntactic and semantic information
extraction from npp procedures utilizing natural language processing integrated with
rules. In Nuclear Engineering and Technology, pages 2, 4, 2021.

Chirag Daryani, Gurneet Chhabra, Harsh Patel, Indrajeet Chhabra, and Ruchi Patel. An
automated resume screening system using natural language processing and similarity.
In Ethics and Information Technology, page 1, 2020.

Mihaela-Irina Enachescu. Screening the candidates in it field based on semantic web tech-
nologies: Automatic extraction of technical competencies from unstructured resumes.
In Informatica Economica, page 14, 2019.

Evandro Fonseca and Joao Paulo Reis Alvarenga. Wide and deep transformers applied to
semantic relatedness and textual entailment. In Oliveira et al.[22], pages 1, 5, 2020.

J. Han, J. Pei, and M. Kamber. Data Mining: Concepts and Techniques. Elsevier Science, 2011.

N. Hardeniya, J. Perkins, D. Chopra, N. Joshi, and I. Mathur. Natural Language Processing:
Python and NLTK. Packt Publishing, 2016.

Li-Ping Jing, Hou-Kuan Huang, and Hong-Bo Shi. Improved feature selection approach tfidf
in text mining. In Proceedings. International Conference on Machine Learning and Cybernetics,
page 1, 2002.

Sven Laumer and Andreas Eckhardt. Help to find the needle in a haystack: Integrating
recommender systems in an it supported staff recruitment system. In Proceedings of
the Special Interest Group on Management Information System’s 47th Annual Conference on
Computer Personnel Research, page 5, 2009.

BIBLIOGRAPHY 124

Quoc Le and Tomas Mikolov. Distributed representations of sentences and documents. In
Proceedings of the 31st International Conference on Machine Learning, pages 3–4, 2014.

Chew-Hung Lee, Hian Lee, Gee-Wah Ng, and Kheeyin How. Plan ontology and its applica-
tions. In 7 th Int. Conference on Information Fusion, page 3, 2004.

Sameep Mehta, Rakesh Pimplikar, Lav Varshney, and Karthik Visweswariah. Efficient
multifaceted screening of job applicants. In ACM International Conference Proceeding
Series, page 1, 2013.

Irene Rodrigues, rui rodrigues, and paula couto. Ipr: The semantic textual similarity and
recognizing textual entailment systems. In CEUR Workshop Proceedings, page 1, 2019.

José Santos, Ana Oliveira Alves, and Hugo Gonçalo Oliveira. Asapppy: a python framework
for portuguese sts. In ASSIN@STIL, page 2, 2019.

Sunita Sarawagi. Information extraction. In Foundations and Trends in Databases, pages 9–11,
16, 2008.

João Souza, Lucas Oliveira, Yohan Gumiel, Deborah Carvalho, and Claudia Moro. Incor-
porating multiple feature groups to a siamese neural network for semantic textual
similarity task in portuguese texts. In ASSIN@STIL, page 8, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural
Information Processing Systems, pages 1–15, 2017.

	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Objectives
	1.4 Research hypothesis
	1.5 Research methodology
	1.6 Document structure

	2 State of the art
	2.1 CV sources and formats
	2.1.1 Europass
	2.1.2 LinkedIn profile as a CV
	2.1.3 Curriculum Lattes
	2.1.4 CIÊNCIAVITAE
	2.1.5 Syone's internal CV
	2.1.6 Considerations
	2.1.7 Ontology definition

	2.2 Semantic information extraction
	2.2.1 Entities and relationships
	2.2.2 Information Extraction workflow
	2.2.3 Named Entity Recognition approaches
	2.2.4 Information Extraction workflow with spaCy

	2.3 Similarity algorithms
	2.3.1 Jaccard Similarity
	2.3.2 TF-IDF
	2.3.3 Doc2Vec
	2.3.4 BERT
	2.3.5 USE
	2.3.6 Algorithm comparison

	2.4 Similarity measures
	2.4.1 Cosine similarity
	2.4.2 Euclidean distance
	2.4.3 Manhattan distance
	2.4.4 Chebyshev distance

	2.5 Summary

	3 Proposed approach
	3.1 System architecture
	3.2 Summary

	4 CVs processing
	4.1 Text extractor and XML extractor
	4.2 Knowledge extractor
	4.3 Document builder
	4.4 Summary

	5 Similarity algorithm (approach A)
	5.1 Implementation and results
	5.2 Summary

	6 Similarity algorithm (approach B)
	6.1 Implementation and results
	6.2 Summary

	7 Conclusion
	A Sample job offer
	B Sample CV
	C JSON file corresponding to the sample job offer
	D JSON file corresponding to the sample CV

