
Universidade do Minho
Escola de Engenharia
Departamento de Informática

Sofia Almeida Teixeira

EWVM - an Educational Web Virtual Machine

November 2022

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Sofia Almeida Teixeira

EWVM - an Educational Web Virtual Machine

Master dissertation
Integrated Master’s in Informatics Engineering

Dissertation supervised by
José Carlos Ramalho
Pedro Rangel Henriques

November 2022

i

AUTHOR COPYRIGHTS AND TERMS OF USAGE BY THIRD PARTIES

This is an academic work which can be utilized by third parties given that the rules and
good practices internationally accepted, regarding author copyrights and related copyrights.

Therefore, the present work can be utilized according to the terms provided in the license
bellow.

If the user needs permission to use the work in conditions not foreseen by the licensing
indicated, the user should contact the author, through the RepositóriUM of University of
Minho.

License provided to the users of this work

Attribution-NonCommercial
CC BY-NC
https://creativecommons.org/licenses/by-nc/4.0/

ii

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have
not used plagiarism or any form of undue use of information or falsification of results along
the process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the
University of Minho.

Sofia Teixeira

A B S T R A C T

The Language Processing Course at Minho’s University uses a Virtual Machine imple-
mented in C with its interface being implemented with the GTK toolkit. However, it is
neither very informative nor very easy to install.

The goal in this Master’s Project is to analyze and model the entire Virtual Machine’s
system and build a Web application with a graphical interface. The new tool offers two main
characteristics: compiling and reporting errors in programs written for the Virtual Machine;
and animate its execution, displaying the internal state of the VM and providing the user an
interface to control the execution.

In this document, a study of existing technologies will be carried out, focusing in detail on
the current virtual machine VM. After this analysis, a solution will be proposed, followed by
a detailed explanation of its implementation.

Keywords: Virtual Machines, Stack Machines, Register Machines, Compilers, Assemblers

iii

R E S U M O

Na Unidade Curricular de Processamento de Linguagens tem-se utilizado uma VM
doméstica implementada em C com uma interface GTK. No entanto, esta não é muito
informativa nem muito fácil de instalar.

O objetivo nesta dissertação é fazer uma análise e modelação de todo o sistema e con-
struir uma aplicação Web com uma interface gráfica. A nova ferramenta oferece duas
funcionalidades principais: compilar e reportar erros em programas escritos para a VM e,
se o programa estiver correto, animar a sua execução mostrando o estado interno da VM e
fornecendo ao utilizador uma interface de controlo sobre a execução.

Neste documento, será realizado um estudo das tecnologias existentes, focando em detalhe
a máquina virtual atual VM. Após esta análise, será apresentada uma proposta de solução,
seguida de uma explicação detalhada da sua implementação.

Palavras-chave: Máquinas Virtuais, Máquinas de Stack, Máquinas de Registos, Compi-
ladores, Assemblers

iv

C O N T E N T S

1 introduction 1

1.1 Motivation 2

1.2 Objectives 2

1.3 Research Hypothesis 3

1.4 Development Approach 3

1.5 Document Structure 3

2 state of the art 4

2.1 Stack vs Register Virtual Machines 7

2.2 Virtualization 9

2.3 Current Virtual Machines 10

2.3.1 IBM Virtual Machine 10

2.3.2 Java Virtual Machine 11

2.3.3 Google Colab Virtual Machine 15

2.3.4 Parrot Virtual Machine 15

2.3.5 Python Virtual Machine 16

2.3.6 MIPS Virtual Machine 18

2.3.7 WebVm 19

2.4 Summary 19

3 vm , an overview 21

3.1 Architecture 21

3.2 Functioning Principle 22

3.3 Instructions 23

3.3.1 Instruction Set 23

3.4 Summary 27

4 ewvm - proposal 28

5 ewvm - the assembler 30

6 ewvm - the virtual machine 34

6.1 Memory Blocks 34

6.2 Flow Chart Example 35

7 ewvm - the graphical user interface 38

7.1 Demonstration 42

8 conclusion 45

v

L I S T O F F I G U R E S

Figure 1 Dual State’s Architecture 4

Figure 2 Virtual Machine’s Architecture - Type I 5

Figure 3 Virtual Machine’s Architecture - Type II 6

Figure 4 Stack Example Illustration 7

Figure 5 Example Illustration 8

Figure 6 Azure Architecture 11

Figure 7 JVM - Multiple Interpreters 11

Figure 8 Java - System Architecture 12

Figure 9 Java Platform Components 12

Figure 10 JVM Architecture 13

Figure 11 JVM Architecture 14

Figure 12 Parrot’s System Architecture 16

Figure 13 Python’s System Architecture 17

Figure 14 CPython’s Compiler 17

Figure 15 MIPS’s Architecture 19

Figure 16 Current VM’s Architecture. 22

Figure 17 New VM’s Architecture. 28

Figure 18 Website’s Mockup. 29

Figure 19 Assembler. 33

Figure 20 Assembler development using Peggy Generator. 33

Figure 21 EWVM Flow Chart example 37

Figure 22 A screenshot of EWVM interface 39

Figure 23 A screenshot of the EWVM Users’ Manual 40

Figure 24 EWVM - Examples 40

Figure 25 Demonstration - Program 42

Figure 26 Demonstration - Go-to-last Button connection 42

Figure 27 Demonstration - Go-to-next Button connection 43

Figure 28 Demonstration - Line number connection 43

Figure 29 Demonstration - Output connection 44

vi

1

I N T R O D U C T I O N

A Virtual Machine (VM) is a software layer over the real machine. A VM creates a
virtualized environment that mimics a computer system. It behaves like a completely
separate computer, running independently from the actual computer (host) and other virtual
machines (guests). Each VM runs its own operating system and functions, also having
virtual hardware. Allowing multiple operative systems to run in a single physical computer
is a very relevant feature of a virtual machine (IBM Cloud Education, 2019).

Many virtualization solutions have been implemented for various intents. In cloud
environments, VMs are fundamental since they provide virtual application resources to
multiple users at once. Virtual Machines are also demanded for security purposes, since
they allow the user to take risks that could otherwise harm the computer, making them
great for things like malware analysis (Nguyen et al., 2009). The most obvious use for VMs
is to run incompatible software, as is the need to test new operating systems. Some VMs,
like Java Virtual Machine (Subhashana, 2021), were created to assure software compatibility,
allowing all operating systems to equally run the same source code, previously compiled.

A growing use for Virtual Machines is in the field of education, since these allow for a
more specialized environment. There has been a focus on virtual machines being used with
pedagogical purpose (AlNajdi et al., 2020), such as teaching various coding fields, namely
cybersecurity (Chothia and Novakovic, 2015), system software development (Driscoll et al.,
2004) and others (Hu and Han, 2009).

1

1.1. Motivation 2

1.1 motivation

At the moment, a Virtual Machine, named VM, developed by Jean-Christophe Filliatre
at LRI/Université de Paris/Saclay for his Compiler courses (de Sousa, 2006), is used in
the Language Processing Course to teach students about compilers and code generation.
The current Virtual Machine is implemented in C and it runs programs written by the
programmers in VM-Assembly language. As opposed to register based virtual machines,
this one operates mainly using stacks, relying on only a few control registers (Shi et al.,
2008) like the Stack-Pointer (SP), the Program-Counter (PC) and the Global and Frame
Pointers (GP and FP). A Stack-Machine requires that all the operands of any arithmetic,
logic, load/store or input/output operator are located at the top of the stack; after pop
them and execute the operation, the result is then pushed into the stack. The interaction
between the user and the virtual machine is conducted through the computer’s terminal.
The user-machine’s communication is limited to what the given program is coded to do, so
there is no additional information shared about how the machine works and its internal
state.

The main motivation to create this new Virtual Machine relates to the difficulty installing
the current one. With this in mind, this Master’s work will focus on developing a new virtual
machine that will replicate the old one, but without the need to be installed. Furthermore,
the goal is also to improve it, aiming to achieve a more user friendly interface that is also
more informative.

To that end, this project consists in developing a Web Application, which runs the Virtual
Machine at the server side. To improve the user’s understanding of the machine, it will have
a visualization option of its state while it processes the given program.

1.2 objectives

This Master project’s goal is to implement a Virtual Machine running on a Web Application.
To accomplish this, it will be necessary to:

• Develop a Grammar to define the Assembly Language;

• Develop the new Virtual Machine;

• Develop a Web Interface;

• Extend the new machine pedagogical functionalities.

