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A B S T R A C T

The previous few decades have seen an enormous volume of articles from the scientific commu-

nity on the most diverse biomedical topics, making it extremely challenging for researchers to

find relevant information. Methods like Machine Learning (ML) and Deep Learning (DL) have

been used to create tools that can speed up this process. In that context, this work focuses

on examining the performance of different ML and DL techniques when classifying biomedical

documents, mainly regarding their relevance to given topics. To evaluate the different techniques,

the dataset from the BioCreative VI Track 4 challenge was used. The objective of the challenge

was to identify documents related to protein-protein interactions altered by mutations, a topic

extremely important in precision medicine. Protein-protein interactions play a crucial role in the

cellular mechanisms of all living organisms, and mutations in these interaction sites could be

indicative of diseases.

To handle the data to be used in training, some text processing methods were implemented

in the Omnia package from OmniumAI, the host company of this work. Several preprocessing

and feature extraction methods were implemented, such as removing stopwords and TF-IDF,

which may be used in other case studies. They can be used either with generic text or biomedical

text. These methods, in conjunction with ML pipelines already developed by the Omnia team,

allowed the training of several traditional ML models.

We were able to achieve a small improvement on performance, compared to the challenge

baseline, when applying these traditional ML models on the same dataset. Regarding DL, testing

with a CNN model, it was clear that the BioWordVec pre-trained embedding achieved the best

performance of all pre-trained embeddings. Additionally, we explored the application of more

complex DL models. These models achieved a better performance than the best challenge

submission. BioLinkBERT managed an improvement of 0.4 percent points on precision, 4.9

percent points on recall, and 2.2 percent points on F1.

Keywords: Deep Learning; Document Classification; Machine Learning; Biomedical Text

Mining; Text Mining.

v



R E S U M O

As décadas anteriores assistiram a um enorme aumento no volume de artigos da comunidade

cientı́fica sobre os mais diversos tópicos biomédicos, tornando extremamente difı́cil para os

investigadores encontrar informação relevante. Métodos como Aprendizagem Máquina (AM) e

Aprendizagem Profunda (AP) têm sido utilizados para criar ferramentas que podem acelerar

este processo. Neste contexto, este trabalho centra-se na avaliação do desempenho de

diferentes técnicas de AM e AP na classificação de documentos biomédicos, principalmente

no que diz respeito à sua relevância para determinados tópicos. Para avaliar as diferentes

técnicas, foi utilizado o conjunto de dados do desafio BioCreative VI Track 4. O objectivo do

desafio era identificar documentos relacionados com as interacções proteı́na-proteı́na alteradas

por mutações, um tópico extremamente importante na medicina de precisão. As interacções

proteı́na-proteı́na desempenham um papel crucial nos mecanismos celulares de todos os

organismos vivos, e as mutações nestes locais de interacção podem ser indicativas de doenças.

Para tratar os dados a utilizar no treino, alguns métodos de processamento de texto foram

implementados no pacote Omnia da OmniumAI, a empresa anfitriã deste trabalho. Foram

implementados vários métodos de pré-processamento e extracção de caracterı́sticas, tais como

a remoção de palavras irrelevantes e TF-IDF, que podem ser utilizados em outros casos de

estudos, tanto com texto genérico quer com texto biomédico. Estes métodos, em conjunto

com as pipelines de AM já desenvolvidas pela equipa da Omnia, permitiram o treino de vários

modelos tradicionais de AM.

Conseguimos alcançar uma pequena melhoria no desempenho, em comparação com a

linha de referência do desafio, ao aplicar estes modelos tradicionais de AM no mesmo conjunto

de dados. Relativamente à AP, testando com um modelo CNN, ficou claro que o embedding pré-

treinado BioWordVec alcançou o melhor desempenho de todos os embeddings pré-treinados.

Adicionalmente, explorámos a aplicação de modelos de AP mais complexos. Estes modelos

alcançaram um melhor desempenho do que a melhor submissão do desafio. BioLinkBERT

conseguiu uma melhoria de 0,4 pontos percentuais na precisão, 4,9 pontos percentuais no

recall, e 2,2 pontos percentuais em F1.

Palavras-Chave: Aprendizagem Profunda; Classificação de Documentos; Aprendizagem

Máquina; Mineração de Texto Biomédico; Mineração de Texto.
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1

I N T R O D U C T I O N

1.1 CONTEXT AND MOTIVATION

Over the years, and as technology grew, science produced and still keeps producing large

amounts of data. A significant part of these data is condensed in the form of articles. Following

this trend, the number of published literature keeps getting bigger and bigger as the years pass

[1]. Platforms such as PubMed, one of the most popular scientific literature databases, contains

as many as 31 million published articles. Considering this number of documents, it would be

deeply time-consuming for a researcher to read and analyze all the information about a given

topic. To help with this nearly impossible task, Text Mining (TM) technologies can be of help.

The main objective of TM is to discover relevant knowledge within textual data, a process that

can be achieved using information retrieval, information extraction and document classification

tasks [2, 3]. Applying TM on the biomedical field produced a new sub-field of text mining:

Biomedical Text Mining (BioTM).

Document classification tasks are an important part of TM that aims to classify documents

according to their content. This classification can have two alternatives: binary, in which

documents are labelled as one of two labels, and multi-class, in which the documents are

classified as one of the available three or more classes in question. As an example of a binary

task, documents are usually classified between relevant and non-relevant, relative to the topic at

hand. These tasks are usually performed using machine/deep learning [4, 5].

Indeed, Machine Learning (ML) is well established on document classification. Models such

as Support Vector Machines (SVM), Naı̈ve Bayes, and Decision Trees have already proven to be

competent in these tasks [6, 7]. Recently, Deep Learning (DL) application to TM tasks has grown

1



1.2. Objectives 2

considerably. DL models, like Bidirectional Encoder Representations from Transformers (BERT)

[8] and XLNET [9], have been proven to be quite effective in TM. Some BERT adaptations have

been able to achieve good results and originated some variations like BioBERT [10], which was

pre-trained with biomedical texts, thus obtaining better performance than BERT, and DocBERT

[11], which originated from the need for a better performing model for document classification,

when applied to BioTM tasks.

There are already some Python packages developed within the BioSystems research

group at the University of Minho that perform text/document classification successfully. These

packages, however, can be updated with newer deep learning models to improve their efficiency,

which would open the possibility to develop a new platform.

1.2 OBJECTIVES

The main goal of this work is to develop ML and DL models to provide better literature recom-

mendations, by improving its prediction abilities regarding document relevance tasks. This work

will address the following objectives:

• Review important literature regarding text/document classification.

• Explore different ML and DL techniques for text/document classification, comparing their

performance.

• Develop a platform around existing packages created within the host group and OmniumAI

company for document relevance assessment.

• Apply the developed models and pipelines to a case study in document relevance.

• Writing the thesis exposing the results.

1.3 TEXT ORGANIZATION

This dissertation is organized in 5 chapters. A concise description of the chapters follows:

• Chapter 2 focuses on describing the BioTM field and Natural Language Processing (NLP).

It also describes useful ML techniques, both supervised and unsupervised, focusing on
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DL. Additionally, it introduces some techniques such as transfer learning, Hyperparameter

Optimization (HPO), and Automated Machine Learning (AutoML).

• Chapter 3 will focus on exposing the methodology used in this work. It exposes the work

performed under OmniumAI, the ML models trained, and parameters used.

• Chapter 4 will expose and discuss the results obtained in each step of this work. It explains

the dataset used to train the ML models, it discusses the results obtained with traditional

ML models, the performance of different types of pre-trained embeddings, the difference

between training biomedical and generic models, and the effects of performing AutoML.

• Chapter 5 depicts some final conclusions of this project coupled with future work.



2

S TAT E O F T H E A R T

2.1 BIOMEDICAL TEXT MINING

Over the last years, the number of published scientific literature has been growing at an incredible

rate. PubMed alone has more than 31 million articles on its database, with 3,300 million searches

on its platform in 20201. All this knowledge is easily available and covers a vast amount of

topics. However, finding the information pursued by end users is still an arduous task. The

huge amount of available data compel researchers to spend a long time performing the tedious

task of classifying articles according to their interest without any warranty of success. As such,

computers took a crucial place in mitigating this problem given their ability to process large

amounts of data quickly [12]. Consequently, researchers can find the information they need

in a short period with a minimum effort. Even though computers can process data quickly,

interpreting the article’s content is not as easy of a job as for humans. Since these articles’

texts are in an unstructured free-way, there was a need to find approaches to convert them,

so that computer algorithms could understand them. The answer to this problem appeared as

BioTM, a subfield of TM [3]. TM, a type of data mining, can be described as an aggregation of

techniques with the main purpose of analyzing, processing, and discovering information within

the unstructured text [3, 13].

Given the wide array of possible tasks to perform with TM, they often superimpose each

other. As such, there is no clear way to divide TM into subfields. Zweigenbaum et al. [14] divided

TM into four different tasks: Named Entity Recognition (NER), relation extraction, document

summarization, and question answering. Later, Miner et al. [3] expanded this sub-division into

seven fields:

1 Retrieved from: https://www.nlm.nih.gov/bsd/medline pubmed production stats.html

4
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2.1. Biomedical Text Mining 5

• Information Retrieval: searching and retrieving documents from a database using key-

words or queries. This technique is widely used by search engines.

• Document Clustering: grouping similar documents into clusters using clustering algo-

rithms like k-means, a task that is part of unsupervised learning.

• Document Classification: classifying unlabeled documents using a model that learned

using labelled ones. This technique is the main focus of this work, being part of supervised

learning.

• Web Mining: differs from the rest because, usually, the text is presented in a structured

way with hyperlinks between web pages.

• Information Extraction: extracts information from the text and possible correlation within

that information. Includes NER and relation extraction.

• Natural Language Processing: combines computation with linguistics. Using computa-

tional tools to manipulate human language.

• Concept Extraction: identifying concepts of interest from parts of the text.

Even though TM has been applied for a long time and is well studied, there were issues with

biomedical text in general. Since these texts have a more precise and concise language than

normal text and have been steadily increasing over the last years, it quickly became a challenge

to surpass. That way, BioTM appeared.

BioTM is an application of TM on biomedical text to extract relevant biomedical information.

Some examples of its application are protein-protein interactions, drug-target discovery, and

gene expression annotation [1, 15, 16].

2.1.1 DOCUMENT CLASSIFICATION

Document Classification is a TM task that focuses on classifying new text documents with a

class from a set of pre-defined labels. This classification is attributed in accordance to the

information built-in the document [17]. This task can take the form of a binary classification when

there are only two labels, but it can also be multi-class when there are more than two labels
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or multi-label if each document can receive more than one label simultaneously. Document

Classification can also be applied to document segments like paragraphs and sentences.

Document Classification can be employed in several ways. Hart et al., as a means of data

loss prevention, developed a ML algorithm to learn and classify documents as private or public

[18]. Sulea et al. applied document classification to the legal domain to classify the law area to

which a case belonged [19]. Kang et al. classified text based on the opinion behind the text, a

field known as opinion mining [20].

The document classification problem is old. There always was a need to classify all the

documents we create. The first solution was plain and simple: classifying manually. However,

with the Internet’s appearance and with its vast amounts of text and information, there was an

urgency to improve traditional methods. Therefore, Artificial Intelligence (AI) was introduced

in this process. In a first effort, ML algorithms were considered (Figure 1), facilitating the

opportunity to classify a large number of documents quickly using a model that had been trained

previously on a set of already classified documents. More recently, DL has been making its way

into this field.

