
Universidade do Minho
Escola de Engenharia
Departamento de Informática

João Pedro Rodrigues Gomes

OMT, an Ontology Matching System

October 2022

Universidade do Minho
Escola de Engenharia
Departamento de Informática

João Pedro Rodrigues Gomes

OMT, an Ontology Matching System

Master dissertation
Integrated Master’s in Informatics Engineering

Dissertation supervised by
Pedro Rangel Henriques
Alda Gancarski

October 2022

i

AUTHOR COPYRIGHTS AND TERMS OF USAGE BY THIRD PARTIES

This is an academic work which can be utilized by third parties given that the rules and
good practices internationally accepted, regarding author copyrights and related copyrights.

Therefore, the present work can be utilized according to the terms provided in the license
bellow.

If the user needs permission to use the work in conditions not foreseen by the licensing
indicated, the user should contact the author, through the RepositóriUM of University of
Minho.

License provided to the users of this work

Attribution-NonCommercial
CC BY-NC
https://creativecommons.org/licenses/by-nc/4.0/

ii

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have
not used plagiarism or any form of undue use of information or falsification of results along
the process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the
University of Minho.

João Pedro Rodrigues Gomes

iii

Acknowledgements

I would like to express my deepest gratitude to Professor Pedro Rangel Henriques and
Professor Alda Gancarski for their supervision, encouragement, contribution and knowledge
to this Master’s Thesis.

I’d like to acknowledge my mother for her support and endless belief in me.

A B S T R A C T

In recent years ontologies have become an integral part of storing information in a
structured and formal manner and a way of sharing said information. With this rise in usage,
it was only a matter of time before different people tried to use ontologies to represent the
same knowledge domain. The area of Ontology Matching was created with the purpose of
finding correspondences between different ontologies that represented information in the
same domain area.

This document reports a Master’s work that started with the study of already existing
ontology matching techniques and tools in order to gain knowledge on what techniques
exist, as well as understand the advantages and disadvantages of each one. Using the
knowledge obtained from the study of the bibliography research, a new web-based tool
called OMT was created to automatically merge two given ontologies.

The OMT tool processes ontologies written in different ontology representation languages,
such as the OWL family or any language written according to the RDF web standards. The
OMT tool provides the user with basic information about the submitted ontologies and after
the matching occurs, provides the user with a simplified version of the results focusing on
the number of objects that were matched and merged. The user can also download a Log
File, if he so chooses. This Log File contains a detailed description of the matching process
and the reasoning behind the decisions the OMT tool made. The OMT tool was tested
throughout its development phase against various different potential inputs to assess its
accuracy. Lastly, a web application was developed to host the OMT tool in order to facilitate
the access and use of the tool for the users.

Keywords: Ontology, Ontology Matching Techniques, Ontology Matching Tools, Ontology
Alignment

iv

R E S U M O

Nos últimos tempos, ontologias têm-se tornado fundamentais quando os objetivos são
armazenar informação de forma formal e estruturada bem como a partilha de tal informação.
Com o aumento da procura e utilização de ontologias, tornou-se inevitável que indivíduos
diferentes criassem ontologias para representar o mesmo domínio de informação. A área de
concordância de ontologias foi criada com o intuito de encontrar correspondências entre
ontologias que representem informação no mesmo domínio.

Este documento reporta o trabalho de uma tese de Mestrado que começou pelo estudo de
técnicas e ferramentas já existentes na área de concordância de ontologias com o objetivo de
obter conhecimento nestas mesmas e perceber as suas vantagens e desvantagens. A partir
do conhecimento obtido a partir deste estudo, uma nova ferramenta web chamada OMT foi
criada para automaticamente alinhar duas ontologias.

A ferramenta OMT processa ontologias escritas em diferentes linguagens de representação,
tal como a familia de linguages OWL ou qualquer linguagem que respeite o padrão RDF.
A ferramenta OMT fornece ao utilizador informação básica sobre as ontologias e após o
alinhamento ocorrer, fornece ao utilizador uma versão simplificada dos resultados obtidos,
focando no numero de objetos que foram alinhados. O utilizador pode também descarregar
um ficheiro Log. Este ficheiro contém uma descrição destalhada do processo de alinhamento
e a justificação para as diferentes decisões tomadas pelo ferramenta OMT. A ferramenta OMT
foi testada durante todo o processo de desenvolvimento com diferentes tipos de ontologia de
entrada para avaliar a sua capacidade de alinhamento. Por último, foi também desenvolvida
uma aplicação web para hospedar a ferramenta OMT de forma a facilitar o acesso e uso da
ferramenta aos utilizadores.

Palavras-Chave: Ontologias, Técnicas de Concordância de Ontologias, Ferramentas de
Concordância de Ontologias

v

C O N T E N T S

1 introduction 1

1.1 Motivation 2

1.2 Objectives 2

1.3 Research Hypothesis 2

1.4 Methodology 2

1.5 Document Structure 3

2 state of the art 4

2.1 Ontologies 4

2.1.1 KIF 5

2.1.2 CycL 5

2.1.3 Ontolingua 6

2.2 Ontology Standards and Notations 7

2.2.1 RDF Standard 7

2.2.2 OWL 8

2.2.3 Turtle 9

2.2.4 OntoDL+ 10

2.3 Ontology Matching 10

2.3.1 Matching Techniques 11

2.4 Existing Tools 15

2.4.1 AROMA 15

2.4.2 AUTOMS 15

2.4.3 Hertuda 16

2.4.4 AgreementMaker 17

2.4.5 MEDLEY 18

2.5 Summary 19

3 proposed approach 20

3.1 Ontology Matching tool inputs 20

3.2 Converter/Recognizer 21

3.3 Matcher and Merger 21

3.4 Converter to an Ontology 22

4 development 23

4.1 Input Converter/Recognizer Module 25

4.1.1 Concepts Processing 26

4.1.2 Data Properties Processing 27

vi

contents vii

4.1.3 Object Properties Processing 28

4.1.4 Technologies used 28

4.2 Matcher/Merger Module 28

4.2.1 Common Properties 29

4.2.2 Concepts Matching 29

4.2.3 Data Properties Matching 33

4.2.4 Object Properties Matching 34

4.3 Output Converter Module 36

4.3.1 Concepts Matching 36

4.3.2 Object Properties Matching 37

4.3.3 Data Properties Matching 38

4.4 Log File 39

4.4.1 Comparison Information 39

4.4.2 Matching Information 41

4.5 Web Interface 42

4.5.1 File Upload Section 42

4.5.2 Data Section 43

4.6 Testing 43

4.6.1 String and Language Based Techniques Testing 44

4.6.2 Matching Module 46

4.7 Technologies and Techniques Used 48

4.7.1 Technologies 48

4.7.2 Techniques 49

5 conclusion 50

L I S T O F F I G U R E S

Figure 1 AgreementMaker Tool 18

Figure 2 General overview of the system architecture 20

Figure 3 Detailed Matcher/Merger component 21

Figure 4 Input ontology example 23

Figure 5 Input ontology example 24

Figure 6 Ontology Graph Representation 25

Figure 7 Ontology Graph Representation 26

Figure 8 Ontology Graph Representation 27

Figure 9 Output Concepts Graph 38

Figure 10 Ontology Upload Interface 42

Figure 11 Basic Information about the Ontologies Uploaded 43

Figure 12 Statistics about the Matching. 43

Figure 13 Basic Information about Input Ontologies. 47

viii

A C R O N Y M S

A

AROMA Association Rule Ontology Matching Approach.

D

DSL Domain Specific Language.

K

KIF Knowledge Interchange Format.

N

NLP Natural Language Processing.

O

OAEI Ontology Alignment Evaluation Initiative.

OWL Ontology Web Language.

R

RDF Resource Description Framework.

U

URI Uniform Resource Identifier.

W

W3C World Wide Web Consortium.

ix

1

I N T R O D U C T I O N

In computer science, the concept of an Ontology was firstly introduced in (Gruber, 1993)
as being a model to store data within a domain that allows the representation and definition
of concepts, often referred to as classes, their properties and the existing relations between
them. An ontology knowledge base is the result of populating an ontology with data that
matches the concepts and properties that have been formally defined.

Ontology Matching methods were created with the purpose of relating information
coming from multiple heterogeneous ontology sources into a common ontology model
that encapsulates the entire knowledge base from all the sources (Otero-Cerdeira et al.,
2015). On a simpler level, these methods have the task of finding correspondences between
ontologies. The same concept or property can be defined using different terminology on
different ontologies.

An example of a real life application of ontology matching, as shown in (Muhammad
and Khan, 2012), is having ontologies that store information about publications where, in
one ontology, the publisher of the publication is defined by the term Publisher and, in the
other, by Published by. Another example, shown in (Martinez-Gil et al., 2012), is a group of
ontologies that store information about football teams but use differente terminologies for
the role of each player on the team, e.g., forward player on one ontology corresponds to
striker on the other.

There has already been a lot of research and work done in the field of Ontology Matching,
and currently there are many approaches available that automatically generate matches
between Ontologies. However, these techniques are still far from being perfect due to the fact
that human input is still needed when the use case requires an accurate matching, making
these methods impractical when dealing with big and complex ontologies (Falconer and
Noy, 2011).

This thesis focuses, firstly, on the study of the already existing methods, pointing the
advantages and disadvantages of each one, and, secondly, on the creation of a new web-based
method that relies as less as possible on human input.

1

1.1. Motivation 2

1.1 motivation

The motivation for this thesis stems from the fact that there is still room for a lot of
progress to be made in the field of ontology matching. There are a lot of tools developed and
available, but all of them require human interaction to achieve high accuracy results. The
main objective going forward is to build upon these tools and create new techniques that
make the matching tools as much automatic as possible, aiming for completely automatic.

1.2 objectives

The main objective of this thesis is the creation of a technique to compare and identify
similarities between ontologies of the same domain. In order to accomplish this objective,
the following steps are required:

• Study and evaluation of different Ontology Matching techniques in order to compare
them, focusing on the advantages and disadvantages of each.

• Implementation of a new novel web-based tool for Ontology Matching.

1.3 research hypothesis

By the end of this Master’s Thesis, it will have been proven that is possible to create an
ontology matching algorithm that allows for multiple different ontology language inputs
and works in an automatic way.

1.4 methodology

The methodology used to achieve the objectives is composed of the following phases.

• Bibliographic research.

• Study and analysis of the techniques found in the research.

• Proposal of a new ontology matching tool.

• Test of the implemented tool.

• Creation of the web-based application that implements the newly created ontology
matching tool.

• Test of the developed application.

1.5. Document Structure 3

According to the feedback obtained from the testing done in any of the phases described
above, some of the previous phases are revisited and the process redone if the results do not
match the expectation.

1.5 document structure

In Chapter 1, an introduction to the Master’s Project and its context is made and to what
was the motivation that led to its development.

In Chapter 2, an introduction to the world of ontologies is made and how they came to be,
followed by a brief summary of some of the earliest information representation languages
that were created. In the following sections of this chapter, the base ontology matching
techniques are explored as well as some of the already existing ontology matching tools are
presented taking into account what type of algorithms and techniques they use.

In Chapter 3, our proposed solution is presented giving a brief overview of the general
architecture of our ontology matching tool as well as all the components that constitute it.

In Chapter 4, the development processed is described, giving particular emphasis on the
decisions made to implement the proposed solution presented in Chapter 3.