1.3. Research Hypothesis 3

1.3 research hypothesis

By the end of this Master’s Project it will be established that by using a Web approach it
is possible to have a more accessible Virtual Machine.

1.4 development approach

The methodology that will be followed in this Master’s thesis is composed of the following
steps:

• Bibliographic search to find documents concerning virtual machine and their imple-
mentation approaches and techniques;

• Reading and synthesis of the bibliography selected;

• Propose a solution;

• Develop the solution;

• Test and discuss results;

• Extension of the instruction set and optimization of the VM performance.

1.5 document structure

Throughout this document, various topics related to this project will be discussed.
Chapter 2 analyses and assesses the existent technology related to the subject-matter of

this Master’s Project.
Chapter 3 focuses on the currently used Virtual Machine, VM, which provided inspiration

for this project.
Chapter 4 presents a detailed description of the proposed solution for this project and

what features it aims to achieve.
Chapter 5 describes the development and functioning of the Assembler and its role in the

Web-based software system.
Chapter 6 explains the structure of the Virtual Machine.
Chapter 7 focuses on the organization of the GUI explaining how the different components

interact with each other and how to navigate them.
Chapter 8 presents a conclusion that summarizes all the information presented along the

report and emphasizes the work done, reflecting on what was achieved, as well as proposing
directions for future work.

2

S TAT E O F T H E A RT

In the 1960s, Input/Output processors and multiprogramming emerged, meaning that
multiprocessors could have access to a common main memory and that multiple processes
could share a single processor and compete for a common pool of resources. Since one
cannot trust all the software to be correct, this created integrity problems. An I/O processor
could alter the main memory areas related to another processor, consequently wrongly
modifying such processor’s execution. In the same way, a process could alter resources
related to another process, consequently wrongly modifying the process execution. This
study was based on Buzen and Gagliardi’s study (Buzen and Gagliardi, 1973).

The solution to these problems was to create a Dual State Architecture (see Figure 1).
This consists in dividing the software in two parts:

• privileged/system software: encloses a small part of code that runs critical operations

• non-privileged/user software: is composed by the rest of the code in which processes
are not permitted to interfere with each other

As such, the privileged code would interact directly with the basic machine interface and
would build the extended machines as non-privileged code, where the user would program.

Figure 1: Dual State’s Architecture.
Image taken from (Buzen and Gagliardi, 1973)

4

5

Nevertheless, this solution did not solve everything. Since the extended machines are
non-privileged code, programs written for one cannot be ran in another, creating practical
difficulties for the users.

On top of that, given that only the privileged software can access and control the hardware
functionalities, it creates a few drawbacks regarding its use. Considering that, with this
architecture, it is impossible to have one than more version of the privileged part, only one
programmer can access it at time, which significantly slows the development process.

In addition, tests and diagnosis need to be carried out with hardware access. This causes
issues with the usual functionalities of the privileged code since both cannot run at the same
time.

Since most issues come from only having one privileged software nucleus, the key solution
would be to create more. If the Extended Machine Interfaces could be replaced by copies of
the Basic Machine Interface, each could run its own privileged nucleus. Accordingly, the
conclusion was that having multiple basic machine interfaces would play a pivotal role in
fixing the referred problems.

In actuality, when a basic machine interface is not supported directly on a Bare Machine,
it is called a Virtual Machine.

Figure 2: Virtual Machine’s Architecture - Type I.
Image taken from (Buzen and Gagliardi, 1973)

The basic machine interfaces supported by the Virtual Machine Monitor (VMM) and
by the Bare Machine are identical, therefore the same privileged software can run on both,
performing with no knowledge on where it is running. In this manner, a Virtual Machine is
fundamentally equivalent to a real machine.

6

Nonetheless, they are not the same. The most impactful difference rests in performance
time. The Virtual Machine will always take longer due to VMM overhead delays and time
access to a busy engaged single processor. In addition, Virtual Machines sometimes lack
minor functional capabilities like being able to run self modifying programs.

Efficiently, for most of the time the Virtual Machine Monitor allows the programs to run
directly on the Bare Machine, only stepping in to secure the integrity of the system, trapping
and executing specific instructions.

The architecture of the Virtual Machine Type I (see Figure 2) was not the only Virtual
Machines resolution regarding the problems described. The basic machine interface sup-
ported by the Bare Machine does not need to be similar to the one supported by the Virtual
Machine Monitor. This is called an Emulator and gives rise to a Virtual Machine Type II
(see Figure 3). It is possible to create VMMs that also run on Extended Machines.

Figure 3: Virtual Machine’s Architecture - Type II.
Image taken from (Buzen and Gagliardi, 1973)

This type of Virtual Machine comes with a few advantages. Virtual Machines Type I deal
with problems of recursion due to the use of similar interfaces. In opposition, Emulators
charts its basic machine interface onto the extended machine interface, not facing the same
problem. Some other issues the Emulators evade are the scheduling and allocation problems
that come with operating multiple independents copies of the basic machine interface.

However, the Emulators do tackle more complex I/O problems since the emulated system
and its extended machine are running on different I/O devices and channel architectures.

2.1. Stack vs Register Virtual Machines 7

2.1 stack vs register virtual machines

Within the Virtual Machine, the current technologies are constructed by one of the two
prevalent architectures up-to-date. Effectively, present-day Virtual Machines are either
register based or stack based.

A Stack Virtual Machine uses a stack data structure as memory. It works by pushing and
popping values from the top of the stack. To execute these movements, the machine relies
on the stack pointer (SP), which points to the top of the stack at all times. Any instruction
that requires operand values to be performed pops them from the top of the working stack.
Then the operation is executed outside of the stack and its result is pushed back to the stack
(Sinnathamby, 2012).

Example: If one wanted to add two values and store the result, there are several steps that
need to be taken (see Figure 4):

1. PUSH V1 - Puts value 1 on top of the stack

2. PUSH V2 - Puts value 2 on top of the stack

3. Add the values and store the result:

a) POP - Takes value from the top of the stack

b) POP - Takes value from the top of the stack

c) ADD - Adds the values

d) PUSH R - Puts result on top of the stack

Figure 4: Stack Example Illustration.
Image inspired by Sinnathamby (2012)

2.1. Stack vs Register Virtual Machines 8

A Register Virtual Machine stores its data in registers of the CPU. The instructions must
indicate the registers used to store the operands required in each case. It works faster
than a stack based virtual machine within the instruction dispatch loop in the sense that
it avoids the overhead of all the popping and pushing that would be otherwise necessary
Sinnathamby (2012). However that more efficient approach requires from the compiler an
extra task that is complex: the registers management.

Example: If one wanted to add two values and store the result, there are several steps that
need to be taken (see Figure 5):

1. PUT V1 R1 - Puts value 1 on register 1

2. PUT V2 R2 - Puts value 2 on register 2

3. ADD R1 R2 RX - Adds the values from R1 and R2 and puts the result in register RX

Figure 5: Register Example Illustration.
Image inspired by Sinnathamby (2012)

Which type of Virtual Machine is better seems to be a debatable subject. Interestingly,
there is a research paper where the authors rewrite the Java Virtual Machine as a register
based Virtual Machine Shi et al. (2008) and accomplish a superior performance.

However, Stack Virtual Machines are more attractive as a Learning Resource considering
that the operands location is implicit in the stack pointer, unlike register based machines
where it needs to be specified Davis et al. (2003). Consequently, stack based machines also
tend to run a simpler and easier to comprehend instruction set, a valuable feature in terms
of execution and application Kexugit (2011), though it must be noted that this feature often
results in more extensive programs.

Although Register Virtual Machines seem to be able to attain a higher performance, this
does not seem to be easily achievable. Their more complex and extended instructions require
a broader instruction set, raising the interpretation difficulty. For a further discussion about
how to deal with register based instructions, see the Dragon book Aho et al. (1986).

2.2. Virtualization 9

2.2 virtualization

Effectively, Virtual Machines are the embodiment of virtualization. Virtualization is when
a simulated computing environment is created instead of a physical version.

This technology brings tremendous progress and practicability to the everyday life of
programmers. Whereas in previous times, one would have multiple physical machines
for different requirements and needs, in these days, one can implement all those distinct
machines with different features in a single computer.

There are five main types of virtualization (Baca, 2021):

• Server virtualization: Multiple virtual versions of computers and operating systems
(VMs) are run in a single physical server. Each of the versions is managed by a Virtual
Machine Monitor, which allocates and distributes resources, improving their usage
efficiency.

• Application virtualization: An application is implemented on a single computer
system and its access is available to other people, within specified permissions. As
such, the users can operate remote software not installed on their machine.

