
Universidade do Minho
Escola de Engenharia
Departamento de Informática

Miguel António Ferrão Brito

Identification of Microservices from Monolithic
Applications through Topic Modelling

January 2021

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Miguel António Ferrão Brito

Identification of Microservices from Monolithic
Applications through Topic Modelling

Master dissertation
Master in Informatics Engineering

Dissertation supervised by
Prof. Dr. Jácome Cunha
Prof. Dr. João Saraiva

January 2021

i

AUTHOR COPYRIGHTS AND TERMS OF USAGE BY THIRD PARTIES

This is an academic work which can be utilised by third parties given that the rules and
good practices internationally accepted, regarding author copyrights and related copyrights.

Therefore, the present work can be utilised according to the terms provided in the license
bellow.

If the user needs permission to use the work in conditions not foreseen by the licensing
indicated, the user should contact the author, through the RepositóriUM of University of
Minho.

License provided to the users of this work

Attribution CC-BY
https://creativecommons.org/licenses/by-nc/4.0/

ii

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have
not used plagiarism or any form of undue use of information or falsification of results along
the process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the
University of Minho.

Miguel Brito

A C K N O W L E D G E M E N T S

I would like to thank my adviser Dr. Jácome Cunha and co-adviser Dr. João Saraiva, for
their continued and consistent support and guidance through this enthusiastic experience
over the last year.

A special thanks to Wuxia Jin from Xi’an Jiantong University for providing some of
the metrics implementation and for helping out on solving some unclear concepts on the
remaining metrics.

Last but not least, a special thanks to my family and friends for supporting me through
this thesis, as well as my entire education that ultimately lead to this work.

iii

A B S T R A C T

Microservices emerged as one of the most popular architectural patterns in the recent
years given the increased need to scale, grow and flexibilize software projects accompanied
by the growth in cloud computing and DevOps. Many software applications are being
submitted to a process of migration from its monolithic architecture to a more modular,
scalable and flexible architecture of microservices. This process is slow and, depending on
the project’s complexity, it may take months or even years to complete.

This dissertation proposes a new approach on microservices identification by resorting
to topic modelling in order to identify services according to domain terms. This approach
in combination with clustering techniques produces a set of services based on the original
software. The proposed methodology is implemented as an open-source tool for exploration
of monolithic architectures and identification of microservices. An extensive quantitative
analysis using the state of the art metrics on independence of functionality and modularity
of services was conducted on 200 open-source projects collected from GitHub. Cohesion at
message and domain level metrics showed medians of roughly 0.6. Interfaces per service
exhibited a median of 1.5 with a compact interquartile range. Structural and conceptual
modularity revealed medians of 0.2 and 0.4 respectively. Further analysis to understand if
the methodology works better for smaller/larger projects revealed an overall stability and
similar performance across metrics.

Our first results are positive demonstrating beneficial identification of services due to
overall metrics’ results.

Keywords: microservice architecture, monolithic decomposition, topic modelling, soft-
ware clustering

iv

R E S U M O

Os microserviços emergiram como um dos padrões arquiteturais mais populares na
atualidade dado o aumento da necessidade em escalar, crescer e flexibilizar projetos de
software, acompanhados da crescente da computação na cloud e DevOps. Muitas aplicações
estão a ser submetidas a processos de migração de uma arquitetura monolítica para uma
arquitetura mais modular, escalável e flexivel de microserviços. Este processo de migração é
lento, e dependendo da complexidade do projeto, poderá levar vários meses ou mesmo anos
a completar.

Esta dissertação propõe uma nova abordagem na identificação de microserviços recorrendo
a modelação de tópicos de forma a identificar serviços de acordo com termos de domínio de
um projeto de software. Esta abordagem em combinação com técnicas de clustering produz
um conjunto de serviços baseado no projeto de software original. A metodologia proposta é
implementada como uma ferramenta open-source para exploração de arquiteturas monolíticas
e identificação de microserviços. Uma análise quantitativa extensa recorrendo a métricas
de independência de funcionalidade e modularidade de serviços foi conduzida em 200

aplicações open-source recolhidas do GitHub. Métricas de coesão ao nível da mensagem
e domínio revelaram medianas em torno de 0.6. Interfaces por serviço demonstraram
uma mediana de 1.5 com um intervalo interquartil compacto. Métricas de modularidade
estrutural e conceptual revelaram medianas de 0.2 e 0.4 respetivamente. Uma análise
mais aprofundada para tentar perceber se a metodologia funciona melhor para projetos de
diferentes dimensões/características revelaram uma estabilidade geral do funcionamento do
método.

Os primeiros resultados são positivos demonstrando identificações de serviços benéficos
tendo em conta que os valores das métricas são de uma forma global positivos e promissores.

Palavras-chave: arquitetura de microserviços, decomposição de monólitos, modelação de
tópicos, clustering de software

v

C O N T E N T S

1 introduction 1

2 background 4

2.1 Monoliths 4

2.2 Microservices 5

2.2.1 Advantages 5

2.2.2 Challenges 7

3 state of the art 9

3.1 Manual migration from monoliths to micro-services 9

3.2 Source-code oriented solutions 11

3.2.1 Static analysis solutions 12

3.2.2 Dynamic analysis solutions 13

3.3 Model-oriented solutions 14

3.4 Summary 16

4 a methodology towards the identification of microservices 17

4.1 Information Extraction 17

4.2 Topic modelling 19

4.2.1 Latent Dirichlet Allocation 19

4.3 Clustering 21

5 implementation 26

5.1 Information extraction 26

5.1.1 Project parsing 26

5.2 Topic modelling 28

5.3 Clustering 30

5.4 Metrics 30

6 case study 31

7 evaluation 35

7.1 Independence of functionality 35

7.2 Modularity 36

7.3 Scope of action 37

7.4 Project collection 38

7.5 Setup 39

7.6 Results 40

7.7 Analysis 42

vi

contents vii

7.7.1 Correlation analysis with metrics 42

7.7.2 Resolution selection and analysis 49

7.8 Performance 57

7.9 Threats to validity 59

8 conclusion 61

8.1 Contributions 61

8.2 Future work 62

a appendix 69

a.1 Identified clusters for JpetStore by resolution 69

a.1.1 Cluster resolution: 0.6 69

a.1.2 Cluster resolution: 0.7 70

a.1.3 Cluster resolution: 0.8 71

a.1.4 Cluster resolution: 0.9 72

a.1.5 Cluster resolution: 1 & 1.1 73

a.2 Metrics results of GitHub Projects 74

L I S T O F F I G U R E S

Figure 1 Proposed migration plan 10

Figure 2 Coupling criteria proposed by Gysel et al. (2016) 14

Figure 3 Overview of the architecture of the proposed method and developed
tool 17

Figure 4 Intertopic distance with number of topics set to 8 21

Figure 5 Intertopic distance with number of topics set to 11 22

Figure 6 Identification of knee point for coherence over number of topics 23

Figure 7 Weighted graph representation 24

Figure 8 Overall flow of the tool 27

Figure 9 JpetStore’s metrics regarding independence of functionality and mod-
ularity 34

Figure 10 Clustering using topic distribution similarity as weight 34

Figure 11 Survey on Java frameworks usage 38

Figure 12 Histogram of collected projects by class count 40

Figure 13 Metrics’ box plot across 200 projects 41

Figure 14 IFN’s box plot across the 200 projects 42

Figure 15 Box plot of both ratios 44

Figure 16 Box plot for CHM (left) and CHD (right) across ranges of Method
Declarations / Classes 45

Figure 17 Box plot for SMQ (left) and CMQ (right) across ranges of Method
Declarations / Classes 45

Figure 18 Box plot ranges of IFN across ranges of Method Declarations / Classes 45

Figure 19 Box plot for CHM (left) and CHD (right) across ranges of Method
Invocations / Classes 46

Figure 20 Box plot for SMQ (left) and CMQ (right) across 46

Figure 21 Box plot ranges of IFN across ranges of Method Invocations / Classes 46

Figure 22 Box plot for CHM (left) and CHD (right) across ranges of classes 48

Figure 23 Box plot for SMQ (left) and CMQ (right) across ranges of classes 48

Figure 24 Box plot ranges of IFN across ranges of classes 48

Figure 25 Metrics across resolution for ’biliob-backend’ (200 classes) 49

Figure 26 Metrics across resolution for ’jeecg-bpm’ (810 classes) 50

Figure 27 Metrics across resolution for ’open-cyclos’ (2514 classes) 50

Figure 28 Metrics across resolution for ’oztrack’ (213 classes) 51

viii

list of figures ix

Figure 29 Metrics across resolution for ’ActivationCodeMall’ (307 classes) 52

Figure 30 Metrics across resolution for ’api-manager’ (181 classes) 52

Figure 31 Metrics across resolution for ’CSC191’ (32 classes) 53

Figure 32 Metrics across resolution for ’paladin-boot’ (328 classes) 53

Figure 33 Metrics across resolution for ’H5APP-java’ (39 classes) 54

Figure 34 Metrics across resolution for ’WMSystem’ (816 classes) 54

Figure 35 Box plot of execution time in minutes across groups of classes 58

L I S T O F TA B L E S

Table 1 Top 10 stemmed words belonging to each topic 31

Table 2 Topic distribution for each class on the JPetStore project (The distri-
bution is expected to sum to 1, however due to rounding there are
cases where that does not happen) 33

Table 3 Correlation between metrics and both ratios. 43

x

1

I N T R O D U C T I O N

One of the main problems during the development of a large scale application, arises
during the increasing difficulty in addition of new functionality and maintenance of the
current one given the increased complexity of the software project (Visser, 2016). The
increase in complexity typically results in functionality being spread across different sections
of the application, making the process of identification and correction of bugs harder. In
order to deal with such problem in monolithic architectures abstractions are created with
the goal to ensure greater cohesion between similar functionally, striving to follow the Single
Responsibility Principle (SRP) - merge things that change for the same reason, and segregate
things that change for different reasons (Newman, 2015). However, abstractions themselves
with evolution increase in degree of complexity and become harder to reason about. At this
stage, advantages of a monolithic architecture are inferior to its disadvantages (Chen et al.,
2017).

The decomposition of systems into modules began to be systematised and debated
by Parnas (1972) long before the massification of software systems. Parnas intended to
demonstrate that the efficiency of the modularisation of a system depends on the criteria
used, contrary to the pure fragmentation of systems into small modules.

The relevance of the functional decomposition of systems initially mentioned by Parnas
was reinforced by the demand to distribute complex systems through network infrastructures
such as web services and remote objects resulting from efforts to deal with systems of greater
dimension and complexity (Kamimura et al., 2018).

From the difficulty to manage the inherent complexity due to the evolution of large scale
projects, greater difficulty in applying changes, maintaining the project, fixing bugs and
unnecessarily big deployments the microservice architecture (MA) arised: small autonomous
and cohesive services, with the goal to ensure and maintaining the Single Responsibility
Principle. Each service is in charge of a small set of tasks and responsible for doing them
well (Newman, 2015). Microservices allow greater heterogeneity of technologies granting
the ability for each service to be programmed in a different language as long as there is
a common technology to communicate. Microservices allow for better resilience, given
the existence of more processes reducing the possibility of a localised system failure to
crash the entire system. Microservices can be scaled more efficiently focusing the resources

1

2

on specific services that receive the most frequent and taxing tasks. Apart from the more
technical aspects, microservices provide better agility and ease to the process of developing
software since the services can be distributed across multiple teams and a higher level of
isolation is ensured. Overall, microservices provide answers to multiple challenges that arise
throughout the evolution of a software system into more complex versions.

Microservices have/are been quickly adopted to develop new software. There are, however,
many legacy software systems that were developed before MA were introduced, but that
can benefit from the agility and flexibility MA software development offers (Newman,
2015). This is particularly relevant when we consider the usual maintenance and evolution
processes required in a modern software life-cycle. In order to benefit from MA such legacy
software systems - that we call monolithic software systems - need to be refactored into a
semantically equivalent microservice-based one. Performing such refactoring manually is
both complex/time consuming and prone to errors, and its quality is often strongly linked
to the experience and knowledge of the specialist leading the said refactoring (Kamimura
et al., 2018; Pahl and Jamshidi, 2016). The refactoring is typically done following a Strangler
pattern, that is, incrementally migrating and replacing modules of the system into a new
architecture until the migrated systems overcome the old system.

The transition process from a monolithic application into a more modular microservices
architecture is expensive, laborious and filled with unique challenges according to each
system (Kazanavičius and Mažeika, 2019), which might oblige to put aside current resources
(i.e. software development teams) to work on the migration in parallel or completely stop
the development of further functionalities in more extreme cases. Furthermore, the process
is limited by the knowledge and experience of the expert carrying out such migration
(Pahl and Jamshidi, 2016), typically resulting in the introduction of anti-patterns during the
decomposition of the system (Fritzsch et al., 2019).

Given the considerable investments needed to migrate a monolith to a MA, there is a
strong necessity for methodologies, processes and tools that reduce the time and amount of
work needed and make the whole process more efficient and less error prone.

The identification of microservices in legacy monolithic systems is still an open problem
with just a few proposed approaches (Mazlami et al., 2017; Kamimura et al., 2018; Jin et al.,
2018, 2019; Gysel et al., 2016; Chen et al., 2017). Most of these proposals, however, use their
own quality metrics to assess the quality of the achieved transformation. Moreover, they
are not supported by a tool that can be automatically applied to a legacy system, and as
consequence the approaches are validated in a small (less than ten) number of monolithic
systems. The exception is Jin et al. (2019), which uses a dynamic analysis approach: it
runs the legacy software system, to infer the microservices so to migrate it into a MA one.
Although it provides good results, it has the disadvantage of requiring inputs or test cases to

3

properly execute the system. Unfortunately, this is not the case in most legacy systems (Petrić
et al., 2018).

In this dissertation we propose a static analysis technique to identify microservices in a
legacy software system based on topic models. Topic models (Kherwa and Bansal, 2018)
allow to mine a set of topics across a collection of documents. Thus, by applying topic
modelling to a monolithic software system we identify the systems’ topics, which correspond
to domain terms, and represent the microservices implemented by that legacy systems. Such
topic models are inferred from the collection of lexical information in the source code,
namely method declarations, method invocations, variables and class names, etc. For
instance, considering a software for managing stocks, one would expect to find terms related
to products, suppliers, etc. The collection of components with related names are likely part
of the same microservice. We explore in detail this idea in this dissertation. The mined
topics can then be combined into the structural information of the source code into a graph.
Such graph is then clustered in order to identify microservices.

To assess the quality of the identified microservices we use the MA metrics proposed
in Jin et al. (2019) that evaluate the independence of functionality and modularity of
microservices. Furthermore, the proposed methodology is implemented as an open-source
tool1 for exploration of monolithic applications. This tool was validated by performing a
quantitative analysis study on 200 open-source monolithic software systems collected from
GitHub. The results obtained concerning MA metrics’ are positive. Regarding independence
of functionality, CHM and CHD presented a median of roughly 0.6; IFN presented a median
of 1.5. Modularity metrics of SMQ and CMQ demonstrated median values of 0.2 and 0.4
respectively. Overall the results are positive, showing relevant proposals of microservices
and a promising first step to refactor monolithic applications.

The remainder of this dissertation is structured as follows: Section 2 introduces the reader
to the concepts of monolithic and microservices architectures; Section 3 describes the current
state of the art on microservice identification and the overall process of migration; Section 4

presents the methodology we devised for microservices identification; Section 5 describes
the implementation of the proposed methodology into a prototype; Section 6 discusses a
case study and a walkthrough of the methodology applied to an example project; Section 7

describes the steps taken to quantitatively analyse our methodology and concludes with our
results; Finally, Section 8 ends with some conclusions and future work.

1 https://github.com/miguelfbrito/microservice-identification

2

B A C K G R O U N D

In order to identify microservices from a monolithic architecture, it is necessary to firstly
understand the core ideas behind each architecture, their benefits and challenges inherited
by the way they are structured and how their components interact and its impact on the
software development process.

2.1 monoliths

Many of the web applications we interact with nowadays were built according to a
monolithic architecture.

This architectural style is characterised by an application composed of all the core logic
related to the domain of the problem contained in a single process (Newman, 2015). This
type of architecture is typically responsible for handling all the functionality related to
persistence and manipulation of data according to the business domain. The outermost layer,
may also be responsible for serving the interface for interaction with the user, or, exposing
its functionality through an API.

Although described as an architectural style that is not very modular compared to a micro-
service architecture, its modularity is achieved using underlying programming techniques,
such as abstractions, implementations and extensions, thus allowing the much needed
modularity to handle more complex problems and adding new features.

Inherent to the way this architecture is structured, some advantages of its usage can be
identified: rapid and simple development at the beginning of the project; simplicity in
the process of deployment given the existence of a single component and simpler to scale
horizontally.

The mentioned advantages are especially appealing when starting a project, or it is a
short duration or low complexity project, however, for other situations long-term thinking is
essential, especially since it is estimated that about 50 % of the development cost of software
is allocated to maintenance (Alija, 2017). Representing such a significant percentage of the
cost of the project, keeping the project open to new functionality, bug fixes and technical debt
under control is essential, and also the main challenges developers face given the continued

4

2.2. Microservices 5

growth in project complexity and size. The deployment, although simpler in procedural
terms, updating deploys to new versions requires the re-deploy of the application completely.
The fact that the deployment is done in relation to a single process, which, in case of failure
in one of the application modules, can propagate the failure throughout the process will
increase unreliability and decrease resilience to failures.

Overall, monolithic architectures accompanied by good design practices at a structural
level, which seek to reduce coupling and increase cohesion are sufficient to deal with a
wide range of standard solutions. Most of the disadvantages are associated with the high
granularity at which the deploy process is conducted, the way they deal with failures and
the lack of flexibility to make changes in advanced stages of the project.

2.2 microservices

Microservices are described by Fowler and Lewis (2014) as an application architecture
composed of a set of small services, each one being independent and self-contained, executed
in its process, with the objective of performing a small set of tasks well. With its isolation,
there is a need for a communication layer. Typically, each of the services exposes its API,
which will receive requests and respond according to the logic defined in the service.

Inspired by the Service Oriented Architecture (SOA), which aims to deal with some of the
difficulties present in managing monolithic architectures of high complexity by fragmenting
the application in various services, the same philosophy of application fragmentation was
continued. Although in a finer granularity, with the intent to share as little as possible
between microservices. The principle of single responsibility is one of the main focuses in
defining the segregation of services.

2.2.1 Advantages

The advantages of micro-services are varied compared to monolithic architectures. Several
of the advantages associated with micro-services are the result of the adopted characteristics
of distributed systems and by taking the philosophy of service-oriented architectures to a
greater extreme.

Heterogeneity of technologies

Communication between micro-services is typically done over HTTP using a technology
totally independent of the language, one of the most popular being the REST (Representational
State Transfer) APIs that serve information generally by JSON (JavaScript Object Notation or
XML (eXtensible Markup Language).

2.2. Microservices 6

Thereby, the existence of multiple languages across application’s technological stack is
possible. If a particular service needs performance improvements, the change to a technology
that allows working with lower level and optimise the functionality of a specific service,
will have no impact on the rest of the system at a functional level, as long as the interfaces
exposed keep the same contract and functionality.

Flexibility in deploys

No matter how small the change made to the application, a monolithic system requires
the deployment to encompass the entire application. To decrease the time of downtime the
deploys are heavier since they cannot be as frequent. However, accumulating changes made
to a single deploy will bring a higher risk as it will be more error prone. Several changes
also make it difficult to identify any problems as they are spread across several application’s
components.

In contrast, micro-services seek to maintain a close relationship with DevOps culture and
the philosophies of Continuous Integration (CI) and Continuous Delivery (CD), philosophies
that streamline the process of deployment, by integrating automated pipelines responsible for
performing pre-defined code verification and validation tasks, and consequently performing
deployment to production. Following this philosophy, deploys go from infrequent, containing
several features spread over several modules, to very frequent, with each release strictly
associated with its service. Frequent deploys and specific to a service, reduce the risk of
problems, decrease downtime and make it easier to identify the source of problems that
arrive in production (Newman, 2015).

Frequent deploys allow for a closer relationship with cycles of agile methodologies, which
place great importance on constant interaction and feedback with customers and end users.