Fig. 1 – Generic document classification pipeline. Adapted from [21].

2.1.2 NLP/TEXT PREPROCESSING

NLP is a computer science subfield that handles human language. Hirschberg and Manning

further define it as being concerned with using computational techniques to learn, understand,

and produce human language content [22]. NLP has been gaining more and more notoriety

because of some of its applications, for example, speech recognition, dialogue systems, in-

formation retrieval, question answering, machine reading, and machine translation [22–24].
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Indurkhya and Damerau break down the process of natural language analysis into five steps:

(1) tokenization, which is the task of segmenting text into words; (2) lexical analysis, which is

the process of relating morphological variants of words; (3) syntactic analysis, the process of

defining the structural description of a string of words (i.e., sentence) according to a formal

grammar; (4) semantic analysis, is the process of understanding the contents of texts (e.g.,

information retrieval, information extraction, text summarization); (5) pragmatic analysis, is

the process of understanding the context of words or sentences. The tokenization step is an

essential part of the text preprocessing task in TM. Text preprocessing is the task responsible

for processing the text for downstream machine applications. This task encompasses processes

like tokenization, stopword removal, and vectorization [23].

Since computer algorithms do not understand words the same way we do, all the text needs

to be converted into numeric vectors. This process is called vectorization. Term Frequency-

Inverse Document Frequency (TF-IDF) is often used as a vectorization technique. TF-IDF gives

weight to the words of a document based on the frequency by which that word appears on the

document (TF), inversely proportional to its frequency in the whole corpus (IDF). It is given by

the following expression:

TF-IDFw,d =
Number of w in d

Number of words in d
× log

N
Number of d where w appears

(1)

where w is the word in question, d is the document and N is the size of the corpus.

TF-IDF follows two main ideas: the more often a word exists in a document, the more it

represents the content of the text; the more documents the word appears in, the less informative

it is [25, 26]. Basically, it means that a word is more meaningful if it appears more times in a

document and fewer times on the whole dataset. Another vectorization technique is one-hot

encoding. It consists of attributing a unique index to each word and then transforming that index

into a vector with the size of the vocabulary. Each vector is filled with zeros except for the index

of that word, which becomes a one [27].

However, before the vectorization, other preprocessing techniques are usually applied, like

tokenization, stopword removal, lowercase or capitalization, punctuation removal, stemming,

lemmatization, and n-grams. The following description of these techniques was adapted from

Sarkar [17], Allahyari et al. [5], and Kowsari et al. [6]:
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• Tokenization: breaking text into words/phrases called tokens.

• Stopword removal: removing certain words that appear on the text. Stopwords are

frequent words that appear in texts that usually present little to no meaning to the topic,

words such as “a”, “and”, “the”, “of” and “what”.

• Lowercase or Capitalization: converting all words to their lower or uppercase format.

Since some programming languages are case sensitive, this task ensures that the same

word, but with different capitalization, is counted as the same word.

• Punctuation removal: removing all punctuation from the text.

• Stemming: obtaining the root (stem) of words. Stemming is a way of aggregating different

forms of words into a single one. However, the stem does not need to be a word. For

example, the stem of the words “argues” and “arguing” is “argu”.

• Lemmatization: obtaining the basic word form (lemma). Lemmatization considers the

morphology of the word. It is very similar to stemming as it gets the root of the word,

however, the lemma needs to be a word. Using the same example as in stemming, the

lemma of the words “argues” and “arguing” is “argue”.

• N-grams: technique that groups n-words into a token. The word tokenization task

described before is an example of a 1-gram.

Following these steps allows us to make text intelligible and workable with machine and

deep learning algorithms, which is nowadays the foundation of TM.

2.1.3 WORD EMBEDDINGS

Word vectors or word embeddings are an alternative to the vectorization processes explained in

the previous subchapter. Word embeddings are dense, low-dimensional vectors that represent

words. These embeddings capture semantic and syntactic information of those words, and

their relationship is characterized by a vector offset [27–29]. This means that the vectors of

closely related words, like man and woman, would be very close to each other. For example,

the subtraction of the vector for Man to the vector for King and then sum the vector for Woman

results in a vector roughly similar to the vector for Queen [29, 30].
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Word embeddings can be trained using texts from given corpora or used in a pre-trained

format by including them into the DL algorithms. Usually, pre-trained embeddings are more

utilized since they require no prior computation, also, since they were trained on massive

datasets, reaching billion of words, they offer good representations. However, they have the

disadvantage of keeping the context of the subject on which they were firstly trained. For

example, a word embedding model trained from the biomedical domain would be better used on

biomedical texts [31]. A list of some of the existing word embeddings are shown in table 1.

Table 1 – List of embeddings. Medical Subject Headings (MeSH) is a vocabulary that gives uniformity
and consistency to the indexing and cataloging of biomedical literature

Embeddings Year Description

Word2vec [30] 2013 Word embeddings learned from CBOW and Skip-gram models

GloVe [32] 2014 Embeddings based on aggregated global word-word
co-occurrence statistics

fastText [33] 2018 Embeddings trained with focus on unseen words

ELMo [34] 2018 Embeddings are functions of the entire input sentence

BERT [8] 2018 Contextualized word representation model based on bidirectional
transformers

BioWordVec [35] 2019 Based on fastText. Combines subword information from
biomedical text together with the MeSH vocabulary

GPT-2 [36] 2019 Transformer-based language model with 1.5 billion parameters
and focus on predicting the next word based on all previous words

SciBERT [37] 2019 BERT applied on documents from the Semantic Scholar2

database

BioBERT [10] 2020 BERT applied on documents from the PubMed3 and PMC4

databases

2.1.3.1 Word2vec

Word2vec is a group of neural network-based models which are applied to generate word

embeddings. These models are Continuous Bag-Of-Words (CBOW) and Continuous Skip-gram.

Even though these models are similar, the way they function is different. While CBOW tries to

2 https://www.semanticscholar.org/
3 https://pubmed.ncbi.nlm.nih.gov/
4 https://www.ncbi.nlm.nih.gov/pmc/

https://www.semanticscholar.org/
https://pubmed.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/pmc/
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Fig. 2 – CBOW and skip-gram model’s architectures. CBOW predicts the current word (w(t)) using
adjacent words (w(t-1), w(t-2), w(t+1), w(t+2)), while skip-gram predicts the adjacent words
using the current words. Adapted from [30].

predict a word based on its context (or adjacent words), skip-gram uses that word to predict its

adjacent words (Figure 2) [30].

2.1.3.2 GloVe

Like Word2vec, GloVe also uses local context windows methods to train the model. However, it

also applies global matrix factorization methods that improve global statistical information. These

methods, combined with a specific weighted least squares model, are trained on global word-

word co-occurrence counts, which results in a word vector space with a meaningful sub-structure

[32].

2.1.3.3 BERT

BERT is a contextualized word representation model. It was pre-trained with the two objectives

of predicting masked tokens in texts and determining if one text passage is likely to follow another.

These are known as masked language modeling and next sentence prediction, respectively. The

goal of next sentence prediction is for the model to predict from the previous sentence whether

a given sentence was the successive sentence. The masked language model randomly masks

(hides) some of the words from the input text, and its objective is to predict the actual word

based only on its context. This allows the model to fuse the left and right context, which in turn
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enables bidirectional training. As a result of the whole pre-training process, the model is able to

learn contextual embeddings for words [8].

2.2 MACHINE LEARNING

ML is a subfield of AI that first appeared in the 1950s with the objective to automate intellectual

tasks usually performed by humans. In a sense, AI serves as a human substitute in some tasks.

This field embraces ML and DL (Figure 3).

Fig. 3 – AI and its subfields. Adapted from [27].

The main objective of ML is to learn from data by extracting relationships between variables,

whether, for example, by recognizing patterns or a set of rules from the given data so that it can

produce a result when new data is given. These ML systems are provided with examples that the

algorithm learns from, and then it tries to find statistical structure from these examples so that it

can produce a set of rules that best automate the task. This means that a ML algorithm needs

to be trained in order to produce results. ML methods can be divided into four separate types:

Supervised Learning, Unsupervised Learning, Self-supervised Learning, and Reinforcement

Learning [27]. Supervised learning consists of learning patterns on the data while knowing

the labels of the data. In contrast, unsupervised learning does not have labelled data, so it

is restricted to clustering, data visualization, and dimensionality reduction. Self-supervised

learning is a specific instance of supervised learning, but it is different enough to have its own

category. It is similar to supervised learning because it still uses labels in the training process, but

these labels are generated from the unlabeled input data [27, 38, 39]. Reinforcement Learning

algorithms map all possible actions in an environment with the intent to find the best possible
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one. Each action will provide a different reward to the algorithm, so the main objective is to find

the actions that yield the most reward [27, 40].

2.2.1 UNSUPERVISED LEARNING

As exposed before, unsupervised learning techniques use unlabeled data as input to discover

hidden structures or data groupings in the training data. Since the data are unlabeled, there

is no direct way to evaluate the performance of the algorithms. Therefore, these techniques

are more employed as a data exploration method. These techniques can be divided into three

categories: clustering (e.g., k-means), dimension reduction (e.g., PCA), and data visualization

(e.g., t-SNE). These techniques are very useful in text mining as there are, usually, a large

number of features. This way, unsupervised learning has become a useful tool in TM [6, 39].

2.2.1.1 k-means

The term “k -means” was first used by MacQueen in 1967 [41]. However, the algorithm behind it

was introduced a full decade before in 1957, as stated by Lloyd [42]. MacQueen described it

as a process for partitioning an N-dimensional population into k sets on the basis of a sample

[41]. In simpler words, this algorithm tries to attribute each sample into a cluster to arrange

the data. The clustering procedure has three general steps. First, the algorithm chooses k

cluster centroids at random. Second, it appoints each sample to the closest centroid. Third, it

recalculates the centroids with the samples from the previous step. After these three initial steps,

the algorithm enters a loop where it goes back to the second step to reassign the samples with

new clusters. This loop continues until the cluster centroids do not change between iterations of

the loop [43]. Regarding the second step, each sample is assigned to a cluster based on its

distance to the centroids. This distance is often calculated using the euclidean distance, and

the cluster is chosen based on the smallest distance between the sample and all the cluster

centroids [44].
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2.2.1.2 Principal Component Analysis

An early form of Principal Component Analysis (PCA) was first described by Pearson in 1901

[45]. Later, Hotelling developed it even further, even claiming the term “principal component”,

which would become the standard for PCA [46, 47]. The main goal of PCA is to reduce the

dimensionality of data, while retaining most of the variation in the dataset [48]. This technique is

often used as a first step, reducing dimensionality before performing supervised learning tasks [6,

49]. PCA works by creating new uncorrelated variables, named principal components, obtained

from the singular value decomposition of the original data, which explain correlations between

the original variables. These components are ordered so that the first principal component is

required to explain the most possible variance in the data [47, 50].