• Desktop virtualization: The application and operative system are installed on a virtual
machine that runs on a remote server. This setup allows people to work on a different
system than their machine’s, possibly sharing it with other people, making it easier to
share information.

• Storage virtualization: Multiple physical storages are combined into a virtual storage
system, functioning as if they were one single storage device. Because transporting
and backing up data is significantly easier with this sort of virtualization, it is widely
utilized for disaster recovery.

• Network virtualization: Multiple sub-networks are created on the same physical
network. Each of these individual channels can be assigned to users, servers or devices.
Since it is a simulated network, it is perfect for testing new programs and apps before
their release to the public.

Virtualization seems to be highly advantageous not only for programmers and the IT
world but also for businesses and companies. As such, the focus on Virtual Machines seems
to have passed from compilers to cloud computing and such types of online virtualization.

2.3. Current Virtual Machines 10

2.3 current virtual machines

Over the years, besides the more straightforward Virtual Machines based on the initially
explored matters, there are some VMs that were born from specific needs and problems.
Kohlbrenner et al. discusses a few of these Virtual Machines.

In this section, some of those Virtual Machines and models will also be looked into
alongside a few others.

2.3.1 IBM Virtual Machine

The IBM model solved the need for a single computer system that could simulate multiple
computers with different operating systems. (Kohlbrenner et al.)

The IBM model works by creating multiple copies of the original machine. It divides its
memory and resources and assigns them to each duplicate. Every single one of these copies
is a Virtual Machine, so it functions isolated from original machine and from the others.

Each VM behaves exactly like the original machine but with lesser memory capacity. Every
instruction programmed is directed to an equivalent machine instruction and executed as
such, so the user is allowed to make whichever operations wanted just as he would in the
original machine. This, however, may cause security issues. If the user has permission
for every possible operation, it means they are allowed to change others or the original
machine’s state or even change some important secured machine functions.

To maintain systems integrity, sensitive instructions that could cause these problems are
segregated and dealt with in a different separate manner. Instead of executing these directly,
the VM simulates its functioning. This is done in a way that the user does not realize they
have written a problematic instruction that was executed differently.

IBM Cloud allows the user to create their own Virtual Machine in which they may choose
its features, such as memory, local storage and GPU (IBM Cloud Education, 2019). These
Virtual Machines are created and work based on the previously described model.

Cloud computing makes computer resources available for use through the internet. Private
Cloud is a cloud computing environment destined to be used by a single entity. As such,
its hardware and software cannot be accessed others. IBM Cloud Private runs on public
clouds, one of which is the Microsoft Azure.

Azure is a cloud computing platform that provides access, through an online portal, to
Microsoft’s services and resources, such as storing and transforming data (Simplilearn, 2021).
Its simplified architecture (see Figure 6) is based on what was previously described, having
the storage divided through its VMs and a Hypervisor that oversees the instructions.

2.3. Current Virtual Machines 11

Figure 6: Azure Architecture.
Image modified from (Virdee, 2015).

2.3.2 Java Virtual Machine

The Java Virtual Machine addresses the need for an application that will run on multiple
operating systems. (Kohlbrenner et al.)

The Java language was built on a Virtual Machine. The Java Virtual Machine (JVM)
runs on top of the computer’s Operative System (OS). The JVM has its own compiler and
interpreter that works for each OS (see Figure 7). It is implemented this way so that the
programmer communicates directly with it, writing code with no need to take notice of its
OS particularities. This allows for portability since it means the same exact code can be
executed in multiple platforms. The Java Virtual Machine is also quite small which facilitates
its use and application. However, JVM has not reached full portability since it is still not
fully adapted to all possible Operative Systems.

Figure 7: JVM - Multiple Interpreters.
Image taken from (TechVidvan, 2021).

2.3. Current Virtual Machines 12

Java programs start in a java file written by the programmer. This file goes through a
compiler which generates a class file by turning the java code into java bytecodes. By this
point the file is ready to be interpreted and executed by the Java Virtual Machine. All
libraries needed are also imported to the JVM to help executing the program. These steps
are depicted in Figure 8.

Figure 8: Java - Architecture.
Image taken from (TechVidvan, 2021).

The Java system is composed of three environments, as illustrated on Figure 9.

• JVM - Java Virtual Machine: to execute code

• JDK - Java Development Kit: to run a program

• JRE - Java Runtime Environment: to develop a program

Figure 9: Java Platform Components.
Image taken from (TechVidvan, 2021)

.

2.3. Current Virtual Machines 13

JVM Architecture

The Java Virtual Machine is divided in four main constituents (see Figure 10). Each
component is broken down into several others sectors that will play a substantial part in the
machine’s functioning.

Figure 10: JVM Architecture.
Image taken from (Nayak, 2021).

Class Loader

When the class files are sent to the JVM, these are received by the Class Loader. This
component is responsible for loading and processing them. They undergo three stages.

1. Loading

In the loading stage, the bytecode is withdrawn from the class files and saved in the
Method Area. With this data, JVM generates an Class type object and saves it in the Heap
Area.

2. Linking

In the linking stage, a verification is ran in which the system checks if the class files are
valid and correct. If all goes well, it allocates variables and initializes memory default values.
At last, the machine replaces symbolic references with direct references.

3. Initialization

In the initialization stage, the static variables are assigned their defined values.

2.3. Current Virtual Machines 14

Runtime Data Area

This component is the memory area of the Virtual Machine. It holds several sections for
the storage of different types of data.

Figure 11: JVM Runtime Data Area Architecture.
Image taken from (Nayak, 2021).

The Runtime Data Area is divided in several other areas (see Figure 11):

1. Method Area: It stores the class data and the code for methods and constructors.

2. Heap Area: It is the runtime area that stores objects and their variables.

3. Stack Area: It stores the local variables of a program. Whenever a new thread is
created, another runtime stack is generated.

4. Program Counter Register: It stores the current instruction’s address. Each thread has
its own register.

5. Native Method Stack: It contains the native methods, not written in Java, required in
the application.

Execution Engine

The Execution Engine is the section that actually runs the program. It accesses the data
from the memory and executes the instructions.

1. Interpreter

The Interpreter reads the bytecode and executes the instructions. This is done by going
through instructions one by one, which does not make it a speedy process. Repeated called
methods are treated the same as new methods, which is not very efficient.

2.3. Current Virtual Machines 15

2. Just-In-Time Compiler

The JIT Compiler saves the already called methods and their corresponding machine
instructions in cache. While compiling the code, if there is code with similar functionality, it
gets its machine code from cache. In this manner, the interpreter’s performance is balanced
out, improving the system’s performance.

3. Garbage Collector

The Garbage Collector removes unreferenced objects from the heap area in order to regain
unused memory.

Native Method interface

Native Method interface is a framework that promotes communication between different
languages. It also allows Java code to can call libraries and native applications.

2.3.3 Google Colab Virtual Machine

Google Colab is a very popular Virtual Machine within the Machine Learning and Data
Analysis areas. It is designed for programmers who need more GPU power for their work.
Effectively, Google Colab allows the usage of cloud GPU for free, providing a much better
performance than the average user’s computer.

2.3.4 Parrot Virtual Machine

Parrot is a register-based Virtual Machine that efficiently runs dynamically typed lan-
guages. These are languages in which the interpreter assigns a type to variables at run-time.
Parrot was created to implement Perl6’s language. Nonetheless, it was designed to be able
to execute various other languages, like Python or Ruby.

There are four components to Parrot’s architecture (see Figure 12): Parser, Compiler,
Optimizer and Interpreter. Based on the source code, the Parser creates an Abstract Syntax
Tree (AST), which is sent to the Compiler. It is then turned into bytecode and it is either
sent to the Optimizer or directly to the Interpreter. The Optimizer takes the bytecode and
the abstract syntax tree, if necessary, and attempts to achieve the best possible optimized
bytecode. Finally, the Interpreter runs the code (Fagerholm, 2005).

2.3. Current Virtual Machines 16

Figure 12: Parrot’s System Architecture.
Image taken from (Fagerholm, 2005).

Traditionally, languages are either interpreted from their source code, compiled directly to
machine code or compiled to bytecode and then interpreted. Parrot can accept a program’s
source code and parse and compile it to bytecode at run-time. As a result, execution will
start with compiling the code to bytecode and then proceed to execute it.

Rather than executing the code, it is possible to replace Parrot’s interpreter with one
that saves the bytecode into a file. As a result, this allows for the saved bytecode to be
executed independently without having to go through parsing, compilation and optimization
processes.