Scalability

When the need to scale a monolithic application by necessity presented by a given module
arises, the entire application must also be scaled. The level of granularity to scale an
application of this kind is quite high, and as such, quite inefficient, resulting in a huge waste
of computational resources and extra costs. In contrast, micro-services allow for considerably
fine-grained scalability, providing scalability only for services that are overloaded. Thus,
there will be greater efficiency of resources in use and cost reduction. The fine granularity
of services also allows for optimisations at an architectural level

Resilient and fault-tolerant

Dealing with failures, especially when said system is a large and complex system is
inevitable. The distributed systems nature of micro-services, provide the ability to isolate

2.2. Microservices 7

and limit failures to certain sections of the application, contrary to what would happen
in a monolithic application, where the failure in a functionality can result in the complete
failure of the entire application. Transitioning from a monolithic architecture to a MA
does not automatically solve all these problems by itself (Behara, 2018), in an initial phase,
micro-services will be particularly vulnerable to failures, given the addition of network
communication being more prone to failures than pure memory communication. However,
increasing from a single point of failure to several is the key feature in making a system
based on distributed systems resilient and fault tolerant.

Using standards such as the Bulkhead pattern, an analogy to ships’ waterproofing systems,
which allow water to enter the hull to be contained and isolated by compartments, it is
also possible to isolate faults and keep the rest of the service functional, using groups
of services that will be self-contained, without affecting the availability of the remaining
services (Bulkhead Pattern).

Organisational structure

The work carried out by large teams on complex projects is in itself a complex and
difficult task to manage. Usually, teams are kept in small groups of elements to facilitate
this management. This fragmentation into teams is aligned in a natural way with what
is expected from micro-services (Newman, 2015), that is, the work carried out by a team
will typically be associated with a specific segment that will be represented by a set of
micro-services. According to Conway (1967), organisations that design systems, produce
systems that reflect the organisational structure of the organisation itself. The occurrence of
team segregation according to the business’ domain and its functionality causes the number
of communication channels between the different teams to be optimised and reduced and
the impact of the organisational structure on the software is also reduced.

2.2.2 Challenges

Several of the challenges of using microservices are actually challenges inherent in the use
of distributed systems. These must be taken into account in the design of a microservice
architecture.

The segregation of the various services to different processes requires communication
over the network, contrary to what happens in monoliths, where communication between
components is carried out in memory. Communications using HTTP in REST APIs or
Advanced Message Queuing Protocol (AMQP) are typically used (Wenzel et al., 2020). This
type of communication adds a layer of overhead not found in monolithic applications,
requiring the analysis of its use in components that need to have very short response times
and are primarily focused on performing operations quickly.

2.2. Microservices 8

In an initial phase and in simpler systems, access to services will be made by consulting
configuration files composed by the respective locations of the services, allowing for simpler
and direct access to the desired service, however, in order to deal with failures and automat-
ically scale the services, the usage of dynamic assignments is imperative, adding another
level of complexity. Typically, the said layer is composed of a discovery pattern in order to
identify available services to where the communication can be established. The need to add
this pattern contributes to increasing the complexity of the infrastructure due to the need for
its correct configuration and the addition of another component that has to be monitored
and taken into account when failures in the system are identified.

The identification of bugs and failures by performing high-level tests, such as end-to-end
tests and integration tests, becomes more complex, since it is necessary to create stubs of the
remaining services to ensure isolation of the fraction that is tested against the rest of the
system (Newman, 2015).

Similarly to the testing of the system as a whole, performing debug of the system becomes
more difficult, since there is a high amount of logs created by the different services making it
tougher to isolate failures being propagated across services (Nemer, 2019). The use of log
aggregators and other systems is essential in trying to mitigate this problem.

3

S TAT E O F T H E A RT

Decomposition of systems into modules has a topic started to be systematised and debated
by Parnas (1972) long before the massification of software systems. In his work, Parnas
intends to demonstrate that the efficiency of the modularisation of a system depends on
the criterion used, with fragmentation in small modules not being the path to success, but
rather the way in which the segregation criterion is chosen.

The relevance of the functional decomposition of systems initially mentioned by Parnas,
was reinforced by the large necessity to distribute complex systems over network infrastruc-
tures such as web services and remote objects resulting from efforts to deal with larger and
more complex systems (Kamimura et al., 2018) and the adaptation to cloud infrastructure.

The main challenges of said decomposition are mainly the manual and tedious work
accompanied by the difficulty in identifying the functional units given the need for a detailed
analysis of the various dimensions of the software architecture. The quality of the final result
is often strongly linked to the experience and knowledge of the specialist who performs
said decomposition (Kamimura et al., 2018; Pahl and Jamshidi, 2016). It is common for such
migrations to introduce common anti-patterns of microservices design (Fritzsch et al., 2019).

3.1 manual migration from monoliths to micro-services

In this section, an analysis of the bibliography is performed regarding the migration
processes from monolithic architectures to microservices carried out manually, by specialists,
in industrial scale projects. An attempt is made to identify knowledge about which elements
of the transition process can be identified and systematised in order to collect useful
information with the goal to automate specific sections of the process.

With the rising popularity in usage of microservices architectures as an alternative to some
of the problems inherent in monolithic architectures, the need to formalise such migration
and the identification of methodologies and processes to improve and increase its efficiency
raises as well.

Many software architects responsible to provide design solutions to complex software
systems see the transition of their legacy application to microservices as an advantage in

9

3.1. Manual migration from monoliths to micro-services 10

order to improve and make the software development process more efficient. However,
migrating architectures is a complex process, very dependent of the domain of the problem
and the specificities of said software, being necessary many iterations until said migration
could be deemed as finished (Dehghani, 2018).

In order to combat the ad-hoc component carried out so far in the migration process,
Balalaie et al. (2018) collected a set of design patterns identified empirically by analysing
migration processes of industrial level applications. Their work seeks to make an analysis that
encompasses the entire migration process, from the identification of the current architecture
and its decomposition in different services, to processes related to DevOps and migration to
the cloud by processes of CI, CD, introduction of service discovery, load balancing, orchestration
of containers, etc.

Since a rigid, one-size-fits-all style would never be functional given the high uniqueness
resulting from complex and domain specific solutions, and the variety of how software
systems are composed, Balalaie et al. (2018) use an approach called Situational Method
Engineering (SME) (Henderson-Sellers et al., 2014). In a concise way, a method can be
designed according to the specific situation through a set of migration patterns (Balalaie
et al., 2018). Each migration pattern is used according a specific phase of the process
and deals with things such as: continuous integration, architecture recovery, monolithic
decomposition, service registry, load balancers, etc. In this dissertation we will be particularly
focused on the monolithic decomposition phase.

From his empirical study and the application of SME, a repository of 16 patterns accom-
panied by a migration plan was proposed (illustrated in Figure 8) which seeks throughout
the process to deal with possible situational dependencies between the various steps.

Figure 1: Proposed migration plan

Source: Balalaie et al. (2018)

In interaction with three companies that carried out the migration of their large-scale
monolith, they found that of the 16 patterns identified, 85 % were used in the migration to
micro-services.

3.2. Source-code oriented solutions 11

With a similar objective of investigating and systematising the migration process, Fritzsch
et al. (2019) carried out a qualitative study regarding the intentions, strategies and challenges
in the migration process of 14 large-scale systems with expected migration periods between
1.5 and 3 years) from different domains (public transport systems, hotel management,
retail, etc.), using detailed interviews from 16 experienced professionals from 10 different
companies.

From the carried out analysis, they conclude that the difficulty in dealing with the
maintenance of the systems and the need for more efficient scalability continues to be the
crucial factors in originating the transition to microservices. One of the main challenges
reported in the migration process was how to decompose the systems. Seven participants
chose a functional decomposition approach, described by Fowler and Lewis (2014), of which,
four resorted to domain-driven design techniques. The remaining participants opted for
non-systematic approaches (Fritzsch et al., 2019).

None of the participants in the study considered or was aware of the existence of auxiliary
techniques that could be used in the decomposition of their systems (eg. static code analysis,
execution traces analysis) (Fritzsch et al., 2019). Six of the participants made proposals for
micro-services with anti-patterns (Wrong Cuts, Shared Persistency, Service Intimacy, patterns
identified by Taibi et al. (2018)), resulting from inappropriate decompositions.

Despite the massive adaptation of microservice architectures, there are specialists, such as
Fowler (2015), who argue that a software system will be more successful if it is initially built
according to a monolithic architecture and later migrated to microservices once complexity
starts to gain relevance and its properties make more sense. Thus, an initial monolithic
architecture allows to better explore the complexity of the system and the limits of the
components (Fowler, 2015).

There is already a high need to formalise this migration from the large amount of
applications being migrated to microservices, ideas like the one presented by Fowler reinforce
the relevance of the continued need for research and formalisation of methods that make
the migration from monolithic architectures to micro-services more efficient and effective.

The state of the art of the most promising ares of knowledge regarding the process of
identification of microservices is described below.

3.2 source-code oriented solutions

Considering that source code represents the functionality and the domain of the problem
at the most detailed level and from it a large amount of information can be extracted, this
is one of the most evident approaches as basis of information collection in order to infer
microservices. In the following sections approaches resorting to source-code as input are
identified and analysed.

3.2. Source-code oriented solutions 12

3.2.1 Static analysis solutions

Static analysis is widely used in the software testing areas regarding bugs identification,
code complexity analysis, among others. This technique is also promising in this area given
the need to work on the source code and perform its manipulation.

With the aim of a static approach, Mazlami et al. (2017) proposes in their work 3 formal
coupling strategies later processed according to clustering algorithms. The proposed strate-
gies are based on the combination of the source code of the monolithic application and its
meta-data, collected from the Git version system.

Of the coupling strategies proposed by the authors, logical coupling, is based on the
premise that changes made to a monolith are made only to a specific module, in this way,
the history of changes is analysed taking into account that the classes that are changed
together should also be together in a micro-service. Semantic coupling is based on grouping
classes that have code on the same things, that is, by calculating the similarity of domain
terms between two classes, a measure can be obtained to identify how semantically close the
classes are. Finally, coupling by contribution, based on the law of Conway (1967), which
indicates that the structure of software represents the structure of the organisation, and as
such, specific modules that receive changes from a single set of elements of the team must
remain in the same micro-service. Each of the coupling techniques is used in the initial
extraction process, and a dependency graph is then built to be used for the application of
clustering algorithms.

The performed clustering operates only on the minimum spanning tree 1 to ensure that
each removal of an edge results in an increase in the number of connected components.
However, this operation introduces the disadvantage of leaving out some of the connections
initially obtained by the coupling method, limiting the service proposal (Mazlami et al.,
2017). Another limiting factor of this work is expressed by the use of classes as the atomic
unit of identification and extraction of micro-services, making it impossible to segregate
components of a class for several micro-services. Another apparent fault on their method is
identified on the work of Jin et al. (2019), where they observed a high occurrence of services
containing a large chunk of the application which goes against microservices’ core ideas.

Kamimura et al. (2018) also resort to clustering techniques to carry out their identification
and proposal of microservices. The extraction of the classes is initiated by the identification
of the endpoints of the API of the application in question, using annotations of specific
frameworks (eg. @Controller in Spring), which identify the endpoints exposed in REST APIs.
To extract the remaining knowledge, annotations such as @Entity and @Table are used to
identify the classes responsible for defining the persistence and data manipulation. The
clustering method mentioned in this work has as one of the main objectives to deal with

1 Subset of the vertices of an undirected graph to which all vertices are connected by the lowest possible total
weight of the edges, without the cycles.

3.2. Source-code oriented solutions 13

omnipresent modules, that is, modules with a high number of relationships with other
modules and present in a high number of modules. Proposed by Kobayashi et al. (2012), this
strategy aims to address this problem by weakening the importance attributed to modules
with this particularity, facilitating the process of clustering of the components (Kobayashi
et al., 2013).

3.2.2 Dynamic analysis solutions

Dynamic analysis techniques emerged as an alternative to static analysis using the analysis
of program execution (eg. logs) in order to obtain extra information regarding how the
software behaves under user interaction.

According to Candela et al. (2016), techniques that process code analysis based on their
syntactic relationships, using metrics such as coupling and cohesion or naming conventions,
might not be sufficient for optimal identification, given that the code-level relationship may
not be the same in terms of functionality (Jin et al., 2018). In order to deal with this gap,
Jin et al. (2018) propose the use of execution traces collected during the execution of certain
test cases created by the user, which according to Dit et al. (2013) might represent a closer
relationship with the true functionality of a given software system. The method by them
proposed, named Functionality-oriented microservice extraction (FoME), is characterised by
three essential steps. Firstly, a clustering is performed at the class level from the execution
traces to obtain a basic skeleton of services. Then, given that many of the classes of this
skeleton will be associated with too many services, it is necessary to perform a process of
selection and cleaning. Generally, the option is to assign the class to the cluster on which it
is most dependent, which is not the only alternative since extracting this class for a different
service may in certain situations be an appropriate solution. In order to consider both
approaches, the dependence between cluster and the class is calculated: if the class has a
high level of dependency on a service, it is moved to that service; if the class is weakly
dependent on the tested clusters, a new service (Jin et al., 2018) is created. Finally, service
candidates identified by clusters are generated.

They later extend their work by proposing Functionality-oriented Service Candidate Iden-
tification (FoSCI) (Jin et al., 2019) resorting to a search-based functional atom grouping
algorithm based on Non-dominated Sorting Genetic Algorithm-II (NSGA-II) using as optimi-
sation objectives both intra and inter structural connectivity and inter and intra conceptual
connectivity. Their work also results in the extension and proposition of new metrics for
quantitative evaluation of proposed microservices.

In the application of those methods, the quality of the tests created is essential to ensure
that there is a good coverage of system’s functionality (Jin et al., 2018). Although initially
referred to as an advantageous approach to static analysis, as stated by Candela et al. (2016),

3.3. Model-oriented solutions 14

the creation of "real" tests in an automated way that reproduce the behaviour of a user, and
that provide good test coverage is complex and a process far from trivial.

3.3 model-oriented solutions

The importance of models in the development of software systems and Model-driven-
development (MDD) enhance the use of model-based approaches since similar to others,
an analysis of the interactions between components of a system can be made, although at a
different level of abstraction and detail.

Gysel et al. (2016) propose ServiceCutter, which follows a model-oriented approach, using
artifacts such as domain models and use cases to extract a graph representation in order to
later identify proposals of microservices. Weights are added to the graph’s edges according
to a set of criteria in order to identify clusters, and consequently good candidates for micro-
services. In view of the good selection of criteria, a survey of 16 coupling criteria was carried
out, according to an analysis of the literature and author’s experience, for later combination
with clustering techniques, Figure 2.

Figure 2: Coupling criteria proposed by Gysel et al. (2016)

Source: Gysel et al. (2016)

Gysel’s methodology currently supports two clustering techniques: Epidemic Label Propaga-
tion proposed by Leung et al. (2009) and Girvan and Newman (2001) algorithm.

However, ServiceCutter does not have the capacity to extract the baseline information
necessary for its operation from a software project, being highly dependent on the software
artifacts provided by the user. This fact can be limiting in several ways. Firstly, considering
that the documentation is often considered as scarce and outdated, especially in current Agile
methodologies, which are based mainly on the user’s feedback and not on documentation
development. Second, due to the need of compatibility between the artifacts produced and
the artifacts expected by Service Cutter.

3.3. Model-oriented solutions 15

Chen et al. (2017) also followed a model-oriented approach using data-flow diagrams (DFD).
Their approach is described in three phases: an analysis of business requirements is carried
out by the engineers together with the users, to obtain the data-flow diagram; then, their
algorithm combines the collected diagram with the same operations in a virtual abstract
diagram; and finally, it uses this virtual diagram to extract proposals for micro-services.
Chen et al. (2017) show a comparison with Service Cutter given the similarity in the model
approach of both works, arguing that theirs is easier to operate, by using simpler diagrams;
by not performing unnecessary decompositions leaving entities that make sense to be
together in different services; and easier to understand by presenting the extracted services
in a more intuitive way. This comparison was, however, carried out for a very limited case
studies and may enhance the characteristics of one tool relative to another.

Although all these improvements presented relative to Service Cutter, this approach to
models is limited by some crucial points. Firstly, the combination between the models
and the operations is performed based on the names of the operations, forcing DFD to
strictly follow the naming convention used in CRUD operations (Chen et al., 2017). Secondly,
this process mostly performs the service proposal using data operations carried out in the
business logic, however, if there is a need to deal with other capabilities that are not strictly
linked to the data and its operations, the service proposals will be of higher granularity.
Finally, the comparison made with Service Cutter using very simple test cases limits the
validation regarding the ability to handle the extraction of services in large-scale applications.

Similarly to Service Cutter, the proposal made by DFD is also highly dependent on the
quality of the artifacts provided by its user. Artifacts may need to be converted to the
appropriate formats supported by the tools; process that is not automated and can result in
degradation of the quality of the artifacts. Overall, there’s a huge amount of work placed on
the users in order to prepare the execution of the proposed tool.

3.4. Summary 16

3.4 summary

Based on the investigation and analysis of the bibliography presented in the previous
sections, a discussion about the presented approaches: statically-oriented, dynamically-
oriented and model-oriented.

Starting with the latter, model-oriented identification of services, Gysel et al. (2016) and
Chen et al. (2017) present two promising approaches by the techniques that they address
however very limited by the fact that they are highly dependent on user’s input. This input
of artifacts must follow specific rules and comply with the formats and rules imposed by
their software. This process of pre-processing input and conversion to comply with the
established rules can in itself be a time-consuming task.

Source-code oriented solutions according to a dynamic approach allow to obtain extra
information that static approaches do not allow. Jin et al. (2018) and Jin et al. (2019) resort
to execution logs to make them more reliable in identifying functionality. This type of
approach is however limited by two factors: the first is the extra load placed on the system
to collect logs during execution, which can be a problem in large-scale systems; secondly,
their approach is limited by the quality and coverage of test cases carried out to execute and
collect the respective logs. The creation of tests in an incomplete way and with an inadequate
coverage will also result in a proposal of inadequate microservices. The generation of tests
that portray the user’s behaviour in an automated way is also a complex task, for which
concrete solutions do not yet exist.

Lastly, static source-code oriented solutions are considered. They stand out right from
the start because they are approaches that use strictly the source code, without the need for
other artifacts or a high investment of pre-processing by the end user. Compared to dynamic
approaches, they do not require any type of code execution or logging which makes them
more promising for analysing large-scale applications.

Overall, most of the techniques proposed use lexical terms in one way or another as
part of their methodology. After all, the software is ultimately being read and created
by developers and the way modules are grouped together to fit nicely with the domain
of the project is one of the main ways to have better software comprehension. Although,
most techniques rely at some level on processing such identified lexical terms as a mean to
identify domain terms, the techniques being used (ie. Jaccard distance and Tf-IDF (Term
frequency-inverse document frequency)) are simple techniques that might not yield the best
results. Considering that, it is our goal to expand on other techniques that could increase the
importance and impact of how code is written, to better identify domain terms ultimately
yielding better microservices proposals.

4

A M E T H O D O L O G Y T O WA R D S T H E I D E N T I F I C AT I O N O F
M I C R O S E RV I C E S

In this chapter, we describe the proposed methodology to identify microservices. Figure 3

illustrates an overview of the steps composing the identification process.

Figure 3: Overview of the architecture of the proposed method and developed tool

The methodology can be briefly summarised by the following: First, we extract lexical
and structural information from the source code of the monolithic system being migrated to
MA, described in Section 4.1.

Next, we use the extracted information to fit a topic modelling technique allowing the
identification of topics and its distributions for each component of the software project.

Finally, the topic distribution and the structural information are combined and fed into a
clustering algorithm identifying microservices proposals.

The next three sections describe these steps in detail.
Note that the process we describe is generic and not specific for a particular language or

paradigm. However, since our tool is instantiated for the Java language, and in particular for
the Spring Framework, the examples presented are written in this language and framework.

4.1 information extraction

The building blocks of our microservice identification methodology are the lexical and
structural dependency information occurring in the source code of the monolithic software
system under analysis. Next, we describe how such information is computed.

17

4.1. Information Extraction 18

lexical extraction Lexical extraction is defined as the extraction of all the lexical/tex-
tual terms from source code that are relevant to identify what a given component represents
in the context of the domain of the project.

We perform this extraction in a structured version of the source code: its underlying
Abstract Syntax Tree (AST). The main reason to extract textual terms from the AST instead of
its textual representation (and applying filters, stop words and other kinds of preprocessing)
is to have better control of the information being extracted. This greatly reduces the amount
of analysis needed to identify the most relevant terms. With a pure Natural Language
Processing (NLP) approach applied to the source code, filtering keywords from the language
would be simple. However with the addition of external abstraction (in the case of languages
supporting it) and external libraries that introduce terms that could be completely unrelated
to the domain of the problem, a pure NLP approach would produce worst results.