Lastly in Chapter 5, an overview of the document is given as well as some concluding
thoughts on the work done so far and what can be done in the future.

2

S TAT E O F T H E A RT

This chapter presents the bibliograhic research that was done in order to obtain the
knowledge necessary to then proceed to the implementation step of this Master’s Thesis. In
the first section, it begins by introducing and explaining what ontologies are, how they came
to be and the pioneer knowledge representations languages that existed back then. It then
explains the ontology standards that are in place today as well as some of the more used
knowledge representation languages. In the final sections, ontology matching techniques
are studied and presented as well as already existing ontology matching tools.

2.1 ontologies

A conceptualization is an abstract, simplified view of an enclosed domain. It encapsulates
all its objects, concepts, entities and the relationships that exist amongst themselves. A body
of represented knowledge is fully based and dependant on its conceptualization (Gruber,
1993).

Ontologies are explicit specifications of conceptualizations and were created with the
intent of allowing the formal definitions of terms (such as classes, properties, functions), its
relations and contraints.

In the 1990 decade, Ontologies were already being used as a way to represent information,
despite not existing a standard knowledge representation language, system or model to
design them in. It quickly became clear that the ontology portability problem had to be
addressed. The portability problem in Ontologies arose as a consequence of the usage of
different representation languages and/or systems by different individuals with the intent of
designing and implementing their Ontologies, making it impossible to share or use them in
a different representation system than the one it was originally designed in (Gruber, 1993).

The following subsections provide a brief overview of some of the different languages/sys-
tems that existed and were used to represent and share knowledged bases, such as: the
Knowledge Interchange Format (KIF) (Genesereth et al., 1992), CycL (Lenat and Guha, 1990)
and Ontolingua (Gruber, 1993).

4

2.1. Ontologies 5

2.1.1 KIF

Knowledge Interchange Format (KIF) was created by Michael Genesereth, Richard Fikes
and others (Genesereth et al., 1992). It is a computer language whose intent is to allow the
share of that same information among different individuals who utilize different program-
ming languages and systems to represent knowledge. KIF was created and implemented
with very specific requirements in mind:

• It had to be able to translate knowledge bases from and to other typical knowledge
representation systems.

• Readibility. KIF syntax was constructed in a way to facilitate human reading and
undestanding of what’s being represented.

• Usability of the language itself to represent knowledge bases, despite not being its
main purpose.

A program written in KIF is a group of expressions, composed of rules, variables and
operators. Variables are preceded by the character ’?’. The operators =>, <= and <=> indicate
implications, while the operator = indicates equality in a relation.

The example in Listing 1 is taken from (Gruber, 1995) and represents an example of code
written in this language.

1 (defrelation PHYSICAL-QUANTITY

2 (<=> (PHYSICAL-QUANTITY ?q)

3 (and (defined (quantity.magnitude ?q))

4 (double-float (quantity.magnitude ?q))

5 (defined (quantity.unit ?q))

6 (member (quantity.unit ?q)

7 (setof meter second kilogram

8 ampere kelvin mole candela)))

Listing 1: KIF syntax example

For a full manual on the language, refer to (Genesereth et al., 1992).

2.1.2 CycL

CycL is an ontology language created, designed and developed by Doug Lenat and
Ramanathan V. Guha (Lenat and Guha, 1990) and was mainly used in the Cyc project (Lenat
et al., 1990).

2.1. Ontologies 6

Cycl is a declarative language based on first-order logic, which means it uses quantified
variables and allows the use of sentences that contain those variables. It was designed with
some basic ideas in mind:

• Variables are preceded by ’?’.

• Constants represent concept names. These concepts can range from simple individual
items to collections or functions. Constants are case sensitive and are preceded with
’#$’.

• The ability to provide specification and generalization through the use of ’#$isa’ and
’#$genls’, respectively. Specification indicates that one item is an instance of a given
collection while Generalization indicates that a given collection is a subcollection of
another collection.

• Rules that are formed by all of the above.

An example of CycL syntax can be seen in Listing 2.

1 (#$implies

2 (#$and

3 (#$isa ?OBJ ?SUBSET)

4 (#$genls ?SUBSET ?SUPERSET))

5 (#$isa ?OBJ ?SUPERSET))

Listing 2: CycL syntax example

For a full manual, refer to (Lenat and Guha, 1990).

2.1.3 Ontolingua

Aware of the portability problem already discussed in section 2.1, it was introduced in
(Gruber, 1993) a system for describing ontologies in such a way that they become compatible
with different representation languages.

Ontolingua allows the definition of classes, functions, objects, theories, relations and
allows the translation of those definitions to a standard language that is compatible with
a great number of knowledge representation systems. Its syntax is very similar to the KIF
language syntax.

• Variables are preceded with the ’?’ prefix.

• Operators that support conjunction, disjunction, implication and negation: forall, exists,
and not.

2.2. Ontology Standards and Notations 7

• Operators that indicate material implication such as =>.

• Existence of binary relations that take 2 variables as input. For example: binaryRelation
?a ?b.

An example of Ontolingua’s syntax can be seen in Listing 3.

1 (forall ?W

2 (=> (writer ?W)

3 (exists (?R ?D)

4 and (reader ?R)

5 (document ?D)

6 (writes ?W ?D)

7 (reads ?R ?D)

8 (not (understands ?R ?D))

9)

10)

Listing 3: Ontolingua syntax example

For a full manual, refer to (Gruber, 1993).

2.2 ontology standards and notations

The knowledge representation languages presented in the previous sections were the ones
that pioneered the designing and sharing of ontologies. As the years went by, all these
languages were worked on, perfected and eventually gave their place up to newer languages
and standards. This section presents the RDF ontology standard that is in place nowadays
as well as some of the most used languages used to design and share ontologies.

2.2.1 RDF Standard

Nowadays there are a handful of different languages with which one can design and
create an ontology. Most of these languages follow a family of specifications called Resource
Description Framework, often referred to as RDF.

RDF was created by the World Wide Web Consortium, often referred as W3C, in an
attempt to standardize a method for designing and modeling conceptual information with
the intent of being implemented or shared via the web.

An integral part of the RDF standard is its data model and the use of a Uniform Resource
Identifier (URI). A URI is a unique sequence of characters that can identify anything ranging

2.2. Ontology Standards and Notations 8

from people and places to books or webpages. RDF makes use of them to identify all the
concepts and properties represented in the ontology.

The RDF data model is built upon the already existing approaches of classes and entity
relationships, and encapsulated it in a structure often referred to as a triple. A triple is the
way to make statements about anything. It follows the structure:

Subject - Predicate - Object

In this structure, the Subject denotates the resource about which the statement is being
made. The Predicate indicates the type of relationship the Subject has with the Object.

For further information on the RDF format and the RDF Schema, refer to RDF Manual.

2.2.2 OWL

Web Ontology Language (OWL) is a language first created in 2004 for representing
knowledge, namely in the form of ontologies. It was designed and built with the objective
to share information over the Internet and with this in mind it follows and respects the
Resource Description Framework (RDF) standard.

The OWL format and syntax is composed of Annotations, Facts and Axioms, with the
latter two being where the most important information is provided.

Annotations are used to indicate authorship of the ontology and to import and include
other ontologies.

Facts can be used to state information about a particular individual such as to what class
that individual belongs to or what properties and values that individual possesses. Facts
can also be used to declare that two individual identifiers represent the same individual or
distinct ones.

Axioms are used to provide information about classes and their properties. Properties
can be general or sub-properties of others. They can also be transitive, symmetrical and
inverse of one another. Restrictions in classes can be made by giving constraints to the
related properties, with those constraints being applied to its type or range for example.

A simple example of the OWL syntax can be seen in the Listing 4.

1 <owl:Class rdf:ID="Student"/>

2 <owl:Class rdf:ID="Teacher"/>

3

4 <Student rdf:ID="Joao" />

5

6 <owl:ObjectProperty rdf:ID="Teaches">

7 <rdfs:domain rdf:resource="#Teacher"/>

https://www.w3.org/TR/rdf-schema/

2.2. Ontology Standards and Notations 9

8 <rdfs:range rdf:resource="#Student"/>

9 </owl:ObjectProperty>

Listing 4: OWL syntax example

For further information on the OWL language, refer to OWL Manual.

2.2.3 Turtle

Turtle is a language for expressing knowledge in the RDF data model. It was designed by
Dave Beckett and was recognized by the World Wide Web Consortium on 25 February 2014.

Much like the RDF data model, Turtle heavily focuses on its triples as a way to convey
information. As already explained in section 2.2.1, each triple is composed of a Subject,
Predicate and Object and each one has to be expressed in a URI. Turtle allows the grouping
of common URIs as a way to abbreviate the same information and therefore easing the
construction of the triples. This is done with the creation of prefixes.

An example of the Turtle language syntax and how it allows to abbreviate the URI can be
seen in the Listing 5.

1 @prefix owl: <http://www.w3.org/2002/07/owl#> .

2 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

3 @prefix xml: <http://www.w3.org/XML/1998/namespace> .

4 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

5

6 ### http://prc.di.uminho.pt/2021/Projeto#Artista

7 :Artista rdf:type owl:Class .

8

9 ### http://prc.di.uminho.pt/2021/Projeto#nome

10 :nome rdf:type owl:DatatypeProperty .

11

12 ### http://prc.di.uminho.pt/2021/Projeto#Artist_Adele

13 :Artist_Adele rdf:type owl:NamedIndividual ,

14 :Artista ;

15 :nome "Adele" .

Listing 5: Turtle syntax example

For further information on the Turtle language, refer to Turtle Manual.

https://www.w3.org/TR/owl-semantics/syntax.html
https://www.w3.org/TR/turtle/

2.3. Ontology Matching 10

2.2.4 OntoDL+

OntoDL+ is a language created by Alexandre Dias under the supervision of Pedro Rangel
Henriques and Cristiana Araújo as part of his Master Thesis in University of Minho. This
language allows the representation of knowledge in the form of ontologies as well as the
conversion of the ontologies written in this language to other ontology languages such as
OWL, Alloy, DOT or Prolog.

It is an improved version of the already existing OntoDL language that allows the pre
declaration of attributes, the possibility to structure the ontology in different files or the
declaration of Prolog Restrictions in the ontology.

An example of the syntax of OntoDL+, taken from the official OntoDL+ Website, OntoDL+
Website, can be seen in Listing 6.

1 atributos {

2 distância:string,

3 descrição:string,

4 distrito:string,

5 nome:string,

6 população:string

7 }

8

9 conceitos {

10 Ligação[distância],

11 Cidade[descrição, distrito, nome, população]

12 }

Listing 6: OntoDL+ syntax example

2.3 ontology matching

With the ontology portability issue resolved and the existence of a clear standard for the
writing of the ontologies, as well as many different languages that allow it to be done, the
interest in ontologies as a way to represent information has never been greater.

As ontologies become more commonplace and their number grows, so does their diversity
and heterogeneity (Falconer and Noy, 2011). With this increase in diversity and heterogeneity,
it was only a matter of time until different ontologies began trying to describe the same
knowledge domains. Therefore a universal interest of trying to match these ontologies arose
and the area of investigation known as Ontology Matching was created.

Ontology matching is the process of relating information from heterogeneous sources into
a common model that can be queried and reasoned upon. On an abstract level, ontology

https://epl.di.uminho.pt/~gepl/GEPL_DS/OntoDL/index.html
https://epl.di.uminho.pt/~gepl/GEPL_DS/OntoDL/index.html

2.3. Ontology Matching 11

matching is the task of finding correspondences between ontologies, for example, the same
concept, property or relationship can be defined using different terminologies on different
ontologies.