Parrot’s interpreter also includes the option to transform Parrot’s bytecode into another
language’s bytecode. For an extended explanation of all Parrot’s features see (Fagerholm,
2005).

2.3.5 Python Virtual Machine

Python is an interpreted high-level object-oriented programming language. Python
programs are cross-platform, so they be run on every platform without having to be
rewritten (K, 2021). Python’s interpreter transforms source code into machine code. There
are a few interpreters implementations for python:

• CPython: a Python interpreter written in C language

• PyPy: a Python interpreter with Just-in-time (JIT) compilation

• Jython: an implementation designed to run on the Java Platform

• IronPython: an implementation targeting the .NET Framework

CPython is the Python language’s default and the most extensively used implementation,
so the next information will focus on its functioning.

2.3. Current Virtual Machines 17

The execution of a Python program with CPython is divided into two or three main stages
(Ike-Nwosu), as depicted in Figure 13.

Figure 13: Python’s System Architecture.
Image taken from (K, 2021).

1. Initialization: This stage is only significant when a program is ran non-interactively
through the command prompt. It handles the preparation of data structures, memory
allocation and other settings required by the Python process.

2. Compilation: This stage is responsible for the several steps entailed in the process of
turning source code to bytecode. These steps can be observed in Figure 14.

Figure 14: CPython’s Compiler.
Image taken from (Prantl, 2020).

a) From Source To Parse Tree

The Python parser is an LL(1) parser based on the Dragon book’s (Aho et al., 1986)
description of such parsers. The parser tokenizes the source code and arranges the tokens as
nodes in a Parse Tree.

2.3. Current Virtual Machines 18

b) From Parse Tree to Abstract Syntax Tree

The system goes through the Parse Tree nodes and transforms them into corresponding
Abstract Syntax Tree (AST) nodes. The unnecessary lexical information within the Parse
Tree is left out during its interpretation as syntactical elements.

c) From AST to Control Graph

The AST is then converted to basic blocks of Python bytecode instructions, which are
emitted when each AST node is visited. Basic blocks are blocks of code that have a single
entry but can have multiple exits. These blocks represent the Control Flow Graph (CFG),
which indicates the code’s possible execution paths.

d) From Control Graph to Code Object

Finally, the Control Flow Graph is flattened and its output, along with some data needed
for execution, is used to generate Code Objects.

3. Interpretation: This stage executes the Code Object’s bytecode in the virtual machine.

The Python Virtual Machine is a stack-based virtual machine that converts bytecode
instructions to machine code. It uses three types of stacks (Bennett, 2018):

• Call Stack: This is the main structure of the Virtual Machine. The bottom of the stack
is the entry point of the program. The stack contains frames, one for every presently
active function call. When a function call is made, a frame is pushed to the stack and
when the function returns, the frame is pooped off. For each frame, an Evaluation Stack
and a Block Stack are created.

• Evaluation Stack: The execution of a function is made by interacting with this stack.
Data is pushed, altered and popped of this stack accordingly.

• Block Stack: This stack is used to oversee control structures. It keeps track of which
blocks (loops, try/except, continue, break, ...) are active at any given moment.

2.3.6 MIPS Virtual Machine

MIPS is a register-based virtual machine based on a Reduced Instruction Set Computer
(RISC) architecture (see Figure 15). It was developed to increase performance with deep
pipelines. It was largely used for embedded systems and video games consoles (Vaz, 2017).
It is also used for educational purposes even though it is quite complex and difficult to learn.

2.4. Summary 19

The MIPS default emulator is the SPIM simulator, but there are several other intricate
simulators designed to run this elaborate machine.

Figure 15: MIPS’s Architecture.
Image taken from (Vaz, 2017).

2.3.7 WebVm

In University of Beira Interior, Nuno Gaspar and Simão Melo de Sousa (Gaspar and
de Sousa, 2009) had stumbled upon the same problem, the need of a web-based tool to easily
teach about compilers. As such, they created a web-based host platform for pedagogical
virtual machines.

This web application in which the user could choose one of the implemented Virtual
Machines, upload the code he wishes to run and either visualize the result or a step by
step visualization of the machine’s state evolution. Moreover, they provide the option to
increment the number of virtual machines available, making the system more versatile
although more complex.

In conclusion, the concept is the same: to facilitate the learning process by providing a
step by step visualization of the machine’s state. .

2.4 summary

Throughout this chapter, it was attempted to distinguish the various concepts of virtual
machines, while also giving a bit of insight into the appearance and upsurge of virtual
machines. Additionally, some examples of virtual machines were showcased and their
features studied. Table 1 demonstrates some of their differences.

2.4. Summary 20

Virtual Machines
IBM

Cloud
Java

Google
Colab

Parrot Python MIPS WebVM

stack-based x x x x
register-based x x x

online x x x
cross-platform x x x x

simple x x

Table 1: Virtual Machines - Feature Comparison.

The goal of this Master’s Project is to create a Virtual Machine for educational purposes,
to be studied and hopefully mastered during only one semester. To that end, it must have a
very simple architecture and instruction set in order to allow for easy and fast learning. In
addiction, it must preferably be in an online format to facilitate its accessibility.

Taking into account these intentions, none of these virtual machines meets the intended
requirements. There was a previous attempt to use the Java Virtual Machine but it revealed
itself too complex for such a short amount of time. Since WebVM was created with the same
educational goal, it presents itself as a high contender to satisfy the selected requirements.
However, this project aims for a more appealing solution in order to captivate students
interest.

As such, this project is presented as an essential solution for this educational goal. EWVM
focuses only on a low-level language and tries to maximize user experience in a simpler non
intimidating way

3

V M , A N O V E RV I E W

As stated earlier in this document, there is a Virtual Machine used in the Language
Processing Course at Minho’s University to teach students about compilers and code
generation. This VM, a Stack-Machine implemented in C, was developed by Jean-Christophe
Filliatre at LRI/Universit de Paris/Saclay and it runs programs in VM-Assembly language.

In addition to the Virtual Machine not being easily accessible, there are also some difficul-
ties in executing it to its full capacity and features, notably the fact that not all computers
are compatible with all needed software.

3.1 architecture

VM is composed of several structures that allow it to function correctly and in an organized
manner, storing information in a systematically arranged configuration. As one can see in
Figure 16, there are three main memory blocks, two of them being stacks, and two additional
heaps. The two essential constituents that are needed to run the most basic programs are
the Operand Stack and the Code Zone

The Code Zone is, as implied by the name, the memory block that holds the instructions
uploaded by the programmer.

The Operand Stack is a pile that contains numbers (integers or reals) and addresses. It
is where the instructions operate, therefore it is used to store all the operands needed o be
processed by the program operators.

In order to be able to manipulate more complex data than numbers, there are two heaps,
Strings Heap and Structs Heap, to which the addresses in the Operand Stack may point
to. VM is also equipped with four registers, aimed at the management of the memory
components and responsible for the proper functioning of the machine.

• Program Counter (PC): points to the current instruction in the code zone, i.e., the next
to be fetched and executed.

• Stack Pointer (SP): points to the top of the operand stack, i.e., the first free cell.

21

3.2. Functioning Principle 22

• Frame Pointer (FP): points to the local variables base in the operand stack.

• Global Variables Pointer (GP): holds the global variables base address.

And finally, a more complex program with functions and local variables, justifies the
need for the other component of this machine, the Call Stack. This pile contains pairs of
pointers (i, j) that save present execution context (PC and FP) before a JUMP is executed to
run the code of the called function. As such, every time a RETURN occurs, meaning that
the function code has finished executing, the machine can recover the previous context and
resume the normal execution. In the cell, the Pointer i holds the PC address and the Pointer
f holds the FP address.

Figure 16: Current VM’s Architecture.

3.2 functioning principle

The Virtual Machine stores in its Code Zone memory code the sequence of instructions
that compose the program (machine code) provided by the programmer. Consequently, it
works by accessing that block of memory and going through it. Looking at each memory
cell pointed by the PC register, the VM checks for an operator, iterates through its operands,
if there are any, and executes the instruction. This process repeats until the end of the
instruction sequence that might be identified by a specific operation, STOP, completing the
program execution.

3.3. Instructions 23

3.3 instructions

Each machine instruction, which may be preceded by a tag (label) followed by a colon, is a
a machine operation that may accept up to two parameters. The arguments can be integers,
real numbers, chains of characters delimited by quotation marks (strings) or symbolic tags
(labels) assigned to a code zone.

3.3.1 Instruction Set

This subsection lists all the instructions recognized and supported by VM grouped by
their functionality.