To handle the presented problem, only terms (such as variable types) referenced to the
project are taken into account. Without losing generality, let us consider the following line
of code written in Java (Spring Framework):

return new ResponseEntity<>(user, responseHeaders, HttpStatus.OK);

A project parsing approach gives us the possibility to only extract a certain parameter,
for instance user, much more related to the domain than the whole expression that is
mostly composed by Spring Framework terms and abstractions. For instance, given that
ResponseEntity is so popular in projects based on the Spring Framework, an NLP approach
could calculate that the addition of it to a list of stop words would solve the problem, however,
that would only work for the common terms or require significant manual work when dozens
of libraries are used in a project. Any addition of libraries that represent a strong connection
to the domain, contrary to abstraction and helpers libraries, can still be included by an
include list of types. Overall, our approach works by trying to filter out abstractions related
to external libraries and frameworks and focus on the terms more related to the domain
of the project. This is done by extracting textual terms from components’ names, variable
declarations, method/functions declarations and its parameters, and method/functions
invocations.

structural dependency extraction Most of the dependencies are straightforward
to obtain working on the AST. However, other tasks such as the identification of types of
expressions or finding the usage of a symbol are not so simple as they involve significant
work over the AST. For those, and considering the particular case of the Java language, we
used JavaParser Symbol Solver sym, which resolves what are expressions referring to.

The use of structural dependencies enables a better representation of the software archi-
tecture at hand, as it fits nicely into a graph representation and presents interaction between
modules.

4.2. Topic modelling 19

4.2 topic modelling

Topic modelling techniques allow to identify latent semantic structures from a set of
documents, similarly to how a developer would analyse a software project and identify
domain terms to grasp how it can be decomposed on a semantic level.

The quality of topics proposed by these techniques is highly dependant on the quality
of the inputs fed into them. Accordingly, textual terms t are pre-processed going through
tokenization, stop word removal and stemming in order to remove terms without much
significance as domain terms and reduce variations of the same root words. Extremes of
very common and rare terms are filtered and then collected as a bag of words as the final
form.

Having computed the lexical and structural information, we can now use a topic modelling
classificator to group such information in clusters, which will then form the microservices
identified in the legacy system.

In an exhaustive and comprehensive state of the art review on topic modelling done by
Kherwa and Bansal (2018), four major groups of topic modelling classificators are identified:
Probabilistic Latent Semantic Analysis (PLSA), Latent Dirichlet Allocation (LDA), Latent
Semantic Analysis (LSA) and Non-negative Matrix Factorisation (NMF). This work also
presents a detailed quantitative analysis comparing LDA versus LSA concluding with the
superiority of LDA: it yields higher coherence values across topics and less overlap between
topics. In an exploratory work done by Stevens et al. (2012) comparing NMF, LDA and
LSA and analysing its weaknesses and strengths, they conclude in favour of LDA due to its
flexibility and coherence advantages over others. Sun et al. (2017) propose a technique of
clustering classes in packages in order to increase program comprehension and reducing
large packages resorting to LDA, PLSA and Latent Semantic Indexing (LSI) as a base of
clustering methods. From the case studies conducted, LDA resulted in better clustering
results and the topics identified were more useful for comprehension by developers.

Overall, LDA is widely used and the most popular on the topic modelling field, being the
core of evolution and extension to other models, such as Dynamic topic model, Author topic
model, Multilingual Topic Model (Kherwa and Bansal, 2018; Sun et al., 2016). Thus, we also
adopt the LDA classificator in our microservice identification approach, describing it next.

4.2.1 Latent Dirichlet Allocation

LDA categorises documents by topics via a generative probabilistic model (Blei et al.,
2003). It treats each document as a random mixture of latent topics, and each topic as a
distribution of words of the corpus. The words with higher probabilities that represent a
topic usually give a good overview of what is the topic describing and talking about, hence

4.2. Topic modelling 20

allowing to discover a set of concepts representing the entire corpus (Jelodar et al., 2019).
LDA is an unsupervised model requiring only the corpus of the documents without any
extra metadata. LDA does not consider the order of the words in the documents or their
semantic importance being only fed with a bag of words (BoW) – a simplified representation
of a corpus containing count occurrence for each word. These features allow LDA to be
scalable to thousands or millions of documents (Sun et al., 2017).

The components being used as the basis of work to the LDA model are formally described
as follows:

1. A word represents the basic unit extracted from the source code of a software project
representing the textual terms denoted as t = {w1, w2, ..., wn}.

2. A document, identified as a component (eg. class in Java, module in C) in the context
of a software project is a collection of words and described as d = {w1, w2, ..., wn}.

3. A corpus is a collection of documents identified as c = {d1, d2, ..., dn}.

Choosing the number of K topics to be identified by the LDA model is a challenge on
itself. Ideally, the number of topics should be selected after an analysis of the domain terms
of the project at hand complemented with an analysis of inter-topic distance (Sievert and
Shirley, 2014), in order to assess how well defined are the topics, its independence from each
other and the amount of overlap. The distribution of terms per topic should also be taken
into consideration to avoid topics from being composed of a large chunk of concepts across
the domain, resulting in lower service cohesion.

Figure 4 and Figure 5 illustrate inter-topic distance and term distribution per topic for a
model of 8 and 11 topics respectively. By comparing both figures it can be concluded that
the model shown on Figure 5 represents an excessive number of defined topics given the
amount of overlap introduced by the increase in number of topics.

An automated approach to identify an adequate amount of topics, yet computationally
more expensive, can be simply done by creating models for a wide range of topics, measuring
the coherence for each one and deciding upon the best topic. Measuring coherence of topics
has as a main goal to verify if a "set of facts support each other" (Röder et al., 2015) and refer to
a specific domain of knowledge. Among the multiple metrics proposed and the extensive
analysis of the state of the art on coherence measurements done by Röder et al. (2015), the
cv metric (which results from the combination of previous metrics) is the one having the
highest correlation to human ratings on topic coherence.

With multiple values of cv measured for a range of number of topics, the best topic is
automatically selected by identifying the knee point as shown on Figure 6.

4.3. Clustering 21

Figure 4: Intertopic distance with number of topics set to 8

4.3 clustering

The fitting of the LDA model against K topics produces a distribution of topics across
documents. That distribution can be used on its own to cluster components into groups of
proposed services. However, that would mostly take into account the domain aspect of the
software, ignoring the structural relationship and dependencies between classes. Thus, we
combine the previously extracted structural dependencies with the distribution of topics
into an edge-weighted graph G. In the graph G = (E, V), the vertices vi ∈ V correspond to
a component ci ∈ C from the monolithic project. Each edge ei ∈ E is weighted by a weight
function determining how strong is the relationship according to topic distribution. The
higher the value the stronger the relationship between topics identified are. Each component
c is then identified by a vector ~v to represent the distribution of probability across topics t,

4.3. Clustering 22

Figure 5: Intertopic distance with number of topics set to 11

~v = 〈t1, t2, ..., tn〉. The cosine similarity is then used to find how similar two vectors ~v1, ~v2

are, as follows:

cos(θ) =
~v1 · ~v2
‖~v1‖‖~v2‖

= w(ei) ∈ G (1)

An illustration of a formal definition of graph G is presented in Figure 7.
We conducted an analysis of the state of the art of clustering/community detection

algorithms to decide how to cluster the graph into proposals of services. Rahiminejad
et al. (2019) performed a topological and functional comparison of community detection
algorithms in biological networks. Six algorithms are analyzed: Combo, Conclude, Fast
Greedy, Leading Eigen, Louvain and Spinglass. The main criteria of evaluation for those
algorithms were: appropriate community size (neither too small nor too large), performance

4.3. Clustering 23

Figure 6: Identification of knee point for coherence over number of topics

in terms of speed and two other features regarding gene and biological functions. From the
conducted evaluation on two distinct data sets they conclude favouring Louvain given that
the communities found were very similar to the top methods and Louvain was the fastest
community detection method.

The Louvain algorithm presented by Blondel et al. (2008) is a heuristic algorithm based on
modularity maximisation. Its main goal is to maximise network modularity. Modularity is a
measure of strength of division of a network into clusters/communities. Higher modularity
represents dense connections within nodes in a community but sparse connections between
different communities (Newman, 2006). It is an unsupervised algorithm not requiring the
number of communities to be identified nor their sizes.

At its core the algorithm is divided into two main steps repeated iteratively (Blondel et al.,
2008; Mishra):

• Step 1 - Each node in the network is assigned to its own community. The number of
communities is equal to the number of nodes N; For each neighbour j of node i, it is
tested if the modularity increases by moving it from community i to community j. If

4.3. Clustering 24

Figure 7: Weighted graph representation

there is an increase, the node is moved, otherwise it stays in the original community.
This step is repeated for all the nodes in a sequential order and repeated until no
improvements in modularity can be achieved.

• Step 2 - The network is rebuilt by merging the nodes in the same community.

Steps 1 and 2 are executed iteratively until the merging of communities does not change
and a maximum modularity is reached. The majority of the computational work is done on
the first iterations. Step 2 exponentially reduces the amount of work as it gets closer to the
final iterations.

A common problem identified as a limitation of the Louvain algorithm and other algo-
rithms that use modularity as its core is that it may fail to identify modules smaller than
a given scale (Fortunato and Barthélemy, 2007). That problem was observed initially on
projects more complex and bigger in number of components (classes in our case – Java). In
order to avoid that, the resolution parameter is manipulated allowing to discover clusters
at different scales (Lambiotte et al., 2014). A higher resolution results in more iterations of
the merging step of the algorithm, resulting in less but bigger clusters. Similarly a lower
resolution results in less merging, meaning more clusters of smaller size. For each resolution
the project is clustered and executed against metrics of independence of functionality and
modularity presented in Section 7. From that metric execution the best resolution can
be selected. Although a resolution is chosen and consequently its proposed services, we
provide the user all the proposed services for other resolutions. With different granularities

4.3. Clustering 25

of proposed microservices the user can do a more informed and qualitative identification of
what represents the best solution for the current project.

5

I M P L E M E N TAT I O N

In this section the implementation of a prototype previously described according to a
given methodology is presented. The prototype serves as a proof of concept to validate
the methodology and should not be thought as a tool that provides the identification
of the absolute best microservices but as a guiding tool to the expert employing such
migration. It should however, present the expert with possible cohesive and loosely coupled
versions of microservices given an initial monolithic architecture depending on a set of
parameters provided by the user. The full implementation can be found at https://github.
com/miguelfbrito/microservice-identification.

Figure 8 represents an overall flow of the prototype implemented.

5.1 information extraction

The information extraction stage is responsible to process the input provided by the user as
a software project and process it in order to extract and identify all the relevant information
for microservice identification. The identified relevant information are the lexical terms
that compose the source code of the project as well as the structural dependencies between
components of the system (ie. classes, modules, etc.). Both stages are closely connected
considering that the method relies on the information parsed from the project.

5.1.1 Project parsing

Given the nature of the methodology being related to NLP and data science methods,
the usage of a language such as Python provided that a parser to parse Java projects was
available and fulfilled the requirements would be a nice fit as it would be easier to handle the
project and avoid extra communication layers. The research pointed to the usage of javalang1,
an open-source project providing an intuitive API to parse Java projects and according to
the Java 8 language specifications. An initial implementation to extract all the relevant

1 https://github.com/c2nes/javalang

26

https://github.com/miguelfbrito/microservice-identification
https://github.com/miguelfbrito/microservice-identification

5.1. Information extraction 27

Figure 8: Overall flow of the tool

information was conducted and used to perform preliminary tests on topic modelling
techniques. However, as the requirements regarding the parsing of the project increased,
javalang proved to be insufficient as the iterator it provided had limitations and became
harder to obtain specific information and provided very limited capabilities to resolve the
declarations connected to a given element (eg. variable declaration types). Those limitations

5.2. Topic modelling 28

forced a refactor in the tool and resorting to the official Java Parser2 which merged with the
Java Symbol Solver3 project allowing to resolve specific expressions and method calls (sym).

The information extraction is made by the following steps:

• Firstly, the Java Parser identifies the source root of the project and from it parses a list
of CompilationUnits which is a representation of each java file.

• For each of the CompilationUnits classes are identified as well as direct dependencies
of inheritance and implementation.

• A set of visitors is then created to identify: variable declarations (VariableDeclara-
torVisitor), method declarations (MethodDeclarationVisitor), method calls (MethodCallEx-
prVisitor) and annotations (AnnotationVisitor). VariableDeclaratorVisitor identifies all the
variables declared on a given class, which later are resolved and dependencies between
the original and the resolved class are created. MethodDeclarationVisitor identifies all the
methods declared for a given class, which later are processed, resolving and identifying
all dependencies for all of its parameters and return type. MethodCallExprVisitor is
responsible to identify all the method calls, which later are resolved and dependencies
are created. AnnotationVisitor simply identifies annotations attached to a given class.
Apart from the dependencies, the actual lexical terms describing variables, methods,
etc. are collected as they represent the base of knowledge for semantic work. All
classes are referenced as its fully qualified name in order to guarantee the identity of
each class.

• The information identified and collected by the Java Parser and iteratively built into
an object containing all information related to a class on the original project is then
exported to a JSON (JavaScript Object Notation) file.

5.2 topic modelling

The previously extracted JSON file containing all the dependencies as well as the lexical
terms for each class is now read from a Python program to proceed with further processing
and the application of topic modelling.

For each class an object is instantiated according to previously saved annotations, variables,
dependencies, methods and its parameters and return types. This object is then responsible
to provide a merge of all the semantic terms for further processing.

At this stage the loaded structure goes through a step of pre-processing. This includes
multiple transformations resorting to the Natural Language Toolkit (NLTK), such as: tokeniza-
tion, stemming, stop word removal, for both common dictionary terms and a custom set

2 https://github.com/javaparser/javaparser
3 https://github.com/javaparser/javaparser/wiki/About-the-Symbol-Solver

5.2. Topic modelling 29

of words that the user can include in order to avoid terms very common in the application
that do not necessarily represent good domain terms. With the Gensim4 library the cleaned
text is used to build a dictionary, from which extreme terms are removed (eg. top 20% most
common words are not taken into consideration) and finally used to create a corpus by
transforming each document into a BoW.

The application of topic modelling techniques is done through the APIs provided by
the Gensim library, which provides a variety of techniques for topic modelling and text
processing. Training the LDA model is done by providing the corpus and a correspondent
dictionary, the number of topics and optional parametrizations regarding the model itself.
During the research for better parametrizations and ways to optimise the model being
trained, multiple references to the usage of Mallet5 over Gensim were found (Rafferty,
Prabhakaran). From the experimental information gathered, Mallet appears to provide better
coherence values over Gensim, however it is a slower method. Considering that we prefer
higher quality over fast results, and the difference is not immense Mallet is used to train the
LDA model. Gensim provides however an interface to interact with Mallet as it is a Java
package.

The selection of the best model depends on the user input. If the user chooses to provide a
number of topics, the model is trained according to the extracted information and provided
number of topics. If the user does not provide the number of topics, measures to identify
the best number of topics are performed.

The identification of the best number of topics is made by identifying a range of possible
number of topics (eg. 5-25). For each trained model its coherence values are measured
according to the cv metric identified by Röder et al. (2015) and the correspondent imple-
mentation provided in Gensim6. From the plot of the coherence of topics over number of
topics the knee is identified. The knee represents the point at which the coherence of topics
stabilises over number of topics and further increase in number of topics might not be worth
it due to a low increase in coherence. Another reason is that the increase in number of topics
indefinitely has a tendency to increase coherence values considering that each topic will be
composed of lesser words and therefore there is greater probability of a given topic being
more cohesive.

The final result of the trained LDA model is a list of probability distributions across topic
per document (ie. java classes).

4 https://radimrehurek.com/gensim/
5 http://mallet.cs.umass.edu/
6 https://radimrehurek.com/gensim/models/coherencemodel.html

5.3. Clustering 30

5.3 clustering

Clustering represents the last main stage before proposing microservices. In order to apply
the previously obtained semantic knowledge and combine it with the structural information
of dependencies a graph structure as to be created. Such endeavours were done resorting to
the networkx library7, which provides easy creation and manipulation of graphs as well as
good interaction with other libraries because it is one of the most used libraries on graph
manipulation on Python. The initial graph of classes is built according to dependencies
between each other and then the cosine similarity between vectors of topic probability are
applied for each edge.

With the graph created and weights set for each edge, the graph can be fed into the
clustering algorithm. Similarly as the selection of number of topics, the resolution used to
identify clusters’ fragmentation can be defined by the user or chosen between an arbitrary
range. The selection of best cluster in an arbitrary range is achieved by the evaluation of five
metrics regarding independence of functionality and modularity presented in Chapter 7.

Regarding the clustering algorithm itself, multiple libraries and implementations were
tested (ie. NetworkX Communities, NetworkX Clustering, igraph, scikit-learn). In the end,
the Python-Louvain library8 was utilised due to straightforward interaction with networkx
and slightly better results on overall modularity on some experimental cases.

The execution of the Louvain algorithm against a directed networkx graph yields a list of
clusters and consequently proposals of microservices. In some rare cases where there are
clusters composed of 1 or 2 classes some post-processing is employed and such cluster is
merged with the closest regarding semantic proximity. If the semantic distance is zero the
structural distance of number of dependencies between clusters is considered.

5.4 metrics

With the goal to keep objectivity and impartiality on metric evaluation there was an
attempt to obtain the implementation of metric evaluation done by the work of Jin et al.
(2019). Out of the five metrics, CHM and CHD were used exactly as provided by the authors,
however, the remaining metrics had an implementation closely attached to their technique of
microservice identification and a new implementation had to be done. The implementation
was done following the formal definition presented in the paper, and with contact with
authors to clarify a few unclear concepts.

7 https://networkx.github.io/
8 https://github.com/taynaud/python-louvain

6

C A S E S T U D Y

In this section we present a walkthrough of the proposed methodology on a Java Spring
application named JPetStore1. JPetStore is a shopping application themed as pet selling. Our
goal is to present the most relevant steps, namely the application of the topic modelling
as a way to analyse the identified topics and words that compose the given topics. Since
it is a relatively small project, steps concerning identification of K topics are not included,
however the most frequent identified resolution is used. Skipping the initial information
extraction and pre-processing of the textual terms the LDA model is inferred according to
the pre-processed textual terms against a number of topics of K=4. For this particular case
we also considered a resolution range between 0.6 and 1.1 with 0.1 increments. In Table 1

the top 10 words in its stemmed version are presented for each topic:

• Topic 0 - The first five top words represent strong domain concepts referring to
users/accounts.

• Topic 1 - Strong domain relation to cart management.

• Topic 2 - Strong domain relation to catalogue: products, category, item.

• Topic 3 - Strong domain relation to order execution: line, status, total, price, cart, stock.

Topic Top 10 words representing a topic

0 account username password signon profile clear resolut status version serial

1 item cart line quantiti big total price stock increment inventori

2 product catalog categori item resolut serial clear profil total name

3 order sequenc line statu usernam total price version cart stock

Table 1: Top 10 stemmed words belonging to each topic

1 Repository found at https://github.com/mybatis/jpetstore-6

31

32

The topic distribution for each class of the project is presented in Table 2. The vast majority
of the classes have a strong association to one of the topics (highlighted in bold face). The
class web.actions.AbstractActionBean stands out as having a very similar distribution
across topics because it represents an abstraction extended by the main entities exposing the
application functionality as beans. Although there is still no way to deal with abstraction
classes being split from the classes that directly require them (on the implemented tool), this
kind of information may be useful in the future as a way to alert and guide the final user
when conducting the migration to a MA.

Lastly, with the calculation of cosine similarity between the structural dependencies be-
tween classes resorting to topic distribution, the clusters of classes as potential microservices
can be identified. At this stage multiple resolutions of the Louvain algorithm are tested and
executed against metrics in order to identify which granularity provides the best metrics.
Although metrics provide the user with an informed quantitative view of the microser-
vices being presented, the adequate level of granularity of the services is dependent on
the project’s domain and architecture and the subjective perspective by the developer on
how small or how many interactions should exist between services. Developer A might
prefer smaller services which inherently leads to more connections to external services
while Developer B might prefer slightly larger services resulting in less interactions between
services. Such occurrence can be observed in this case study by Figure 9. The plot on the
left represents the summation of all normalised metric values, while the plot on the right
represents the evolution of each normalised metric across resolution.