Despite the efforts that have already been made in creating approaches to match ontologies,
there is still a lot of room to grow regarding their ability to work in an autonomous way.
Usually, these approaches evaluate ontologies given as input and come out with a group of
possible correspondences. These correspondences have then to be examined by a person
to determine which ones are correct, remove the false positives and create additional
correspondences that were missed (Falconer and Noy, 2011), making this whole process
impractical when dealing with big and complex ontologies.

2.3.1 Matching Techniques

The approaches developed to solve the matching problem all make use of different
techniques that each, in its own way, aims to exploit the information present in the ontology.

There are multiple criteria of classification that one can use to group up these approaches
(Otero-Cerdeira et al., 2015).

One simple way to divide these approaches is based on whether they analyze the informa-
tion orthographically (string similarity) or semantically.

On the one hand, analysing information orthographically means that only the strings are
important and taken into account. Many string techniques are available for that approach.
On the other hand, analysing information semantically means that the meaning and context
of the words are also taken into account. Obviously these approaches are not mutually
exclusive and are used together in many different tools to achieve better results.

The following subsections take a closer look at some techniques used in these approaches.

String Based Techniques

In this category all the techniques analyse the information orthographically. They all
measure the similarity of the Strings used to represent the concepts, properties, labels,
comments and relationships of the ontology.

Distance functions techniques map a pair of strings (x, y) to a real number r, where the
smaller the value of r, the greater the similarity between the string pair (Cohen et al., 2003).
There are many different implementations of these functions.

One of the most important ones is the group of edit distance functions which measure the
distance between two strings by calculating the most efficient sequence of pre-established
operations that convert one string into the other. The operations allowed to execute are what
separates the techniques that belong to this group. The Levenshtein distance allows the
operations of deletion, insertion and substitution while the Damerau–Levenshtein distance

2.3. Ontology Matching 12

improved upon its predecessor and also allows the transposition of two characters. Last
but not least, the Hamming Distance only allows the substitution operation which, as a
consequence, means this teachnique can only be used when comparing two strings of equal
length.

Another type of distance functions techniques are the ones based on tokenization which
convert every string into a set composed of all its words (tokens). Afterwards, the similarity
of the two strings is calculated by performing operations and comparing the two resulting
set of tokens.

A simple technique is the Jaccard Index. With (S,T) being the respective sets of tokens of
the string pair (s,t), the Jaccard Index is obtained by the following formula:

Jac(s, t) =
|S ∩ T|
|S ∪ T|

It calculates the similarity of a pair of strings taking into account the relation between the
number of common tokens in regards with the whole set of tokens.

One last technique that makes use of tokenization is the Overlap coefficient. As the name
suggests, it calculates the similarity of two strings by measuring the amount of overlap
that exists between the two resulting sets of tokens. It is calculated by dividing the set
intersection by the smaller size of the two sets:

OverlapCoe f f icient(s, t) =
|S ∩ T|

min(|S|, |T|)

Another type of distance functions are the called Hybrid functions which make use
of different techniques. For example, the Monge-Elkan Similarity Function proposes a
recursive approach to this problem, that is best used when comparing two long strings.
This technique splits both strings into a set composed of all their sub-strings. It then
compares every sub-string of one set with every sub-string of the other set, only saving the
maximum value calculated through every iteration. It then computes the average of every
maximum value as the value for the distance of two strings. Given a string pair (s,t), let
K and L be the amount of sub-strings respectively, and sim a generic function to calculate
the similarity between two strings, the Monge-Elkan Similarity Function is given by the
following expression:

ME(s, t) =
1
K

K

∑
i=1

maxL
j=1sim(S_i, T_j)

The Jac and ME are some of the many functions and approaches possible based on strings.
This type of techniques is usually the first one to be used in a system in order to find the
matching concepts, properties and relationships that are syntactically defined in a similar
way.

2.3. Ontology Matching 13

Language Based Techniques

While, in the previous category, the techniques analyse the information of the ontologies
syntactically, the techniques in the language based category analyse the information seman-
tically. This means that the concepts, properties, labels, comments and relationships are not
analysed as mere strings but are analysed as words that have a meaning in some language.
Therefore, a lot of the techniques used rely on Nature Language Processing (NLP) and on
the use of external sources such as dictionaries, lexicons and databases (Otero-Cerdeira et al.,
2015).

This approach makes use of different techniques such as tokenization, which, as has been
explained previously, is the act of decomposing a String into smaller parts that compose it.
In the specific case of language based techniques, tokenization is used to identify the words
(tokens) that exist in the input string in order to better understand and exploit the possible
meaning a word can have in the domain it is being expressed in.

Lemmatisation is another technique that is used. It is the process of finding the lemma
that corresponds to the word that is being analysed. By definition, a lemma is the canonical
form of a word and is considered the base form of a whole set of words that derive from it.
For example, considering the set of words walk, walking, walked, walkabout all derive from
the word walk and therefore walk is lemma of this set of words. One of the most common
ways to find the lemma of a word is by looking it up in a dictionary.

Another technique also used is often referred to as stop-word elimination. This process is
not as well defined as the other previous two and it depends on who is using it and in what
context. It consists on creating a list composed of words that are considered not useful in
the context of the problem and are therefore filtered out on the pre-processing stage of the
string analysis phase.

These techniques are used to prepare the information being analysed. After they are
applied, the resulting terms (tokens, lemmas) are then compared to check for their similarity.
If they are not similar, then dictionaries and thesaurus are used to check if the terms have
the same meaning, i.e if they are synonyms.

Language based techniques are some of the most important because they can find matches
that, for example, the string based techniques do not. When dealing with ontologies
written in different languages, these are the techniques that are mostly used, making use of
dictionaries for example. Given that most matches in an ontology matching problem are not
going to be orthographically equivalent, these techniques are in great use and hence is why
tokenisation and lemmatisation are still being worked on and perfected nowadays.

2.3. Ontology Matching 14

Constraint and Instance Based Techniques

Constraint based techniques try to exploit the information of the contraints that can be
placed on the properties and relationships of an ontology, such as the Type of data properties
or the Domain and Co-Domain of relationships. This approach is based on the idea that, if
properties and relationships on different ontologies match on the level of the constraints,
then they are a potential match that needs to be studied. This technique is harder to be
used alone and is mostly used in combination with other techniques to generate potential
matches or analyse already generated matches.

Instance based techniques are considered an extension of all the techniques already
presented, because they make use of the individuals when dealing with populated ontologies.
Despite having the drawback of a much bigger quantity of information to analyze and
consequently making the whole process take more time and use more resources, these
type of techniques are great at both confirming already potential matches and generating
new possible matches. When generating new matches, the general strategy is that if two
individuals are alike, then the concepts they belong to are probably alike as well. When
confirming potential matches, the general strategy is that if two concepts are alike and to be
matched, then their individuals should also be alike (Otero-Cerdeira et al., 2015).

2.4. Existing Tools 15

2.4 existing tools

In the following subsections, some of the many already existing ontology matching tools
are presented focusing on the techniques each one uses as well as some of the restrictions
the system has.

2.4.1 AROMA

AROMA (Association Rule Ontology Matching Approach) (David et al., 2006), is a tool
for matching web directories, catalogs and ontologies designed in the OWL language.

The main technique used to find and reason matches is the Association Rule Paradigm.
This paradigm is focused on the creation of implications (rules) of the type: x —> y that
should be interpreted as: "if a term x is found on a given schema of an ontology, then that
ontology may be associated with the concept y".

Having this rule paradigm in mind, the first step in AROMA’s algorithm is the extraction
and selection of relevant terms for each concept followed by association of different rules to
form matches in the different schemas. This is a simple overview of the methodology used
when dealing with web directories or catalogs.

When the input schemas are those of an OWL ontology, the first step of the process had
to be adapted. Rather than only using information contained in the schema of the ontology,
the individuals data is also considered.

Although they do not go much in detail on the specific techniques used in each step of
the algorithm, it’s possible to deduce that language based techniques were probably used,
especially tokenisation to perform the extraction of the relevant terms.

This tool isn’t one to use in a general problem as it was developed with a specific target in
mind, only allowing ontologies written in OWL to be used as input.

For a more in depth explanation of the methodology used in the AROMA tool, refer to
(David et al., 2006).

2.4.2 AUTOMS

AUTOMS is a tool designed for the automatic matching of domain OWL ontologies (Kotis
et al., 2006). As a tool, it integrates multiples methods that must be run in a particular
sequence in order for the matching to be sucessful.

Firstly, a lexical matching method is applied. It uses information concerning names, labels
and comments of the ontologies concepts and properties and computes their similarity. The
similarity between two terms is computed by making use of methods that compare the

2.4. Existing Tools 16

typographic similarities of Strings, Substrings, sequences of ASCII characters and calculates
how similar they are. It then proceeds to create pairs of possible matchings.

Secondly, WordNet is used to acess how semantically similar the pairs created are. Word-
Net is a widely available and well-thought of lexical resource for semantic relations.

Following these first two methods, the lexical and semantic mappings are combined into
a single structure to determine their similarities in regards to concepts and properties. The
individuals of the ontology are then considered to help find matchings for concepts that
have not been determined to be similar in the input ontologies.

This tool is a perfect example how multiples of the techniques explained in the previous
sections can be used in combination to each other in order to create an algorithm that yields
good results. It uses syntactic and semantic based techniques, followed by instance based
techniques to generate and confirm possible matches.

For a more in depth explanation of the entire methodology or for any individual methods
used, refer to (Kotis et al., 2006).

2.4.3 Hertuda

Hertuda is an ontology matching tool (Hertling, 2012) designed to only accept as input
ontologies compatible with the Lite or DL versions of the OWL language. It was developed
to be a very simple matcher that takes advantages of tokenization and string measure to
obtain alignments. It handles classes, object properties and data properties independently,
which results in three different results, one for which.

For each concept, all its labels, comments and URIs are extracted, forming a set. To
then compare concepts, its respective sets are compared, resulting in a similitary measure
value. Before this comparison takes place, all the terms of all the sets have to go through a
pre-processing step, where tokenization occurs.

A more detailed look at the algorithm source code used by Hertuda can be seen in the
Listing 7, taken from (Hertling, 2012).

1 void function hertuda() {

2 for each type in {class, data property, object property}

3 for each concept cOne in ontology one

4 for each concept cTwo in ontology two

5 if(compareConcepts(cOne, cTwo) > threshould(type)){

6 add alignment between cOne and cTwo

7 }

8 }

9

10 float compareConcepts(Concept cOne, Concept cTwo) {

11 for each termOne in {label(cOne), comment(cOne), fragment(cOne)}

12 for each termTwo in {label(cTwo), comment(cTwo), fragment(cTwo)}

2.4. Existing Tools 17

13 conceptsMatrix[termOne, termTwo] = compareTerms(termOne, termTwo)

14

15 return maximumOf(conceptsMatrix)

16 }

17

18 float compareTerms(String tOne, String tTwo) {

19 tokensOne = tokenize(tOne)

20 tokensTwo = tokenize(tTwo)

21

22 tokensOne = removeStopwords(tokensOne)

23 tokensTwo = removeStopwords(tokensTwo)

24

25 for each x in tokensOne

26 for each y in tokensTwo

27 similarityMatrix[x, y] = damerauLevenshtein(x, y)

28

29 return bestAverageScore(similarityMatrix)

30 }

Listing 7: Hertuda algorithm source code

This is a much simpler tool compared to Automs and Aroma. Its purpose was to push to
its limits the string based techniques and the String similarity functions in order to obtain
matches. It can be used for comparison and analysis but it will fail in cases where the
terminology used in the matching ontologies is very different.