The Instruction Set covers the following categories:

• Basic Operations: simple operations involving the various data types

• Data Manipulation: operations that alter the stack

• Input-Output: operations that engage the user

• Control Operations: operations that address jumps in the code’s order

• Start/Finish: operations regarding the program’s execution state

Basic Operations - Integers (all the operands handled must be integers):

ADD: takes n and m from the pile and stacks the result m + n

SUB: takes n and m from the pile and stacks the result m - n

MUL: takes n and m from the pile and stacks the result m x n

DIV: takes n and m from the pile and stacks the result m / n

MOD: takes n and m from the pile and stacks the result m mod n

NOT: takes n from the pile and stacks the result n = 0

INF: takes n and m from the pile and stacks the result m < n

INFEQ: takes n and m from the pile and stacks the result m ≤ n

SUP: takes n and m from the pile and stacks the result m > n

SUPEQ: takes n and m from the pile and stacks the result m ≥ n

3.3. Instructions 24

Basic Operations - Floats (all the operands handled must be real numbers):

FADD: takes n and m from the pile and stacks the result m + n

FSUB: takes n and m from the pile and stacks the result m - n

FMUL: takes n and m from the pile and stacks the result m x n

FDIV: takes n and m from the pile and stacks the result m / n

FCOS: takes n from the pile and stacks the result cos(n)

FSIN: takes n from the pile and stacks the result sin(n)

FINF: takes n and m from the pile and stacks the result m < n

FINFEQ: takes n and m from the pile and stacks the result m ≤ n

FSUP: takes n and m from the pile and stacks the result m > n

FSUPEQ: takes n and m from the pile and stacks the result m ≥ n

Basic Operations - Addresses:

PADD: takes an Integer n and an address a from the pile and stacks

the address a + n

Basic Operations - Strings (all the operands handled must be String Heap addresses):

CONCAT: takes n and m, from the pile and stacks the concatenated strings

(string ns + string ms) address

Basic Operations - Structured Blocks Heap:

ALLOC - integer n: allocates a structured block, sized n, and stacks its

address

ALLOCN: takes an integer n from the pile and allocates a structured block,

sized n, and stacks its address

FREE: takes an address a from the pile and frees its allocated structured block

Basic Operations - Equality (the operands handled should have the same type):

EQUAL: takes n and m from the pile and stacks the result n = m

3.3. Instructions 25

Basic Operations - Conversion:

ATOI: takes a String Heap address from the pile and stacks its string's

conversion to an integer

(it fails if the string doesn't represent an integer)

ATOF: takes a String Heap address from the pile and stacks its string's

conversion to a real number

(it fails if the string doesn't represent a real number)

ITOF: takes an integer from the pile and stacks its conversion to a real

number

FTOI: takes a real number from the pile and stacks its conversion to a whole

number - by removing its decimals

STRI: takes an integer from the pile, converts it to a string and stacks

its address

STRF: takes a real number from the pile, converts it to a string and stacks

its address

Data Manipulation - Move (load) to the pile:

PUSHI - integer n: stacks n

PUSHN - integer n: stacks n times the integer 0

PUSHF - real number n: stacks n

PUSHS - string n: archives s in the String Heap and stacks its address

PUSHG - integer n: stacks the value found in gp[n]

PUSHL - integer n: stacks the value found in fp[n]

PUSHSP: stacks the value of the register sp

PUSHFP: stacks the value of the register fp

PUSHGP: stacks the value of the register gp

LOAD - integer n: takes an address a from the pile and stacks the

value found in a[n] in the pile or in the heap (depending on a)

LOADN: takes an integer n and an address a from the pile and stacks

the value found in a[n] in the pile or in the heap (depending on a)

DUP - integer n: duplicates and stacks the n values of the top of the pile

DUPN: takes the integer n from the pile and duplicates and stacks the n

values of the top of the pile

3.3. Instructions 26

Data Manipulation - Take from the pile:

POP - integer n: takes n values from the pile

POPN: takes the integer n from the pile and takes n values m from the pile

Data Manipulation - Archive:

STOREL - integer n: takes a value from the pile and stores it in fp[n]

STOREG - integer n: takes a value from the pile and stores it in gp[n]

STORE - integer n: takes a value v and an address a and stores v in a[n] in

the pile or the heap (depending on a)

STOREN: takes a value v, an integer n and an address a and stores v in a[n]

in the pile or the heap (depending on a)

Data Manipulation - Miscellaneous:

CHECK - integers n and p: checks that at the top of the pile there's an integer

i such that n ≤ i ≤ p (it throws an error i f this is f alse)
SWAP: takes the values m and n from the pile and stacks m followed by n

Input-Output:

WRITEI: takes an integer from the pile and prints its value

WRITEF: takes a real number from the pile and prints its value

WRITES: takes a String Heap address from the pile and prints its string

READ: reads a string from the keyboard, stores it in the String Heap and stacks

its address

Control Operations - register pc:

PUSHA - label: stacks label's code address

JUMP - label: assigns the label's code address to the register pc

JZ - label: takes a value v from the pile and if:

• v = 0, assigns the label's code address to the register pc

• v ̸= 0, increments register pc by 1

3.4. Summary 27

Control Operations - procedures:

CALL: takes an label's address a from the pile, saves pc and fp in the Call

Stack and assigns a to pc and the current sp's value to fp.

RETURN: assigns the current fp's value to sp, reinstates the values fp

and pc from the Call Stack and increments pc by 1

Start and finish:

START: assigns sp's value to fp

NOP: does not do anything

ERR - string x: throws an error with message x

STOP: stops program execution

3.4 summary

As the goal is to replicate and improve upon this machine, it was important to make a deep
analysis of its architecture and functioning. This study allows for an accurate understanding
of the VM’s functionalities and instructions, serving as a reliable basis for the development
of the new tool.

4

E W V M - P R O P O S A L

The goal for creating this Educational Web Virtual Machine, EWVM, is to replicate the
current VM Virtual Machine behaviour with a superior graphical user interface along
with easy accessibility. To this end, the new Virtual Machine will be developed as a Web
Application and will embody the same architecture and behaviour of the current one. As
such, the new VM will contain the same memory components, Code Zone, Call Stack,
Operand Stack, String and Structured Blocks Heaps, and its four registers, Program
Counter (PC), Stack Pointer (SP), Frame Pointer (FP) and Global Variables Pointer (GP).
Evidently, the instruction set and instructions format will remain the same, apart from some
additional features implemented to facilitate some basic operations that are missing in the
present instruction set, such as the boolean operators AND and OR.

The Virtual Machine will be embedded in the back-end server of the Web Application, as
depicted in Figure 17. The interface, in front-end, will take the programmer’s code, send it
to the server and wait for the results. In the server, the Program Code will pass through
an Assembler which will translate it into Machine Code and send it into the Run Engine,
where the Virtual Machine will be. The VM will then execute the code as explained and
send back the result.

Figure 17: New VM’s Architecture.

28

29

The interface will be composed of three main areas, aiming to offer more powerful features
while remaining user friendly (see its mock-up in Figure 18). Each sector will have various
features implemented for user interaction, as described below.

• Code Sector: contains a text area where the user can write the program and the
following buttons and features:

– Clickable Instructions: by clicking on a code instruction (operator mnemonic), a
text box appears with the operation description.

– Upload File: reads the selected file and uploads its content (an Assembly pro-
gram), displaying it in the text area of this sector;

– Save to File: downloads into an external file the code (Assembly program) in the
text area;

– Run: sends the assembly code in the text area to the Back-End to be assemblied
and executed;

• Animation Sector: holds a container in which the user can visualize the virtual
machine’s internal state in each step of the code execution. It also contains the
following features:

– Numbering: each step displayed is numbered and sorted by execution order

– Navigate: by clicking on arrows, the user can move forward or backwards through
the steps; it is also possible to move directly to the first or last step

• Interaction Sector: composed of two windows, one where the machine writes its
outputs and the other from where it reads the user’s inputs

Figure 18: Website’s Mockup.

5

E W V M - T H E A S S E M B L E R

The Web Application is written in JavaScript. It was developed in Node.js1, a back-end
event-driven JavaScript runtime environment that executes JavaScript code outside the web
browser. It is designed to build scalable network applications and supports the Express2

framework, which offers a set of features for web applications.
Accordingly, since the program is written in JavaScript, the Assembler has been developed

in peggy, a JavaScript API. It is a parser generator that integrates both lexical and syntactic
analysis and is based on a context free grammar formalism. The input grammar is written
in Extended BNF (Backus Naur Form). Each grammar rule can be associated to a semantic
action that is a fragment of javascript code written between curly brackets. Peggy processes
the input grammar and generates a fast and powerful compiler which receives an input text
and returns either the results or a thorough and clear error report.