2.2.1.3 t-distributed Stochastic Neighbor Embedding

t-distributed Stochastic Neighbor Embedding (t-SNE) is a variation of an older technique called

Stochastic Neighbor Embedding (SNE) and is widely used as a data visualization technique,

but it can also be used in dimensionality reduction. The main goal of SNE is to represent

data in a low-dimensional space so that it preserves neighbour identities. SNE works by

computing the euclidean distances between data points and then converting them into conditional

probabilities representing similarities. The conditional probabilities are calculated using a

Gaussian distribution [51–53]. The main difference t-SNE has from SNE is that it uses a Student-

t distribution rather than a Gaussian distribution to compute the similarity between the points in

the low-dimensional space. This solves the main problem of SNE, which Maaten and Hinton

described as a “crowding problem” [51, 52].

2.2.2 SUPERVISED LEARNING

As opposed to unsupervised learning, supervised learning uses labelled data to train the

algorithms (Figure 4). That way, each training sample is a pair of values composed of input

and output [39]. After the training is performed, a new set of data can be supplied to the model

to predict the output for each sample. The type of prediction is different according to the type
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of output expected. If the output variables are continuous (e.g., predicting house prices), the

model is a regression model, and if the output is discrete variables (e.g., classifying documents),

the model is a classification model. The latter, is the main focus of this work. Some of the

classification models used in Document Classification are Decision Trees, Naı̈ve Bayes, SVM,

Logistic Regression (LogR), K-Nearest Neighbors (KNN), Random Forest (RF), and Neural

Network (NN) (further discussed in section 2.3) [3, 7, 17].

Fig. 4 – Supervised machine learning structure. Adapted from [27].

2.2.3 EVALUATION METRICS

Supervised learning algorithms are evaluated by comparing the predicted labels to the real ones.

This comparison produces a Confusion Matrix table (Table 2) which is a representation of the

number of cases for True Positives (TP), True Negatives (TN), False Positives (FP), and False

Negatives (FN). In a binary Document Classification task, the positive label corresponds to the

relevant documents, and the negative one corresponds to the non-relevant documents. In this

case, a TP case is when the model correctly predicts a document as being relevant [54–56].

Table 2 – Confusion matrix for binary classification

Actual

Predicted
Negative Class Positive Class

Negative Class True Negative (TN) False Positive (FP)

Positive Class False Negative (FN) True Positive (TP)

Using the values obtained in the Confusion Matrix, a plethora of evaluation metrics can be

computed. Some of the most commonly used are Accuracy, Precision, Recall, F1, and Mathews

Correlation Coefficient (MCC) [55–57].
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• Accuracy: measures the ratio of true instances predicted, both negative and positive,

among the total number of instances (Equation 2). It measures how well the model

performs overall. The values for the Accuracy score range from 0 to 1, the latter being a

perfect model.

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

• Precision and Recall: both metrics are based on the positive class. Precision measures

the fraction of true positive predicted instances from all instances predicted as positive

(Equation 3). Recall measures the correctly predicted positive instances among all actual

positive instances (Equation 4). The values for these metrics range from 0 to 1, with 1

being the best model.

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

• F1: this metric depicts the harmonic mean between Recall and Precision (Equation 5).

Like all metrics before, the values range from 0 to 1, with 1 being the best result.

F1 = 2 × (Precision × Recall)
(Precision + Recall)

(5)

• MCC: this metric is a correlation coefficient between the observed and predicted binary

classifications. It considers the four types of results (TN, FN, FP, TP) and is regarded as

a balanced metric that can be used even if classes are unbalanced. (Equation 6). The

values range between -1 and 1. A coefficient of 1 is a perfect prediction (all examples

correctly predicted), 0 is no best than a random prediction, and -1 is an opposite prediction

(all examples incorrect).

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(6)

These metrics are often complemented by the Receiver Operating Characteristic (ROC)

curve and the Precision-Recall (PR) curve. ROC plots Recall against False Positive Rate (FPR)
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(Equation 7), whereas PR plots Precision against Recall. Both ROC and PR have an Area

Under Curve (AUC) value which ranges from 0 to 1, being 1 the perfect classifier algorithm [54].

FPR =
FP

FP + TN
(7)

The purpose of all these metrics is to evaluate the performance of trained models. It is best

practice to evaluate models using a new, unseen dataset. To that extent, it is common to divide

the initial dataset into two smaller subsets. Usually, a bigger subset is used to train the model,

while the other is reserved for performance evaluation only. That way, we obtain an unbiased

evaluation of the model’s performance. Sometimes, the training subset is divided further to

obtain a small validation subset. This subset can be used when performing HPO or to evaluate

the training performance as the model is being trained (often used in DL). A more common

validation technique among ML tasks is k-fold Cross-Validation. This technique partitions the

training set into k subsets of approximately equal size (Figure 5). Then, the model is trained

using k − 1 subsets, and the remaining one is used as a test set. This procedure is repeated

until each k subset has been used as a test subset [58].

Fig. 5 – k -fold cross validation structure.

2.3 DEEP LEARNING

As previously explained (Section 2.2), DL is a subfield of AI. Furthermore, it is considered a

subfield of ML (Figure 3). Chollet describes DL as a new way of learning representations from

data that focuses on learning successive layers of increasingly meaningful representation [27].
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The deep from DL comes from the successive layers of representations, sometimes reaching

tens or hundreds of layers. In contrast, ML and some simpler NN are often called shallow

learning since they possess only one or two layers [24, 27]. This subfield improved image

classification, speech recognition, machine translation, text-to-speech conversion, search engine

results, and natural language question answering [27]. These are just some examples, but it is

visible that DL improved a lot in the NLP field.

DL advanced the ML field by excluding the need to hand-design features, which is time-

consuming and of human expertise. As stated before, DL uses representation learning, which is

a way to discover effective features and their mappings from the given data. This means that DL

can use raw data and learn from it, whereas traditional ML would have a hard time [27, 59, 60].

2.3.1 NEURAL NETWORKS

Artificial Neural Networks (ANN) is a group of connected nodes or neurons. In some sense,

these NN try to replicate how our brain works. The idea of creating an “artificial brain” first

appeared in the 1940s [61]. Later, in 1957, Rosenblatt created an artificial neuron, which he

called Perceptron [62]. The Perceptron is one of the simplest ANN, and it was based on a

(Threshold Logic Unit (TLU)).

Fig. 6 – Perceptron. Adapted from [63].

Essentially, a Perceptron way of working is straightforward (Figure 6). It is composed of a

node that receives input from N external sources, numbered 1 to N. Each input (i) is called

Xi and its associated weight is called Wi. Therefore, the total input that a node receives is the
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weighted sum of all inputs Stotal, given by equation 8a. This sum becomes the input to the step

function ( f ) which results in the output (y) (Equation 8b).

Stotal =
N

∑
i=1

WiXi = W1X1 + W2X2 + ... + WNXN (8a)

y = f (Stotal) (8b)

The most common step function ( f ) used in Perceptrons is the Heaviside step function.

It basically functions as a switch. If Stotal is equal to or greater than 0 the output value is 1,

otherwise, the output is 0 (Equation 9).

Heaviside(Stotal) =


0 if Stotal < 0

1 if Stotal ⩾ 0
(9)

In 1969, Minsky and Papert pointed out some problems with Perceptrons. The main

problem was that they were not capable of solving nonlinear problems [64]. This difficulty was

quickly surpassed by stacking multiple Perceptrons, which resulted in an ANN called Multi-Layer

Perceptron (MLP) [65].

MLP is an ANN constituted by an input layer, which serves just as a passthrough for the

input data, one or more layers of Perceptrons, which are called hidden layers, and finally, one

more layer of Perceptrons which functions as the output layer. Except for the output layer, all

layers receive an additional bias neuron, which always outputs 1 and is fully connected to the

next layer (Figure 7). If the ANN has many hidden layers, it then can be called Dense Neural

Network (DNN) [65].

In 1986, Rumelhart et al. introduced an enduring training algorithm called Backpropagation

[66]. This algorithm is executed in two distinct phases: one forward pass and one backward pass.

In the forward phase, the algorithm calculates the error (e.g., Mean Squared Error (MSE)) of the

NN by comparing its predicted output to the expected output. After the error is obtained, the

backward phase runs through each layer of the NN in reverse to quantify the error contribution

of each layer connection. Lastly, once the algorithm has these errors, it uses an optimization

algorithm to adjust the weights to reduce these errors. This training process is done repeatedly
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Fig. 7 – Multi-Layer Perceptron. Adapted from [65].

until the optimization algorithm stops, either by converging or reaching the maximum number of

epochs [65]. Among the vast number of optimization algorithms, two remain the most utilized.

They are Stochastic Gradient Descent (SGD) and Adam [67, 68]. Since optimization algorithms

were applied, there was a need to change the step functions into activation functions. The most

used activation function is the logistic function (e.g., Sigmoid), but later other functions appeared,

like Hyperbolic Tangent (Tanh) or Rectified Linear Unit (ReLu) [65].

• Sigmoid: the sigmoid curve has an S-like shape (Figure 8). Its values range from 0 to 1.

Because of its properties, the output is very sensitive to small changes in the input when

it is close to 0. However, when the input is closer to either end, the output’s sensibility

becomes nearly null, being the main problem with this function. This function receives any

real values and outputs a value between 0 and 1 [69]. It is given by equation 10.

σ(Stotal) =
1

1 + e−Stotal
(10)

Fig. 8 – Sigmoid curve.
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• Tanh: the Tanh curve (Figure 9) is very similar to the Sigmoid curve, sharing the same

problem. However, its values range from -1 to 1. It is usually used as an activation function

on hidden layers [69]. This function is given by equation 11.

tanh(Stotal) = 2σ(2Stotal)− 1 (11)

Fig. 9 – Tanh curve.

• ReLu: even though ReLu looks like a linear function, it is nonlinear because the output

is 0 when Xi < 0 (Figure 10). The main advantages of ReLu are that it does not have

the problem the other two have, and it also is less resource-heavy. However, since the

output is 0 for all negative inputs, it can make the neurons enter a perpetually inactive

state. This problem is called “Dying ReLu”. It is still prevalent in hidden layers, especially

in Convolutional Neural Networks (CNN) [69]. It is given by equation 12.

relu(Stotal) = max(0, Stotal) (12)

Fig. 10 – ReLu curve.

2.3.2 CONVOLUTIONAL NEURAL NETWORKS

Since the adoption of ANN, there was an immediate interest in applying that new technology

into images. In 1980, Fukushima introduced the neocognitron, a NN inspired by studies of the

visual cortex [70]. This NN steadily evolved into what we now call CNN. The main focus of

CNN is pattern recognition within images, and by 1998, LeCun et al. introduced the LeNet-5
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architecture and it quickly became widely used to recognize handwritten numbers [65, 71].

Later, new architectures appeared such as AlexNet, VGGNet, GoogLeNet, and ResNet [72–75].

Nowadays, CNNs are also used in text classification and other NLP tasks [76, 77]. The main

difference between a CNN and a DNN is the Convolutional and Pooling layers that a CNN

possesses. Usually, a CNN is built in the following order: Convolutional layer, Pooling layer, and

one or more Dense layers.

• Convolutional layer: this is the most important part of a CNN. Its name comes from the

use of a linear operation called Convolution. This layer uses the Convolution operation,

where a small array of numbers, also known as kernel or filter, is applied over the input’s

array of numbers, also known as a tensor. The output tensor, also known as feature map,

is obtained by the sum of the values of an element-wise product between the kernel and

input tensor (Figure 11). The key hyperparameter in Convolution is the kernel size, which

typically is 3 × 3. In essence, the filter is applied over a part of the data of the same size, it

calculates the output tensor of that part of the data, and then the filter moves. The number

of steps the filter moves is known as stride. This process occurs until all data has been

covered. Other parameters of this process can be changed, such as padding. Padding

consists of adding a layer around the input tensor so that the generated feature map is of

the same size as the input tensor [27, 65, 78, 79].