2.4.4 AgreementMaker

AgreementMaker (Cruz et al., 2009) is one of the most developed and matured tools in
this area as since its initial publication, it has been enchanced and improved upon multiples
times, having been written follow up articles every single time.

One of its advantages is the amount of customization is offers the users in terms of its
matching methods used, conceptual or structural methods, the amount of user interaction
they require and if only the schema should be considered or the individuals as well. It also
has built in metrics such as precision and runtime to present to the user.

The first group of matching algorithms include syntactic and lexical comparison of labels,
comments, annotations and instances. The second group of algorithms try to exploit the
information present in the structure of the ontologies, such as the concepts, their properties
and the relations that exist amongst them. The final group combines all the results obtained
in the first two groups with the goal of obtaining a unique final matching.

After the process of matching is done, Agreement Maker also offers automatic methods
of evaluating the final matches. It considers the most effect evaluation technique to be the

2.4. Existing Tools 18

comparison of the matching found by the tool against a gold standard of the domain the
ontologies are included in, preferably built by domain experts.

In Figure 1 can be seen the interface of this tool.

Figure 1: AgreementMaker Tool

For further detail on this tool, refer to its original publishing article (Cruz et al., 2009) and
its source code is publicly available in its github repository.

2.4.5 MEDLEY

MEDLEY (Hassen, 2012) is an OWL ontology matching system that takes a different
approach from the tools that have been covered. It transforms every ontology triple into a
graph structure, with the nodes being the ontology’s concepts, properties and individuals
and links being the OWL primitive that links them to each other.

The techniques used are mostly based on lexical metrics, such as similarity between strings,
tokenisation and stemmatisation while also making use of dictionaries to find equivalence
between terminology expressed in different languages.

The base logic of this method is that, if a given entity is alike an entity that is already in
the graph structure, then the neighbours of that entity must also be neighbours of the given
entity, generating possible matches.

For more details on this system, refer to (Hassen, 2012).

https://github.com/agreementmaker/agreementmaker

2.5. Summary 19

2.5 summary

In this chapter, the world of ontologies was explored. Starting from the very beginning,
the initial knowledge representation languages were presented as well as the challenges that
were faced and dealt with at the time. It was then followed by a brief overview of some
of the ontology languages and standards that are in place today as well as an introduction
to the ontology matching problem. A presentation of some of the base ontology matching
techniques were given as well as an introduction and analysis of some of the already existing
ontology matching tools, as can be seen in Table 1.

Ontology Matching Tools
AROMA AUTOMS Hertuda AM MEDLEY

multiple input formats x x
syntactic techniques x x x x
semantic techniques x x x x

association rules techniques x
graphs structure x

evaluation methods x

Table 1: Ontology Matching Tools - Comparison.

By analysing Table 1, it’s easy to notice that while most techniques make use of the
syntactic and semantic methods presented in Section 2.3.1, only a few of them allow multiple
different ontology language inputs, restricting who and what ontologies can be used with
those tools. It’s also important to notice that only one of the studied tools has built in
evaluation methods that allow the user to know how confident on the matchings found the
tools is.

While the study of these tools was essential in understanding how to combine multiple
techniques into forming an algorithm, the goal of this Master’s Thesis is to improve on these
tools by creating a tool that allows multiple different ontology languages as input, makes
use of said techniques and aims for a fully automatic tool, without the need for human
interaction.

3

P R O P O S E D A P P R O A C H

This section provides an initial architectural design of the ontology matching tool we
propose, as well as a more detailed explanation of the different components that make it up.
The tool is named OMT and will be referenced in the remaining of the document by that.

Figure 2 represents the architecture of the OMT tool.

Figure 2: General overview of the system architecture

The two most important components of the OMT tool are the initial converter (Step 2) and
the Merger/Matcher (Step 3), as they are the ones that convert the initial ontologies into an
homogeneous format to be analysed in order to find matches.

In the following sections, it will be given a more in depth look at each step of the process.

3.1 ontology matching tool inputs

The inputs of an ontology matching tool are a critical part of it, as they determine what
and who can use that tool. The majority of the tools already created for this purpose restrict
the format of the input ontologies, limiting the group of potential users of the tool. One
of the goals for the OMT tool is to be adaptable and easily accessible. Adaptable in the
sense that the tool applies different techniques depending on the contents of the ontologies

20

3.2. Converter/Recognizer 21

and easily accessible since it is a web-based tool, making it available to anyone that wishes
to use it. With that mind, we intend for the tool not to restrict the format of the input
ontologies to a specific language and instead accept different formats such as the OWL
language family (Bechhofer et al., 2004) and Turtle (Carothers and Prud’hommeaux, 2014).
The input ontologies can also be written in two different natural languages: english or
portuguese.

3.2 converter/recognizer

The Converter/Recognizer is the first step of the algorithm the OMT tool uses. As
mentioned before, the two input ontologies may be written in different ontology languages.
Therefore, this step is crucial in homogenizing the information present in the ontologies into
an internal structure that is going to hold the information relevant of those ontologies.

3.3 matcher and merger

The Matcher and Merger is the most important part of the algorithm. It is where the
matching techniques to be used or not used are decided in order to find alignments in the
two input ontologies.

This component can be broken into two smaller parts, the Matcher and the Merger. The
Matcher finds the correspondences between the two input ontologies. The Merger joins the
information present in the ontologies that wasn’t matched with the matches found by the
Matcher. This way it is possible to create an instance of the internal structure that would
represent the matching of the input ontologies. This can be better understood in Figure 3.

Figure 3: Detailed Matcher/Merger component

3.4. Converter to an Ontology 22

3.4 converter to an ontology

The Converter to an ontology is the last step of the algorithm. It receives as input the
internal structure generated by the Matcher/Merger component and converts the information
on that structure into an ontology language. This process is the inverse of the process
executed by the converter/recognizer. As it was said regarding that component, one of
the goals is to allow diversity, so the goal is to allow the output ontology to be written in
different possible languages and it is up to the user to decide in what language he would
like their matched ontology to be written as.

4

D E V E L O P M E N T

This chapter presents the process of implementing the OMT tool, developed in this Master
Thesis. Figure 4 and Figure 5 present two small simple ontologies. These two ontologies will
be used as an example throughout this chapter to better explain the algorithms the OMT
tool uses as well as some of its functionalities. The ontology representation used in both
Figures is very similar to the internal structure used to save the relevant ontology data and
was the representation chosen to show these examples due to being very human readable
and easy to understand.

Figure 4: Input ontology example

23

24

Figure 5: Input ontology example

Figures 4 and 5 are divided in three sections: Concepts, Object and Data Properties. Every
concept has properties associated to it: an IRI, a Label and a Parent’s Concept. For example,
in Figure 4, the concepts have the following IRIs: 001, 002, 003 and 004. The data properties
have a IRI and a Label like concepts do and also have a DataType property. In Figure 4, the
data properties have the following IRIs: Age and Name. The object properties only have the
IRI property in common with concepts and data properties. Instead they have a Domain
and Range property. In Figure 4, the object properties have the following IRIs: f atherO f and
motherO f . The motherO f object property can be best thought of as a predicate in the triple:

Mother motherO f Son

where Mother and Son represent the Domain and Range concepts, respectively.
Another possible representation of an ontology is based on its graph. Figure 6 displays the

concepts and relations of the ontology presented by text in Figure 4 while Figure 8 displays
the same information of the ontology presented in Figure 5. The blue circles represent
the concepts, identified by their label, while the red circles represent the object properties,
identified by their IRI. The links represent the connections between the objects. For example,
the circle fatherOf is connected to the circle Son by the link range, meaning that the range
property of the fatherOf object property is the concept son. Figure 7 displays the data
properties of the same ontology. The circles in red represent the data properties identified
by their label.

4.1. Input Converter/Recognizer Module 25

Figure 6: Ontology Graph Representation

4.1 input converter/recognizer module

One of the OMT tool main objectives is to allow the user to match ontologies written in
different languages, such as OWL family and Turtle. This led to the need of developing a
module that would convert the information coming from heterogeneous sources into a homo-
geneous structure before proceeding to the matching stage. The Input Converter/Recognizer
module is the result of that need.

Ontology languages allow the definition of different information regarding the ontology
concepts, relations and properties. While all this data is relevant to represent the ontol-
ogy information, only some of it may be relevant to the matching process. This section
presents how this module is built, what technologies are used to achieve its goals and what
information is considered relevant to the matching process from the ontologies and why.

4.1. Input Converter/Recognizer Module 26

Figure 7: Ontology Graph Representation

4.1.1 Concepts Processing

Concepts are of the utmost importance when building ontologies as they are used to
represent the entities in the domain being described.

The following list contains the properties that are considered relevant for the matching
process and are therefore retrieved.

• IRI: Unique identifier of an object.

• Label: An optional property used to provide a description of an object in a human
readable way.

• Parent’s Concept: The IRI of the parent’s class, if applicable.

• Associated Properties: The IRI of the data properties associated with this concept, if
applicable.

Out of all the properties that are retrieved from the concepts, only the IRI is guaranteed
to exist in every concept. It is, however, expected of the ontologies creators to have, at least,
a Label associated with the concepts to ensure some level of trustworthiness in the results.

The other two properties are also optional but less common to appear in ontologies as
its use is highly dependant on the domain being described. The Parent’s Concept refers to
the possibility to associate some concepts with others in a hierarchical way. The Associated
Properties refers to the Data Properties that may be associated with a certain concept. When
this is the case, an instance of a concept must have set a value for its associated Data
Properties as well.

4.1. Input Converter/Recognizer Module 27

Figure 8: Ontology Graph Representation

4.1.2 Data Properties Processing

Data Properties are used to define attributes that can be associated to concepts in the
ontology.

The following list contains the properties that are considered relevant for the matching
process and are therefore retrieved.

• IRI: Unique identifier for an object.

• Label: An optional property used to provide a description of an object in a human
readable way.

• DataType: Used to describe the data type of the Data Property it is related to. Can take
many different values such as: String, Integer, Boolean, DateTime and many others.

Besides the IRI, the DataType property is also mandatory to exist in every Data Property.
However, despite being mandatory, it is not guaranteed to contain a value set by the user.
This is the case because every ontology language assumes the DataType to be String by
default whenever it is not specified.

4.2. Matcher/Merger Module 28

4.1.3 Object Properties Processing

Object Properties are used to create and define relations between two concepts.
The following list contains the properties that are considered relevant for the matching

process and are therefore retrieved.

• IRI: Unique identifier of an object.

• Domain: Used to identify the Domain of a relation.

• Range: Used to identify the Range of a relation.

The Domain and the Range properties are used to define what concepts can be used to
define the ends of a certain relationship.

It is worth noting that the reason why the Label property is not considered in the Object
Properties is explained in Section 4.2.4.

4.1.4 Technologies used

The processing and parsing of the relevant information from the input ontologies was
done using two already existing libraries, RDFlib 1 and Owlready2 2.