The grammar written to generate the Assembler, presented in Listing 1, was written using
Peggy online version3. It was created to analyse the assembly code written by the user and
check if it is lexically and syntactically correct according to the Instruction Set rules. The
grammar also semantically analyses the input and either detects an error or translates the
received instructions to Machine Code.

1 Code = Line* _

2

3 Line = (_ Instruction) ([\t\r]* Comment)*

4 / Comment

5

6 Instruction = Label ':'

7 / Inst_Atom

8 / Inst_Int _ Integer

9 / "pushf" _ Float

10 / "pushs" _ String

1 https://nodejs.org/en/
2 https://expressjs.com/
3 https://peggyjs.org/

30

31

11 / "err" _ String

12 / "check" _ (Integer _ "," _ Integer)

13 / "jump" _ Label

14 / "jz" _ Label

15 / "pusha" _ Label

16

17 Inst_Atom = "stop" / "start" / "add" / "sub" / "mul" / "div" / "mod" / "not" / "infeq"

18 / "inf" / "supeq" / "sup" / "fadd" / "fsub" / "fmul" / "fdiv" / "fcos" / "fsin"

19 / "finfeq" / "finf" / "fsupeq" / "fsup" / "concat" / "equal" / "atoi" / "atof"

20 / "itof" / "ftoi" / "stri" / "strf" / "pushsp" / "pushfp" / "pushgp" / "loadn"

21 / "storen" / "swap" / "writei" / "writef" / "writes" / "read" / "call"

22 / "return" / "allocn" / "free" / "dupn" / "popn" / "padd" / "nop"

23

24 Inst_Int = "pushi" / "pushn" / "pushg" / "pushl" / "load" / "dup" / "pop"

25 / "storel" / "storeg" / "store" / "alloc"

26

27 Comment = "//" [^\n]*

28

29 Label "label" = [a-zA-Z0-9]+

30

31 String = '"' Content* '"'

32

33 Content = "\\n" / [^"]

34

35 Integer "integer" = ("+"/"-")? _ [0-9]+

36

37 Float = ("+"/"-")? _ Integer(.Integer)?

38

39
_ "whitespace" = Space*

40

41 Space = [\n] / [\t\r]

Listing 1: Grammar

To transform the given Program Code into Machine Code, the generated compiler parses
the Program Code and replaces the instruction mnemonics with their respective internal
codes while managing the labels.

The Machine Code is saved in the form of an array and in each index an Instruction Code
is kept.

Machine Code:

[Instruction Code 1, Instruction Code 2, ...]

32

Each Instruction Code comprises the instruction internal code and its operands. To enable
future connection between the code area and the animation, the line number in which the
instruction was written on is also saved.

Instruction Code:

[line number, instruction internal code, operands]

At the end, the Assembler replaces the label addresses in the array with their respective
array index.

As stated, a Machine Code is assigned to each instruction. The referred assignments are
made according to the following table:

Machine Code - Instruction

0 - stop 15 - fdiv 30 - pushsp 45 - popn 60 - err

1 - start 16 - fcos 31 - pushfp 46 - padd 61 - check

2 - add 17 - fsin 32 - pushgp 47 - pushi 62 - jump

3 - sub 18 - finf 33 - loadn 48 - pushn 63 - jz

4 - mul 19 - finfeq 34 - storen 49 - pushg 64 - pusha

5 - div 20 - fsup 35 - swap 50 - pushl 65 - nop

6 - mod 21 - fsupeq 36 - writei 51 - load

7 - not 22 - concat 37 - writef 52 - dup

8 - inf 23 - equal 38 - writes 53 - pop

9 - infeq 24 - atoi 39 - read 54 - storel

10 - sup 25 - atof 40 - call 55 - storeg

11 - supeq 26 - itof 41 - return 56 - store

12 - fadd 27 - ftoi 42 - allocn 57 - alloc

13 - fsub 28 - stri 43 - free 58 - pushf

14 - fmul 29 - strf 44 - dupn 59 - pushs

This simple and effective Assembly Grammar, that defines the low-level programming
language used to program the VM, is used as input to a Compiler Generator to build
automatically the Assembler (see Figure 19). The Assembler reads the programmer’s code
to be executed by the Virtual Machine, provided through the Interface and translates it to be
executed by the Run Engine.

33

Figure 19: Assembler.

In Figure 20 it is displayed an example of the Web-based Compilers Generator system
Peggy, used to develop the VM Assembler.

Figure 20: Assembler development using Peggy Generator.

In this tool, the Assembler generated by peggy is called each time the user clicks in the
Run button, receiving as an input the text introduced by the programmer at the Code Sector
and sending its result, the machine code generated, to the Virtual Machine.

6

E W V M - T H E V I RT UA L M A C H I N E

The Virtual Machine iterates through the Machine Code generated by the Assembler. For
each instruction the virtual machine runs the corresponding procedure, accessing memory
cells (to read or write data), executing arithmetic or logic operations and altering the memory
blocks according to the computed results.

6.1 memory blocks

code stack represents the memory sector of a real machine where the program is
uploaded and is implemented through an array where the Machine Code is stored.

operand stack represents the memory sector or registers bank of a real machine. It
is used to store temporary data along the computation of an expression or the execution
of another operation that requires intermediate data storage. It is implemented through
an array of either numeric values or references to other memory blocks. Each reference is
stored in the following way:

Code Stack Reference: code#index

example: code#0

Operand Stack Reference: stack#index

example: stack#3

Struct Heap Reference: struct#heap_index#struct_index

example: struct#1#0

String Heap Reference: string#index

example: string#0

34

6.2. Flow Chart Example 35

call stack corresponds in a real machine to a bank of registers for temporary storage
of control data to return from subprograms. It is implemented through an array where
each element carries two numeric values. The first one corresponds to an index of the Code
Stack that stores the previous value of PC (program counter) register to remember the next
instruction to be executed after returning from a function call. The second one corresponds
to an index of the Operand Stack that stores the previous value of FP (frame pointer) register
to remember the local memory base-address to recover local data memory after returning
from a function call.

heaps

• The String Heap is an array that stores sequentially all the Strings handled by the
program along its execution (both literal strings inserted in the source program and
strings read during the program execution).

• The Struct Heap is an array of Arrays. Each array represents a block of allocated
memory created by the program.

6.2 flow chart example

This section is going to demonstrate the Virtual Machine’s behaviour when running a pro-
gram. It will use a simple program as an example and explain the steps and transformations
it goes through until its execution is completed and the result is sent to back to the user.

The program chosen as the example combines the following instructions:

1. PUSHI 5: stacks 5

2. PUSHI 6: stacks 6

3. SWAP: takes the values 6 and 5 from the pile and stacks 6 followed by 5

The program written by the user is sent to the Server. In the server, it will pass through
the Assembler before going to the Virtual Machine. As previously explained, this step
translates the Program Code into Machine Code, a format ready to be processed by the
Virtual Machine.

The program is transformed as followed:

6.2. Flow Chart Example 36

1. PUSHI 5 −→ [1, 47, 5]

• line_number: 1

• instruction_internal_code: 47

• operands: 5

2. PUSHI 6 −→ [2, 47, 6]

• line_number: 2

• instruction_internal_code: 47

• operands: 6

3. SWAP −→ [3, 35]

• line_number: 3

• instruction_internal_code: 35

These Instruction Codes form the Machine Code which will be received by the Virtual
Machine:

Machine Code = [[1, 47, 5], [2, 47, 6], [3, 35]]

The execution of the code in the Virtual Machine runs the following algorithm:

foreach (line_number, instruction_internal_code, operands) in machine_code:

execute(instruction_internal_code, operands)

save_state(line_number)

The Virtual Machine iterates through the Machine Code instructions and executes them.
After every instruction execution, the machine’s state is saved. In the end, these states are
sent to GUI in order to present the user with the step-by-step machine state display.

State - array of all the machine states during the program's execution:

[Machine State 1, Machine State 2, ...]

Machine State - machine state after an executed instruction:

[line number, operand stack, call stack, string heap, struct heap]

The functioning and steps of this algorithm is illustrated in Figure 21.

6.2. Flow Chart Example 37

Figure 21: EWVM Flow Chart example

7

E W V M - T H E G R A P H I C A L U S E R I N T E R FA C E

Besides the features proposed in Section 4, other mechanisms were implemented in the
various sectors (windows) of the website (shown in Figure 22) in order to improve this
machine as an educational tool.