Fig. 11 – Convolution process. The output value exemplified corresponds to (5 × 0) + (9 × 0) + (7 × 1) +
(0 × 0) + (7 × 2) + (9 × 0) + (6 × 1) + (2 × 0) + (0 × 0) = 27.

• Pooling layer: in general, the pooling layer serves as a downsampling technique. In other

words, it is used with the intent to reduce the dimensionality of the feature map created

by the convolution layer. This downsampling technique is usually done with a 2 × 2 filter
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and stride 2, in order to downsample the feature map by a factor of 2. Similar to the

convolutional operation, this process is performed until the feature map has been totally

covered. The most common forms of pooling are max pooling and average pooling. Max

pooling selects the maximum value among the values present in the zone of the feature

map that the pooling filter is currently on, and discards the others (Figure 12). Average

pooling follows the same principle but instead, it calculates the average value [27, 78].

Fig. 12 – Max pooling process. Adapted from [78].

2.3.3 RECURRENT NEURAL NETWORKS

As seen previously, DNNs and CNNs process one input at a time, without previous recollection

of what came before. This, however, is not an ideal situation when the data is sequential such

as text. For that reason, these two models can lose information when training with such type

of data. To tackle this issue, Recurrent Neural Networks (RNN) appeared [27]. The concept of

RNN was first introduced in 1986 by Rumelhart et al. [66].

In essence, RNN is a type of NN that has an internal loop. This loop is what allows the

model to process sequential data, while maintaining a memory, or state, containing information

of what it has already processed (Figure 13(A)). Clarifying its working, the RNN model receives

a sequence of vectors as input, then it iterates over that sequence. The output comes from

an activation function ( f ), which uses the current iteration (t) of the input and its weights (Wi),

the current state of the model and its weights (Ws), and a bias (b). This output becomes the

new state in t + 1 (Figure 13(B)) [27, 80]. This model is usually trained using Back Propagation

Through Time (BPTT), which is the Back Propagation algorithm adapted for sequences [81].
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Fig. 13 – (A) Simple RNN structure representation. (B) RNN unfolded over time. Adapted from [27].

RNNs have become the staple model for sequential data, but their true value is in the realm

of NLP. However, since nothing is perfect, this model has its drawbacks, being the main the

one Hochreiter et al. described in their paper [82]. The model has a problem when dealing

with long-term sequences, as a result of vanishing and exploding gradients during the training

process [83, 84]. To take on this problem, some RNN variations appeared like Long Short-Term

Memory (LSTM) and Gated Recurrent Units (GRU).

2.3.3.1 Long Short-Term Memory

The LSTM model was created with the intent to solve the vanishing gradient problem the RNN

model has [85]. The LSTM architecture consists of memory blocks (Figure 14). Each block has

one or more memory cells and three gates: the input, output, and forget gates. These gates are

what grants LSTM memory cells the ability to store and access information for a long time, and

thus, alleviate the vanishing gradients problem [86].

The first step in the memory block structure is the combination of the current input (Input(t))

data and the output from the previous memory block (Output(t − 1)). This results in a newly

calculated input which is fed into the activation function of the forget gate (F). The forget gate

(F) will decide which information should be discarded from the previous cell states (S(t − 1))

through a multiplication of the previous cell state (S(t − 1)) and the forget gate (F) output. The

input is also fed into the activation function of the input gate (I), and its output is then multiplied

with the output of an activation function using the same input. The output of this multiplication

is then summed with the result of the multiplication of the previous cell state (S(t − 1)) and

forget gate (F) output, creating the new cell state (S(t)). The current cell state (S(t)) is then

used to calculate the output (Output(t)), while also being passed to the next memory block.
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Fig. 14 – LSTM structure. ¨F¨ denotes the forget gate, ¨I¨ the input gate, ¨O¨ the output gate, and the
× and + symbols denote multiplication and sum, respectively. Adapted from [87].

Lastly, the input is fed into the output gate (O). In parallel, the current cell state (S(t)) passes

through an activation function. The resulting outputs are then multiplied to produce the final

output (Output(t)) of the memory block, which will be used in the next memory block [87, 88].

2.3.3.2 Gated Recurrent Unit

GRU first appeared in 2014 by the hands of Cho et al.. They state that it was encouraged

by the LSTM memory block, but being simpler [89]. It is composed of just two gates: a reset

and an update gates (Figure 15). The reset gate (R) receives the sum of the current input

(Input(t)) and the previous state (S(t − 1)) and performs the sigmoid function. The output of

this gate will then determine how much information is passed to the current input. The update

gate (U) works in the exact same way as the reset gate. The main difference is the way its

output is used. The update gate (U) output is used in the computation of the current state (S(t))

and in the provisional state (Sp(t)). The provisional state (Sp(t)) is calculated by performing

the Tanh activation function on the sum of the current input and the previous state (S(t − 1)).

The output from this function is then multiplied with the result from the update gate (U). The

current state (S(t)) is then obtained by summing the provisional state (Sp(t)) with the result of

the multiplication of the previous state (S(t − 1)) with the reversed output (1 − U) of the update

gate (U) [89, 90].
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Fig. 15 – GRU structure. ¨R¨ denotes the reset gate, ¨U¨ the update gate, and the × and + symbols
denote multiplication and sum, respectively. Adapted from [91].

As stated by Chung et al., GRU was able to outperform LSTM, on the majority of datasets,

on audio related tasks. They even concluded that GRU was faster than other recurrent models

[90].

2.3.4 TRANSFORMERS

Before the appearance of transformers, state-of-the-art in NLP were recurrent architectures such

as LSTM and GRU. As explained beforehand, these architectures possess a loop in the network

connections that allows information to pass from one step to another. This peculiarity makes

these types of architectures optimal for sequential data like text. However, these architectures

have difficulties when dealing with long sequences of data [92]. To tackle this issue, in 2017,

Vaswani et al. introduced a new simple architecture called Transformer [93].

The transformer is an attention-based architecture composed of encoder and decoder

sections. The encoder-decoder sections work, in general, like RNNs but instead of outputting

the hidden state at each step, the encoder component outputs only the last hidden state

which corresponds to the encoded information from the whole input sequence. This encoded
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information takes the shape of a numerical vector. The job of the decoder is to decode the

numerical representation, given by the encoder, back to the original information. However,

if the sequence is long, a problem emerges. Since the encoder has to encode the entire

sequence, some information might be lost when compressing everything into a unique and fixed

representation [92]. To solve this problem, the attention mechanism part of the architecture

comes into play.

The main concept behind attention is that instead of outputting a single hidden state, the

encoder produces a hidden state at each step that the decoder can access. However, using

all the hidden states would create an enormous input for the decoder. To prevent this from

happening, the attention mechanism lets the decoder choose the weight for each of the encoder

states. That way, the decoder assigns more importance to certain states of the encoder [92].

Nowadays, there are 3 types of transformers:

• Encoder-only: use the output of the encoder to provide a representation of the input

sequence. They use Masked Language Modeling as a method of training. This involves

the model corrupting (i.e., masking) certain parts of sentences and assigning the model to

find the initial sentence. This type of model is well suited for tasks like text classification

and NER. Models like BERT [8], RoBERTa [94], and DistilBERT [95] are examples of this

type of transformer [92, 96].

• Decoder-only: predict the next word in the sentence. This type of model is usually used

for text generation. Models like GPT [97] and CTRL [98] are examples of this type of

transformer [92, 96].

• Encoder-decoder: adapt complex mappings from one sequence to another. This type of

model is best applied for translation, summarization, and question-answering. Models like

BART [99] and T5 [100] are examples of this type of transformer [92, 96].

2.4 TRANSFER LEARNING

Transfer Learning is a technique used in DL that focuses on transferring knowledge from one

learner to another. The knowledge is transferred within related domains and it can also span
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across different tasks [101]. This transfer enables the possibility of utilizing knowledge from

enormous datasets without the hassle of having to train a new learner with those datasets.

A common use within NLP is what Zhuang et al. call Parameter Sharing. It consists in using

a pre-trained model and fine-tuning it to the desired domain and/or task. This involves using

the base model architecture and only tuning the last layers [102]. This helps reduce the time

needed to train a model for a specific task while using the knowledge obtained from big datasets.

For biomedical NLP tasks, this technique quickly produced state-of-the-art results such as the

ones obtained by Giorgi and Bader [103]. Some models, such as BioBERT [10], SciBERT [37],

and BlueBERT [104] also managed to obtain state-of-the-art performance by transferring the

knowledge that BERT [8] learned on the generic text together with training on biomedical text.

2.5 HYPERPARAMETER OPTIMIZATION

There are two types of parameters when training ML models: model parameters and hyper-

parameters. The model parameters are the values that the model uses and updates using

backpropagation when training (e.g., the weights of neurons and biases in NN). Hyperparame-

ters are the parameters that define the model configuration (e.g., learning rate, weight decay,

optimizer, etc.). These parameters are part of the model core and are fixed values (i.e. cannot

be updated via backpropagation). Therefore, these parameters are tuned in advance so that the

model better fits the problem since they can have a high influence on the learning process. The

process of adjusting the hyperparameters is called HPO [27, 105]. This task can be executed

either by searching manually or automatically. The manual method implies finding the best set

of hyperparameters by hand. However, this method is very cumbersome, even for an expert. To

mitigate this problem, automatic methods were developed [106]. Nowadays there is a plethora

of automatic search algorithms available:

• Grid Search: the principle of grid search is to train a model with each of the possible

combinations of hyperparameter values. Exhausting all combinations, it outputs the best

combination. This algorithm works better when dealing with fewer hyperparameters since

the number of combinations increases exponentially with the number of hyperparameters

[107].
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• Random Search: similar to grid search, but instead of training each combination the

algorithm selects random values from the hyperparameters search space. This makes this

algorithm much more efficient and it can even obtain better results, as proved by Bergstra

and Bengio [107]. This algorithm also needs to be given the number of combinations to try

so that it can stop the optimization.

• Bayesian Optimization: the main difference from the algorithms talked about before

is that bayesian optimization uses the results obtained before to find the next group

of hyperparameters. It uses a surrogate model (i.e. statistical model) that intends to

fit all observations into the target function. Then, an acquisition function, which uses

the predicted distribution of the surrogate model, determines the usefulness of different

points. This is performed by trading off between searching for areas that have not been

explored (called exploration) and searching for better points within the explored area (called

exploitation). This makes it more efficient than random search since it can find the optimal

number of hyperparameter combinations [105, 106, 108].

• Successive Halving: it is similar to random search in the way of obtaining different combi-

nations of hyperparameters values. This algorithm allocates a budget for all combinations,

therefore, each combination is evaluated with a uniformly allocated budget. After evaluating

the combinations, the algorithm discards half of the low-performing combinations, while

the remaining half is evaluated again but doubles the budget. This evaluation continues

until there is only one combination left. It is more efficient than random search, but it needs

to adjust between the number of combinations and the budget [105, 109].

• Hyperband: it addresses the trade-off problem successive halving has by choosing the

number of combinations in a dynamic way. The number of combinations is calculated

based on the total number of points, the minimum number of instances required to train a

model, and the available budget [108, 109].