According to the summation of all metrics, resolution 1.0 and 1.1 represent the highest
values and equal proposed clusters. However by analysing each individual metric across
resolutions setting different weights on specific aspects that a user prefers above others could
result in different choices. For instance, if a user values more lower interaction between
services he/she should prioritise the evolution of IRN more than the other metrics. In
this particular case, IRN improves with larger services and so the user should analyse the
proposals in the higher range of resolution. On the other side of the spectrum, if a user
prioritises smaller and more cohesive services inherently resulting in higher interaction with
other services, he should prioritise CMQ and SMQ. In this particular case it is important
to note that the high values for CMQ and SMQ in the lower end of resolution are heavily
impacted by the low amount of classes per service (observable on Appendix A.1.1) and are
also affected by data normalisation as the variance between values is relatively close (0.13
to 0.21 for SMQ and 0.3 to 0.45 for CMQ). CHM and CHD stay at the same value across
resolution because those metrics are measured concerning only interfaces exposed by each
microservice. If such interfaces stay equal it is expected to behave as shown in Figure 9.

Figure 10 illustrates the clustering performed and the connections between classes for
the solutions presented in the higher range of resolution (1.0 and 1.1). Four clusters are

33

Class Topic distribution

(org.mybatis.jpetstore.*) 0 1 2 3

web.actions.AccountActionBean 0.79 0.03 0.14 0.04

domain.Account 0.82 0.04 0.09 0.05

service.AccountService 0.72 0.09 0.09 0.1

mapper.AccountMapper 0.81 0.06 0.06 0.07

web.actions.AbstractActionBean 0.26 0.25 0.25 0.23

mapper.LineItemMapper 0.1 0.61 0.1 0.18

domain.Item 0.05 0.73 0.18 0.05

domain.LineItem 0.04 0.82 0.04 0.11

domain.CartItem 0.06 0.83 0.06 0.06

domain.Cart 0.04 0.89 0.04 0.04

web.actions.CartActionBean 0.12 0.71 0.13 0.04

mapper.ItemMapper 0.09 0.66 0.16 0.09

web.actions.CatalogActionBean 0.03 0.08 0.86 0.03

domain.Category 0.13 0.13 0.62 0.12

mapper.ProductMapper 0.11 0.11 0.68 0.11

mapper.CategoryMapper 0.14 0.14 0.57 0.14

domain.Product 0.1 0.1 0.7 0.1

service.CatalogService 0.05 0.17 0.74 0.05

mapper.SequenceMapper 0.15 0.15 0.15 0.55

mapper.OrderMapper 0.11 0.1 0.1 0.69

domain.Sequence 0.19 0.18 0.19 0.44

domain.Order 0.08 0.16 0.02 0.73

service.OrderService 0.06 0.24 0.06 0.64

web.actions.OrderActionBean 0.2 0.08 0.05 0.66

Table 2: Topic distribution for each class on the JPetStore project (The distribution is expected to sum
to 1, however due to rounding there are cases where that does not happen)

identified as proposals of microservices (each cluster is coloured differently in the figure).
The remaining clusters of classes can be consulted in Appendix A.1.1.

In this example the clusters are very similar and are according to the topics identified and
its distribution. For larger and more complex applications the clustering will have a more

34

Figure 9: JpetStore’s metrics regarding independence of functionality and modularity

significant impact, given higher number of topics and its distribution, and an increased
number of dependencies between components.

Figure 10: Clustering using topic distribution similarity as weight

In the context of the example, the identified clusters propose four different services related
to: accounts/users, cart management, catalogue management and order execution.

7

E VA L UAT I O N

In order to quantitatively assess the quality of the microservices proposed by our approach,
we collected 200 projects from GitHub and computed the MA metrics proposed by the work
of Jin et al. (2019) regarding independence of functionality and modularity. In this section
we describe in detail this evaluation, starting by the metrics.

7.1 independence of functionality

Independence of functionality refers to external independence, meaning how independent
and well-defined the services are. The following metrics are calculated resorting to the
interfaces I of a service. An interface is any class that exposes functionality as an endpoint.
For each interface, methods are considered as operations O.

The value ifn (interface number) quantifies the number of interfaces for a given service. It
is based on the Single Responsibility principle. A smaller ifn represents a higher likelihood
of any given service assuming a single responsibility Jin et al. (2019). IFN represents the
average of all ifn.

IFN =
1
N

N

∑
i=1

ifni (2)

ifni = |Ii| (3)

The value chm (cohesion at message level) quantifies the cohesiveness at the message level
of the interfaces of a given service. A higher chm represents a higher cohesiveness of the
service. CHM represents the average of all chm. Messages are composed by the terms of
method parameters (par) and method returns (ret).

CHM =
1
N

N

∑
i=1

chmi (4)

35

7.2. Modularity 36

chmi =

∑

(k,m)
fmsg(oprk ,oprm)

1
2 |Oi |×(|Oi |−1)

, if |Oi| 6= 1

1, if |Oi| = 1
(5)

Jaccard index is used as function of similarity both for similarity of return terms and
parameter terms.

fmsg(oprk, oprm) =

(
|retk∩retm|
|retk∪retm|

)
+
(
|park∩parm|
|park∪parm|

)
2

(6)

The value chd (cohesion at domain level) quantifies the cohesiveness at domain level of
the interfaces of a given service. It is quantified very similarly to chm varying only on the
function of similarity. Instead of using only message terms, all domain terms are considered.

CHD =
1
N

N

∑
i=1

chdi (7)

chdi =

∑

(k,m)
fdom(oprk ,oprm)

1
2 |Oi |×(|Oi |−1)

, i f |Oi| 6= 1

1, i f |Oi| = 1
(8)

fdom(oprk, oprm) =
| fterm(oprk) ∩ fterm(oprm)|
| fterm(oprk) ∪ fterm(oprm)|

(9)

The value IRN (interaction number) quantifies the number of method calls across two
different services. The smaller the IRN the better (Jin et al., 2018).

IRN = ∑
(oprj,oprk)

wj,k (10)

7.2 modularity

Modularity evaluates how cohesive are the services in its internal interactions and how
loosely coupled are the interactions across services.

SMQ (Structural Modularity Quality) quantifies modularity from a structural viewpoint.
Higher SMQ represents better modularized services.

SMQ =
1
N

N

∑
i=1

scohi −
1

N(N − 1)/2

N

∑
i 6=j

scopi,j (11)

SMQ quantification is divided into the quantification of intra-connectivity and inter-
connectivity. The value scoh quantifies cohesiveness of a given service while scop quantifies
coupling between services. High scoh and low scop represent a cohesive and loosely coupled
architecture. µi represents the total edges for a service. An edge is counted when there is

7.3. Scope of action 37

a structural call dependency between N entities. σi,j is similar to µ but acts on a service to
service level, meaning that an edge occurs when there is a dependency between service i
and service j.

scohi =
µi

N2
i

, scopi,j =
σi,j

2(Ni × Nj)
(12)

CMQ (Conceptual Modularity Quality) quantifies modularity from a conceptual viewpoint.
Higher CMQ represents better modularity.

CMQ =
1
N

N

∑
i=1

ccohi −
1

N(N − 1)/2

N

∑
i 6=j

ccopi,j (13)

ccohi =
µi

N2
i

, ccopi,j =
σi,j

2(Ni × Nj)
(14)

CMQ is very similar to SMQ but textual terms are used instead of call dependencies.
Therefore, an edge is considered if the interception between terms is not empty.

7.3 scope of action

Given the high complexity of creating a generalised solution for multiple languages and
frameworks the scope of action for the solution had to be reduced to something more specific
and manageable.

Starting with the language choice, languages for the web such as PHP, Javascript, Java, C#
and Python stand out as the most common languages being used on the web. Despite the
widespread use of PHP given the so popular LAMP and its use in content management
systems like Wordpress, this is a language that has not been particularly adapted in the
world of microservices because of its declining popularity. The use of PHP would make
more sense if transpiling was also carried out for a language with better adaptation to the
world of microservices. Javascript and in particular f rameworks like node have become
highly popular in recent years, being used massively in both small and large scale projects
that need to be easily scalable. Although this combination of Javascript and node is quite
popular and makes sense in the context of using microservices, many of the applications
have already started being developed during the adoption of microservice architectures. Of
the remaining identified languages, Java stands out because it is a language widely used
in the industry, especially for systems that require the language to allow the development
of robust applications. The fact that it has remained over the years as a solid and popular
choice for web applications and that there are a large number of monolithic applications is
also a point in its favour.

7.4. Project collection 38

The choice of the framework is also important, given the diversity of development methods
and directions taken when developing for a specific framework. The specificity of a frame-
work also enables to identify extra context regarding architecture through things such as
annotations and other metadata. In a study carried out by RebelLabs (2017) involving 2060

participants in the software development area, they demonstrated, as in previous years, the
high use and adoption of Spring compared to other frameworks, Figure 11.

Given the popularity and high availability of Java Spring applications that is the combina-
tion being used for the conducted evaluation.

Figure 11: Survey on Java frameworks usage

Source: RebelLabs (2017)

7.4 project collection

With the goal of evaluating the quality of the services proposed by our methodology,
we collected 200 Java Spring applications from GitHub using its search API (v3) and exe-
cuted against the state of the art metrics proposed by Jin et al. (2019) on independence of
functionality and modularity.

We used the GitHub search API for code as a mean to identify repositories using the terms
"RequestMapping" and "Controller", as those are very common and unique to applications
built using the Spring Framework. Since any request to a GitHub endpoint is bound to 1000

results per each search, we used the parameter of file size to be able to find more repositories

7.5. Setup 39

with Java Spring projects. Thus, we created a set of queries by increasing the size interval
(min_size and max_size) by 200 bytes and bound to a starting point of 500 bytes and final
point of 200000 (around 200 KB). The query (template) used was as follows:

https://api.github.com/search/code?q=RequestMapping+Controller+language:

java+size:{min_size}..{max_size}

Executing this set of queries we identified 104024 results, however, many of them rep-
resent results on the same repository something that the API does not allow to exclude.
These results were then filtered by uniqueness, removing duplicate references to the same
repository and forks of the same repository. Filters were also applied to some very common
repositories, such as Spring-Boot forks of the framework, demo and test projects by using
the following stop words {’release’, ’framework’, ’learn’, ’source’, ’spring’, ’study’, ’demo’, ’test’,
’practice’, ’practise’}. That reduced the original 104024 results to 29368.

Based on the criteria taken by Borges et al. (2016) and Ma et al. (2016) on works regarding
criteria collection of GitHub repositories we selected the top repositories based on GitHub
stars. Thus, for every repository, we parsed the number of stars as main decider and other
relevant information such as open issues, subscribers and forks.

In order to guarantee that the projects are monolithic applications, only projects containing
one “src” folder are considered. Any project with less than 30 classes is also discarded as a
project with that dimension may represent just a “toy” Java project. From the final projects
the top 200 are selected as evaluation data set.

The histogram of the projects collected by the number of classes is presented in Figure 12.
In perspective, the biggest project considered is roughly around 2500 classes.

7.5 setup

We implemented the presented methodology in a proof of concept and tested the collected
projects against state of the art metrics. Our main goal is, from a quantitative point of view,
to understand if the microservices being proposed are relevant regarding independence of
functionality and modularity.

Regarding the number of topics, we selected a range of arbitrary values according to
quantity of classes. The ranges are wide enough in order to allow the identification of a
knee point on coherence values, but not too large as that would slow down the process in a
meaningful way.

Clustering resolution was also arbitrarily set. From our analysis a range from 0.3 to 1

should be able to deal with most applications in the hundreds of components: a resolution of
1 can identify clusters of larger sizes in small applications (in the tens) and resolution of 0.3
can identify smaller clusters in large applications (in the hundreds). The set range guarantees

https://api.github.com/search/code?q=RequestMapping+Controller+language:java+size:{min_size}..{max_size}
https://api.github.com/search/code?q=RequestMapping+Controller+language:java+size:{min_size}..{max_size}

7.6. Results 40

Figure 12: Histogram of collected projects by class count

us that we are able to identify smaller or larger microservices if they quantitatively represent
the best cohesion and loosely coupling.

The selection factor of the best proposal of microservices is done by selecting the combi-
nation of CHM, CHD, SMQ, CMQ, IRN and IFN with best total absolute value. Regarding
operation identification as a mean to measure CHM and CHD we collected all the methods
present in controllers’ classes. We also applied a threshold to calculate CHD since only
tight terms related to the domain should be considered, requiring extensive cleaning and
manual labour, something not feasible given the significant set of applications. In fact this
is a similar process to the one present in the work proposing the metrics (Jin et al., 2019).
The use of stop words for pre-processing was also very generic without any specificity per
project. Ideally an analysis and addition of common terms irrelevant to the domain should
be added despite the effort we put in information extraction stage to reduce the inclusion of
external abstraction.

7.6 results

The respective individual results for each project can be found at Appendix A.2. For each
project the following data is presented: project name on GitHub, number of classes, number
of stars on GitHub, CHM, CHD, IFN, CMQ and SMQ, and total number of identified services.
Considering that the study involves a large amount of projects, we resort heavily to the

7.6. Results 41

usage of box plots, which provide a good perspective on data distribution. The box plot of
the results obtained across all 200 applications are presented in Figure 13.

CHM and CHD which represent independence of functionality at operation level (methods
exposed by services as interfaces) both show medians roughly around 0.6 which represent
positive proposals regarding independence and well-defined services.

SMQ and CMQ which represent modularity of services and are bound between -1 and 1

presented medians roughly around 0.2 and 0.4 respectively. Some negative outliers regarding
SMQ were observed, however CMQ remained positive across all projects.

Figure 13: Metrics’ box plot across 200 projects

IFN quantifies the interfaces exposed by a given interface, hence, a smaller IFN represents
a higher likelihood of a service having a single responsibility. The median and both Q1 and
Q3 on the box plot presented in Figure 14 are quite compact and close to values representing
a single responsibility service (ie. IFN of 1).

7.7. Analysis 42

Figure 14: IFN’s box plot across the 200 projects

7.7 analysis

Although the box plot of metrics shows an overall picture of how the tool performs
quantitatively, the data set considered for study is composed of projects with wildly different
domains, a wide range of total classes per project as well as different aspects of modularity
either by the granularity of how classes are composed regarding methods or how often
external calls to other classes are made. In order to get some insight on those aspects of
modularity we introduce a more extensive analysis on the following section.

7.7.1 Correlation analysis with metrics

In this section a correlation analysis to metrics is conducted with the goal to understand if
particular modularity properties of a project can be directly correlated to the obtained metrics.
For instance, if bigger classes with more method declarations produce better results, or how
impactful are external invocations to other classes, does having less method invocations
result in better metrics? Or vice versa? For such analysis two ratios are considered: ratio
of total methods declarations over total classes, and ratio of total methods invocations to
external classes over total classes.

7.7. Analysis 43

The main goal of each ratio is to further investigate other aspects of project modularity
other than number of classes. For instance, the first ratio allows us to understand how the
methodology behaves with different quantity of method declarations which provides some
perspective on class size. The second ratio aims to show how does the methodology work
for different levels of cohesion, in other words, assess if there is any significant difference in
projects that have more or less external calls between classes.

Regarding the statistic method used to find the correlation both parametric and non-
parametric methods were initially considered. The ultimate decision was made by analysing
prerequisites of both methods (namely Pearson correlation vs Spearman correlation) (Sar-
mento, 2017). Firstly, the outliers can have a huge impact on Pearson’s (parametric) method.
Removing some outliers did not result in significant changes in correlation values. Secondly,
Pearson’s requires that the data being analysed follows a normal distribution or very close
to it. Upon normality evaluation through the Shapiro-Wilk method, both ratios and IFN
failed the normality test for a p = 0.05.

Considering that Spearman (non-parametric) method relies on the same assumptions of
Pearson’s except the normality of data, Spearman’s method is the most appropriate for the
analysis.

Another point taken into consideration for proper correlation analysis is the percentage
of change for each series of data, otherwise, the correlation could yield high results even
though both series evolved with similar trend but completely different levels of change. In
other words, if the trend is similar, without considering percentage of change, it is likely that
a high correlation will be found, even though there is not a direct influence of one variable
over the other.

The obtained correlation values for both ratios to each metric is presented on Table 3.

Method Declarations / Classes Method Invocations / Classes

CHM -0.080260 -0.092911

CHD -0.078329 -0.027260

IFN 0.078123 0.308083

CMQ -0.283848 -0.109619

SMQ -0.043258 -0.198207

Table 3: Correlation between metrics and both ratios.

No strong correlations between metrics and presented ratios were found, however, there
are two weak correlations (CMQ with Method Declarations / Classes and IFN and Method
Invocations / Classes) that can be discussed. From the CMQ correlation (darker shade) it can
be hypothesised that an increase in method declarations results in lower CMQ, hence worse
results. This could happen due to harder identification of topics, or the classes themselves

7.7. Analysis 44

not being as cohesive from a domain perspective. This correlation could also be highly
affected by projects composed of classes disproportionately large compared to other classes.

The second occurrence of an weak correlation is between IFN and Method Invocations /
Classes. An increase in method invocations results in an increase of IFN. Such occurrence
could be a result of worse overall cohesion on the project making it difficult to identify
services that are also more cohesive at an interface level.

Considering that no strong correlations were found, further analysis regarding both ratios
was conducted. For each ratio a box plot is calculated and according to the distribution of
projects along ratios groups were formed. In short, for each ratio, a group was created for
the following intervals: minimum to first quartile (Q1), first quartile to median, median to
third quartile (Q3) and finally third quartile to maximum value. The main goal is to assess if
certain ranges of a given ratio perform better for metrics than the others. Box plot of both
ratios is illustrated by Figure 15. Each group represents roughly 25% of the applications.
Given the huge variability of values in the last group, creating other groups from that was
considered, but since that last group did not showed any particular relevant variability to
others such action was not executed.

Figure 15: Box plot of both ratios

In the following section the box plot of metrics for both ratios are presented, each box
plot is associated to a group of roughly 25% of the applications previously described. For
instance, CHM1 represents the first group, CHM2 the second, and so on.

7.7. Analysis 45

Method Declarations / Classes

Figure 16: Box plot for CHM (left) and CHD (right) across ranges of Method Declarations / Classes

Figure 17: Box plot for SMQ (left) and CMQ (right) across ranges of Method Declarations / Classes

Figure 18: Box plot ranges of IFN across ranges of Method Declarations / Classes

7.7. Analysis 46

Method Invocations / Classes

Figure 19: Box plot for CHM (left) and CHD (right) across ranges of Method Invocations / Classes

Figure 20: Box plot for SMQ (left) and CMQ (right) across

Figure 21: Box plot ranges of IFN across ranges of Method Invocations / Classes

7.7. Analysis 47

Overall both ratios exhibits stable results across metrics and no differences were observed
that could point in a considerable better performance of one ratio over another. Nevertheless,
there are some minor behaviours that can be observed and contribute to further conclusions.

ratio of method declarations / classes Regarding Method Declarations / Classes,
CHM’s median increases slightly towards higher values of the ratio. CHD’s median shows
a similar effect, although through a smoother increment. SMQ’s best results are found
at SMQ2 and SMQ3, meaning that could be a range where SMQ performs slightly better
and eventually has a drop in performance. CMQ performs similarly, there is a slightly
improvement towards CMQ3 in median and then a slightly drop in performance.

ratio of method invocations / classes Regarding Method Invocations / Classes,
CHM shows slightly better medians towards the higher range. SMQ shows an improvement
towards SMQ3 with a moderate improvement in median compared to SMQ1. CMQ follows
a similar pattern an increase towards CMQ3 resulting in a moderate increase compared to
CMQ1. IFN exhibits a more cohesive box plot towards IFN4.

number of classes Similarly to the analysis previously conducted on two ratios, we
now conduct an analysis on the number of classes. The goal is to understand if projects of a
particular range of classes behave better than others or if there is a trend regarding one of
the metrics. The analysis is divided into groups of projects each group being composed of
applications in a range of classes. For instance, SMQ150 contains all projects with less than
150 classes and more than 30 (being the minimum), SMQ300 contains projects between 150

and 300 classes. The last group, SMQ2600 includes everything beyond 1050 classes and up
to 2600 classes.