It is called machine state to the set of values stored in the data memory blocks (the two
stacks and the two heaps) together with the values contained in the four registers after the
execution of one specific instruction of the program stored in the code memory. Each sector
enables the user to choose a machine state he wants to visit. After the choice of a state in
one sector, the values displayed in the other sectors also change accordingly.

• Code Sector (the leftmost window in the screenshot of Figure 22):

– State Choice: after a complete run of the input program, the user can, by clicking
on an instruction line number, select the state subsequent to that instruction’s
execution; if the instruction has been executed more than once, additional clicking
should iterate through the respective states.

– Connection: the code sector highlights the instruction line number corresponding
to the displayed state

• Animation Sector (the central, main, window in the screenshot of Figure 22):

– State Choice: this sector contains a group of four navigation buttons that allow
the user to visualize the various machine states

– Connection: illustrates the selected machine state

• Interaction Sector (the bottom window, at the center, in the screenshot of Figure 22):

– State Choice: by clicking on the text visible on the output window, it is possible
to select the state in which that text was printed

– Connection: points out which text has already been printed (or is being printed)
according to the machine state

38

39

The developed GUI (Graphical User Interface) can be observed in Figure 22. Having all
the discussed features and connections, it achieves the desired educational version of the
virtual machine VM, EWVM.

Figure 22: A screenshot of EWVM interface

As planned, this GUI allows the users to analyse the state of the machine in each step of
the code execution. The user can observe the values of registers and memory blocks using
the information displayed in the Animation Sector, while the corresponding instruction is
highlighted in the Code Sector. Meanwhile, in the Interaction Sector, the printed text is
differentiated by colour.

These features enable the user to get a clear understanding of the actual effect of each
instruction on the components of the machine (this is the so-called operational semantics of
the input program).

In this manner, the platform works to decrease the learning curve, allowing students
to have a better understanding of the machine’s behaviour by maximizing the amount of
presented information.

As it is essential to the learning experience, a users-guide was added where instructions
are listed and explained. This Manual containing the code’s Documentation can be observed
in Figure 23.

40

Figure 23: A screenshot of the EWVM Users’ Manual

In order to give users a little more guidance and help, the website offers Program Examples
(see Figure 24) categorized in terms of topic and difficulty. These are easily accessed and
ran, providing the user the opportunity to explore these programs and learn from them.

Figure 24: EWVM - Examples

41

Each example’s code is kept in its own file saved in a specific folder. To keep record of the
examples, a JSON file was created containing a list of each example’s metadata, including
the filename of the example’s code. This JSON file is written according to the following
json-schema:

{

"$schema": "https://json-schema.org/draft/2022-06/schema",

"$id": "https://example.com/examples-schema.json",

"title": "Educational Code Examples",

"type": "object",

"required": ["examples"],

"properties": {

"examples": {

"items": {

"type": "object",

"required": ["title", "category", "file"],

"properties": {

"title": {

"description": "Unique identifier/title of an example",

"type": "string"

},

"category": {

"description": "Category of the example",

"type": "string"

},

"description": {

"description": "Description of the example",

"type": "string"

},

"difficulty": {

"description": "Difficulty of the product.",

"type": "integer"

},

"file": {

"description": "Filename of the example's code",

"type": "string"

} } } } } }

7.1. Demonstration 42

7.1 demonstration

This section aims to clarify how the sectors are connected by using a simple program.
This programs asks the user for two input numbers and outputs their sum. In Figure 25 the
program has been run and is waiting for input.

Figure 25: Demonstration - Program

In Figure 26 it can be seen what happens when the user clicks on the Go-to-last Button. In
this case, the Animation goes to the instruction that asks the user for input. In the Code
Sector the line number of its instruction is highlighted. In the Interaction Sector the output
that has already been printed is blackened.

Figure 26: Demonstration - Go-to-last Button connection

In Figure 27 it can be seen what happens when the user clicks on the Go-to-next Button.
The Animation moves to the next step and, as seen before, the line number is highlighted
and the output that has not been printed remains grey.

7.1. Demonstration 43

Figure 27: Demonstration - Go-to-next Button connection

In Figure 28 it can be seen what happens when the user clicks on a line number. The
number is highlighted, the Animation Sector displays the corresponding step and, in this
case, the Output highlights the string that the chosen instruction is printing. As demonstrated
in the figure, if the program passes through the line number instruction more than once,
clicking on it again will iterate through the states.

Figure 28: Demonstration - Line number connection

7.1. Demonstration 44

In Figure 29 it can be seen what happens when the user clicks on the output. Its string
and the line number of the instruction which prints it are highlighted and the Animation
Sector displays the corresponding state.

Figure 29: Demonstration - Output connection

Making all these connections ensures the user a better understanding of how each in-
struction works, since it is clear the effect each one has on the machine state and program
execution.

8

C O N C L U S I O N

This document dives into the subject of virtual machines, beginning with an explanation
on the topic and an insight into what they are used for. It then clarifies the motivation for
the Master’s Project here described and points out the necessary steps to develop it and the
process to achieve them.

A more in-depth look is then made into the world of Virtual Machines. At first, it plunges
into its history and how it emerged, featuring the two types of virtual machines: Type I and
Type II. It then proceeds to compare Stack-based Virtual Machines to Register-based Virtual
Machines, explaining their functioning and weighing their virtues. In addition, it touches on
the various categories of virtualization. Lastly, there is a study of a few current commonly
used virtual machines, highlighting their features and architectures. It concludes that none
of the specified virtual machines is suited to address the shortcomings this project aims to
overcome.

Additionally, there is an overview of the existing virtual machine VM which includes
an in-depth and elaborate description of its architecture, as well as an explanation of its
functioning and a presentation and description of its instruction set.

A detailed characterization of the product this project hopes to develop was also included.
The proposed Web Application structure is presented, explaining the interface-server con-
nection and the server’s components, Assembler and Run Engine. The latter represents the
Virtual Machine, which has been designed based on the previous VM’s architecture. A mock-
up of the website is depicted, alongside a list of features considered for implementation.

Then the document dives into the implementation of the project which encompasses three
components: Assembler, Virtual Machine and GUI.

The development of the Assembler is described and explained, revealing the technologies
chosen to develop the project. The Assembly Grammar created is listed, along with a
demonstration and explanation of its functioning and the part it plays in the code’s execution.

Since the Virtual Machine’s architecture and behavior were previously analysed and
explained in the document, at this point the focus was on the more concrete implementation
of its elements and values.

45

46

Finally, the Graphical User Interface is addressed. Having its features been previously
listed, the document explores the connections and mechanisms of its system and displays
the final product. In addition, the document discusses the Manual and the Project Examples
created in order to provide a better educational platform, also explaining how the data is
saved in the system.

All the goals set for this project have been met and the application can be considered
a proper educational tool having achieved an optimal interaction between the user and
connected sectors through a step-by-step approach.

At the moment, EWVM is available in a public URL: https://ewvm.epl.di.uminho.pt/.
It was used in the Language Processing Course by more than 160 students and received very
positive feedback. Even though EWVM is a Web Application, it has been dockerized to ease
its installation, reducing the process to a command line execution.

Concerning future work, there is an intent to tune the VM language. For instance, the
VM instruction set has some graphical instructions that, due to many difficulties in the
graphical output, have not been explored in the present tool. The plan is to implement
these instructions adding a panel to the interface with an HTML canvas or having the VM
compiler produce SVG or other formats that browsers can display and animate.

https://ewvm.epl.di.uminho.pt/

B I B L I O G R A P H Y

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers Principles, Techniques and Tools.
Addison-Wesley, 1986.

Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers, Principles,
Techniques, and Tools. Pearson Education, Inc, second edition, 2007.

Sameer M AlNajdi, Malek Q Alrashidi, and Khalid S Almohamadi. The effectiveness of
using augmented reality (ar) on assembling and exploring educational mobile robot
in pedagogical virtual machine (pvm). Interactive Learning Environments, 28(8):964–990,
2020.

Steve Baca. Virtualization for newbies: Five types of virtualization, Nov
2021. URL https://www.globalknowledge.com/us-en/resources/resource-library/

articles/virtualization-for-newbies-five-types-of-virtualization/. Global
Knowledge.

James Bennett. An introduction to python bytecode, April 2018. URL https://opensource.

com/article/18/4/introduction-python-bytecode.