2.6 AUTOML

AutoML is a technique to automate the process of building a ML pipeline. Usually, to build a ML

pipeline, experts need to manually prepare all the data, and features and fine-tune the model to
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achieve good results, in a trial-and-error manner. However, as the tasks and models increase in

complexity, it has become an arduous task to perform all these steps manually [110]. He et al.

splits AutoML into four methods [111]:

• Data Preparation: where new data is collected to create and/or augment a dataset and

where data is cleaned to remove noise.

• Feature Engineering: where feature extraction is used to transform existing features,

feature construction is used to create new features from data, and feature selection is used

to reduce dimensionality by selecting the most important features.

• Model Generation: where a search space defines the design of neural architectures, an

architecture optimization method defines the best model architecture, and the model’s

hyperparameters are tuned using the principles explained beforehand.

• Model Evaluation: where a model evaluation method assesses the performance of each

model.

Some tools that perform AutoML are stated in table 3.

Table 3 – List of AutoML frameworks

Framework Description

Auto-PyTorch [112] Optimizes the network architecture and the training hyperparameters
to enable fully automated DL

Neural Network
Intelligence [113]

Open-source AutoML toolkit for feature engineering, neural
architecture search, HPO, and model compression

PyCaret [114] Open-source library that automates ML workflows

Auto-SKLearn [115] Performs algorithm selection and hyperparameter tuning

AutoGluon [116] Automates ML tasks on image, text, time series, and tabular data

Auto-Keras [117] AutoML system based on Keras

TPOT [118] AutoML tool that optimizes ML pipelines using genetic programming

H2O [119] Automates the ML workflow, which includes automatic training and
tuning of various models
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2.7 RELATED WORK

The majority of work in document classification uses DL architectures. Even though there are

newer architectures like transformers (Section 2.3.4), older architectures (e.g., CNN) are still

prevalent in document classification. Authors that use these type of architectures, often use

them in conjunction with another type of architecture e.g., Ibrahim et al. used a CNN-BiLSTM.

However, there are some authors that used traditional ML as the classifier, like Chen et al.. As

for feature extraction, from all the authors that used DL models, only one did not use any type of

pre-trained word embeddings. Jiang et al. even used embeddings from previous pre-trained

models (i.e., BERT, XLNet, and RoBERTa). Table 4 presents previous work, performed by

various authors, and the methodologies used by them.

Table 4 – Different document classification literature and their used methods. The prefix Bi and Hie
stand for bidirectional and hierarchical, respectively. PoS and BoW stand for Part-of-speech
and Bag-of-words, respectively. CCRCNN stands for Context-relevant Concept Recurrent
CNN

Author Architecture Feature Extraction

Baker et al. [120] CNN Word2vec, BioNLP, BioNLP-20165

Chen et al. [121] LogR, SVM, RF PoS, BoW

Fergadis et al. [122] HieBiRNN Word2vec

Luo et al. [123]

Ensemble(LSTM, CNN,

BiLSTM-CNN, Recurrent CNN,

HieLSTM)

fastText, PoS, NER

Abdulkadhar et al. [124] Recurrent CNN Word2vec

Baker and Korhonen [125] CNN BioNLP-20165

Du et al. [126] BiRNN ELMo embeddings

Dollah et al. [127] CNN Word2vec, PoS, NER

Yang et al. [9] XLNet XLNet embeddings

Xu and Cai [128] CCRCNN Word2vec

Zhang and Zhang [129] Text Graph Transformer TF-IDF

Ibrahim et al. [130] CNN-BiLSTM BioNLP, BioWordVec

Jiang et al. [131] LightXML BERT, XLNet, RoBERTa embeddings

5 https://github.com/cambridgeltl/BioNLP-2016

https://github.com/cambridgeltl/BioNLP-2016
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M E T H O D O L O G Y

3.1 DEVELOPMENT OVER THE OMNIA PLATAFORM

3.1.1 OVERALL DESCRIPTION OF THE OMNIA PLATAFORM

Omnia is an AutoML platform for bioinformatics. The platform was created for commercial use by

the team at OmniumAI1. OmniumAI is a company that provides consulting, software development,

and tailored training in the fields of AI and Data Sciences, boosted by the team’s prowess in

ML, DL, NLP, and optimization. With AI as its core, OmniumAI focuses on bioinformatics and

biomedical data sciences, with enriched solutions for biological and biomedical data processing,

analysis, mining, and integration. OmniumAI is a spin-off of the University of Minho created in

2021 by members of the Centre of Biological Engineering.

The Omnia platform contains a set of tools for the analysis of biological data. Currently, it

has tools for the analysis of the following data and areas:

• Generics: subpackage that contains basic and universal data handling and transformation

methods. It provides the ability to load data, transform data, and train ML models. All

sub-packages listed below depend on this subpackage.

• Compounds: this subpackage contains methods to process compound data (e.g., smiles).

It is capable of performing compound feature extraction, compound standardization, and

molecular splitting.

1 https://omniumai.com/
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• Proteins: this subpackage contains methods to process protein sequences. It provides

the capacity to perform protein standardization, protein description, and protein-encoding.

• Genes: this subpackage contains methods to process DNA sequences. It is capable of

performing DNA feature extraction.

• Metabolomics: this subpackage contains methods to process Liquid-Chromatography

Mass Spectrometry (LC-MS) data. It is capable of processing LC-MS data and perform

data reduction.

• Transcriptomics: this subpackage contains methods to process RNA-seq data. It is

capable of performing RNA-seq data parsing, RNA-seq data processing, and RNA-seq

data feature selection.

• Single-cell transcriptomics: this subpackage contains methods to process single cell

(scRNA-seq) data. It provides the capacity to perform scRNA-seq data parsing, scRNA-seq

data scaling, scRNA-seq data feature selection, and scRNA-seq data instance selection.

• Text mining: this subpackage contains methods to process text data. It is capable of

performing text feature extraction and text processing.

3.1.2 IMPROVING THE OMNIA-TEXT-MINING PACKAGE

The omnia-text-mining subpackage contains all the modules needed to process text. The

subpackage is divided into two different modules, according to the type of process: Processing

and Feature Extraction. Processing designates all the methods responsible for simple text

processing (e.g., lowercase). Feature Extraction encompasses all methods responsible for

extracting useful information from the available text. These two modules are important when

trying to train ML models, especially traditional ML since these require the text to be converted a

priori to vectors.

Below, we list the methods developed in the context of the present work for the Omnia

package. For processing there are:

• Lowercase: transforms all text to its lowercase form. This method receives a pandas

Dataframe, transforms the text, and returns a new pandas Dataframe with lowercase text.
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• Remove Punctuation: removes all punctuation from the text. This method receives a

pandas Dataframe, removes all punctuation from the text, and returns a new pandas

Dataframe with the transformed text.

• Remove Stopwords: removes all stopwords from the text (as explained in section 2.1.2).

This method receives a pandas Dataframe, removes stopwords from the text, and returns

a new pandas Dataframe with the new text.

For feature extraction there are:

• Named Entity Recognition: extracts all the entities from text. This method receives a

pandas Dataframe, extracts all available entities from the text, and returns a new pandas

Dataframe with the entities and counts for each document.

• Part of Speech: extracts the part of speech (i.e., grammatical class) counts from the text.

This method receives a pandas Dataframe, counts the number of parts of speech from

the text, and returns a new pandas Dataframe with the number of words for each part of

speech for each document.

• Word Counts: counts all the words in the text. This method receives a pandas Dataframe,

counts the number of words in each document, and returns a new pandas Dataframe with

the words present and the number of times they appear in each document.

• TF-IDF: applies the TF-IDF method (as explained in section 2.1.2). This method receives

a pandas Dataframe with word counts, calculates the TF-IDF, and returns a new pandas

Dataframe with the TF-IDF values for each word in each document.

3.1.3 PACKAGES USED IN THE DEVELOPMENT

Below, are some of the most important packages used in the omnia-text-mining subpackage.

• Numpy: package for scientific computing in Python. It provides a multidimensional array

object, masked arrays, matrices, and an assortment of routines for fast operations on

arrays [132]. This package was used globally for its’ ease of use, the ability to create

arrays, and the ability to perform quick computational calculations.
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• Pandas: Python package providing fast and flexible data structures. The two primary data

structures of pandas are Series (1-dimensional) and DataFrame (2-dimensional) [133].

This package was chosen for its ability to easily structure and handle data.

• Scikit-learn: open source ML library that supports supervised and unsupervised learning.

It also provides various tools for model fitting, data preprocessing, model evaluation, and

many other utilities [134]. This package was used for feature extraction methods, i.e.,

TF-IDF.

• NLTK: platform for building Python programs to work with human language data. It

provides easy-to-use interfaces to over 50 corpora and lexical resources, along with a

suite of text-processing libraries for classification, tokenization, stemming, tagging, and

parsing [135]. This package was chosen mainly for its’ list of stopwords to use on the

Remove Stopwords method explained above.

• spaCy: library for advanced NLP in Python. spaCy comes with pre-trained pipelines and

supports tokenization and training for more than 60 languages. It features state-of-the-art

NN models for tagging, parsing, NER, text classification, and more [136]. This package

was used for its’ ability to perform NER.

• ScispaCy: Python package containing spaCy models for processing biomedical, scientific

or clinical text [137]. This package was used for its’ models for biomedical text.

• Pytorch: Python package that contains data structures for multi-dimensional tensors

and defines mathematical operations over these tensors. It has the ability to perform

those operations with strong Graphics Processing Unit (GPU) acceleration. It also has

the building blocks needed to construct NN models [138]. This package was used for its’

ability to use GPUs to perform mathematical calculations and build NN models.

• AutoGluon: enables easy-to-use and easy-to-extend AutoML tool with a focus on auto-

mated stack ensembling, DL, and real-world applications spanning image, text, and tabular

data [116]. This package was used for its’ ability to perform AutoML (i.e., HPO) on DL

models.

• Transformers: Hugging Face Transformers provides Application Programming Interface

(API)s and tools to easily download and train state-of-the-art pre-trained models that
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support tasks in different modalities such as NLP, Computer Vision, Audio, and Multimodal

[139]. This package was chosen for its’ capacity to easily load and train a DL model.

3.2 MACHINE LEARNING MODELS

3.2.1 TRADITIONAL MACHINE LEARNING MODELS

Several ML models were trained to compare the performance between well-known traditional ML

and DL models, and state-of-the-art biomedical DL models. Some word embeddings (Section

2.1.3) were also compared using a custom CNN model. These models were trained with the

dataset explained beforehand. Some of the DL models were also used on an AutoML pipeline

with the main objective being HPO.

The training of traditional ML was performed using the models established within the Omnia

package. The training procedure is done using the pipelines built on the AutoGluon package.

The models were trained using AutoGluon’s TabularPredictor function. This function trains a set

of ML models and provides their performance. In total, 8 traditional ML models were trained:

• RF: constructed by training a predetermined number of decision trees and combining

their results to create a final estimator. Each tree in the ensemble is constructed using

a sample taken from the training set. In addition, the optimal split between each node of

the tree is determined using either all of the input data or a randomly selected subset of

features. These two randomization sources are intended to reduce the variance of the

forest estimator.

• SVM: employs an ideal hyperplane to divide observations into different classes depending

on the information patterns in the data. This hyperplane allows the classification of new

data.