Considering that, out of the 200 applications previously taken into study there was a
lack of projects on the higher range of classes (groups with less than 10 applications), 45

applications over 800 classes were executed and added to this analysis. The results are
shown in Figures 22, 23, 24. Both CHM and CHD show considerable variance across groups
and no further conclusions can be made. That is however expected, considering that CHM
and CHD are measured at a different level of granularity (interfaces) instead of total classes.
Total number of interfaces on each project might be more impactful compared to number of
classes. SMQ shows a moderate drop from SMQ150 to SMQ300 followed by some variance
roughly between 0.15 and 0.2 for other groups. CMQ shows a tendency in decrease towards
CMQ600 followed by a recovery in its values. IFN exhibits a tendency to worse results
towards IFN900 although followed by recovery in the last groups. Further discussion to this
analysis is presented on Section 7.7.2.

7.7. Analysis 48

Metrics aggregated by number of classes

Figure 22: Box plot for CHM (left) and CHD (right) across ranges of classes

Figure 23: Box plot for SMQ (left) and CMQ (right) across ranges of classes

Figure 24: Box plot ranges of IFN across ranges of classes

7.7. Analysis 49

7.7.2 Resolution selection and analysis

In this section some examples of the obtained metrics are presented as a way to identify
what went well, what went wrong, what are the causes of specific metrics and what further
information can we identify that could help users make educated decisions on choosing the
most appropriate proposal for their perception of good microservices.

Common patterns

Firstly, a collection of the most common patterns of metric evolution across resolution are
presented.

This collection represents some examples of possible plots of resolution across metrics,
that are the easiest to select the best proposition of microservices according to the results in
quantitative metrics. A strong tendency to a range of resolutions is also common, meaning
higher quantitative metrics on that section.

Figure 25 presents a strong tendency regarding resolution identification. Its start has some
instability but a peek is identified between 0.5 and 0.6 and after that the metrics represent a
strong tendency towards worse services given the big jump from an absolute value of 3 to a
final 1.25.

Figure 25: Metrics across resolution for ’biliob-backend’ (200 classes)

Figure 26 illustrates a similar pattern, however the peek range of the best metrics is more
pronounced given both higher and lower edges of resolution representing worse metrics.
The maximum is in accordance to a resolution of 0.7, however, a range between 0.5 and
0.8 could be taken into account given different subjective perspectives to the domain in
question.

7.7. Analysis 50

Figure 26: Metrics across resolution for ’jeecg-bpm’ (810 classes)

Figure 27 represents a strong tendency towards lower resolutions. This can be explained
by the total number of 2514 classes composing the project. Lower resolutions guarantee that
services are smaller and are not composed of big chunks of the application. The increase in
metrics at a resolution of 1 can be explained by the growth of IRN, CHD and the stabilisation
of CMQ, remaining metrics stayed at lower values. IRN is expected to increase given less
services. CMQ increase is not too significant considering that it had a drop on previous
resolutions and it stays at around the same values.

Figure 27: Metrics across resolution for ’open-cyclos’ (2514 classes)

7.7. Analysis 51

Figure 28 represents an interesting example because there is a range (ie. 0.6 - 0.7) where
most metrics are stable meaning possible similar proposals of services both in quantitative
metrics as well as in size.

Figure 28: Metrics across resolution for ’oztrack’ (213 classes)

Outliers

In this section examples harder to understand and infer adequate resolution are presented.
The main reason for such occurrence could be noise, either by the randomness of the
clustering algorithm causing unstable results or improper identification of topics resulting
in some cases in higher variability of metrics.

Figure 29 illustrates a typical case of noise, where there is a tendency for better metrics
towards the middle of the range, however there is a big gap at 0.6 caused by a significant
drop in CMQ and SMQ.

7.7. Analysis 52

Figure 29: Metrics across resolution for ’ActivationCodeMall’ (307 classes)

Figure 30 illustrates an example where at first it does not seem intuitive why there are
two peeks, but by analysing each metric individually an informed decision can be made.
The first peek, resolution 0.3, represents an extreme case where IRN is at its worse while
CMQ and SMQ are at its best, which does not represent microservices of quality given such
extremes. However, at the second peek, resolution of 0.8, overall metrics diverge to a similar
point and represent proposals of microservices of higher quality and overall more cohesive
and loosely coupled than the first peek.

Figure 30: Metrics across resolution for ’api-manager’ (181 classes)

7.7. Analysis 53

Both Figure 31 and Figure 32 illustrate examples with multiple peeks on absolute values.
Tipically examples with such variability and huge peeks are resultant of side effects of
data normalisation and not necessarily hugely different services. On cases like this original
absolute values of each metric should be analysed. For instance, SMQ for ’paladin-boot’ has
a minimum of 0.092 and a maximum of 0.129 despite such huge variability. Similarly CMQ
has a minimum 0.231 of and a maximum of 0.287.

Figure 31: Metrics across resolution for ’CSC191’ (32 classes)

Figure 32: Metrics across resolution for ’paladin-boot’ (328 classes)

7.7. Analysis 54

Figure 33 represents patterns typically happening on small projects. Its reduced size
results in equal proposals across multiple resolutions hence the constant metrics. The huge
variation presented is a side effect of data normalisation instead of huge differences across
resolutions.

Figure 33: Metrics across resolution for ’H5APP-java’ (39 classes)

Similar to Figure 30, Figure 34 represents a similar pattern where the metrics start high at
low resolution, probably due to the tendency of higher values towards lower resolutions but
the second peek represents a strong proposal given overall metrics.

Figure 34: Metrics across resolution for ’WMSystem’ (816 classes)

7.7. Analysis 55

One of the biggest takeaways taken from this analysis is that metrics should be analysed
individually as a mean to understand what is the best proposal as a whole. Picking the
best proposal purely based on the best absolute value might be an obvious thing to do on
strong tendencies, however each metric represents a different aspect of how components
interact both internally and externally. Having strong metrics regarding an aspect while
totally ignoring others does not provide strong proposals of microservices.

Another takeaway from this analysis is that CHM and CHD do not bring much value
when identifying best resolution. The most probable cause of this is that CHM and CHD
are based on the identified interfaces of each service. The identification of interfaces on
its own is limited by the automated identification of endpoints across a large range of
different applications. For better granularity on interface identification they should ideally
be manually provided by the user. This does not mean CHM and CHD do not provide good
information as an overall assessment of quality of microservices, bad segregation of interfaces
still leads to low CHM and CHD. It is also important to note that the creation of new services
will require the future addition of endpoints or a similar layer of communication. Another
common pattern that the user should take into consideration is when SMQ and CMQ present
a large variance between lower and higher resolutions compared to other metrics. This could
mean that the range of resolution used is wider than it should be, and adapting it to a more
appropriate range could help reasoning about the results. It is also important to note that
the presented metrics are normalised across all clusters created, and sometimes big spikes
are just a consequence of data normalisation and not necessarily big metric change. Apart
from this analysis the user should be aware of the non normalised metrics to avoid this
pitfall.

One of the first questions that might arise is why a comparison with the current state of the
art solutions was not conducted? There are essentially to approaches that we could follow
regarding that question: either follow a comparison with the current proposed solution
with a very limited amount of projects (6 projects to be exact) and analysed with its own
proposed metrics, or use those metrics and conduct a more extensive study that could in the
future ideally serve as a comparison to other proposed solutions. We opted to follow the
second path as we believe it presents more value to the state of the art and discussion in this
field.

Regarding metrics of independence of functionality, both CHM and CHD presented good
median values, however there is a big interval between upper and lower whisker. The upper
whisker results might be more frequent on smaller applications and applications better
designed with strong domain concepts. The lower whisker could be described as projects of
larger complexity, with weaker domain concepts or an overall lack of pre-processing and
cleaning of domain terms.

7.7. Analysis 56

The higher values of CMQ compared to SMQ could be justified by the usage of an
approach mainly based on the extraction of lexical terms. The underlying structure of the
graph for clustering is based on the structural dependencies, however, edge weights when
based on semantics will privilege classes semantically closer. Both SMQ and CMQ are bound
between -1 and 1, despite some negative outliers on SMQ the results obtained are positive
and are relevant regarding the modularity of proposed services. Higher values of CMQ
over SMQ are expected given the semantic-focused approach of our methodology. Another
reason for lower SMQ is higher levels of abstraction which are discussed later.

Through further analysis on correlation of two ratios to metrics, and metrics analysis
on ranges of classes some considerations were identified. There is not a particular group
that represents major difference in results to others since our method works with similar
performance across a wide variety of variants regarding project structure. Nevertheless,
some tendencies and groups with slightly better/worse performance were identified. The
most significant are observed in the comparison of metrics across classes specially regarding
SMQ and CMQ. Both show better results in the first group composed of less classes. This is
expected considering those projects are less complex, hence identification of coherent topics
is easier as well as the maximisation of modularity on Louvain clustering. It is however
important to note that the downtrend stabilises at some point instead of continuously
decreasing towards negative values. We took measures to mitigate preliminary results since
some groups had a low amount of projects. We increased each group to a minimum of
15 projects, however that might not be enough to mitigate some of the instability resultant
of wide amount of variants introduced by projects of different domains and differences in
design.

Regarding IFN, our proposed tool seems to have some tendency to choose smaller services
(due to metrics combination) resulting in better IFNs and worse SMQ (i.e. with smaller
microservices it is expected that more external connections exist).

An interesting point inherited by the topic modelling technique employed is that it is
language agnostic. We observed projects of different spoken languages (i.e. English, Spanish,
Portuguese, etc.) and, as long as the vocabulary stays coherent and consistent across the
domain, it should not make a difference on how it performs. Going even further, some
projects were heavily composed of abbreviations to the point where it becomes hard to
read and understand its domain. Similarly, as long as those abbreviations form a consistent
vocabulary the method should perform similarly.

Considering that we did not apply customised pre-processing for each project, when
there are levels of abstraction composed of multiple components, there is a possibility that
those same abstractions are identified as a topic and eventually result in a service. Better
pre-processing would definitely help, however there will always be cases where identified
topics do not represent the reality of the domain. Allowing the user to discard topics that

7.8. Performance 57

purely represent abstractions or are composed by very scattered terms could bring benefits
to the process of service identification.

Our approach uses classes as the unit of decomposition of a project. Even though we
can identify multiple classes from a java file, such granularity might be too high to identify
cross-cutting concepts and segregate them into their unique services. Using finer units of
decomposition such as methods might help the identification of such cross-cutting concepts
and improve the overall identification of domain terms and consequently better cohesion
and loosely coupling.

The current value of our proposed tool for developers is mainly to explore an architecture
and guide the user to identify microservices according to metrics of independence of
functionality and modularity. Although we identify a resolution at which the independence
of functionality and modularity are at their highest, choosing the adequate number of
services is dependent on the subjective understanding of what represents good microservices
to the expert. Considering that each cluster of classes results in a direct proposition of a
microservice the trade-off between cohesion and coupling is an important feature that the
expert should evaluate. In short, choosing lower resolution, hence smaller microservices,
results inherently in higher cohesion with higher coupling, while higher resolutions results
in the opposite. The appropriate balance between cohesion and coupling at a class level
is not that straight-forward to identify, hence the ultimate decision should be made by the
expert.

We hypothesise that the main cause of success or failure to the methodology is abstraction,
considering that it hinders topic identification and in some cases the identification of
abstraction as a topic might result in isolating such abstraction into an independent proposal
of a service. Although abstraction usually increases with bigger projects, our data set
is composed of applications wildly varying in their domain, hence, a smaller but more
complex application could have more abstraction than a large application more focused
on the domain. Further analysis to measure the level of abstraction of projects and its
correlation to metrics would have to be conducted to confirm our hypothesis.

Overall, all the metrics demonstrate promising results towards microservice identification
regarding independence of functionality and modularity across a wide set of projects of
different domains and complexity.

7.8 performance

Undergoing migration to microservices is a time consuming process that can take months
or even years to complete. The sole process of identification of possible services is helpful
and may speed up the whole process. Considering that the process is extensive there is no
need to provide the user with real-time proposals. It will be perfectly acceptable for the user

7.8. Performance 58

to run the tool for a couple of hours or days as long as quality services are being proposed.
In any case, we want to give a picture of the time our tool takes to compose such proposal.

The machine we used for such execution is composed of an i7 8550U processor and 16GB

of RAM. In Figure 35 the box plots of execution time distributed by classes is presented for
the 200 applications previously considered for analysis under the same parameters. Each
box plot represents a range of projects by quantity of classes. For instance, the first box plot
is composed of projects containing a minimum of 30 classes and a maximum of 499 classes.

Figure 35: Box plot of execution time in minutes across groups of classes

Although box plots by number of classes are shown and a pattern can be identified
regarding performance over number of classes, to be more precise, the properties that
most affect the performance are the total number of lexical terms (influencing duration
of topic identification) and complexity of project. Regarding the latter there are moderate
improvements that can be employed. The tool was initially built as a unit to perform topic
modelling for a specific number of topics and clustering for a specific resolution. Further
improvements on optimal topic identification through coherence metrics and finding of
optimal resolution were built on top of the existing solution. Although most of the data
being reused on different iterations of the process is being cached and used efficiently, the
process of collecting metrics out of each proposed service based on resolution requires
parsing the project from the ground. Improving such procedure will definitely improve
performance, however it should not be a drastic change as identifying topics and measuring
their coherence remains as the slowest step of the process.

7.9. Threats to validity 59

7.9 threats to validity

In this section we discuss the threats to the proposed method organised according
to Wohlin et al. (2012).

conclusion validity. A possible threat is related to the reliability of measures, in
this case of the metrics. CHM and CHD implementations were provided by their authors,
however the remaining were implemented according their original publication, and when in
doubt we have contacted the authors to discuss and clarify them. We have also performed
extended tests to guarantee the correctness of the results.

internal validity. Another threat to validity refers to how the parameters of the
study are selected. Ideally we should do an extensive analysis of how the number of topics
and resolution affect the results directly, however, that would require a vast amount of work
given the high number of applications and possible permutations. To mitigate such threat,
we defined arbitrary ranges for each parameter. Regarding the resolution parameter, the
selected arbitrary range demonstrated a level of granularity capable of identifying small
microservices in large applications as well as larger microservices in smaller applications,
in other words, it should have the capability to identify different levels of granularity in
different sized applications. Ultimately, resolution is tested against metrics and we can
understand how it performs. Unfortunately the same cannot be done with the number of
topics. To identify the appropriate number of topics we resort to a metric of coherence which
evaluates if the terms of each topic make sense together. This is applied on an arbitrary
range of number of topics. However, the ultimate contribution of the number of topics to
the method can only be evaluated after clustering and no further individual conclusions can
be achieved.

construct validity. A construct validity threat relates to the quality of microservices
being proposed. Even though we used the state of the art metrics regarding microservices, it
is theoretically possible, however unlikely, to achieve good metrics that do not necessarily
represent good proposals of microservices. The amount of projects taken into consideration
should decrease such possibility, however, a qualitative analysis of the metrics used would
have to be conducted in order to make further conclusions. Bringing experts to conduct an
analysis of the decomposition we propose would also help understand the quality of such
proposals, and help identifying possible improvements to the overall process.

external validity. An external threat relates to the architectures of projects we
used. Our goal was to take monolithic applications and thus it was necessary to filter out

7.9. Threats to validity 60

projects composed of other architectures such as SOA and MA. Repositories built upon
such architectures are often composed of multiple projects, hence multiple src folders. To
mitigate such occurrences only projects containing one src folder were considered given
the definition of monolithic applications as being composed of a single program. However,
there is no absolute guarantee that all the projects considered follow the definition of
a monolith. A second threat relates to the fact that we use only open-source projects.
Nevertheless, it is now common to find companies and other entities making their code
available. For instance, our list of projects includes a project by the Australian Government
(AtlasOfLivingAustralia/biocache-service). However, it is possible the results may vary
for proprietary software.

8

C O N C L U S I O N

We present a methodology to identify microservices from monolithic software architectures.
The methodology proposed is agnostic of the programming language and paradigm. We have
implemented the methodology in a proof of concept and tested against the state of the art
quantitative metrics on independence of functionality and modularity of microservices. The
evaluation was conducted against the collection of 200 open-source Java Spring applications
from GitHub.

The proposed methodology performed well regarding independence of functionality with
medians roughly close to 0.6 for both CHM and CHD and low values of IFN representing
relevant proposals of microservices. The results concerning modularity are also positive,
with better performance regarding the CMQ over SMQ given the nature of our semantic
based approach. The overall results are positive and lay a foundation for the usage of topic
modelling techniques on microservices identification.

8.1 contributions

The field of automated microservice identification and migration is relatively new with
a few proposed methodologies and even less working prototypes or proper extensive
validation by metrics or qualitative analysis. In order to mitigate some of those gaps the
following contributions were carried out:

• Improvements on the weak consideration of domain terms on the current state of art
through the usage of topic modelling.

• A methodology capable of identifying proposals of microservices with a very low need
for user input and language agnostic.

• Implementation of a prototype capable of applying the proposed methodology for
Java Spring web applications, however extendable to other languages as long as the
proper data is fed into the algorithm.

61

8.2. Future work 62

• Extensive study on 200 open-source applications and five quantitative state of the art
metrics regarding microservices’ independence of functionality and modularity.

8.2 future work

The present work has its limitations, hence the realisation of specific analysis and improve-
ments would be beneficial to improve its quality. Some points for improvement and future
work are presented below:

• Conduct an in-depth analysis of topic modelling methods extended from LDA in
order to understand if there is a benefit in using them. For instance, the Author Topic
Modelling, extended from LDA, could be used to infer topics based on the authoring
of code by a specific developer, and according to those identifications and Parnas thesis
infer clusters of services?

• Conduct a qualitative study in order to proper understand the impact of metrics
regarding the quality of the proposed services. Such study should also allow to
identify to what extent each metric contributes to the proposal of services and for the
improvement of the selection of the proposal being presented to the user.

• For ultimate evaluation the proposals of microservices should be taken into considera-
tion and a migration conducted to a working version of a microservice architecture.

B I B L I O G R A P H Y

About the symbol solver · javaparser/javaparser wiki. https://github.com/javaparser/

javaparser/wiki/About-the-Symbol-Solver. (Accessed on 14/07/2020).

Nexhati Alija. Justification of software maintenance costs. International Journal of Advanced
Research in Computer Science and Software Engineering, 7:15–23, 03 2017. doi: 10.23956/
ijarcsse/V7I2/01207.

Armin Balalaie, Abbas Heydarnoori, Pooyan Jamshidi, Damian Tamburri, and Theodore
Lynn. Microservices migration patterns. Software: Practice and Experience, 48, 07 2018. doi:
10.1002/spe.2608.

Samir Behara. Making your microservices resilient and fault tol-
erant, Aug 2018. URL https://samirbehara.com/2018/08/06/

making-your-microservices-resilient-and-fault-tolerant/. (Accessed on
20/12/2019).

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation. J. Mach.
Learn. Res., 3(null):993–1022, March 2003. ISSN 1532-4435.

Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast
unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and
Experiment, 2008(10):P10008, oct 2008. doi: 10.1088/1742-5468/2008/10/p10008. URL
https://doi.org/10.1088%2F1742-5468%2F2008%2F10%2Fp10008.

H. Borges, A. Hora, and M. T. Valente. Understanding the factors that impact the popularity
of github repositories. In 2016 IEEE International Conference on Software Maintenance and
Evolution (ICSME), pages 334–344, 2016.

Bulkhead Pattern. Bulkhead pattern - cloud design patterns. URL https://docs.microsoft.

com/en-us/azure/architecture/patterns/bulkhead. (Accessed on 20/07/2020).

Ivan Candela, Gabriele Bavota, Barbara Russo, and Rocco Oliveto. Using cohesion and
coupling for software remodularization: Is it enough? ACM Transactions on Software
Engineering and Methodology, 25:1–28, 06 2016. doi: 10.1145/2928268.

R. Chen, S. Li, and Z. Li. From monolith to microservices: A dataflow-driven approach. In
2017 24th Asia-Pacific Software Engineering Conference (APSEC), pages 466–475, Dec 2017.
doi: 10.1109/APSEC.2017.53.

63

https://github.com/javaparser/javaparser/wiki/About-the-Symbol-Solver
https://github.com/javaparser/javaparser/wiki/About-the-Symbol-Solver
https://samirbehara.com/2018/08/06/making-your-microservices-resilient-and-fault-tolerant/
https://samirbehara.com/2018/08/06/making-your-microservices-resilient-and-fault-tolerant/
https://doi.org/10.1088%2F1742-5468%2F2008%2F10%2Fp10008
https://docs.microsoft.com/en-us/azure/architecture/patterns/bulkhead
https://docs.microsoft.com/en-us/azure/architecture/patterns/bulkhead

bibliography 64

Rui Chen, Shanshan Li, and Zheng (Eddie) Li. From monolith to microservices: A dataflow-
driven approach. pages 466–475, 12 2017. doi: 10.1109/APSEC.2017.53.