RDFLib is a library built in Python for the purpose of working with the RDF data model.
This library was used to process ontologies designed in the Turtle language and in the
rdf/xml format. Owlready2 is a library designed to work with OWL ontologies in Python.
This library was used to process ontologies designed in the owl/xml format.

Both these libraries were used in conjunction with the Sparql 3 query language making it
simple to obtain all the desired information from the ontologies.

4.2 matcher/merger module

The Matcher/Merger module is the most critical one since it is the one responsible for
matching the information coming from the input ontologies.

Its algorithm is based on associating a value between 0 and 1 to every pair of objects
being compared, where 0 means the two objects definitely do not match and 1 means the
two objects definitely match. The value from which the matching algorithm considers that
two objects match is defined by the user at the time of uploading the two ontologies to be
matched.

1 https://rdflib.readthedocs.io/en/stable/
2 https://owlready2.readthedocs.io/en/v0.37/
3 https://www.w3.org/TR/sparql11-overview/

4.2. Matcher/Merger Module 29

There are multiple properties considered relevant when matching two objects, but as was
already mentioned, most of these properties are optional. This led to the need of developing
a matching algorithm able to adapt and use the information available.

This section begins by explaining the properties that were considered relevant in an
ontology, their relevance in the matching algorithm and how the matching algorithm works
depending on what is being compared and what information is available. Then, it will
present the technologies and techniques used to execute the matching.

4.2.1 Common Properties

There are a number of properties that can be associated with different type of objects in
an ontology and therefore are defined in the Concepts, Data and Object Properties. This
subsection presents them and explains their relevance in the matching algorithm.

The IRI is the only property that every object has and is mandatory. One would think
the assurance that every object would have an IRI would make it a crucial property in the
matching process. However, this is not the case. The reasoning for this is that the IRI acts as
an identifier for the object and therefore is up to the user to define it. It can be something
meaningful related to the object in question and in this case would be useful to the matching
process. It can also be something completely random or even automatically generated. For
this reason, the importance of this property is not high. Nevertheless, there are scenarios
in which the IRIs have to be compared. This comparison makes use of String Based and
Language Based Techniques to determine the IRIs similarity.

The Label property is of very high importance. As has been mentioned before, despite
being optional, it is expected that most objects would have a label associated to ensure
minimum confidence in the matching results. It is considered very relevant due to the fact
that it, often, provides a description of the object in a human readable way and be used to
match against one another. The comparison of two Labels makes use of String Based and
Language Based Techniques to determine their similarity.

4.2.2 Concepts Matching

This subsection explains in detail how the OMT tool compares the different properties
that a concept can have. Then it moves on to how the algorithm to match two concepts
works, focusing on how it adapts and deals with the different scenarios that can arise from
the existence, or lack of, certain properties.

4.2. Matcher/Merger Module 30

Concepts Properties Comparison

The Parent’s Concept property provides a hierarchical organization to the concepts.
Whenever both concepts being compared have a Parent’s Concept associated, these two are
compared to check if they match. This process can lead to long times of execution due to
the recursive nature of this algorithm, that happens when the two Parent’s Concepts being
matched also have Parent’s Concepts.

The associated Data Properties follow the same logic as the Parent’s Concepts. Whenever
both the concepts being matched have associated Data Properties, these Data Properties are
compared to check if they match.

Concepts Comparison Algorithm

This subsection explains in detail the scenarios the OMT tool considers in order to decide
whether two concepts match. Listing 4.1 provides a simpler version of the algorithm that
will be referenced in order to help understand the algorithm.

1 boolean matchConcepts (f i r s tConcept , secondConcept , threshold) :
2

3 i f hasLabel (f i r s t C o n c e p t) and hasLabel (secondConcept) :
4 s i m i l a r i t y = compare (f i r s t L a b e l , secondLabel)
5

6 i f s i m i l a r i t y c l o s e to threshold :
7 i f hasParentConcepts (f i r s tConcept , secondConcept) :
8 i f matchConcepts (parentConcept1 , parentConcept2) :
9 s i m i l a r i t y ++

10

11 i f s i m i l a r i t y c l o s e to threshold :
12 i f hasAssoc ia tedProper t ies (f i r s tConcept , secondConcept) :
13 i f matchPropert ies (a s s o c i a t e d P r o p e r t i e s 1 , a s s o c i a t e d P r o p e r t i e s 2) :
14 s i m i l a r i t y ++
15

16 i f s i m i l a r i t y > threshold :
17 match = True
18 e l s e :
19 i f hasParentConcepts (f i r s tConcept , secondConcept) and
20 hasAssoc ia tedProper t ies (f i r s tConcept , secondConcept) :
21 i f matchConcepts (parentConcept1 , parentConcept2) and
22 matchPropert ies (a s s o c i a t e d P r o p e r t i e s 1 , a s s o c i a t e d P r o p e r t i e s 2)

:
23 match = True

Listing 4.1: Concepts Comparison Algorithm

4.2. Matcher/Merger Module 31

The first action the algorithm makes is checking whether or not both concepts have a label
defined (Line 3 of Listing 4.1). Depending on the result of this check, two different scenarios
can occur.

The first scenario occurs when both concepts being compared have the Label property
defined. These are matched to determine their similarity. This similarity value will be the
base line value to check against the matching threshold defined by the user. If this similarity
value is very close to threshold defined, the concepts are checked for the existence of Parent’s
Concept and associated Data Properties (Line 7 and 12 respectively of Listing 4.1). If they
exist and match, similarity value is slightly increased (Line 8 and 13 respectively of Listing
4.1). If neither the Parent’s Concept nor the Data Properties are defined in both concepts,
the value of the labels similarity will be the one to determine whether the two concepts
match or not.

The second scenario occurs when the concepts being compared do not have the Label
property defined but have the Parent’s Concept and associated Data Properties defined
(Line 19 of Listing 4.1). Both the Parent’s Concept and the associatd Data Properties are
compared to check if they match. The concepts are considered matched if the matching
of both the associated Data Properties and the Parent’s Concepts come out true, and not
matched if both come out negative. In the case of one coming out positive and one negative,
then the IRIs are compared. This comparison determines their similarity. If this similarity
value is above the threshold value defined by the user, then the two concepts are considered
matched.

One last scenario occurs when a concept does not have Labels, Parent’s Concept or
Associated Data Properties defined, leaving only the IRI information. In this case, the OMT
tool does not consider this concept to the matching process as it does not have enough
relevant information.

To provide a better explanation, the examples presented in Figures 4 and 5 will be used to
demonstrate, in a summed up way, how the algorithm works with a concrete case. Let’s take
as an example the concepts with the IRIs 001 and aa1 from the first and second ontology,
respectively.

4.2. Matcher/Merger Module 32

1 " IRI " : #001

2 " Label " : " Parent "
3 " Parent ' s Concept " : None
4

5 " IRI " : #aa1

6 " Label " : " f a t h e r "
7 " Parent ' s Concept " : None

Listing 4.2: Example Concepts 001 and aa1

Listing 4.2 presents the information belonging to both concepts. Both concepts have the
Label property defined which immediately means this case belongs to the first scenario
(Line 3 of Listing 4.1). String and Language based techniques are used to determine how
similar they are (Line 4 of Listing 4.1). In this case, the two specific labels ("Parent" and
"father") will result in a very low similarity score. Since this low similarity score is most
likely not close to the threshold value that would be chosen by the user, the Concept’s Parent
and associated Data Properties will not be checked (Line 6 and 11 of Listing 4.1). The two
concepts will be considered not matched (Line 16 and 17 of Listing 4.1).

1 " IRI " : #002

2 " Label " : " Father "
3 " Parent ' s Concept " : #001

4

5 " IRI " : #aa1

6 " Label " : " f a t h e r "
7 " Parent ' s Concept " : None

Listing 4.3: Example Concepts 002 and aa1

Listing 4.3 presents the information of the concepts 002 and aa1, from Figures 4 and 5

respectively, that can be compared. Alike the first pair of concepts, these also both have the
Label property defined which corresponds to the first scenario described. The two labels
("Father", "father") will be compared to determine their similarity (Line 4 of Listing 4.1). The
two labels will achieve a perfect similarity score of 1, meaning they are definitely the same
in terms of the information they provide. This means this similarity score will be very high
and most likely very much above the threshold defined by the user, resulting in the lack of
need to check the Parent’s Concept and associated Data Properties. The two concepts will
be considered matched (Line 16 and 17 of Listing 4.1).

4.2. Matcher/Merger Module 33

4.2.3 Data Properties Matching

This subsection will explain in detail how the OMT tool compares the different properties
that a concept can have. Then it will explain how the algorithm to match two Data Properties
works, focusing on how it adapts and deals with the different scenarios that can arise from
the existence, or lack of, certain properties.

Data Properties Comparison

The DataType property is specific of the Data Properties. It is used to set the type of values
that a Data Property can have assigned to it. It is mandatory in the sense that it is defined in
every Data Property. It is not however guaranteed that the creator of the ontology defined it,
as it defaults to being a String whenever it is not defined. This makes it very tricky to work
and evaluate this property as it is not possible to know if a DataType set to String is done so
on purpose or just because it is the default.

Data Properties Algorithm

This subsection explains in detail the scenarios the OMT tool considers in order to decide
whether two Data Properties match. Listing 4.4 provides a simpler version of the algorithm
that will be referenced in order to help understand the algorithm.

1 boolean matchDataProperties (f i r s t D a t a p , secondDatap , threshold) :
2

3 i f hasLabel (f i r s t D a t a p) and hasLabel (secondDatap) :
4 s i m i l a r i t y = compare (f i r s t L a b e l , secondLabel)
5

6 i f s i m i l a r i t y c l o s e to threshold :
7 i f matchDataType (DataType1 , DataType2) :
8 s i m i l a r i t y ++
9

10 e l s e :
11 s i m i l a r i t y = compare (f i r s t I R I , secondIRI)
12

13 i f s i m i l a r i t y c l o s e to threshold :
14 i f matchDataType (DataType1 , DataType2) :
15 s i m i l a r i t y ++
16

17 i f s i m i l a r i t y > threshold :
18 match

Listing 4.4: Data Properties Comparison Algorithm

4.2. Matcher/Merger Module 34

The first action the algorithm makes is checking whether or not both Data Properties have
a label defined (Line 3 of Listing 4.4). Depending on the result of this check, two different
scenarios can occur.

When both have the Label property defined (Line 4 of Listing 4.4), the algorithm is very
similar to the one applied to concept matching. The two labels will be compared and their
similarity will be the base line value to check against the threshold. If this similarity is very
close to the threshold defined, then the DataTypes are compared to check if they are the
same. The result of this comparison will affect whether or not the similarity value goes over
the threshold or not (Line 6-8 of Listing 4.4).

When the Label property is not defined in both Data Properties, then the IRI will have to
be compared (Line 11 of Listing 4.4). The similarity value resulting of the comparison will
determine whether or not the two Data Properties match. Similar to the first scenario, if the
similarity result is very close to the threshold, then the DataType will be used (Line 13-15 of
Listing 4.4).

The Data Properties presented in Figures 4 and 5 will be used to showcase how the
algorithm works with a concrete case.