• KNN: non-generalizing learning since it merely saves examples of the training data rather

than making an effort to build a broad internal model. The classification is determined by a

simple majority vote of each point’s closest neighbors.
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• Gradient Boosting: it is an ensemble of weak prediction models, typically, decision trees.

The objective of this model is to find a function that best fits the input variables to the

output variables. This is done by using a loss function and minimizing it. In total, 3 variants

of gradient boosting were trained, more precisely eXtreme Gradient Boosting (XGBoost)2,

Light Gradient Boosting Machine (LGBM)3, and CatBoost4.

• Extra Trees (XT): a random subset of candidate features is used, as in RF, but instead of

looking for the most discriminative thresholds, the thresholds are randomly generated for

each candidate feature, and the best of those are chosen as the splitting rule. This typically

enables a slight reduction in the model’s variance at the expense of a slight increase in

bias.

• Linear: is a linear model for classification. In this model, a logistic function is used to

simulate the probabilities describing the potential outcomes of a single trial.

3.2.2 DEEP LEARNING MODELS

For DL, most of the models trained were variants of the BERT model introduced by Devlin et al.

[8]. BERT is a technique for pre-training language representations. It was trained on a massive

text corpus (nearly 3,300 million words) creating a general-purpose “language understanding”

model. This pre-trained model can then be used for downstream NLP tasks (e.g. document

classification).

Except for the CNN architecture, all models were implemented using the Transformers

package[139] from the Hugging Face platform. The models can be divided into two distinct

areas: models trained on generic text and models trained on biomedical text. Regarding the

former, 4 models of the BERT structure were trained:

• BERT: presented in 2018, this model was trained on a 3,300 million word corpus, con-

taining text from english Wikipedia and BooksCorpus, totaling 16GB of uncompressed

text. It is composed of 12 layers of transformer blocks with a hidden size of 768 and 12

attention heads. This produces a 110 million parameter model. It was pre-trained with

2 https://github.com/dmlc/xgboost
3 https://github.com/microsoft/LightGBM
4 https://github.com/catboost/catboost

https://github.com/dmlc/xgboost
https://github.com/microsoft/LightGBM
https://github.com/catboost/catboost
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masked language modeling and next sentence prediction objectives. This level of training

made it achieve state-of-the-art performance, at the time, in multiple NLP tasks [8].

• RoBERTa: presented in 2019, this model refines BERT’s pre-training process through

iterations that include training the model for longer periods of time with larger batches

of data, eliminating the next sentence prediction objective, training on longer sequences,

and dynamically altering the masking pattern used on the training data. It also adds more

data for the training procedure, on top of the data used by the original BERT, totaling

over 160GB of uncompressed text. This new training allowed this model to achieve

state-of-the-art results, at the time, in various NLP tasks [94].

• StructBERT: presented in 2019, this model extends BERT by incorporating language

structures into pre-training. Specifically, this model was pre-trained with two additional

tasks to make the most of language structures at the word and sentence levels. The

incorporation of dependency between words as well as sentences improves the model’s

ability to generalize and adapt. The two new objectives in pre-training made the model

achieve state-of-the-art results, at the time, in some NLP tasks [140].

• DeBERTa: presented in 2020, by combining two unique methods, DeBERTa enhances

both the BERT and RoBERTa models. The first is the disentangled attention mechanism,

in which each word is represented by two vectors that convey its content and location,

respectively, and the attention weights among words are determined using disentangled

matrices on those vectors. Second, the output softmax layer is replaced with an enhanced

mask decoder in order to predict the masked tokens for model pre-training. These two

methods greatly enhance the effectiveness of model pre-training and the performance

of downstream tasks. This model surpassed human performance on the SuperGLUE

benchmark [141, 142].

In the matter of biomedical models, seven models of the BERT architecture were trained:

• BioBERT: presented in 2019, this model increments the data used on the pre-training of

BERT. It adds biomedical text from PubMed Abstracts and PMC Full-text articles, bringing

the total words used for training to 21,300 million words. Of these, 18,000 million of

them are from biomedical text. This makes the BERT model focus more on biomedical
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documents. The training on biomedical data made this model perform better than BERT

on 3 biomedical TM tasks [10].

• SciBERT: presented in 2019, this model was trained on a corpus of 3,100 million words ob-

tained from articles from the Semantic Scholar5 corpus. This model also has a vocabulary

built from scientific text, improving its performance in biomedical NLP tasks [143].

• BlueBERT: presented in 2019, this model was pre-trained with abstracts from PubMed

(4,000 million words) and clinical notes (MIMIC-III) (500 million words) over the base BERT.

The new data adds more than 4,500 million words to the training corpus, from biomedical

and clinical texts. At the time, this model achieved state-of-the-art on the BLUE benchmark

[144].

• BiomedRoBERTa: presented in 2020, this model expanded the pre-training of the base

RoBERTa model. It was pre-trained on 7,550 million words from full-text scientific papers

from the Semantic Scholar5 corpus [145].

• PubMedBERT: presented in 2020, this model was created to be domain-specific. This

means that this model was trained from scratch on a corpus solely composed of biomedical

text. The text used was obtained from abstracts from PubMed and full-text articles from

PubMedCentral, resulting in a 3,100 million word corpus. At the time, this model achieved

state-of-the-art performance in various biomedical NLP tasks [146].

• ProcBERT: presented in 2021, this model uses the BERT architecture to train from scratch

on a corpus. The corpus was made by up-sampling experimental procedures extracted

from articles, full-text articles, and chemical patents, resulting in 12,000 million words

[147].

• BioLinkBERT: presented in 2022, this model uses LinkBERT as base. LinkBERT is

a pre-trained model that uses document links (i.e., hyperlinks and citations) to access

knowledge that spreads across multiple documents. BioLinkBERT is pre-trained from

LinkBERT on PubMed with citation links. It achieved state-of-the-art performance in most

of the tasks in the BLURB6 benchmark [148].

5 https://www.semanticscholar.org/
6 https://microsoft.github.io/BLURB/

https://www.semanticscholar.org/
https://microsoft.github.io/BLURB/
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The CNN model was used to compare the performance of different pre-trained embeddings.

The fastText and GloVe pre-trained embeddings are part of the generic text domain. BioWordVec,

BioNLP, and BioNLP+Wiki are part of the biomedical text domain. Highlight to the latter, which

was pre-trained on both generic and biomedical texts. In total, 5 pre-trained embeddings were

tested:

• fastText: pre-trained on the Common Crawl, totalling 600 billion words. This pre-trained

embedding is available in 300 dimensional vectors [33].

• GloVe: pre-trained on uncased text from Wikipedia available in 2014 and Gigaworld fifth

edition, totalling in 6 billion words. It is available in 50, 100, 200, and 300 dimensional

vectors [32]. The 300 dimensional vectors were used in this work.

• BioWordVec: based on the word2vec model. It was pre-trained on the PubMed text

corpus and MeSH, totalling in 2.3 billion words. It is available as 200 dimensional vectors

[35].

• BioNLP: based on the word2vec model. It was pre-trained from a combination of the

texts from PubMed and PMC, totalling 5.5 billion words. It is available as 200 dimensional

vectors [149].

• BioNLP+Wiki: it is the same as BioNLP but it was also pre-trained with text from Wikipedia

[149].

Training

Figure 16 represents the structure used in the CNN model. The CNN begins with an embedding

layer. This layer receives the pre-trained word embeddings listed before and vectorizes the

input text to the corresponding embedding representations. Proceeding from this layer, the

transformed data is then provided to 3 parallel convolutional layers (Conv1D). These 3 layers

have each 100 neurons, a stride of 1, and a padding of 0. The main difference between them

is the kernel size. One has a kernel of 3, another has a kernel of 4, and the last has a kernel

of 5. This means that the same input will have 3 different feature maps. The output from each

Conv1D layer passes through a ReLu activation function (Figure 10) and it is then forwarded to

a Max Pooling layer. The output of all 3 Max Pooling layers is then concatenated. This vector

passes through a Dropout layer with a dropout value of 0.5, and finally, the remaining features
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are then given to a fully connected layer that will act as an output layer. This last layer will decide

if the input text is classified as relevant or non-relevant.

Fig. 16 – CNN structure utilized in this work. The values inside the Conv1D layers refer to the kernel
size of that layer.

The text that this model receives as input receives a small preprocessing. Before being

passed to the model, the documents are processed to remove their stopwords and to lowercase

the text. This model was trained for 50 epochs with a learning rate of 0.25 and a batch size of

256. To evaluate the performance of each epoch, an evaluation set was created by selecting

15% of the training set.

The models based on the BERT structure were trained using the Transformers package

[139]. Since most BERT models were not built to perform text/document classification, the

package has a built-in function that makes it possible (BertForSequenceClassification). This

function takes the model and adds an additional final layer that performs binary classification.

The text only suffered preprocessing on select cases. Since the vast majority of the models

were trained with lowercase text, they received the text in lowercase. As some models were

trained with uppercase text (i.e., text with both lower and uppercase letters), they received the

raw text. There is no need to vectorize the text like it needs to be done for traditional ML (Section

2.1.2). The BERT-based models handle text in a specific way. As BERT is an encoder-only

transformer, it creates representations of the text. Basically, as stated previously, it generally

receives an uncased text.

The hyperparameters for each BERT-based model were chosen based on the parameters

suggested by the authors or the parameters used to train said models. The number of training

epochs was tested both on 3 and 4 epochs, the suggested value by the original authors of BERT.

The learning rate was set to 0.00002, the warmup ratio was set to 0.1, weight decay was set to

0.01, the loss function was Cross-Entropy, and the optimizer function was set to AdamW. The
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batch size was set to 16 by default, however, for certain more complex models, the batch size

was reduced to fit the memory available on the hardware used. Essentially, the batch size was

chosen based on the available memory. To validate the performance of the training procedures

and hyperparameters used, a validation set was created. This set was obtained by extracting

15% of the training set. To make the whole training and prediction reproducible, a seed was set

to 16.

AutoML

The AutoML pipeline used in this work was obtained from the AutoGluon package. This pipeline

was designed to perform HPO. The models used in this step were the BERT based biomedical

models described previously, with the exception of BioLinkBERT and the addition of DeBERTa.

For text preprocessing, as stated before, it was only transformed to lowercase as it is standard

for BERT.

This pipeline performs HPO and trains the model with the best performing combination of

hyperparameters. The HPO is performed by defining the lower and upper bounds (i.e., search

space) for each hyperparameter. The hyperparameters tested were batch size, learning rate,

learning decay, learning rate schedule, and warmup ratio.
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R E S U LT S A N D D I S C U S S I O N

4.1 DATASET

The first step when training a ML model is to find or create a dataset that fills the requisites of the

work. In the case of this work, the main focus was to use DL models to classify the relevance of

biomedical documents. Therefore, a dataset for binary classification was needed. Consequently,

the chosen one was a dataset used in Track 4 (“Mining protein interactions and mutations for

precision medicine”) from the BioCreative VI challenge, which took place in 2017. The main

focus of this Track is Protein-Protein Interaction (PPI). PPI plays a crucial role in the cellular

mechanisms of all living organisms and also contributes to predicting protein function and drug

ability. In humans, changes in PPI can be indicative of disease [150, 151]. Therefore, it is

important to uncover mutations that alter PPI. Because of this, the BioCreative team challenged

the biomedical TM community with this task.