Melvin Conway. Conway’s law, 1967. URL http://www.melconway.com/Home/Conways_Law.

html. (Accessed on 27/12/2019).

Zhamak Dehghani. How to break a monolith into microservices. https://

martinfowler.com/articles/break-monolith-into-microservices.html, 2018. (Ac-
cessed on 26/12/2019).

Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. Feature location
in source code: A taxonomy and survey. Journal of Software Maintenance and Evolution:
Research and Practice, 25, 01 2013. doi: 10.1002/smr.567.

Santo Fortunato and Marc Barthélemy. Resolution limit in community detection. Proceedings
of the National Academy of Sciences, 104(1):36–41, 2007. ISSN 0027-8424. doi: 10.1073/pnas.
0605965104. URL https://www.pnas.org/content/104/1/36.

Martin Fowler. Monolith first. https://martinfowler.com/bliki/MonolithFirst.html,
June 2015. (Accessed on 26/12/2019).

Martin Fowler and James Lewis. Microservices. https://martinfowler.com/articles/

microservices.html, March 2014. (Accessed on 27/12/2019).

Jonas Fritzsch, Justus Bogner, Stefan Wagner, and Alfred Zimmermann. Microservices
migration in industry: Intentions, strategies, and challenges. 10 2019. doi: 10.1109/ICSME.
2019.00081.

Michelle Girvan and Mark Newman. Community structure in social and biological networks.
Proceedings of the National Academy of Sciences of the United States of America, 99:7821–7826,
11 2001.

Michael Gysel, Lukas Kölbener, Wolfgang Giersche, and Olaf Zimmermann. Service cutter:
A systematic approach to service decomposition. pages 185–200, 09 2016. doi: 10.1007/
978-3-319-44482-6_12.

Brian Henderson-Sellers, Jolita Ralyte, Pär Ågerfalk, and Matti Rossi. Situational Method
Engineering. 01 2014. ISBN 978-3-642-41466-4. doi: 10.1007/978-3-642-41467-1.

Hamed Jelodar, Yongli Wang, Chi Yuan, Xia Feng, Xiahui Jiang, Yanchao Li, and Liang
Zhao. Latent dirichlet allocation (lda) and topic modeling: Models, applications, a
survey. Multimedia Tools Appl., 78(11):15169–15211, June 2019. ISSN 1380-7501. doi:
10.1007/s11042-018-6894-4. URL https://doi.org/10.1007/s11042-018-6894-4.

http://www.melconway.com/Home/Conways_Law.html
http://www.melconway.com/Home/Conways_Law.html
https://martinfowler.com/articles/break-monolith-into-microservices.html
https://martinfowler.com/articles/break-monolith-into-microservices.html
https://www.pnas.org/content/104/1/36
https://martinfowler.com/bliki/MonolithFirst.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://doi.org/10.1007/s11042-018-6894-4

bibliography 65

W. Jin, T. Liu, Q. Zheng, D. Cui, and Y. Cai. Functionality-oriented microservice extraction
based on execution trace clustering. In 2018 IEEE International Conference on Web Services
(ICWS), pages 211–218, July 2018. doi: 10.1109/ICWS.2018.00034.

W. Jin, T. Liu, Y. Cai, R. Kazman, R. Mo, and Q. Zheng. Service candidate identification from
monolithic systems based on execution traces. IEEE Transactions on Software Engineering,
pages 1–1, 2019. ISSN 1939-3520. doi: 10.1109/TSE.2019.2910531.

M. Kamimura, K. Yano, T. Hatano, and A. Matsuo. Extracting candidates of microservices
from monolithic application code. In 2018 25th Asia-Pacific Software Engineering Conference
(APSEC), pages 571–580, Dec 2018. doi: 10.1109/APSEC.2018.00072.

J. Kazanavičius and D. Mažeika. Migrating legacy software to microservices architecture. In
2019 Open Conference of Electrical, Electronic and Information Sciences (eStream), pages 1–5,
April 2019. doi: 10.1109/eStream.2019.8732170.

Pooja Kherwa and Poonam Bansal. Topic modeling: A comprehensive review. ICST
Transactions on Scalable Information Systems, 7:159623, 07 2018. doi: 10.4108/eai.13-7-2018.
159623.

K. Kobayashi, M. Kamimura, K. Kato, K. Yano, and A. Matsuo. Feature-gathering
dependency-based software clustering using dedication and modularity. In 2012 28th IEEE
International Conference on Software Maintenance (ICSM), pages 462–471, Sep. 2012. doi:
10.1109/ICSM.2012.6405308.

Kenichi Kobayashi, Manabu Kamimura, Keisuke Yano, Koki Kato, and Akihiko Matsuo. Sarf
map: Visualizing software architecture from feature and layer viewpoints, 2013.

Renaud Lambiotte, Jean-Charles Delvenne, and Mauricio Barahona. Random walks, markov
processes and the multiscale modular organization of complex networks. IEEE Transactions
on Network Science and Engineering, 1(2):76–90, Jul 2014. ISSN 2327-4697. doi: 10.1109/tnse.
2015.2391998. URL http://dx.doi.org/10.1109/TNSE.2015.2391998.

Ian X. Y. Leung, Pan Hui, Pietro Liò, and Jon Crowcroft. Towards real-time community
detection in large networks. Physical review. E, Statistical, nonlinear, and soft matter physics,
79 6 Pt 2:066107, 2009.

W. Ma, L. Chen, Y. Zhou, and B. Xu. What are the dominant projects in the github
python ecosystem? In 2016 Third International Conference on Trustworthy Systems and their
Applications (TSA), pages 87–95, 2016.

G. Mazlami, J. Cito, and P. Leitner. Extraction of microservices from monolithic software
architectures. In 2017 IEEE International Conference on Web Services (ICWS), pages 524–531,
June 2017. doi: 10.1109/ICWS.2017.61.

http://dx.doi.org/10.1109/TNSE.2015.2391998

bibliography 66

Abhishek Mishra. Demystifying louvain’s algorithm and its implementation in gpu
| by abhishek mishra | walmartlabs | medium. https://medium.com/walmartlabs/

demystifying-louvains-algorithm-and-its-implementation-in-gpu-9a07cdd3b010.
(Accessed on 16/07/2020).

Joe Nemer. Advantages and disadvantages of mi-
croservices architecture. https://cloudacademy.com/blog/

microservices-architecture-challenge-advantage-drawback/, 2019. (Accessed
on 26/12/2019).

M. E. J. Newman. Modularity and community structure in networks. Proceedings of the
National Academy of Sciences of the United States of America, 103(23):8577–8582, Jun 2006.
ISSN 0027-8424. doi: 10.1073/pnas.0601602103. URL https://pubmed.ncbi.nlm.nih.gov/

16723398. 16723398[pmid].

S. Newman. Building Microservices: Designing Fine-Grained Systems. O’Reilly Media, 2015.
ISBN 9781491950333. URL https://books.google.pt/books?id=jjl4BgAAQBAJ.

Claus Pahl and Pooyan Jamshidi. Microservices: A systematic mapping study. pages 137–146,
01 2016. doi: 10.5220/0005785501370146.

D. L. Parnas. On the criteria to be used in decomposing systems into modules. Commun.
ACM, 15(12):1053–1058, December 1972. ISSN 0001-0782. doi: 10.1145/361598.361623.
URL http://doi.acm.org/10.1145/361598.361623.

Jean Petrić, Tracy Hall, and David Bowes. How effectively is defective code actually tested?
an analysis of junit tests in seven open source systems. In Proceedings of the 14th International
Conference on Predictive Models and Data Analytics in Software Engineering, PROMISE’18,
page 42–51, New York, NY, USA, 2018. Association for Computing Machinery. ISBN
9781450365932. doi: 10.1145/3273934.3273939. URL https://doi.org/10.1145/3273934.

3273939.

Selva Prabhakaran. Gensim topic modeling - a guide to building best lda models. https:
//www.machinelearningplus.com/nlp/topic-modeling-gensim-python/. (Accessed on
10/05/2020).

Greg Rafferty. Lda on the texts of harry potter. topic modeling
with latent dirichlet allocation. https://towardsdatascience.com/

basic-nlp-on-the-texts-of-harry-potter-topic-modeling-with-latent-dirichlet-allocation-f3c00f77b0f5#:

~:text=The%20difference%20between%20Mallet%20and,Latent%20Dirichlet%

20Allocation%20via%20Mallet. (Accessed on 03/09/2020).

https://medium.com/walmartlabs/demystifying-louvains-algorithm-and-its-implementation-in-gpu-9a07cdd3b010
https://medium.com/walmartlabs/demystifying-louvains-algorithm-and-its-implementation-in-gpu-9a07cdd3b010
https://cloudacademy.com/blog/microservices-architecture-challenge-advantage-drawback/
https://cloudacademy.com/blog/microservices-architecture-challenge-advantage-drawback/
https://pubmed.ncbi.nlm.nih.gov/16723398
https://pubmed.ncbi.nlm.nih.gov/16723398
https://books.google.pt/books?id=jjl4BgAAQBAJ
http://doi.acm.org/10.1145/361598.361623
https://doi.org/10.1145/3273934.3273939
https://doi.org/10.1145/3273934.3273939
https://www.machinelearningplus.com/nlp/topic-modeling-gensim-python/
https://www.machinelearningplus.com/nlp/topic-modeling-gensim-python/
https://towardsdatascience.com/basic-nlp-on-the-texts-of-harry-potter-topic-modeling-with-latent-dirichlet-allocation-f3c00f77b0f5#:~:text=The%20difference%20between%20Mallet%20and,Latent%20Dirichlet%20Allocation%20via%20Mallet.
https://towardsdatascience.com/basic-nlp-on-the-texts-of-harry-potter-topic-modeling-with-latent-dirichlet-allocation-f3c00f77b0f5#:~:text=The%20difference%20between%20Mallet%20and,Latent%20Dirichlet%20Allocation%20via%20Mallet.
https://towardsdatascience.com/basic-nlp-on-the-texts-of-harry-potter-topic-modeling-with-latent-dirichlet-allocation-f3c00f77b0f5#:~:text=The%20difference%20between%20Mallet%20and,Latent%20Dirichlet%20Allocation%20via%20Mallet.
https://towardsdatascience.com/basic-nlp-on-the-texts-of-harry-potter-topic-modeling-with-latent-dirichlet-allocation-f3c00f77b0f5#:~:text=The%20difference%20between%20Mallet%20and,Latent%20Dirichlet%20Allocation%20via%20Mallet.

bibliography 67

Sara Rahiminejad, Mano R. Maurya, and Shankar Subramaniam. Topological and functional
comparison of community detection algorithms in biological networks. BMC Bioinformatics,
20(1):212, Apr 2019. ISSN 1471-2105. doi: 10.1186/s12859-019-2746-0. URL https:

//doi.org/10.1186/s12859-019-2746-0.

RebelLabs. Developer productivity report 2017: Java tools usage | rebel. https://www.

jrebel.com/blog/java-development-tools-usage-stats, September 2017. (Accessed on
26/01/2020).

Michael Röder, Andreas Both, and Alexander Hinneburg. Exploring the space of topic
coherence measures. In Proceedings of the Eighth ACM International Conference on Web
Search and Data Mining, WSDM ’15, page 399–408, New York, NY, USA, 2015. Association
for Computing Machinery. ISBN 9781450333177. doi: 10.1145/2684822.2685324. URL
https://doi.org/10.1145/2684822.2685324.

David Sarmento. Chapter 22: Correlation types and when to use them. https://ademos.

people.uic.edu/Chapter22.html, 10 2017. (Accessed on 26/09/2020).

Carson Sievert and Kenneth Shirley. LDAvis: A method for visualizing and interpreting top-
ics. In Proceedings of the Workshop on Interactive Language Learning, Visualization, and Interfaces,
pages 63–70, Baltimore, Maryland, USA, June 2014. Association for Computational Linguis-
tics. doi: 10.3115/v1/W14-3110. URL https://www.aclweb.org/anthology/W14-3110.

Framework Spring. Spring framework. https://spring.io/. (Accessed on 30/07/2020).

Keith Stevens, Philip Kegelmeyer, David Andrzejewski, and David Buttler. Exploring topic
coherence over many models and many topics. In Proceedings of the 2012 Joint Conference
on Empirical Methods in Natural Language Processing and Computational Natural Language
Learning, pages 952–961, Jeju Island, Korea, July 2012. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/D12-1087.

X. Sun, X. Liu, B. Li, Y. Duan, H. Yang, and J. Hu. Exploring topic models in software
engineering data analysis: A survey. In 2016 17th IEEE/ACIS International Conference on
Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing
(SNPD), pages 357–362, 2016.

Xiaobing Sun, Xiangyue Liu, Li Bin, Bixin Li, David Lo, and Lingzhi Liao. Clustering classes
in packages for program comprehension. Scientific Programming, 2017:1–15, 01 2017. doi:
10.1155/2017/3787053.

Davide Taibi, Valentina Lenarduzzi, and Claus Pahl. Architectural patterns for microservices:
A systematic mapping study. 03 2018. doi: 10.5220/0006798302210232.

https://doi.org/10.1186/s12859-019-2746-0
https://doi.org/10.1186/s12859-019-2746-0
https://www.jrebel.com/blog/java-development-tools-usage-stats
https://www.jrebel.com/blog/java-development-tools-usage-stats
https://doi.org/10.1145/2684822.2685324
https://ademos.people.uic.edu/Chapter22.html
https://ademos.people.uic.edu/Chapter22.html
https://www.aclweb.org/anthology/W14-3110
https://spring.io/
https://www.aclweb.org/anthology/D12-1087

bibliography 68

Joost Visser. Building Maintainable Software: Ten Guidelines for Future-proof Code. O’Reilly
Media, Incorporated, 2016. ISBN 9781491967423. URL https://books.google.pt/books?

id=EFiYAQAACAAJ.

Maira Wenzel, John Parente, and Sabah Shariq. Communication in a microser-
vice architecture | microsoft docs. https://docs.microsoft.com/en-us/dotnet/

architecture/microservices/architect-microservice-container-applications/

communication-in-microservice-architecture, 2020. (Accessed on 22/12/2019).

Claes Wohlin, Per Runeson, Martin Hst, Magnus C. Ohlsson, Bjrn Regnell, and Anders
Wessln. Experimentation in Software Engineering. Springer Publishing Company, Incorpo-
rated, 2012. ISBN 3642290434.

https://books.google.pt/books?id=EFiYAQAACAAJ
https://books.google.pt/books?id=EFiYAQAACAAJ
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/communication-in-microservice-architecture
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/communication-in-microservice-architecture
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/communication-in-microservice-architecture

A
A P P E N D I X

a.1 identified clusters for jpetstore by resolution

a.1.1 Cluster resolution: 0.6

Service 0

org.mybatis.jpetstore.mapper.LineItemMapper

org.mybatis.jpetstore.domain.LineItem

Service 1

org.mybatis.jpetstore.mapper.OrderMapper

org.mybatis.jpetstore.service.OrderService

org.mybatis.jpetstore.domain.Sequence

org.mybatis.jpetstore.domain.Order

org.mybatis.jpetstore.mapper.SequenceMapper

Service 2

org.mybatis.jpetstore.web.actions.CartActionBean

org.mybatis.jpetstore.domain.Cart

org.mybatis.jpetstore.domain.Item

org.mybatis.jpetstore.domain.CartItem

org.mybatis.jpetstore.mapper.ItemMapper

Service 3

org.mybatis.jpetstore.domain.Product

org.mybatis.jpetstore.service.CatalogService

org.mybatis.jpetstore.domain.Category

org.mybatis.jpetstore.mapper.ProductMapper

org.mybatis.jpetstore.mapper.CategoryMapper

69

A.1. Identified clusters for JpetStore by resolution 70

org.mybatis.jpetstore.web.actions.CatalogActionBean

Service 4

org.mybatis.jpetstore.web.actions.AccountActionBean

org.mybatis.jpetstore.domain.Account

org.mybatis.jpetstore.mapper.AccountMapper

org.mybatis.jpetstore.service.AccountService

Service 5

org.mybatis.jpetstore.web.actions.OrderActionBean

org.mybatis.jpetstore.web.actions.AbstractActionBean

a.1.2 Cluster resolution: 0.7

Service 0

org.mybatis.jpetstore.mapper.OrderMapper

org.mybatis.jpetstore.service.OrderService

org.mybatis.jpetstore.domain.Sequence

org.mybatis.jpetstore.domain.LineItem

org.mybatis.jpetstore.domain.Order

org.mybatis.jpetstore.mapper.SequenceMapper

org.mybatis.jpetstore.mapper.LineItemMapper

Service 1

org.mybatis.jpetstore.web.actions.CartActionBean

org.mybatis.jpetstore.domain.Cart

org.mybatis.jpetstore.domain.Item

org.mybatis.jpetstore.domain.CartItem

org.mybatis.jpetstore.mapper.ItemMapper

Service 2

org.mybatis.jpetstore.domain.Product

org.mybatis.jpetstore.service.CatalogService

org.mybatis.jpetstore.domain.Category

org.mybatis.jpetstore.mapper.ProductMapper

org.mybatis.jpetstore.mapper.CategoryMapper

org.mybatis.jpetstore.web.actions.CatalogActionBean

A.1. Identified clusters for JpetStore by resolution 71

Service 3

org.mybatis.jpetstore.web.actions.AccountActionBean

org.mybatis.jpetstore.domain.Account

org.mybatis.jpetstore.mapper.AccountMapper

org.mybatis.jpetstore.service.AccountService

Service 4

org.mybatis.jpetstore.web.actions.OrderActionBean

org.mybatis.jpetstore.web.actions.AbstractActionBean

a.1.3 Cluster resolution: 0.8

Service 0

org.mybatis.jpetstore.web.actions.CartActionBean

org.mybatis.jpetstore.domain.Cart

org.mybatis.jpetstore.domain.Item

org.mybatis.jpetstore.domain.LineItem

org.mybatis.jpetstore.domain.CartItem

org.mybatis.jpetstore.mapper.ItemMapper

org.mybatis.jpetstore.mapper.LineItemMapper

Service 1

org.mybatis.jpetstore.mapper.OrderMapper

org.mybatis.jpetstore.service.OrderService

org.mybatis.jpetstore.domain.Sequence

org.mybatis.jpetstore.web.actions.AbstractActionBean

org.mybatis.jpetstore.domain.Order

org.mybatis.jpetstore.mapper.SequenceMapper

org.mybatis.jpetstore.web.actions.OrderActionBean

Service 2

org.mybatis.jpetstore.domain.Product

org.mybatis.jpetstore.service.CatalogService

org.mybatis.jpetstore.domain.Category

org.mybatis.jpetstore.mapper.ProductMapper

org.mybatis.jpetstore.mapper.CategoryMapper

org.mybatis.jpetstore.web.actions.CatalogActionBean

A.1. Identified clusters for JpetStore by resolution 72

Service 3

org.mybatis.jpetstore.web.actions.AccountActionBean

org.mybatis.jpetstore.domain.Account

org.mybatis.jpetstore.mapper.AccountMapper

org.mybatis.jpetstore.service.AccountService

a.1.4 Cluster resolution: 0.9

Service 0

org.mybatis.jpetstore.web.actions.CartActionBean

org.mybatis.jpetstore.domain.Cart

org.mybatis.jpetstore.domain.Item

org.mybatis.jpetstore.domain.LineItem

org.mybatis.jpetstore.domain.CartItem

org.mybatis.jpetstore.mapper.ItemMapper

Service 1

org.mybatis.jpetstore.mapper.OrderMapper

org.mybatis.jpetstore.service.OrderService

org.mybatis.jpetstore.domain.Sequence

org.mybatis.jpetstore.web.actions.AbstractActionBean

org.mybatis.jpetstore.domain.Order

org.mybatis.jpetstore.mapper.LineItemMapper

org.mybatis.jpetstore.mapper.SequenceMapper

org.mybatis.jpetstore.web.actions.OrderActionBean

Service 2

org.mybatis.jpetstore.domain.Product

org.mybatis.jpetstore.service.CatalogService

org.mybatis.jpetstore.domain.Category

org.mybatis.jpetstore.mapper.ProductMapper

org.mybatis.jpetstore.mapper.CategoryMapper

org.mybatis.jpetstore.web.actions.CatalogActionBean

Service 3

org.mybatis.jpetstore.web.actions.AccountActionBean

org.mybatis.jpetstore.domain.Account

A.1. Identified clusters for JpetStore by resolution 73

org.mybatis.jpetstore.mapper.AccountMapper

org.mybatis.jpetstore.service.AccountService

a.1.5 Cluster resolution: 1 & 1.1

Service 0

org.mybatis.jpetstore.mapper.OrderMapper

org.mybatis.jpetstore.service.OrderService

org.mybatis.jpetstore.domain.Sequence

org.mybatis.jpetstore.domain.Order

org.mybatis.jpetstore.mapper.SequenceMapper

org.mybatis.jpetstore.web.actions.OrderActionBean

Service 1

org.mybatis.jpetstore.web.actions.CartActionBean

org.mybatis.jpetstore.domain.Cart

org.mybatis.jpetstore.domain.Item

org.mybatis.jpetstore.domain.LineItem

org.mybatis.jpetstore.mapper.LineItemMapper

org.mybatis.jpetstore.domain.CartItem

org.mybatis.jpetstore.mapper.ItemMapper

Service 2

org.mybatis.jpetstore.domain.Product

org.mybatis.jpetstore.service.CatalogService

org.mybatis.jpetstore.domain.Category

org.mybatis.jpetstore.mapper.ProductMapper

org.mybatis.jpetstore.mapper.CategoryMapper

org.mybatis.jpetstore.web.actions.CatalogActionBean

Service 3

org.mybatis.jpetstore.domain.Account

org.mybatis.jpetstore.web.actions.AbstractActionBean

org.mybatis.jpetstore.service.AccountService

org.mybatis.jpetstore.web.actions.AccountActionBean

org.mybatis.jpetstore.mapper.AccountMapper

A.2. Metrics results of GitHub Projects 74

a.2 metrics results of github projects

(Intentionally left blank. Content resumes on next page.)