1 " IRI " : #Age
2 " Label " : None
3 " DataType " : i n t
4

5 " IRI " : #Age
6 " Label " : "None
7 " DataType " : s t r i n g

Listing 4.5: Example Data Properties Age and Age

Listing 4.5 presents the information belonging to both Data Properties. Neither Data
Property has the Label property defined (Line 3 of Listing 4.4). This leads to the second
scenario of the algorithm, where the IRIs will be used (Line 11 of Listing 4.4). The two IRIs
("Age" and "Age") will be compared to check for their similarity. This similarity will be a
perfect score of 1 as the strings are the same. This similarity score will then be much higher
than the threshold defined by the user and there will be no need to use the DataTypes (Lines
13-15 of Listing 4.4). The two DataProperties will be considered matched.

4.2.4 Object Properties Matching

This subsection will explain in detail how the OMT tool compares the properties that a
Object Property has. Then it will explain how the algorithm to match two Object Properties
works.

4.2. Matcher/Merger Module 35

Object Properties Information

The Domain and Range properties are used to define the two ends of a relationship.
Although, in theory, an Object Property can be defined without the Domain and Range
being specified, this tool will only consider those that have the Domain and Range defined,
as otherwise there would not be enough information to proceed with the matching.

Additionally, the Label property is not considered in this matching as its information
is considered irrelevant compared to the information obtained via the Domain and Range
properties.

Object Properties Algorithm

This subsection explains in detail the scenario the OMT tool considers in order to decide
whether two Object Properties match. Listing 4.6 provides a simpler version of the algorithm
that will be referenced in order to help understand the algorithm.

1 boolean matchObjectPropert ies (f i r s t O b j e c t p , secondObjectp , threshold) :
2

3 i f matchConcepts (f irstObjectpDomain , secondObjectpDomain) :
4 i f matchConcepts (f i rs tObjec tpRange , secondObjectpRange) :
5 match = true

Listing 4.6: Object Properties Comparison Algorithm

Given the OMT tool only considers matching two Object Properties if both have the
Domain and Range defined, only one scenario can occur. In this scenario, the Domain and
Range of one Object Property will be compared against the Domain and Range of the other
Object Property. The two Object Properties will only be considered matching if both the
Domains and Ranges match (Line 3-5 of Listing 4.6). This is due to the fact that both the
Domain and Range are an integral part of an Object Property and if one of them does not
match, it renders the result of the other useless in the matching process.

To provide a better explanation, the examples presented in Figures 4 and 5 will be used to
demonstrate, in a summed up way, how the algorithm works with a concrete case. Let’s take
as an example the Object Properties with the IRIs f atherO f and f atherO f from the first and
second ontology, respectively.

1 " IRI " : # fa therOf
2 "Domain" : #002

3 " Range " : #004

4

5 " IRI " : # fa therOf
6 "Domain" : #aa1

7 " Range " : #aa3

4.3. Output Converter Module 36

Listing 4.7: Example Data Properties fatherOf and fatherOf

Listing 4.7 presents the information belonging to both Object Properties. Since there is only
one scenario possible, the first thing the algorithm checks for is if both Domains concepts
are matched (Line 3 of Listing 4.6). These concepts information can be seen in Listing 4.3.
They have already been analysed in this section and they are considered matched. Then,
the Ranges concepts are checked (Line 4 of Listing 4.6) and the outcome of this check will
determine whether or not these two Object Properties are considered matched or not.

4.3 output converter module

This final module is responsible for joining the information of both ontologies taking into
account the results obtained in the matching process and designing the new ontology. Every
two objects that are considered matched will be converted into a single object containing the
relevant information of both objects. As a default rule of the OMT tool, the resulting new
object will have the IRI from the first object of the two that were matched.

4.3.1 Concepts Matching

This subsection explains how the tool joins the information of two concepts that are
considered matched. Listing 4.8 provides a simpler version of the algorithm.

1 conceptsMatching (concept1 , concept2) :
2 f i n a l I R I = concept1 IRI
3 f i n a l L a b e l = concept1Label + concept2Label
4

5 i f hasParentConcept (concept1) and hasParentConcept (concept2) :
6 i f compareConcepts (concept1Parent , concept2Parent) :
7 f i n a l P a r e n t = conceptsMatching (concept1Parent , concept2Parent)
8

9 e l s e :
10 f i n a l P a r e n t L i s t = [concept1Parent , concept2Parent]
11

12 e l s e i f hasParentConcept (concept1) and not hasParentConcept (concept2) :
13 f i n a l P a r e n t = concept1Parent
14

15 e l s e i f hasParentConcept (concept2) and not hasParentConcept (concept1) :
16 f i n a l P a r e n t = concept2Parent
17

18 e l s e :

4.3. Output Converter Module 37

19 f i n a l P a r e n t = Empty
20

21 i f hasAssociatedDPropert ies (concept1) and hasAssociatedDPropert ies (concept2) :
22 i f compareAssociatedPropert ies (concept1DPropert ies , concept2DPropert ies)

:
23 f i n a l A s s o c i a t e d P r o p e r t i e s = DataPropertiesMatching (

concept1DPropert ies , concept2DPropert ies)
24

25 e l s e
26 f i n a l L i s t A s s o c i a t e d D P r o p e r t i e s = [concept1DPropert ies ,

concept2DPropert ies]

Listing 4.8: Concepts Matching

Regarding concepts matching, the Labels of both concepts will be concatenated into a
single Label (Line 3 of Listing 4.8). This is a simple solution that retains all the information
present in both labels and works whether both concepts have labels or not. Moving onto
the Parent’s Concept, a couple of different scenarios were taken into consideration. If only
one of the concepts has a Parent’s Concept, then the resulting object will have that Parent’s
Concept (Lines 12 and 16 of Listing 4.8). If both concepts have a Parent’s Concept and they
are considered matched, then the resulting object of the Parent’s Concept matching will be
the Parent’s Concept of the resulting object (Lines 6-7 of Listing 4.8). The same scenario can
happen but the Parent’s Concept do not match. In this case, then the resulting object will
have multiple Parent’s Concept (Lines 9-10 of Listing 4.8). Last but not least, the concepts
can have associated Data Properties. The resulting object will remain associated with every
single Data Property, barring the case when two Data Properties are matched. In this case,
the resulting object will be associated with the resulting Data Property (Lines 18-23 of Listing
4.8).

Figure 9 displays the concepts of the ontology that resulted from matching the ontologies
presented in Figures 4 and 5. Both ontologies had a concept that could be identified by the
Label "Father" that got matched and resulted in a single concept also identified in Figure 9

by Father. The same happened with the concepts identified by mother. The Parent’s Concept
identified by "Parent" from the ontology in Figure 4 did not get matched with any concept
and so it got merged into the final ontology. The concepts identified by "Son" and "Children"
also got merged as they did not get matched.

4.3.2 Object Properties Matching

This subsection explains how the OMT tool joins the information of two Object Properties
that are considered matched. The Listing 4.9 provides a simpler version of the algorithm.

4.3. Output Converter Module 38

Figure 9: Output Concepts Graph

1 objPropert iesMatching (objectP1 , ob jec tP2) :
2 finalDomain = conceptsMatching (objectP1Domain , objectP2Domain)
3 f inalRange = conceptsMatching (objectP1Range , objectP2Range)

Listing 4.9: Object Properties Matching

Object Properties are much easier to match compared to the concepts. Since two Object
Properties are considered matched only when both their Domain and Range match, then
the resulting Object Property will have Domain and Range equal to the resulting concept of
matching the Domain and Range, respectively.

4.3.3 Data Properties Matching

This subsection explains how the OMT tool joins the information of two Object Properties
that are considered matched. The Listing 4.9 provides a simpler version of the algorithm.

1 dPropertiesMatching (dataP1 , dataP2) :
2 f i n a l L a b e l = dataP1Label + dataP2Label
3

4 i f dataP1DataType == dataP2DataType :

4.4. Log File 39

5 f inalDataType = dataP1DataType
6

7 e l s e :
8 f inalDataType = c h e c k P r i o r i t i e s (dataP1DataType , dataP2DataType)

Listing 4.10: Data Properties Matching

When it comes to the Data Properties, the Labels are treated the same way as they
were in the concepts, being concatenated into a single label (Line 2 of Listing 4.10). The
DataTypes were treated differently depending on the scenario. If both Data Properties have
the same DataType, then the resulting DataProperty will have that same DataType (Line 4-5
of Listing 4.10). If the DataTypes are different and one of them is String, then the resulting
DataType will be the Non-String one. This is due to the fact that the default value of a non
specified DataType is String. Taking this into account, the non-String DataType will be more
meaningful, hence why it is the chosen one. The last scenario happens when the DataTypes
are different and neither is String. This is resolved by following a list of priorities that are
considered more meaningful than others (Line 8 of Listing 4.10). The list goes as follows:

Boolean > Integer

DateTime > Integer

Float > Integer

TimeStamp > Integer

Any other combination of DataTypes is converted into a String, as there is not enough
information to conclude which DataType is more meaningful.

4.4 log file

One of the unique functionalities that separates the OMT tool from the already existent
ones is the possibility for the user to download a Log File. This file contains the details of
every single comparison and decision made by the matching algorithm. It is divided in two
different sections, the comparison and the matching.

4.4.1 Comparison Information

The comparison information section of the Log File contains the details of every single
comparison between two objects that was made throughout the matching process. It has
the results of the String Based and Language Based Techniques used to compare the objects’

4.4. Log File 40

properties and provides an explanation on the reason why the objects in question were
considered matched or not.

The Listing 4.11 presents an example of a section of the Log File that would be generated
by using the example ontologies presented in Figure 4 and 5.

1 " Concept1 " :
2 {
3 " IRI " : " 002 " ,
4 " Label " :
5 [
6 " Father "
7] ,
8 " Parent ' s Concept " : "None"
9 } ,

10

11 " Concept2 " :
12 {
13 " IRI " : " aa1 " ,
14 " Label " :
15 [
16 " f a t h e r "
17] ,
18 " Parent ' s Concept " : "None"
19 } ,
20

21 " S t r i n g /Language Based S i m i l a r i t y " : 1 . 0 ,
22

23 " Synonyms " : "N/A" ,
24

25 " Analysis S t a t u s " : " Matched " ,
26

27 "Comments" :
28 " The concepts were considered matched due to the S t r i n g /Language Based

S i m i l a r i t y being much higher than the threshold defined . There was no need to
check the Parent ' s Concept . "

Listing 4.11: Log File Example of a Concept Comparison

Line 1 to 20 of the Listing 4.11 presents the information of the two concepts. Line 21

and 23 present the results of the using String and Language Based similarity as well as
dictionaries to compare the two concepts. Line 25 presents whether or not the two concepts
were considered matched. Finally, line 27 presents some comments on why some decisions
were made and what conclusions were drawn upon by the OMT tool.

This functionality of the Log File is especially useful for the users who may want to decide
by themselves if they agree with the decisions the tool has made. It also has the advantage

4.4. Log File 41

of providing insight on the algorithm the tool uses and allows the users to further change
their ontologies in order to align them with what the tool considers relevant and necessary
for more trustworthy matching results.

4.4.2 Matching Information

The matching section of the Log File contains the changes that were made when converting
two matching objects into a single one. It is presented in a way that allows the user to see
how the information in the two matching objects was joined to generate the final object.

The Listing 4.12 presents an example of a section of the Log File that would be generated
by using the example ontologies presented in Figure 4 and 5.