In this track, the challenge was divided into two different sub-tasks: Document Triage, which

consists in identifying relevant PubMed literature describing genetic mutations affecting PPI,

and Relation Extraction, which consists in extracting experimentally verified PPI affected by a

genetic mutation. For this work, the dataset for the document triage task was chosen, since the

main purpose of this sub-task is to perform binary classification. The data from this dataset is

branched into a train set and a test set, comprised of 4082 and 1427 abstracts respectively. The

statistics of the dataset are presented in table 5. The documents in this dataset were manually

labeled as relevant/non-relevant by the curators of the BioGRID database [152].

42
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Table 5 – Size of the two datasets from BioCreative VI Track 4

Dataset Abstracts Relevant Non-Relevant

Train 4082 1729 2353

Test 1427 704 723

4.1.1 CHALLENGE OVERVIEW

In total, 11 teams participated in the BioCreative VI Track 4 challenge. From these, 10 teams

participated in the document triage task. Each team was allowed to submit 3 different runs. They

could be 3 runs of the same method or different methods. In the end, there were 22 submissions

for the document triage task. To compare the results from the submissions, the BioCreative

team put up a baseline obtained using a SVM classifier.

The best average precision obtained was 72.5%, the best precision was 62.9%, the best

recall was 98.0%, and the best F1 was 69.1% (Table 6). Team 414, which obtained the highest

recall value, used a CNN which included several layers such as embedding, convolution, max

pooling, dropout, and softmax [153]. Team 418, which obtained the best precision and F1 scores,

used a Hierarchical Bidirectional Attention-Based RNN. It uses 2 bidirectional GRU, one as a

sentence encoder and the other as a document encoder [122]. Finally, team 421, which obtained

the best average precision, used an ensemble of NN (i.e. LSTM, CNN, LSTM-CNN, recurrent

CNN, and hierarchical LSTM) [154].

Table 6 – Best results were submitted to the document triage task and the baseline. The values in bold
represent the best result for each metric

Team Average Precision Precision Recall F1

414 0.508 0.502 0.980 0.664

418 0.716 0.629 0.766 0.691

421 0.725 0.607 0.800 0.690

Baseline 0.652 0.612 0.644 0.627
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4.2 TRADITIONAL ML

In order to assess the performance of the DL models, some traditional ML models were trained

first to establish a baseline. The training can be separated into 2 methodologies, explained by

a defined minimum word frequency (cut-off) across all documents (i.e., a certain word needs

to appear a defined minimum number of times across all documents) when performing TF-IDF.

The main objective of these methodologies was to verify the behavior of the training process

when more relevant words are used. Each of these methodologies was also evaluated either

with all features or with 10% of the features. This method of dimensionality reduction should

reduce the training resources while keeping near the same performance. The preprocessing

methods performed before calculating the TF-IDF were lowercasing, removing newlines, remov-

ing stopwords, removing punctuation, removing URL, and lemmatization. Tables 7 and 8 details

the results of a cut-off value of 10 and 5 words, respectively.

From the results expressed in table 7, it is noticeable that the majority of models performed

worse when applying feature selection. In detail, the LGBM model performed worse in all metrics,

in spite of the changes being small. The RF, XGBoost, XT, and SVM models performed worse

on accuracy, precision, and MCC. The SVM also worsens on F1. On the other hand, CatBoost

and Linear models performed better on all metrics. KNN performed better on accuracy, precision,

and MCC. Special note to the Linear model, which got a substantial 7.7% improvement from

feature selection. This result proves that feature selection, in certain cases, is a good way to

improve the model’s performance. This improvement was obtained while reducing the number of

features from 3326 to 333 and also the time required to train the model from 183 seconds to 12

seconds. In general, the models obtained better results on recall. The increase on recall can be

explained by the higher importance, to the relevant documents, of the features used in training.

In that sense, the models would be better at classifying relevant documents. Otherwise, the worst

performance, with feature selection, could be related to the lower number of features provided

for training. Overall, the best model would be the CatBoost model with feature selection. It got

the best performance in accuracy, F1, and MCC and still obtained the second-best performance

in recall.

The results from table 8 show a generalized improvement when performing feature selection.

Apart from the LGBM and XGBoost models, all models improved on 3 or more metrics. CatBoost,
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Table 7 – Traditional ML performance from the Omnia package, with the TF-IDF values calculated with
a cut-off value of 10. FS stands for Feature Selection. The values in bold represent the best
result for each metric

Model FS Accuracy Precision Recall F1 MCC

No 0.633 0.619 0.665 0.641 0.267
CatBoost

10% 0.637 0.621 0.678 0.648 0.276

No 0.539 0.535 0.494 0.514 0.077
KNN

10% 0.559 0.593 0.341 0.433 0.125

No 0.585 0.575 0.608 0.591 0.171
Linear

10% 0.612 0.595 0.665 0.628 0.226

No 0.628 0.612 0.672 0.640 0.258
LGBM

10% 0.626 0.611 0.666 0.637 0.253

No 0.637 0.632 0.632 0.632 0.274
RF

10% 0.625 0.605 0.690 0.645 0.254

No 0.629 0.627 0.612 0.620 0.258
SVM

10% 0.607 0.596 0.632 0.613 0.215

No 0.629 0.615 0.659 0.636 0.258
XGBoost

10% 0.625 0.609 0.672 0.639 0.252

No 0.628 0.629 0.599 0.614 0.255
XT

10% 0.624 0.608 0.668 0.636 0.249

Linear, and RF improved on all metrics. Like the results of the cut-off value of 10, the Linear

model got a good improvement in its performance when using feature selection. In this case, it

got a smaller, but still good improvement of 5.9% over the results without feature selection. SVM

improved on all metrics but precision, however, with a negligible difference (i.e., 0.001). KNN

and XT models got a small decrease in performance when focusing on recall and F1. In contrast,

LGBM and XGBoost models achieved worse results on all metrics. Once again, CatBoost model

with 10% feature selection was considered the best model overall. It got the best results on

accuracy and MCC. It also got the second-best result in precision, the third-best F1, and the

fourth-best recall.

Table 9 shows a comparison between the results of the chosen best models from tables 7

and 8 and the baseline results provided by the challenge team (Section 4.1.1). Firstly, it shows

that the model trained with a TF-IDF cut-off value of 5 performed better than the model trained
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Table 8 – Traditional ML performance from the Omnia package, with the TF-IDF values calculated with
a cut-off value of 5. FS stands for Feature Selection. The values in bold represent the best
result for each metric

Model FS Accuracy Precision Recall F1 MCC

No 0.637 0.620 0.682 0.650 0.276
CatBoost

10% 0.642 0.624 0.690 0.655 0.286

No 0.531 0.526 0.510 0.518 0.062
KNN

10% 0.574 0.602 0.402 0.482 0.152

No 0.596 0.588 0.605 0.597 0.193
Linear

10% 0.615 0.601 0.656 0.627 0.232

No 0.636 0.614 0.709 0.658 0.277
LGBM

10% 0.622 0.606 0.670 0.637 0.247

No 0.622 0.603 0.685 0.641 0.247
RF

10% 0.631 0.612 0.690 0.649 0.266

No 0.609 0.601 0.616 0.609 0.218
SVM

10% 0.614 0.600 0.651 0.624 0.229

No 0.629 0.607 0.700 0.650 0.262
XGBoost

10% 0.623 0.604 0.686 0.642 0.249

No 0.633 0.609 0.713 0.657 0.271
XT

10% 0.640 0.625 0.675 0.649 0.281

with a TF-IDF cut-off value of 10. Most importantly, the model trained in this work performed

better than the model used by the challenge team. The baseline model was a SVM trained

with unigram and bigram features created from the titles and abstracts of the documents. In

contrast, this works’ model was trained using TF-IDF. Since both models were trained on the

same dataset, this proves that TF-IDF is a better feature extraction method than unigram and

bigram counts.

4.3 DEEP LEARNING MODELS

Following the results obtained with traditional ML, the logical step was to train a simple DL model

to compare the performance. The main objective was to see how a simple DL model would

perform compared to traditional ML. For that reason, the model chosen was a simple CNN with
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Table 9 – Comparison between the two best-performing models trained in this work and the BioCre-
ative VI Track 4 challenge baseline. The number in CatBoost refers to the cut-off value used.
The values in bold represent the best result for each metric

Model Precision Recall F1

CatBoost 10 0.621 0.678 0.648

CatBoost 5 0.624 0.690 0.655

Challenge 0.612 0.644 0.627

3 parallel convolutional layers, as shown in figure 16. Using the same CNN architecture, different

embeddings were also tested in order to see how they would change the performance of the

model.

As stated in section 3.2, 5 different pre-trained embeddings were trained. They can be

differentiated by the type of text they were trained with. fastText and GloVe were pre-trained with

generic text, while BioWordVec, BioNLP, and BioNLP+Wiki were pre-trained with biomedical text.

The latter was trained with a mix of biomedical and generic text. A quick analysis that can be

done, for each pre-trained embedding, is to compare the number of tokens that the dataset has

present in the embedding vocabulary. The dataset used (Section 4.1) contains a total of 57,038

different tokens. Knowing this, the number of known words on the pre-trained embeddings can

be calculated. From the embeddings trained with generic text, fastText knew 21,437 words from

the entire dataset, and GloVe knew only 16,719 words. These values correspond to 37,6% and

29.3% of the total number of words, respectively. From the biomedical embeddings, BioWordVec

identified 42,544 words, BioNLP got 30,560, and BioNLP+Wiki got 30,767 words. These values

correspond to 74.6%, 53.6%, and 53.9%, respectively, of the dataset’s total number of words.

The considerable difference between the generic and biomedical embeddings is obvious, as

expected. This type of biomedical text possesses various specific terms that are not usually

used in the generic text. This fact explains why these types of embeddings got a better coverage

of the dataset vocabulary. Following this thought, it would be expected that the biomedical

embeddings would result in a better performance when training the CNN model.

Table 10 presents the performance metrics obtained from training the CNN model with

the different embeddings. fastText got the best results on recall and F1, while BioWordVec got

the best results on accuracy, precision, and MCC. Overall, the best embedding, for this study
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case and model, would be the BioWordVec. It did not also get the highest word coverage, the

best accuracy, the best precision, and the best MCC, but the other 2 metrics were not far from

the best result. However, if the main objective was to obtain the maximum number of relevant

documents, fastText embedding would be the ideal choice.

Table 10 – Performance comparison between the pre-trained embeddings. The values in bold repre-
sent the best result for each metric

Embedding Accuracy Precision Recall F1 MCC

fastText 0.631 0.600 0.761 0.671 0.275

GloVe 0.630 0.613 0.676 0.643 0.262

BioWordVec 0.640 0.619 0.702 0.658 0.283

BioNLP 0.637 0.618 0.693 0.653 0.277

BioNLP+Wiki 0.633 0.610 0.707 0.655 0.270

Comparing the BioWordVec embedding to the best traditional ML model discussed pre-

viously, CatBoost, it is noticeable that the results are quite proximate all around (Table 11).

However, it is unexpected that BioWordVec got worse results in the majority of the metrics. This

can be explained by the usage of TF-IDF on the CatBoost model since this method focuses

only on the dataset vocabulary, i.e. the importance of each word is determined uniquely within

the dataset. This technique would produce a better representation of the words present in the

dataset, while the embedding would not have that word importance factor.