A.2. Metrics results of GitHub Projects 75

G
it

H
ub

Pr
oj

ec
t

#C
la

ss
es

#S
ta

rs
C

H
M

C
H

D
IF

N
C

M
Q

SM
Q

#S
er

vi
ce

s

m
ia

ns
en

/R
oo

th
ub

3
8
9

1
0
0

0
.3

1
0
.3

4
1
.6

1
0

.3
7

0
.1

4
3
4

hu
an

gl
u2

0
1
2
4
/i

nv
oi

ce
7
3

9
5

0
.6

9
0
.5

5
1
.0

0
.2

8
0
.1

4
9

La
b4

1
/D

en
dr

it
e

1
0
1

9
2

0
.5

6
0
.7

1
.2

0
.4

9
0
.1

9
2
1

pi
bi

gs
ta

r/
pa

rs
ev

ip
9
0

8
7

0
.7

6
0
.4

3
1
.3

6
0

.2
2

0
.3

8
1
5

O
C

R
4

al
l/

O
C

R
4
al

l
4
7

8
6

0
.8

1
0
.9

9
1
.2

7
0

.6
4

0
.2

6
1
6

m
oo

cs
s/

Ea
sy

C
M

S
6
4

8
6

0
.7

3
0
.9

7
1
.2

5
0

.4
2

0
.1

9
1
0

V
in

o0
0
7
/j

av
aE

ES
ca

ff
ol

d
4
5

8
4

0
.5

1
0
.2

5
1
.7

5
0

.3
1

0
.2

1
1
1

G
de

iA
ss

is
ta

nt
/G

de
iA

ss
is

ta
nt

4
5
5

7
9

0
.4

0
.7

9
1
.6

6
0

.3
7

0
.2

3
3
7

pu
ra

ng
-fi

nt
ec

h/
se

pp
b

4
3
0

7
9

0
.4

3
0
.6

5
1
.4

3
0

.4
0
.1

8
3
3

m
ur

al
ib

as
an

i/
ka

fk
aw

iz
e

9
9

7
0

0
.5

7
0
.6

3
1
.0

0
.3

8
0
.0

8
1
4

qi
an

qi
an

ju
n/

Ed
uc

at
io

na
l-

m
an

ag
em

en
t

1
0
0

6
6

1
.0

0
.9

7
1
.0

0
.5

1
0
.3

1
5

w
sk

1
1
0
3
/m

ov
ie

-b
oo

t
2
1
7

6
0

0
.5

7
0
.6

6
1
.7

8
0

.3
9

0
.1

8
2
4

Jo
ey

Bl
in

g/
bo

ot
pl

us
1
5
0

5
8

0
.5

4
0
.2

8
1
.2

9
0

.3
6

0
.1

8
1
8

fo
rT

ri
be

fo
rX

ua
nm

o/
sw

or
d-

fo
ru

m
7
9

5
7

0
.3

6
0
.4

4
1
.0

0
.1

9
0
.1

3
1
4

ju
st

in
sc

ri
pt

/t
ra

ve
l.b

2
b

5
1
5

5
1

0
.4

7
0
.3

1
2
.2

1
0

.2
5

0
.1

1
3
1

su
pe

rm
an

5
4
4
/J

av
aO

JS
ys

te
m

1
9
2

4
7

0
.3

6
0
.6

2
1
.1

3
0

.3
6

0
.2

1
2
5

5
1
4
8
4
0
2
7
9
/d

an
yu

an
-a

pp
lic

at
io

n
2
7
7

4
6

0
.5

6
0
.4

7
1
.3

2
0

.7
4

0
.2

7
3
1

im
in

to
/b

ai
ca

i
8
4

4
1

0
.7

6
0
.8

6
2
.0

0
.2

2
0
.2

8
1
4

kr
is

ha
gn

i/
op

en
sp

ec
im

en
1
2
4
4

4
1

0
.2

6
0
.4

8
1
.5

1
0

.2
8

0
.1

1
5
1

ju
st

in
sc

ri
pt

/s
ho

pp
in

g.
pl

at
2
9
8

3
9

0
.7

0
.1

2
1
.6

2
0

.2
3

0
.1

2
2
4

cy
m

1
1
0
2
/n

gi
nx

W
eb

U
I

8
2

3
9

0
.4

6
0
.5

2
1
.1

3
0

.2
5

0
.2

7
1
6

Ja
nn

ch
ie

/b
ili

ob
_b

ac
ke

nd
2
0
0

3
7

0
.5

5
0
.6

9
1
.0

7
0

.4
1

0
.1

8
1
8

IN
C

F/
ee

g-
da

ta
ba

se
1
0
0
7

3
6

0
.3

5
0
.2

8
2
.7

1
0

.3
9

0
.1

4
6

Lo
th

ar
in

g/
SD

IM
S

1
1
2

3
4

0
.6

7
0
.9

3
1
.1

5
0

.6
2

0
.0

4
1
7

ka
nb

an
/k

an
ba

n-
ap

p
1
4
0

3
4

0
.4

0
.6

4
2
.0

0
.4

8
0
.2

1
8

A.2. Metrics results of GitHub Projects 76

Fr
od

ez
/B

lo
gM

an
ag

eP
la

tf
or

m
3
1
7

3
3

0
.5

3
1
.0

1
.0

0
.3

3
0
.1

7
2
3

fin
al

ly
sm

ile
3
/E

xa
m

Sy
st

em
1
0
8

3
3

0
.6

5
0
.4

1
.1

5
0

.3
0
.1

5
1
7

cl
ou

df
ou

nd
ry

-a
tt

ic
/l

og
in

-s
er

ve
r

1
3
3

3
2

0
.5

5
0
.4

8
1
.0

0
.2

6
0
.2

1
1
3

at
la

sa
pi

/a
tl

as
1
7
9
7

3
2

0
.6

4
0
.5

2
2
.4

7
0

.3
2

0
.1

2
5
9

m
et

as
fr

es
h/

m
et

as
fr

es
h-

w
eb

ui
-a

pi
-l

eg
ac

y
1
0
8
1

3
0

0
.2

9
0
.2

9
1
.5

3
0

.2
6

0
.1

4
6

ta
ng

du
/s

m
h2

1
1
1

2
7

0
.6

1
0
.8

3
1
.1

0
.3

4
0
.2

8
2
4

qi
ao

-z
hi

/j
w

xt
5
9
5

2
6

0
.4

9
0
.7

2
1
.8

2
0

.2
6

0
.1

5
6
0

jia
ng

zo
ng

ya
o/

ke
tt

le
-m

as
te

r
7
0

2
4

0
.7

1
0
.5

5
1
.0

9
0

.2
7

0
.2

4
1
5

jd
m

r/
m

at
eo

7
0
4

2
3

0
.4

3
0
.2

6
1
.8

4
0

.4
6

0
.1

9
4
7

sh
ux

ia
nf

en
g/

m
ov

is
io

n
8
8
6

2
1

0
.8

6
0
.4

5
2
.6

2
0

.3
2

0
.1

9
4
7

le
lu

qu
e/

un
iv

er
si

ty
-s

it
e-

cm
s

2
5
4

2
1

0
.4

2
0
.4

6
1
.6

4
0

.3
9

0
.1

5
1
8

zh
an

gd
ai

sc
ot

t/
je

ec
g-

no
m

av
en

5
9
6

1
9

0
.3

5
0
.5

2
2
.0

6
0

.2
3

0
.1

2
4
1

gh
os

tx
bh

/u
zy

-s
sm

-m
al

l
8
9

1
9

0
.5

9
0
.6

1
1
.3

6
0

.5
5

0
.0

8
1
7

O
pe

nG
eo

po
rt

al
/O

G
P2

3
3
0

1
8

0
.6

7
0
.5

8
1
.5

4
0

.4
1

0
.1

3
3
2

lit
bl

an
k/

ha
m

m
er

2
2
6

1
8

0
.6

5
0
.2

4
1
.2

9
0

.2
9

0
.1

7
2
0

ch
oe

ro
do

n/
ag

ile
-s

er
vi

ce
-o

ld
9
1
4

1
7

0
.3

8
0
.7

7
1
.6

1
0

.4
7

0
.1

3
4
4

ka
i8

4
0
6

/c
m

op
2
3
7

1
7

0
.5

5
0
.3

4
1
.6

8
0

.3
3

0
.1

6
2
3

gl
id

er
w

ik
i/

gl
id

er
3
2
9

1
5

0
.6

1
0
.5

9
1
.3

9
0

.3
9

0
.1

7
3
1

hs
lo

oo
oo

oo
ol

/f
or

m
_fl

ow
4
6
7

1
5

0
.5

5
0
.3

1
.9

0
.3

1
0
.1

5
2
7

m
oz

am
m

el
/m

N
et

1
4
8

1
5

0
.5

7
0
.4

5
1
.0

0
.4

3
0
.2

5
2
2

ea
sy

-w
ar

e/
ap

i-
m

an
ag

er
1
8
1

1
5

0
.7

4
0
.7

7
1
.1

8
0

.4
4

0
.2

2
2

lv
r1

9
9
7
/e

rs
ho

uj
ia

oy
i

7
8

1
4

0
.6

2
0
.5

9
1
.0

0
.7

2
0
.1

8
1
4

R
ya

n–
Ya

ng
/C

Bo
ar

d-
bo

ot
2
2
8

1
3

0
.5

2
0
.2

8
1
.5

0
.4

2
0
.1

9
2
3

G
Z

zz
hs

m
ar

t/
P2

Pp
ro

j
2
7
5

1
3

0
.3

7
0
.3

7
1
.2

9
0

.4
8

0
.1

7
3
7

H
II

T/
di

m
e-

se
rv

er
9
1

1
3

0
.3

8
0
.7

1
1
.3

3
0

.2
7

0
.1

2
1
6

A.2. Metrics results of GitHub Projects 77

do
oo

yo
/W

ei
xi

n_
Se

rv
er

3
0
3

1
3

0
.8

0
.8

8
1
.5

8
0

.3
4

0
.2

2
2
5

ju
st

in
ba

by
/m

y-
pa

pe
r

4
6
3

1
3

0
.3

7
0
.2

3
2
.0

0
.4

6
0
.1

3
4
1

ed
ge

xf
ou

nd
ry

/c
or

e-
da

ta
3
8

1
2

0
.4

8
0
.6

3
1
.0

0
.3

9
0
.0

2
4

m
of

ad
ey

un
du

o/
on

lin
e-

ju
dg

e
4
3

1
2

0
.7

0
.4

1
1
.0

0
.4

0
.3

4
1
0

M
in

iP
a/

cj
s_

ss
m

s
9
8

1
1

0
.6

9
0
.5

9
1
.0

0
.3

4
0
.2

9

A
U

R
IN

/o
nl

in
e-

w
ha

ti
f

4
2
9

1
1

0
.4

7
0
.7

5
1
.1

4
0

.3
5

0
.1

2
2
5

fis
hs

to
rm

X
/fi

sh
m

ap
le

1
7
3

1
1

0
.5

4
0
.5

5
1
.2

0
.4

2
0
.2

9
2
3

op
en

de
vs

ta
ck

/o
ds

-p
ro

vi
si

on
in

g-
ap

p
1
4
6

1
1

0
.4

4
0
.0

8
1
.0

0
.3

9
0
.2

7
1
9

pa
ra

so
ft

/p
ar

ab
an

k
2
6
0

1
0

0
.4

3
0
.0

7
3
.1

4
0

.3
0
.1

2
1
8

M
ar

it
im

eC
on

ne
ct

iv
it

yP
la

tf
or

m
/I

de
nt

it
yR

eg
is

tr
y

1
2
4

1
0

0
.4

5
0
.6

6
1
.1

7
0

.3
5

0
.1

7
1
9

zh
an

gy
an

bo
2
0
0
7
/y

ou
ke

fu
8
3
0

1
0

0
.5

9
0
.8

7
3
.2

8
0

.3
1

0
.1

7
4
6

BC
Sq

ua
d/

pm
ph

9
5
3

1
0

0
.5

7
0
.5

1
.5

2
0

.5
0
.1

9
5
9

st
ar

qi
u/

R
D

M
P1

6
0

1
0

0
.9

0
.8

6
1
.2

5
0

.2
4

0
.2

1
7

Pr
op

ro
-S

tu
di

o/
pr

op
ro

-s
er

ve
r

3
1
0

1
0

0
.4

8
0
.3

8
1
.5

5
0

.2
7

0
.1

2
2
3

yu
nc

ha
oy

un
/a

ct
iv

e4
j-fl

ow
2
1
9

9
0

.4
3

0
.5

7
1
.2

8
0

.3
5

0
.1

5
2
7

BC
Sq

ua
d/

pm
ph

_j
av

a_
fr

on
t

3
6
9

9
0

.7
2

0
.7

6
1
.4

7
0

.4
7

0
.1

7
4
2

yo
rk

m
as

s/
Ya

rk
-A

dm
in

M
S

6
9

9
0

.4
7

0
.7

1
.1

0
.3

3
0
.1

9
1
5

ve
ct

or
1
9
8
9
/E

M
A

S
2
6
5

9
0

.5
1

0
.2

7
1
.2

4
0

.2
2

0
.1

6
3
2

7
6
8
3
3
0
9
6
2
/p

oe
t_

re
ad

y_
sy

st
em

5
7

8
0

.7
8

0
.3

4
1
.0

0
.8

3
0
.1

4
1
4

EU
Su

rv
ey

/E
U

SU
R

V
EY

2
9
4

8
0

.5
7

0
.8

2
2
.1

2
0

.2
3

0
.0

3
2
3

su
ye

q/
st

ea
m

M
al

l
1
2
0

8
0

.7
2

0
.6

3
1
.0

9
0

.5
2

0
.2

5
2
0

zl
re

n/
no

ah
-h

ea
lt

h
8
6

8
0

.7
3

0
.9

5
1
.2

2
0

.4
1

-0
.0

7
1
5

Pr
as

ad
1
0
8
/T

ut
es

M
es

sa
ng

er
1
0
9

8
0

.6
4

0
.5

5
1
.0

0
.6

7
0
.1

8
2
0

bu
si

ng
/c

ir
cl

e_
w

eb
2
6
8

8
0

.5
3

0
.6

1
1
.6

4
0

.5
3

0
.1

7
2
8

U
D

A
-E

JI
E/

ud
aL

ib
3
2
0

7
0

.5
1
.0

2
.0

0
.3

4
0
.2

2
3

A.2. Metrics results of GitHub Projects 78

bb
ai

bb
1
0
0
9
/w

xc
rm

9
5

7
0

.5
9

0
.8

3
1
.0

8
0

.5
9

0
.2

1
6

kh
as

an
g/

de
liv

er
y

2
1
8

6
0

.7
8

0
.7

4
1
.0

0
.6

8
0
.1

8
2
2

Te
xn

ol
og

ia
Lo

gi
sm

ik
ou

/F
iz

1
9
9

6
0

.5
1

0
.4

3
1
.3

3
0

.5
8

0
.1

7
1
6

uq
-e

re
se

ar
ch

/o
zt

ra
ck

2
1
3

6
0

.6
2

0
.5

5
2
.8

0
.4

3
0
.2

1
8

w
an

g0
0
7
/l

iv
e-

se
rv

er
2
3
8

6
0

.5
1

0
.4

1
.3

6
0

.5
0
.1

7
2
1

zx
w

gd
ft

/p
al

ad
in

-b
oo

t
3
2
8

6
0

.6
4

0
.1

9
1
.0

0
.2

8
0
.1

1
2
2

sh
en

sh
ao

m
in

g/
by

te
_e

as
y

5
5

5
0

.2
9

0
.5

3
1
.1

7
0

.5
1

0
.1

5
1
3

ni
m

bl
e-

pl
at

fo
rm

/b
us

in
es

s-
pr

oc
es

s-
se

rv
ic

e
2
2
2

5
0

.5
0
.6

2
1
.7

9
0

.3
6

0
.1

8
1
6

co
de

m
ky

/u
ni

6
1
5

5
0

.3
0
.5

2
1
.6

5
0

.2
7

0
.1

4
5
8

us
ha

hi
di

/S
w

if
tR

iv
er

-A
PI

2
4
9

5
0

.3
2

0
.5

8
1
.4

0
.2

9
0
.1

7
2
4

so
ft

se
rv

ed
at

a/
lv

2
5
7

1
7
1

5
0

.3
7

0
.2

9
1
.5

6
0

.4
7

0
.1

8
1
7

jo
ub

in
/C

SC
1
9
1

3
2

5
0

.4
3

0
.6

4
1
.2

0
.6

8
0
.1

3
7

ar
am

so
ft

/a
ra

m
co

m
p

3
4
5

5
0

.5
8

0
.9

2
1
.5

0
.4

2
0
.2

7
4
3

ba
o1

7
6
3
4
/W

ar
eh

ou
se

-s
ys

te
m

7
6

5
0

.6
1

0
.7

5
1
.0

0
.3

9
0
.2

8
1
3

sh
ig

en
w

an
g/

m
em

be
rs

hi
p

1
5
3

5
0

.6
7

0
.7

8
1
.1

7
0

.2
6

0
.1

8
2
0

Sa
fe

Ex
am

Br
ow

se
r/

se
b-

se
rv

er
6
8
0

5
0

.2
0
.2

7
2
.0

0
.2

4
0
.1

2
7

Se
en

ck
/j

ee
cg

-b
pm

-3
.8

8
1
0

5
0

.3
6

0
.5

5
1
.9

1
0

.2
6

0
.1

4
4
2

si
m

be
st

/s
im

be
st

-c
or

es
4
0
1

5
0

.5
5

0
.2

5
1
.6

2
0

.3
1

0
.1

3
3
0

G
ra

ffi
Ta

b/
G

ra
ffi

Ta
b-

Ba
ck

en
d

1
8
8

5
0

.5
7

0
.7

3
1
.1

4
0

.4
1

0
.1

7
2
3

su
ra

jc
m

/P
os

ei
do

n
1
2
2

4
0

.7
0
.7

1
1
.0

0
.5

1
0
.2

1
4

lo
on

gw
5
1
3
0
2
9
/b

us
cl

ou
d

3
4
7

4
0

.6
5

0
.7

7
2
.0

0
.3

6
0
.2

1
3
2

tc
rc

t/
du

an
g

3
7
7

4
0

.6
9

0
.1

4
.0

0
.3

5
0
.1

2
1

Z
FG

C
C

P/
Z

FG
C

3
4
7
1

4
0

.7
9

0
.9

3
1
.4

0
.2

9
0
.1

6
5
1

W
ils

on
H

u/
si

ns
im

2
4
3

4
0

.5
6

0
.9

2
1
.4

5
0

.5
5

0
.1

7
3
2

cr
yp

to
-c

od
er

/o
pe

n-
cy

cl
os

2
5
1
4

4
0

.3
0
.3

1
.7

5
0

.2
9

0
.0

6
6
6

A.2. Metrics results of GitHub Projects 79

sf
x4

7
8
0
7
6
7
1
7
/g

ol
de

na
rc

he
s

5
6

4
0

.5
4

0
.4

8
1
.0

0
.5

2
0
.2

1
1

zn
do

/o
ss

-a
dm

in
-p

ar
en

t
1
0
6

4
0

.9
4

0
.9

4
1
.1

7
0

.6
2

0
.0

9
1
7

dp
2
-g

5
6
/D

p2
-L

0
2

2
4
5

4
0

.7
4

0
.2

7
1
.8

9
0

.3
6

0
.1

6
2
2

ca
bl

e5
8
8
1
/F

un
d

2
0
1

4
0

.4
1

0
.4

8
1
.5

6
0

.2
5

0
.1

6
3
3

w
an

gw
an

g1
2
3
0
/t

e-
em

pl
1
5
6

4
0

.6
5

0
.9

4
2
.0

0
.5

0
.2

9
2
4

El
ec

ti
ve

Te
am

/e
le

ct
iv

e_
sy

st
em

9
7

4
0

.5
1

0
.7

1
.0

9
0

.3
7

0
.1

9
1
7

R
oc

kl
ee

8
3
0
6
3
0
/W

M
Sy

st
em

8
1
6

4
0

.8
0
.9