1 " DataProperty1 " :
2 {
3 " IRI " : "Age" ,
4 " Label " : "None" ,
5 " DataType " : " i n t "
6 } ,
7

8 " DataProperty2 " :
9 {

10 " IRI " : "Age" ,
11 " Label " : "None" ,
12 " DataType " : " s t r i n g "
13 } ,
14 " Resul t ing DataProperty " :
15 {
16 " IRI " : "Age" ,
17 " Label " : "None" ,
18 " DataType " : " i n t "
19 } ,
20 "Comments" : [" The r e s u l t i n g IRI i s the IRI of the f i r s t Data Property . The

r e s u l t i n g Label i s the r e s u l t of concatenat ing both concepts l a b e l s . The
r e s u l t i n g DataType i s the most r e s t r i c t i v e DataType of both . "]

Listing 4.12: Log File Example of a Data Property Matching

Line 1 to 13 of the Listing 5 presents the information of the two Data Properties. Line
16 to 18 present the information of the resulting new Data Property. As was explained in
Subsection 4.3.3, the resulting IRI is the IRI of the first object (Line 16). The resulting Label is
the result of concatenating both Labels, which were both non existent in this example (Line
17). The resulting DataType is the most restrictive out of the two, which is an int (Line 18).
Finally, Line 20 presents additional notes and explanations.

4.5. Web Interface 42

4.5 web interface

One of the main goals for the OMT tool is to be web-based. This allows it to be accessed by
anyone from anywhere and also being easier to use as it does not require any programming
knowledge to be used. This section covers and present every different page and functionality
that exists in the web application.

4.5.1 File Upload Section

The file upload page is the main one of the application. It contains a form, as can be
seen in Figure 10, that allows the user to fill out some mandatory parameters. The user
begins by having to upload two files, the ontologies to be matched(smallhuman.owl and
smallmouse.owl, in Figure 10 and its format, chosen between an option of the accepted
ontology formats. These formats are, so far, Turtle and the rdf/xml or owl/xml formats of
the OWL family language. The formats being assigned to each ontology separately is very
important as it allows for the matching of two ontologies written in different languages or
formats.

Figure 10: Ontology Upload Interface

Afterwards, the user is also asked to choose different fields all related to the algorithm
the tool will use. The first one is the value to assign to the threshold they want the tool
to consider when matching two objects. This threshold will be the value of similarity that
determines whether two objects match. The second is the output format they want the
output ontology to be designed in. This format can be any of the OWL family and Turtle.
Last but not least, the user should determine whether or not they want the individuals
information of the ontologies to be used.

4.6. Testing 43

4.5.2 Data Section

Throughout the matching process, the tool OMT makes some metrics available about the
ontologies being matched. Firstly, right after the user uploads the ontologies and before
the matching occurs, some statistics about the ontologies content is presented, such as the
Number of Concepts, Relations and Data Properties, as can be seen in Figure 11, for the
example ontologies referred to in Figure 10.

Figure 11: Basic Information about the Ontologies Uploaded

Secondly, after the OMT tool executes its matching algorithm, statistics about the number
of objects that were matched and merged are presented as well as the possibility for the user
to download the output ontology and the corresponding log file, as can be seen in Figure 12.

Figure 12: Statistics about the Matching.

This statistics allow the user to have a sense of how the matching process went without
having to study and check the log file.

4.6 testing

Testing is the most important step of the development as it allows for the tool to be tested
against different type of inputs to help determine what is working as intended and what is
not. Testing has been ongoing throughout the entire development process of this Tool.

This section explains the tests that were conducted, the conclusions that were drawn
and the changes they propelled. It is divided in two subsections, one focusing on the

4.6. Testing 44

tests conducted on the different techniques used and the other focusing specifically on the
matching module of the Tool.

4.6.1 String and Language Based Techniques Testing

This subsection focuses on the String and Language Based Techniques that were tried and
tested against different type of inputs, showing different examples in which they succeed
and fail and how they were ultimately chosen to be used or not.

It is important to mention that these techniques accept two strings as an input and return
a value ranging from 0 to 1 representing how similar those two strings are. The output value
at which one considers a technique or function to be accurate enough is subjective and there
is not one right answer as there is not also a perfect technique for each scenario and multiple
can have successful results.

Every technique will be used against different examples that were considered to represent
the majority of cases the Tool will face.

One Word Strings

This test makes use of pairs of one word strings. These cases appear often when comparing
the IRI’s of two ontology objects. The pairs used for testing were as follow:

(”car”, ”cars”)

(”department”, ”departament”)

(”angel”, ”angle”)

The first pair has two strings that represents the same information but one was defined
in the singular and the other in the plural tense. The second pair has two strings that
also represent the same information but one was misstyped. The thirds pair is the most
challenging one as it can both represent a misstype as in the second exame or it can mean
two different things. Although this last pair is very difficult to judge, if not impossible, it
was still important to try to find a solution that best deal with it, hence why it was included
in this testing process.

The Table 2 presents the results of using different String/Language Based Techniques,
associating each technique with the number it attributes to each of the pairs. The higher the
number, the higher the similarity it considers the two strings to have. The desired result is
for the two pairs to have the highest similarity possible and for the third one to have the
lowest.

4.6. Testing 45

Techniques 1st Pair 2nd Pair 3rd Pair
Editex 0.75 0.91 0.6

Jaro-Wrinkler 0.94 0.98 0.95

Levenshtein Distance 0.75 0.91 0.6
Overlap Coefficient 0.0 0.0 0.0
Generalized Jaccard 0.92 0.97 0.93

Fuzzy Token Sort 1.0 0.9 0.8

Table 2: String/Language Based Techniques - One Word Strings Testing.

The first thing to notice and conclude is that the Overlap Coefficient is not well suited
for comparing these types of strings. This did not come as a surprised since we know this
technique makes use of tokenization to then compare the overlap of the two resulting sets
of tokens. In this case, the strings are composed of only word, resulting in the respective
set being composed of only one token, the word itself, and therefore the sets do not match.
Every other technique produces successful results in all the three pairs, so the choice of
which to use will come down to the details. The Levenshtein Distance and the Editex
techniques present the same results. They both achieve a low score in the third pair, which
is attractive as that pair is the one we do not intend to consider matching, but the score on
the first pair is lower than most of the other techniques. This disencourages of using these
techniques as the first pair is the most common case the Tool is expected to encounter while
the last one is a corner case that is expected to happen very seldom. The Fuzzy Token Sort,
the Generalized Jaccard and the Jaro-Wrinkler techniques all achieve great scores when it
comes to the first and second pair but fail identifying that the third pair is not supposed to
match. The pros heavily outweigh the cons as identifying the first two pairs as matching
is the most important thing as they are the most common cases. Strong arguments can be
made to justify choosing any of the three remaining techniques. However since the first pair
of strings is the case expected to be more common, the choice fell on the Fuzzy Token Sort
technique has it achieves a perfect score in this pair.

Multiple Word Strings

This test makes use of pairs of multiple word strings. These cases appear when dealing
with Labels or Descriptions of objects in the ontologies. The pairs used for testing were as
follow:

(”house o f my parents”, ”my parent′s house”)

(”david smith”, ”david richard smith”)

The testing of strings whose length may vary by large quantities and can be composed
of several worlds is incredibly difficult given that there are too many practical cases for

4.6. Testing 46

one to test. These two pairs of strings cover the two most interesting cases. The first case
represents the scenario in which two strings have the same information that can be expressed
in different ways. This is incredibly common as both strings are well written and the way
they are written just depends on the user that writes them. The second scenario deals with
the scenario where some information is omitted in one of the strings. This is also a very
common occurrence in texts written by humans in a human readable way.

Techniques 1st Pair 2nd Pair
Editex 0.26 0.60

Jaro-Wrinkler 0.55 0.88

Levenshtein Distance 0.15 0.58

Overlap Coefficient 0.5 1.0
Generalized Jaccard 0.59 0.66

Fuzzy Token Sort 0.74 0.71

Table 3: String/Language Based Techniques - Multiple Words Strings Testing.

The first thing that pops up when analysing Table 3 is the scores produced by the
techniques are much lower than the ones in Table 2. This is to be expected as the longer the
strings are, the more characters in each string can differ.

Both edit distance techniques, Editex and Levenshtein Distance, presented very poor
scores when dealing with the first pair and by that reason were not in contention to being
used by the tool, in spite of showing good results in the second pair. The Overlap Coefficient
technique got some very interesting results achieving the best result out of every technique
regarding the second pair and getting an average result for the first pair. The final decision
came down to choosing between the Jaro-Wrinkler and the Fuzzy Token Sort technique. On
the one hand, the Jaro-Wrinkler achieved polarizing results, resulting in an average score for
the first pair and a very good score for the second pair. On the other hand, the Fuzzy Token
Sort was the more consistent technique all around, achieving the best score for the first pair
out of every technique and an above average score for the second pair. Taking everything
into account, consistency ended up mattering more and the Fuzzy Token Sort was, once
again, the chosen technique.

4.6.2 Matching Module

Testing and producing results for the OMT tool proved to be challenging due to being
very hard to come across input ontologies designed for this purpose. This led to the ongoing
testing throughout the development process being made with self made small ontologies

4.6. Testing 47

designed with the intent of testing specifics corner cases that may happen but also making
use of the OAEI (Ontology Alignment Evaluation Initiative) 4. This initiative every year
produces datasets that can be used by Tools that wish to have their work benchmarked. A
minority of these datasets are available to the public and one was used to check how this
tool does against large input ontologies.

This subsection goes over this available ontology pair and the results the OMT tool
produced compared to what was intended.

The ontologies input deal with an Anatomy problem 5 whose purpose is find matches
between the anatomy of an Adult Mouse and of an Adult Human. These two ontologies are
solely built to test the matching of concepts. The concepts all have the mandatory IRI, a
Label providing a human readable description of the concept and hierarchical information
that related concepts to each other by means of Super and Sub Concepts. These ontologies
information lined up perfectly with the way the OMT works, since it attributes so much
value and priority to the Labels of the Concepts.

Figure 13: Basic Information about Input Ontologies.

Figure 13 presents the Basic Information of the input ontologies. As to be expected, both
ontologies do not have any Object or Data Properties and only have a very large quantity of
Concepts.

The creators of these example input ontologies consider that the perfect matching results
in 1516 concepts being matched while the others are merged into the final output ontology.
Before presenting the results the OMT tool achieved, it is worth reminding that this tool
matching algorithm is dependant on the matching threshold defined by the user. It is then
crucial to test the inputs against different threshold values to obtain a better sense of what
threshold might be the most accurate one.

4 http://oaei.ontologymatching.org/
5 http://oaei.ontologymatching.org/2016/anatomy/

4.7. Technologies and Techniques Used 48

Threshold ConceptsMatched ObjectPMatched DataPMatched
50% 2654 0 0

60% 2418 0 0

70% 2173 0 0

80% 1756 0 0

90% 1231 0 0

Table 4: Tool matching results testings.

Table 4 presents the results based on the threshold value that was chosen. As can be
seen, the lower thresholds of 50% and 60% are proven to be very lenient in the matching
process, achieving scores way outside of what is intended. Meanwhile, the threshold of 90%
proves to be too rigid. Therefore the threshold value of 80% appears to be the perfect middle
ground between a too lenient and a too rigid threshold. achieving a result of 1756 concepts
matched, a result very close to the one the ontologies creators intended.

To conclude, the testing process for the techniques to be used proved to be very useful
to determine what techniques to use in the different scenarios that may be presented. The
testing process for the tool’s algorithm gave insurance that this tool is presenting positive
and sucessful results dependending on the threshold value that is chosen but the lack of
available example ontologies made it very hard to cover all the scenarios possible.