Table 11 – Performance comparison between the best-performing traditional ML model and the best-
performing embedding. The values in bold represent the best result for each metric

Embedding Accuracy Precision Recall F1 MCC

CatBoost 0.642 0.624 0.690 0.655 0.286

BioWordVec 0.640 0.619 0.702 0.658 0.283

With regards to the unexpected results from the CNN model, the next step was to test the

performance of more complex, and in theory better, DL models. The BERT model was chosen

as a start. At the time it was presented, this model achieved state-of-the-art performance in

multiple NLP tasks. From that point, several variations of BERT appeared. In this work, multiple

of these variations were trained and tested (Section 3.2). To train these models, the text suffered
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no major preprocessing. As some models were pre-trained with lowercase text, these models

were trained with lowercase text also. All the other models were trained with the raw text. The

reason these models need no preprocessing is because of the way BERT handles text. The way

BERT tokenizes the text is more complex than a simple tokenization method. It breaks down

words that it does not know into smaller parts. To put it more accurately, BERT tokenizers are

capable of breaking down a word that is not already part of its’ vocabulary into words that are

already part of the vocabulary. Because of that, it is recommended to use the raw text when

training BERT models.

The models trained in this step are separated by the type of data they were pre-trained

with. Like the embeddings, some models were pre-trained with generic text, while others were

pre-trained with biomedical text. Table 12 contains the performance values of the models pre-

trained with generic text. DeBERTa stands out from the other models, since it got the best result

on accuracy, precision, F1, and MCC. On the other hand, StructBERT got the best result on

recall, making it the best model to obtain the maximum number of relevant documents. Overall,

the DeBERTa model would be the best, since it has the best performance on all metrics but

recall. Even though it has the worst result in recall, it is still a very balanced model, so it would

have a great performance globally. This result is somewhat expected, since DeBERTa is the

newest model in the list and is based on BERT and RoBERTa. So, in theory, it would have

gathered the best parts of both models it was based on, and it would have access to newer

training techniques and data.

Table 12 – Performance of the models pre-trained with generic text. These models were trained with
the Transformers package. The values in bold represent the best result for each metric

Model Accuracy Precision Recall F1 MCC

BERT 0.622 0.582 0.832 0.685 0.274

RoBERTa 0.623 0.586 0.807 0.679 0.269

StructBERT 0.597 0.557 0.889 0.685 0.246

DeBERTa 0.674 0.631 0.817 0.712 0.366

Table 13 presents the performance values of biomedical models. These models were

initially pre-trained with biomedical text, in order to become more capable at dealing with this

domain. From the results, BioLinkBERT got the best result on accuracy, precision, F1, and
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MCC, while BioBERT got the best performance on recall. Overall, BioLinkBERT got the best

performance, since it got the best result in 4 of 5 metrics. However, the other metric got a result

within a respectable distance from the maximum value. Additionally, it should be noted that

BioBERT, one of the first biomedical BERT models, got better performance than most of the

models.

Table 13 – Performance of the models pre-trained with biomedical text. These models were trained
with the Transformers package. The values in bold represent the best result for each metric

Model Accuracy Precision Recall F1 MCC

BioBERT 0.649 0.603 0.841 0.703 0.327

SciBERT 0.637 0.596 0.821 0.691 0.299

BlueBERT 0.632 0.595 0.798 0.682 0.284

BiomedRoBERTa 0.638 0.597 0.822 0.692 0.302

PubMedBERT 0.658 0.617 0.807 0.700 0.334

ProcBERT 0.647 0.605 0.815 0.695 0.316

BioLinkBERT 0.676 0.633 0.815 0.713 0.369

To compare the performance of generic and biomedical models, table 14 shows the per-

formance of the best models from each domain. As expected, the BioLinkBERT model got an

overall better performance than the generic ones. As said before, this result is expected, since

the main purpose of the biomedical models is to perform biomedical NLP tasks. However, one

unexpected result was the recall performance of StructBERT, since it got the best recall of all

trained models. This would make it the best model to correctly classify the relevant biomedical

documents, despite the fact that it was pre-trained with generic text.

Table 14 – Performance comparison between the best-performing generic models and the best-
performing biomedical models. The values in bold represent the best result for each metric

Model Accuracy Precision Recall F1 MCC

StructBERT 0.597 0.557 0.889 0.685 0.246

DeBERTa 0.674 0.631 0.817 0.712 0.366

BioBERT 0.649 0.603 0.841 0.703 0.327

BioLinkBERT 0.676 0.633 0.815 0.713 0.369
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4.4 AUTOML

The following step was to perform AutoML, with an emphasis on HPO. The main goal was to

test the effect of HPO on the models’ performance, using the AutoGluon package. The main

focus was to test, essentially, biomedical models as it was expected for them to perform better,

as explained previously. However, with the performance obtained by the DeBERTa model, it was

decided to include it in this step.

Table 15 shows the results obtained when training and performing HPO on several models.

As seen, PubMedBERT got the best results on accuracy, precision, F1, and MCC. The best

recall score was obtained by the BlueBERT model.

Contrary to expectations, the majority of the models got worse performance when using

HPO. One way to explain these results is to analyze the way HPO works. As explained in

section 2.5, HPO tries to find the best-performing hyperparameters within the given limits.

Since the Bayesian Optimization method is used in this step to search for the best combination

of hyperparameters, it is expected that different trials on the same model produce different

hyperparameter combinations. It is this randomness that could explain the results obtained here.

Another explanation could be the way the models are trained. In this task, the package

used for training and HPO is different from the package used in the previous steps. Even though

AutoGluon uses the package Transformers to load the desired model, it uses its own method

to train the model. This difference could be a reason that explains the lack of performance

improvement since the HPO initial hyperparameters were the same as the ones used when

training the models with the Transformers package.

Still another important factor is probably the number of trials to try new hyperparameter

combinations. Theoretically, a higher number of trials would result in better performance since the

optimization function would have more time to converge to a better hyperparameter combination.

One complication found, when increasing the number of trials was that the software would,

eventually, run into a problem and not recognize the hardware (GPU) needed to perform the

training and HPO. This problem was a major hindrance when performing AutoML.
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Table 15 – Results obtained when performing HPO using the AutoGluon package. Loss was used to
evaluate the performance of the models. The values in bold represent the best result for
each metric

Model Accuracy Precision Recall F1 MCC

BioBERT 0.645 0.604 0.817 0.694 0.313

SciBERT 0.627 0.586 0.831 0.687 0.283

BlueBERT 0.615 0.574 0.847 0.684 0.264

BiomedRoBERTa 0.629 0.596 0.767 0.671 0.271

PubMedBERT 0.676 0.638 0.790 0.706 0.363

ProcBERT 0.634 0.601 0.771 0.675 0.282

DeBERTa 0.644 0.601 0.831 0.697 0.315

4.5 FINAL EVALUATION

To perform a final evaluation on the best performing model, trained in this work, a new PPI

literature dataset was created. This dataset was constructed by extracting documents from the

PubMed database using an API. This API was created by Rúben Rodrigues, a student at the

BioSystems research group. It works by receiving queries and it searches the PubMed database

for documents containing those queries. In this case, the queries searched were “protein-

protein interactions” and “protein-protein interactions mutations”. In total, 1,997 documents were

obtained.

The model chosen for this task was BioLinkBERT. It was chosen because it was the best

overall performing model for the case study. The preprocessing method, that was applied to this

new dataset, was lowercasing, so it is the same as the documents used for training the model.

After processing the text, it was classified using the trained model. From the 1,997 documents

retrieved, the model classified 1,308 as relevant and the remaining 689 as non-relevant. From

the performance on the test set, it is expected that from the 1,308 relevant documents, the model

should have correctly classified about 1,066 documents as relevant.

To verify this hypothesis and these results, an analysis was performed to a reduced set

of documents that were manually verified. In total, 30 documents were analysed to verify their

contents and if the classification given by the model was correct. None of these documents was
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present in the datasets used for training and testing. From these 30 documents, 10 of them

were the documents which the model classified with the highest probability of being relevant

(top 10), 10 of which the model classified with the lowest probability of being relevant (bottom

10), and 10 of them with nearly a 50/50 change of being relevant (middle 10).

The top 10 documents classified as relevant by the model were all correctly classified,

since these documents’ content was about PPI and mutations in these sites. The bottom 10

documents also proved to be correctly classified by the model as non relevant. From the middle

10, half of them were correctly classified. The other half were wrongly classified as relevant.

Even though these documents contain keywords related to PPI mutations articles, none of

them actually contained information about the topic. Keywords like “protein”, “mutations”, and

“interactions” could be the reason why the model wrongly classified these documents. On a

closer analysis, some of these documents focus on the suppression or enhancement of gene

silencing within structural proteins, or changes in proteins’ terminal region caused by mutations.

Furthermore, some of these, focus on the exploration of “sensitive” regions, important to protein

aggregation, however this “sensitivity” can be caused by mutations. Finally, others focus on the

change of protein flexibility in case of an immune response. However, it was somewhat expected

for the model to wrongly classify the middle documents, since the model classifies them with a

50% probability of being relevant.

This analysis is another evidence that BioLinkBERT can be successfully used to classify

relevant literature regarding PPI mutations.



5

C O N C L U S I O N

One of the objectives of this dissertation was to explore and evaluate different ML techniques

to perform document classification on biomedical literature. To that intent, several traditional

ML and DL techniques were used in this work. It was possible to compare the impact made by

different cut-off values and the different number of features when training traditional ML models.

It was also possible to compare different types of pre-trained embeddings, from embeddings

pre-trained exclusively on generic text to embeddings pre-trained on biomedical text and also a

mix of both. The last step was to train several DL models to assess the performance gained

from utilizing more complex models.

The traditional ML models were able to achieve better performance than the baseline

defined by the challenge from where the dataset was extracted. The CNN model trained with

the different pre-trained embeddings produced better results with the BioWordVec embedding.

Despite the small differences, it still managed to outperform the other 4 pre-trained embeddings

in 3 out of 5 metrics. Additionally, this model also surpassed the baseline results. The next step

was to see how more complex DL models, i.e. transformers, performed with the same dataset.

Several variants of the BERT structure were trained. From these, BioLinkBERT managed to

obtain the best results. When compared to the challenge best submission, it managed to improve

by 0.4 percent points on precision, 4.9 percent points on recall, and 2.2 percent points on F1.

The main focus was to analyze the impact of HPO in the models’ performance. To do that, the

AutoGluon package was used because of its AutoML capabilities. Some of the models tested

were trained using this package and the results proved that, in some cases, performing AutoML

improved the performance.

In future work, it would be a good idea to train different DL structures. Some of the most

commonly used models to perform document classification are a combination of CNNs and

54
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LSTMs. Mixing transformers with these “basic” DL architectures could produce better results.

One of the biggest issues found in this work was the lack of hardware power. Performing any

type of NLP task requires very powerful hardware, especially when dealing with this type of

models. Most of the encountered problems were in the AutoML task, since for the most part,

the training process would fail, likely due to the lack of hardware power. This problem was the

reason why HPO was not performed on the BioLinkBERT model. Still, regarding the AutoML

task, it would be advisable to run the HPO task for longer periods of time. The AutoML results

shown in this work were obtained with the HPO task running for 20 to 30 trials.

The overall results, obtained in this work, prove that there is room to improve current

document classification techniques, being them traditional ML or DL.
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