6
3
.8

5
0

.2
8

0
.0

8
4
1

7
5
1
9
3
9
8
2
/H

yL
M

S
5
3
5

4
0

.7
4

1
.0

1
.9

1
0

.4
7

0
.2

4
7

su
nx

in
gt

m
/F

PM
S

7
2
1

4
0

.8
0
.6

7
1
.5

3
0

.4
4

0
.2

6
6
9

ne
xt

-s
te

p/
jw

p-
jd

bc
1
1
7

4
0

.6
5

0
.5

3
1
.2

5
0

.7
3

0
.2

2
1
2

K
on

gZ
ou

X
ia

ng
/T

ra
de

St
ew

ar
d

2
3
2

4
0

.3
7

0
.3

9
1
.1

8
0

.5
6

0
.2

5
2
3

G
la

m
dr

in
g/

w
el

sh
ar

e
2
4
1

4
0

.6
5

0
.4

3
1
.4

7
0

.3
0
.1

2
2
0

sk
yi

sb
ul

e/
na

nf
en

g
7
1

4
0

.5
7

0
.2

1
.0

0
.2

4
0
.2

2
1
5

O
H

D
SI

/A
ra

ch
ne

C
en

tr
al

A
PI

8
3
2

4
0

.2
9

0
.5

7
1
.5

5
0

.3
6

0
.0

7
4
1

m
in

gs
lif

e/
Li

gh
tC

M
S

1
0
3

4
0

.5
4

0
.1

2
1
.1

8
0

.4
1

-0
.0

7
1
2

lin
ol

ee
/c

la
ss

4
1
8
7

4
0

.6
8

0
.6

3
1
.3

6
0

.4
0
.2

9
2
3

ya
ow

uy
a/

lp
ra

pm
1
0
5

4
0

.6
5

0
.8

1
.1

5
0

.4
0
.2

8
2
0

yS
he

n8
6
8
/s

sm
0
3

9
4

4
0

.4
8

0
.7

1
.0

9
0

.4
3

0
.2

9
1
5

da
gi

lm
or

e/
R

id
dl

in
5
1

4
0

.6
8

0
.5

8
2
.2

0
.5

2
0
.2

5
1
1

do
vi

er
/c

oj
-w

eb
4
5
3

4
0

.5
5

0
.3

2
2
.1

7
0

.2
3

0
.1

3
3
0

ch
en

zh
q/

W
sM

on
it

or
2
4
6

4
0

.8
7

0
.4

9
1
.5

0
.3

2
0
.1

3
2
4

pa
rk

ky
ou

ng
/f

4
m

al
l

5
9

4
0

.7
1

0
.7

4
1
.1

4
0

.4
9

0
.2

7
9

zh
ou

w
ei

w
ei

1
8
/H

os
pi

ta
lS

ys
te

m
2
1
0

3
0

.4
2

0
.8

4
1
.0

0
.2

2
0
.1

8
3
8

uq
-e

re
se

ar
ch

/l
or

es
to

re
8
5

3
0

.6
8

0
.0

3
1
.0

0
.3

7
0
.1

4
1
3

m
om

op
la

n/
da

ta
an

al
ys

is
1
9
5

3
1

.0
0
.9

8
1
.5

6
0

.4
0
.1

8
2
3

A.2. Metrics results of GitHub Projects 80

is
a-

gr
ou

p/
id

ea
s-

st
ud

io
1
1
5

3
0

.6
6

0
.4

7
1
.5

0
.3

9
0
.2

1
1
6

sm
ar

tc
om

m
un

it
yl

ab
/s

m
ar

tc
am

pu
s.

va
s.

co
rs

i.w
eb

6
5

3
0

.3
8

0
.8

6
1
.0

9
0

.3
7

0
.2

7
1
4

xi
on

gz
he

nh
ai

-z
h/

pr
od

uc
e-

pr
oj

ec
t-

m
an

ag
er

m
en

t
1
1
3

3
0

.7
1

0
.9

9
1
.1

1
0

.5
4

0
.2

4
1
7

fla
m

efi
re

3
3
/u

ck
ef

u
6
0
9

3
0

.6
2

0
.8

4
2
.8

5
0

.2
6

0
.1

6
3
8

X
M

FB
ee

/A
ut

hP
la

tf
or

m
1

2
8
1

3
0

.3
0
.7

1
1
.3

2
0

.5
0
.1

6
3
9

sc
ru

m
tr

ac
ke

r/
sc

ru
m

tr
ac

ke
r2

0
1
7

4
4

3
0

.6
1

0
.6

8
1
.5

7
0

.7
0
.1

7
1
0

ki
ng

sl
ay

er
1
5
/m

ut
ua

l
1
7
0

3
0

.6
0
.5

4
1
.1

2
0

.5
7

0
.2

4
1
9

A
tl

as
O

fL
iv

in
gA

us
tr

al
ia

/b
io

ca
ch

e-
se

rv
ic

e
1
5
1

3
0

.3
6

0
.4

1
.8

0
.3

1
0
.1

5
2
2

yu
nc

ha
oy

un
/a

ct
iv

e4
j-o

a
4
3
6

3
0

.4
0
.5

8
1
.5

2
0

.3
8

0
.1

4
3
6

ra
ce

m
-c

he
rn

i/
K

in
de

rG
ar

te
nP

ro
je

ct
2
0
9

3
0

.5
6

0
.1

6
2
.3

8
0

.3
5

0
.1

9
1
7

pe
on

yc
m

sT
ea

m
/p

eo
ny

ta
nc

m
s

2
8
0

3
0

.6
6

0
.7

8
1
.4

0
.4

9
0
.2

1
3
1

da
nb

ai
xi

da
nb

ai
/O

C
pr

oj
ec

t
7
7

3
0

.8
7

0
.8

1
.3

3
0

.5
8

0
.2

9
1
2

w
h4

5
8
5
ha

i/
O

nl
in

eS
ch

oo
l

2
5
9

3
0

.6
0
.1

6
1
.4

0
.2

5
0
.2

2
5

c2
s/

te
le

gr
am

-b
ot

-a
dm

in
1
3
8

3
0

.5
2

0
.4

7
1
.2

1
0

.3
9

0
.1

5
1
9

th
in

ks
gr

ou
p/

N
ic

es
ch

oo
l

1
6
5

3
0

.4
1

0
.4

8
1
.1

5
0

.5
1

0
.2

5
2
2

C
ra

zy
Z

ha
o/

zb
lo

g
6
3

3
0

.6
0
.6

1
.3

0
.5

5
0
.2

7
1
2

tl
kz

zz
/x

pj
fx

4
7
8

3
0

.4
4

0
.5

7
2
.4

3
0

.2
7

0
.1

5
3
6

nd
s1

9
9
3
/O

pe
nM

PS
9
2
2

3
0

.6
5

0
.9

7
2
.2

1
0

.3
6

0
.2

4
7
5

sh
an

gt
ec

h/
W

ei
X

in
Pl

at
fo

rm
8
8

3
0

.6
5

0
.9

4
1
.8

8
0

.4
6

0
.2

1
1
4

jlu
-l

in
sh

uh
an

g/
go

od
s-

m
as

te
r

8
7

3
0

.7
5

0
.9

7
1
.2

0
.3

4
0
.2

3
1
1

ta
nz

hb
/z

hg
j-p

ro
je

ct
5
0
8

3
0

.4
4

0
.4

1
1
.2

1
0

.2
5

0
.1

4
4
6

m
ox

ia
oh

ei
/O

PM
S

1
3
0

3
0

.5
3

0
.6

2
1
.0

0
.4

6
0
.2

4
1
7

ho
la

go
ld

fis
h/

H
5
A

PP
-ja

va
3
9

3
0

.6
8

0
.8

2
1
.0

0
.5

1
0
.2

3
1
0

ok
fa

rm
0
9
/J

Y
LA

N
D

6
8

3
0

.5
3

0
.6

9
1
.0

0
.4

0
.2

2
1
0

ki
m

ki
1
1
2
4
/M

et
el

SO
S

6
1

3
0

.8
0
.8

1
.1

2
0

.4
3

0
.2

7
1
3

A.2. Metrics results of GitHub Projects 81

cd
cc

ha
in

/c
dc

-b
ro

w
se

r
5
8

3
0

.5
0
.2

1
1
.5

0
.5

5
0
.1

7
1
4

or
gq

y8
8
cc

kz
/A

cc
um

ul
at

io
nF

un
d

1
3
4

3
0

.6
3

0
.1

7
1
.0

0
.9

0
.2

6
7

fo
rw

ar
dN

ow
/j

av
ae

e_
pk

ui
2
5
3

3
0

.3
7

0
.9

1
.4

3
0

.4
5

0
.1

8
3
3

Li
Ji

uR
i/

jie
_y

ou
_b

a
1
0
2

3
0

.4
5

0
.5

9
1
.1

2
0

.5
9

0
.2

4
1
6

R
M

H
M

/m
in

iM
ap

8
3

3
0

.7
0
.6

1
.0

0
.4

9
0
.1

8
1
1

to
m

1
9
9
4
/C

EM
4
0
4

3
0

.5
8

0
.0

9
1
.2

9
0

.5
2

0
.1

6
4
0

ch
oe

ro
do

n/
ag

ile
-s

er
vi

ce
8
1
5

3
0

.3
5

0
.7

3
1
.4

1
0

.4
4

0
.1

3
3
8

ni
ey

ue
/A

ct
iv

at
io

nC
od

eM
al

l
3
0
7

3
0

.2
4

0
.8

6
1
.3

7
0

.5
4

0
.2

2
3
3

kd
ir

ec
to

r1
9
9
0
/W

eR
PN

et
w

or
k

1
1
6

2
0

.7
5

0
.7

7
1
.0

0
.3

3
0
.2

5
1
0

lo
ng

yz
kd

/w
j-w

eb
-e

xt
-e

nh
an

ce
r

1
5
4

2
0

.5
4

0
.6

5
1
.2

0
.1

5
0
.2

1
7

Ve
cJ

un
Z

hi
/N

ew
Z

SW
BE

M
4
7
5

2
0

.7
2

0
.4

7
1
.3

0
.4

6
0
.2

2
3
1

5
9
8
6
0
5
3
3
8
/y

ik
ao

6
0
7

2
0

.5
9

0
.5

4
1
.2

1
0

.5
2

0
.2

2
4
5

nu
llc

od
ee

xe
cu

to
r/

pt
s

1
7
4

2
0

.6
5

0
.0

1
1
.4

7
0

.3
9

0
.1

5
2
0

ki
no

rs
i/

m
yk

id
ed

-a
pi

7
1
0

2
0

.6
2

0
.7

5
1
.0

8
0

.3
4

0
.1

1
3
2

Yo
uA

re
O

nl
yO

ne
/C

om
m

un
it

yI
nf

or
m

at
io

nF
or

W
eb

1
6
3

2
0

.4
4

0
.5

5
1
.6

9
0

.3
1

0
.1

8
1
7

C
ea

M
Y

H
BK

/A
pp

C
ea

M
3
5

2
0

.4
9

0
.5

3
1
.0

0
.7

8
-0

.0
6

8

gv
SI

G
A

ss
oc

ia
ti

on
/g

vs
ig

-w
eb

1
2
7

2
0

.5
4

0
.5

4
1
.2

2
0

.6
2

0
.1

8
1
4

dr
-t

ho
m

as
ha

rt
m

an
n/

ph
d-

th
es

is
3
6

2
0

.3
5

0
.6

3
1
.0

0
.7

1
-0

.2
2

1
3

G
re

at
er

Lo
nd

on
A

ut
ho

ri
ty

/G
LA

-O
PS

6
2
5

2
0

.7
5

0
.1

7
1
.0

0
.2

8
0
.1

4
3
3

qi
em

en
gy

an
/v

id
eo

co
nfi

gs
er

ve
r

2
1
4

2
0

.7
1

0
.2

7
1
.4

7
0

.3
7

0
.1

5
1
9

im
m

im
e/

sh
op

-2
2
9
2

2
0

.4
2

0
.2

2
2
.0

0
.4

4
0
.1

3
2
4

ho
ng

qi
an

g/
sh

op
b2

b
4
6
5

2
0

.3
6

0
.2

3
1
.9

7
0

.4
8

0
.1

3
4
6

A
ar

on
Su

m
/h

ot
el

-m
gr

-s
ys

4
9
8

2
0

.3
3

0
.4

3
1
.9

3
0

.2
1

0
.1

4
3
9

su
pe

rm
an

7
/A

cc
ou

nt
M

an
ag

em
en

t
6
7

2
0

.8
9

0
.5

1
1
.0

0
.7

1
0
.2

6
1
3

am
it

-a
n/

w
eb

ap
p_

w
ar

_s
am

pl
e

3
3
4

2
0

.3
5

0
.5

6
3
.0

7
0

.4
0
.1

5
2
2

A.2. Metrics results of GitHub Projects 82

Su
pe

rm
eP

ow
er

/z
am

m
c-

m
an

ag
e

1
1
9

2
0

.4
1

0
.8

2
1
.0

6
0

.4
0
.2

1
8

dt
dh

eh
e/

pt
u-

lif
e

6
6

2
0

.3
6

0
.7

5
1
.2

5
0

.7
3

0
.1

7
1
2

la
nc

el
ee

9
8
/P

eo
pl

eM
an

ge
1
8
2

2
0

.5
9

0
.2

5
1
.2

1
0

.3
7

0
.1

8
2
0

Y
X

G
5
2
0
/o

nl
in

eE
xa

m
Sy

st
em

4
1

2
0

.3
7

0
.7

5
1
.2

0
.6

0
.1

6
9

je
ez

ha
u/

ec
-s

er
ve

r
1
4
9

2
0

.5
6

0
.1

8
1
.0

6
0

.4
3

0
.2

3
2
1

H
ua

ng
Be

ar
/T

he
at

er
Pr

oj
ec

t
1
5
5

2
0

.5
5

0
.5

5
1
.3

0
.4

8
0
.2

2
1
8

lit
bo

/h
os

pi
ta

lz
j

1
8
5

2
0

.4
1

0
.6

1
1
.1

4
0

.5
8

0
.2

5
2
6

fa
w

ks
9
6
/p

et
-h

os
pi

ta
l

7
4

2
0

.4
0
.6

1
.0

0
.5

0
.2

9
1
7

he
ap

tr
ip

/h
ea

pt
ri

p
4
8
3

2
0

.6
0
.6

9
1
.3

8
0

.3
2

0
.1

3
3
3

3
9
8
9
0
7
8
7
7
/A

pp
Po

rt
al

4
7
0

2
0

.5
2

0
.2

2
.8

4
0

.3
4

0
.1

6
3
2

xa
ba

oh
ui

/z
is

5
5
3

2
0

.4
6

0
.4

8
2
.6

5
0

.3
7

0
.1

4
2
9

R
oy

Z
en

g/
gm

hx
4
0
2

2
0

.6
7

0
.4

5
1
.8

0
.4

2
0
.1

9
4
1

ee
a/

ei
on

et
.w

eb
q

1
9
6

2
0

.5
6

0
.3

4
1
.0

0
.4

8
0
.1

6
1
9

liu
de

xi
an

g3
2
1
8
/C

M
SL

it
e

2
2
1

2
0

.6
8

0
.2

2
1
.3

0
.3

7
0
.1

9
3
1

R
us

se
l-

JX
/O

U
C

-F
am

ily
2
7
6

2
0

.8
3

0
.7

7
1
.2

0
.5

3
0
.1

6
2
7

M
ax

cj
/M

ax
cj

1
7
7

2
0

.6
2

0
.2

1
1
.4

7
0

.3
9

0
.1

9
2
1

qw
e7

7
8
3
1
3
1
/C

ar
ee

rD
ev

el
op

m
en

t
1
9
3

2
0

.8
4

0
.5

6
1
.6

1
0

.5
6

0
.1

7
1
9

as
se

rt
m

ys
el

f/
gw

eb
-v

2
3
6
5

2
0

.6
3

0
.4

2
1
.8

0
.2

8
0
.2

3
5

Le
w

ag
e5

9
/d

es
ig

n2
0
1
9

3
3

2
0

.7
0
.8

6
1
.0

0
.6

2
0
.3

3
9

G
an

w
ei

zh
i/

R
ua

nz
hu

o2
1
4
2

2
0

.8
2

0
.6

4
1
.2

4
0

.5
5

0
.3

1
9

V
N

-L
f/

G
it

N
o3

1
2
6

2
0

.4
3

0
.4

1
.1

5
0

.4
5

0
.2

3
2
2

ss
ol

ut
io

nd
ev

/s
so

lu
ti

on
1
6
4

2
0

.8
8

0
.9

5
1
.0

0
.5

2
0
.2

4
2
2

fin
dm

ya
pp

/fi
nd

m
ya

pp
1
3
9

2
0

.6
8

0
.2

1
1
.0

9
0

.4
1

0
.2

1
1
5

Je
an

w
in

/d
is

re
c

3
3
3

2
0

.6
5

0
.6

4
1
.3

0
.3

4
0
.2

6
4
0

zh
ao

w
ei

5
2
0
/C

D
C

X
H

2
3
6

2
0

.3
7

0
.6

2
1
.2

0
.4

3
0
.0

6
2
6

A.2. Metrics results of GitHub Projects 83

hy
pe

ra
eo

n/
C

ra
zy

A
nd

O
pt

im
iz

e
1
3
9
0

2
0

.6
7

0
.5

3
3
.0

0
.5

2
0
.1

6
3
5

H
U

Tc
he

ng
xi

/T
ut

or
1
6
9

2
0

.7
4

0
.9

9
1
.0

0
.7

4
0
.2

4
2
3

	1 Introduction
	2 Background
	2.1 Monoliths
	2.2 Microservices
	2.2.1 Advantages
	2.2.2 Challenges

	3 State of the Art
	3.1 Manual migration from monoliths to micro-services
	3.2 Source-code oriented solutions
	3.2.1 Static analysis solutions
	3.2.2 Dynamic analysis solutions

	3.3 Model-oriented solutions
	3.4 Summary

	4 A methodology towards the identification of microservices
	4.1 Information Extraction
	4.2 Topic modelling
	4.2.1 Latent Dirichlet Allocation

	4.3 Clustering

	5 Implementation
	5.1 Information extraction
	5.1.1 Project parsing

	5.2 Topic modelling
	5.3 Clustering
	5.4 Metrics

	6 Case study
	7 Evaluation
	7.1 Independence of functionality
	7.2 Modularity
	7.3 Scope of action
	7.4 Project collection
	7.5 Setup
	7.6 Results
	7.7 Analysis
	7.7.1 Correlation analysis with metrics
	7.7.2 Resolution selection and analysis

	7.8 Performance
	7.9 Threats to validity

	8 Conclusion
	8.1 Contributions
	8.2 Future work

	A Appendix
	A.1 Identified clusters for JpetStore by resolution
	A.1.1 Cluster resolution: 0.6
	A.1.2 Cluster resolution: 0.7
	A.1.3 Cluster resolution: 0.8
	A.1.4 Cluster resolution: 0.9
	A.1.5 Cluster resolution: 1 & 1.1

	A.2 Metrics results of GitHub Projects

		2021-01-26T19:58:35+0000
	Miguel António Ferrão Brito