4.7 technologies and techniques used

Multiple different technologies and techniques were used to implement the OMT tool.
This section will go over those technologies as well as explain what techniques were used in
what scenarios.

4.7.1 Technologies

When it comes to building the web application what would host the tool, Flask 6 was the
chosen one due to being a micro web framework that makes it very easy to build small web
applications.

Moving onto the String and Language Based techniques, the library StringMatching 7

was used. It is a library built in Python that already implements a wide variety of techniques
to compare the similarity of two strings.

6 https://flask.palletsprojects.com/en/2.2.x/
7 https://anhaidgroup.github.io/py_stringmatching/v0.4.x/index.html

4.7. Technologies and Techniques Used 49

Last but not least, NLTK 8 and its Wordnet 9 interface were used anytime it was required
to check if two or more words were synonyms of each other.

4.7.2 Techniques

This subsection covers all the techniques that are used to calculate the similarity between
two Strings.

To begin with, every String goes through a Language Based Technique called Stop-world
Elimination. This is a very important step to homogenize the inputs before comparing them.
It is done by eliminating or changing every character that is not considered relevant for the
comparison. The inputs are converted to lower case and every character that is not a letter
or a number is erased as well as consecutive whitespaces. Lastly, the specific words and, the
and ’s are also erased.

As shown in the Section 4.6, the technique that presented the best results was Fuzzy
Token Sort and therefore this technique is used in every scenario that required two strings
being compared for similarity.

8 https://www.nltk.org/
9 https://www.nltk.org/howto/wordnet.html

5

C O N C L U S I O N

In this document, the area of ontology matching is explored. It is done so by, firstly,
exploring the world of ontologies, how they came to be and what led to their develop-
ment. It is explained how, without any ontology standards, the portability issue became
overwhelming, leading to the first attempts at creating languages with the intent to express
information in an ontology format, such as KIF, CycL and Ontolingua. Afterwards, the
ontology matching problem is presented, alongside its motivation and its importance in
today’s world. In Section 2.3.1, some of the techniques used to find matches are presented,
such as string, languages, constraints and instance based techniques. In section 2.4, some of
already existing tools are analysed and presented, giving special importance to the type of
inputs they process as well as the methods they use to reach the matching goal. Moving on
from the ontology matching problem, our proposed solution to this problem alongside its
architecture was presented, providing an explanation of all the components that make up
our tool. After the proposed solution is presented, the development processed is explained.
Firstly, focusing on the reasoning and logic behind the tool’s algorithm for comparing and
matching ontology objects and the techniques that were used to do so. Secondly focusing on
an additional feature that was not planned from the start, the Log File. The Log File is a
functionality of the OMT tool that allows the user to download detailed information about
the matching process and all the decisions that led to the final merged ontology. Last but
not least, an explanation of the Web Application that was developed to host the OMT tool is
given providing insight on the different interfaces that it provides and how to use them.

This Master Thesis’s two main objectives are considered achieved. The first objective led
to the study of some of the already existing Ontology Matching Tools which allowed to
compare the advantages and disadvantages of each and helped us set up the specific goals
for our tool. These specific goals became to build a full autonomous tool that does not
require the need for human interaction and allows multiple input ontology formats. In the
context of this Master Thesis, a Paper was written and published presenting an early look at
the prototype that would later become this tool as well as the study and research process of
the state of the art. (Gomes et al., 2022)

50

51

Despite being pleased by the accomplishment of the objectives that were set as well as
some extra features that were not planned from the beginning, there are still some features
that can be worked on. For future work, every different module of the tool can be improved
upon. Support can be added to more ontology languages in order for them to be acceptable
by this tool. In the algorithms the tool uses, a more robust solution can be built that would
make better use of the hierarchical information present in the ontologies as well as the
individuals.

B I B L I O G R A P H Y

Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Horrocks, Deborah McGuinness,
Peter Patel-Schneijder, and Lynn Andrea Stein. OWL Web Ontology Language Reference.
Recommendation, World Wide Web Consortium (W3C), February10 2004. See http:

//www.w3.org/TR/owl-ref/.

Gavin Carothers and Eric Prud’hommeaux. RDF 1.1 turtle. February 2014. URL http:

//www.w3.org/TR/2014/REC-turtle-20140225/.

William W. Cohen, Pradeep Ravikumar, and Stephen E. Fienberg. A comparison of string
distance metrics for name-matching tasks. In IIWeb, 2003.

Isabel F. Cruz, Flavio Palandri Antonelli, and Cosmin Stroe. Agreementmaker: Efficient
matching for large real-world schemas and ontologies. Proc. VLDB Endow., 2:1586–1589,
2009.

Jérôme David, Fabrice Guillet, and Henri Briand. Matching directories and owl ontologies
with aroma. pages 830–831, 01 2006.

Hong-Hai Do and Erhard Rahm. Chapter 53 - coma — a system for flexible combination
of schema matching approaches. In Philip A. Bernstein, Yannis E. Ioannidis, Raghu
Ramakrishnan, and Dimitris Papadias, editors, VLDB ’02: Proceedings of the 28th In-
ternational Conference on Very Large Databases, pages 610–621. Morgan Kaufmann, San
Francisco, 2002.

Jérôme Euzenat, Pavel Shvaiko, et al. Ontology matching, volume 18. Springer, 2007.

Sean M. Falconer and Natalya F. Noy. Interactive Techniques to Support Ontology Matching,
pages 29–51. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

Richard Fikes and Tom Kehler. The role of frame-based representation in reasoning. Commun.
ACM, 28, 1985.

Michael Genesereth, Richard Fikes, Ronald Brachman, Thomas Gruber, Patrick Hayes,
Reed Letsinger, Vladimir Lifschitz, Robert Macgregor, John Mccarthy, Peter Norvig,
Ramangouda Patil, and Len Schubert. Knowledge interchange format version 3.0
reference manual. 09 1992.

52

http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/2014/REC-turtle-20140225/
http://www.w3.org/TR/2014/REC-turtle-20140225/

BIBLIOGRAPHY 53

João Rodrigues Gomes, Alda Lopes Gançarski, and Pedro Rangel Henriques. OMT, a
Web-Based Tool for Ontology Matching. In João Cordeiro, Maria João Pereira, Nuno F.
Rodrigues, and Sebastião Pais, editors, 11th Symposium on Languages, Applications and
Technologies (SLATE 2022), volume 104 of Open Access Series in Informatics (OASIcs),
pages 8:1–8:12, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. ISBN 978-3-95977-245-7. doi: 10.4230/OASIcs.SLATE.2022.8. URL https:

//drops.dagstuhl.de/opus/volltexte/2022/16754.

Thomas R. Gruber. A translation approach to portable ontology specifications. Knowledge
Acquisition, 5(2):199–220, 1993.

Thomas R. Gruber. Toward principles for the design of ontologies used for knowledge
sharing? Int. J. Hum. Comput. Stud., 43:907–928, 1995.

Walid Hassen. Medley results for oaei 2012. In Proceedings of the 7th International Conference
on Ontology Matching - Volume 946, OM’12, page 168–172, Aachen, DEU, 2012. CEUR-
WS.org.

Sven Hertling. Hertuda results for oaei 2012. In OM, 2012.

Fumiko Kano Glückstad. Terminological ontology and cognitive processes in translation.
pages 629–636, 01 2010.

Prodromos Kolyvakis, Alexandros Kalousis, and Dimitris Kiritsis. Deepalignment: Un-
supervised ontology matching with refined word vectors. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Papers), pages 787–798, 2018.

Konstantinos Kotis, Alexandros G Valarakos, and George A Vouros. Automs: Automated
ontology mapping through synthesis of methods. In Ontology Matching, page 96, 2006.

André Lara, Pedro Rangel Henriques, and Alda Lopes Gançarski. Visualization of ontology
evolution using ontodi graph. 2017.

Douglas Lenat, Ramanathan Guha, Karen Pittman, Dexter Pratt, and Mary Shepherd.
Cyc: Toward programs with common sense. Commun. ACM, 33:30–49, 08 1990. doi:
10.1145/79173.79176.

Douglas B. Lenat and Ramanathan V. Guha. Building large knowledge-based systems:
Representation and inference in the cyc project. 1990.

Jorge Martinez-Gil, Ismael Navas Delgado, and Jose Aldana Montes. Maf: An ontology
matching framework. Journal of Universal Computer Science, 18:194–217, 01 2012. doi:
10.3217/jucs-018-02-0194.

https://drops.dagstuhl.de/opus/volltexte/2022/16754
https://drops.dagstuhl.de/opus/volltexte/2022/16754

BIBLIOGRAPHY 54

Usman Muhammad and Imran Khan. Similarity measures and their aggregation in ontology
matching. International Journal of Computer Science and Telecommunications, 3:52–57, 05

2012.

Lorena Otero-Cerdeira, Francisco Javier Rodríguez-Martínez, and Alma María Gómez-
Rodríguez. Ontology matching: A literature review. Expert Syst. Appl., 42:949–971,
2015.

Willem van Hage, Antoine Isaac, and Zharko Aleksovski. Sample evaluation of ontology-
matching systems. pages 41–50, 01 2007.

Peng Wang. Lily results on seals platform for oaei 2011. In OM, 2011.

Lu Zhou, Michelle Cheatham, and Pascal Hitzler. Towards Association Rule-Based Complex
Ontology Alignment, pages 287–303. 02 2020. ISBN 978-3-030-41406-1. doi: 10.1007/
978-3-030-41407-8_19.

	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Research Hypothesis
	1.4 Methodology
	1.5 Document Structure

	2 State of the Art
	2.1 Ontologies
	2.1.1 KIF
	2.1.2 CycL
	2.1.3 Ontolingua

	2.2 Ontology Standards and Notations
	2.2.1 RDF Standard
	2.2.2 OWL
	2.2.3 Turtle
	2.2.4 OntoDL+

	2.3 Ontology Matching
	2.3.1 Matching Techniques

	2.4 Existing Tools
	2.4.1 AROMA
	2.4.2 AUTOMS
	2.4.3 Hertuda
	2.4.4 AgreementMaker
	2.4.5 MEDLEY

	2.5 Summary

	3 Proposed Approach
	3.1 Ontology Matching tool inputs
	3.2 Converter/Recognizer
	3.3 Matcher and Merger
	3.4 Converter to an Ontology

	4 Development
	4.1 Input Converter/Recognizer Module
	4.1.1 Concepts Processing
	4.1.2 Data Properties Processing
	4.1.3 Object Properties Processing
	4.1.4 Technologies used

	4.2 Matcher/Merger Module
	4.2.1 Common Properties
	4.2.2 Concepts Matching
	4.2.3 Data Properties Matching
	4.2.4 Object Properties Matching

	4.3 Output Converter Module
	4.3.1 Concepts Matching
	4.3.2 Object Properties Matching
	4.3.3 Data Properties Matching

	4.4 Log File
	4.4.1 Comparison Information
	4.4.2 Matching Information

	4.5 Web Interface
	4.5.1 File Upload Section
	4.5.2 Data Section

	4.6 Testing
	4.6.1 String and Language Based Techniques Testing
	4.6.2 Matching Module

	4.7 Technologies and Techniques Used
	4.7.1 Technologies
	4.7.2 Techniques

	5 Conclusion