J. P. Buzen and U. O. Gagliardi. The evolution of virtual machine architecture. In Proceedings
of the June 4-8, 1973, National Computer Conference and Exposition, AFIPS ’73, page 291–299,
New York, NY, USA, 1973. Association for Computing Machinery. ISBN 9781450379168.
doi: 10.1145/1499586.1499667. URL https://doi.org/10.1145/1499586.1499667.

Tom Chothia and Chris Novakovic. An offline capture the flag-style virtual machine
and an assessment of its value for cybersecurity education. In 2015 USENIX Summit
on Gaming, Games, and Gamification in Security Education (3GSE 15), Washington, D.C.,
August 2015. USENIX Association. URL https://www.usenix.org/conference/3gse15/

summit-program/presentation/chothia.

Ayan Das. Advanced python: Bytecodes and the python virutal ma-
chine (vm) - part i, Jan 2019. URL https://medium.com/@dasayan05/

advanced-python-bytecodes-and-the-python-virutal-machine-vm-part-i-b58ed526f2b.

Brian Davis, Andrew Beatty, Kevin Casey, David Gregg, and John Waldron. The case for
virtual register machines. In Proceedings of the 2003 workshop on Interpreters, virtual
machines and emulators, pages 41–49, 2003.

47

https://www.globalknowledge.com/us-en/resources/resource-library/articles/virtualization-for-newbies-five-types-of-virtualization/
https://www.globalknowledge.com/us-en/resources/resource-library/articles/virtualization-for-newbies-five-types-of-virtualization/
https://opensource.com/article/18/4/introduction-python-bytecode
https://opensource.com/article/18/4/introduction-python-bytecode
https://doi.org/10.1145/1499586.1499667
https://www.usenix.org/conference/3gse15/summit-program/presentation/chothia
https://www.usenix.org/conference/3gse15/summit-program/presentation/chothia
https://medium.com/@dasayan05/advanced-python-bytecodes-and-the-python-virutal-machine-vm-part-i-b58ed526f2b
https://medium.com/@dasayan05/advanced-python-bytecodes-and-the-python-virutal-machine-vm-part-i-b58ed526f2b

BIBLIOGRAPHY 48

Simão Melo de Sousa. Máquina Virtual para o projecto da disciplina de compiladores. Dep. de
Informática, Universidade da Beira Interior, Covilhão, Portugal, Set 2006.

Joseph A. Driscoll, Ralph M. Butler, and Joelle M. Key. A virtual machine environment
for teaching the development of system software. In Proceedings of the 42nd Annual
Southeast Regional Conference, ACM-SE 42, page 440–441, New York, NY, USA, 2004.
Association for Computing Machinery. ISBN 1581138709. doi: 10.1145/986537.986647.
URL https://doi.org/10.1145/986537.986647.

IBM Cloud Education. Private cloud, Apr 2020. URL https://www.ibm.com/cloud/learn/

introduction-to-private-cloud.

Fabian Fagerholm. Perl 6 and the parrot virtual machine, 2005.

Nuno Gaspar and Simão Melo de Sousa. WebVm - A web-based host platform for pedagogi-
cal virtual machines. Special issue of the journal Informática na Educação: teoria & prática, 1

(4), jan/jun 2009. ISSN 1516-084X.

Xuelian Hu and Dong Han. The design, implementation and application of minijava/ad
as an object-oriented compiler teaching model. In 2009 4th International Conference on
Computer Science Education, pages 1488–1491, 2009. doi: 10.1109/ICCSE.2009.5228571.

IBM Cloud Education. Virtual machines. https://www.ibm.com/cloud/learn/

virtual-machines, Jun 2019. Accessed: 05-10-2021.

Obi Ike-Nwosu. Read inside the python virtual machine. URL https://leanpub.com/

insidethepythonvirtualmachine/read#leanpub-auto-the-interpreter-state.

KAUSHIK K. Internal working of python, Aug 2021. URL https://medium.com/@kaushik.

k/internal-working-of-python-415572929e7a.

Kexugit. Why have a stack?, Nov 2011. URL https://docs.microsoft.com/pt-pt/archive/

blogs/ericlippert/why-have-a-stack.

Eric Kohlbrenner, Dana Morris, and Brett Morris. Virtual machine. URL http://

denninginstitute.com/itcore/virtualmachine/ibm.htm.

Yunfa Li, Wanqing Li, and Congfeng Jiang. A survey of virtual machine system: Current
technology and future trends. In 2010 Third International Symposium on Electronic
Commerce and Security, pages 332–336. IEEE, 2010.

Siben Nayak. Jvm tutorial - java virtual machine architecture explained
for beginners, Jan 2021. URL https://www.freecodecamp.org/news/

jvm-tutorial-java-virtual-machine-architecture-explained-for-beginners/.

https://doi.org/10.1145/986537.986647
https://www.ibm.com/cloud/learn/introduction-to-private-cloud
https://www.ibm.com/cloud/learn/introduction-to-private-cloud
https://www.ibm.com/cloud/learn/virtual-machines
https://www.ibm.com/cloud/learn/virtual-machines
https://leanpub.com/insidethepythonvirtualmachine/read#leanpub-auto-the-interpreter-state
https://leanpub.com/insidethepythonvirtualmachine/read#leanpub-auto-the-interpreter-state
https://medium.com/@kaushik.k/internal-working-of-python-415572929e7a
https://medium.com/@kaushik.k/internal-working-of-python-415572929e7a
https://docs.microsoft.com/pt-pt/archive/blogs/ericlippert/why-have-a-stack
https://docs.microsoft.com/pt-pt/archive/blogs/ericlippert/why-have-a-stack
http://denninginstitute.com/itcore/virtualmachine/ibm.htm
http://denninginstitute.com/itcore/virtualmachine/ibm.htm
https://www.freecodecamp.org/news/jvm-tutorial-java-virtual-machine-architecture-explained-for-beginners/
https://www.freecodecamp.org/news/jvm-tutorial-java-virtual-machine-architecture-explained-for-beginners/

BIBLIOGRAPHY 49

Anh M Nguyen, Nabil Schear, HeeDong Jung, Apeksha Godiyal, Samuel T King, and Hai D
Nguyen. Mavmm: Lightweight and purpose built vmm for malware analysis. In 2009
Annual Computer Security Applications Conference, pages 441–450. IEEE, 2009.

Michael Prantl. Python internals: An introduction, Oct 2020. URL https://blog.sourcerer.

io/python-internals-an-introduction-d14f9f70e583.

Yunhe Shi, Kevin Casey, M. Anton Ertl, and David Gregg. Virtual machine showdown: Stack
versus registers. ACM Trans. Archit. Code Optim., 4(4), January 2008. ISSN 1544-3566.
doi: 10.1145/1328195.1328197. URL https://doi.org/10.1145/1328195.1328197.

Simplilearn. What is microsoft azure and how does it work: Simplilearn, Dec 2021. URL
https://www.simplilearn.com/tutorials/azure-tutorial/what-is-azure.

Mark Vinod Sinnathamby. Stack based vs register based virtual machine architecture,
and the dalvik vm, Sep 2012. URL https://www.codeproject.com/Articles/461052/

Stack-Based-vs-Register-Based-Virtual-Machine-Arch.

Hasitha Subhashana. Understanding how java virtual machine
(jvm) works, May 2021. URL https://hasithas.medium.com/

understanding-how-java-virtual-machine-jvm-works-a1b07c0c399a.

TechVidvan. Jvm - java virtual machine working and architecture, Jun 2021. URL https:

//techvidvan.com/tutorials/java-virtual-machine/.

Damien Silva Vaz. Implementing an integrated syntax directed editor for liss. January 2017.

Jatinder Virdee. Virtualization on azure, Jan 2015. URL https://blog.sysfore.com/

virtualization-on-azure/.

https://blog.sourcerer.io/python-internals-an-introduction-d14f9f70e583
https://blog.sourcerer.io/python-internals-an-introduction-d14f9f70e583
https://doi.org/10.1145/1328195.1328197
https://www.simplilearn.com/tutorials/azure-tutorial/what-is-azure
https://www.codeproject.com/Articles/461052/Stack-Based-vs-Register-Based-Virtual-Machine-Arch
https://www.codeproject.com/Articles/461052/Stack-Based-vs-Register-Based-Virtual-Machine-Arch
https://hasithas.medium.com/understanding-how-java-virtual-machine-jvm-works-a1b07c0c399a
https://hasithas.medium.com/understanding-how-java-virtual-machine-jvm-works-a1b07c0c399a
https://techvidvan.com/tutorials/java-virtual-machine/
https://techvidvan.com/tutorials/java-virtual-machine/
https://blog.sysfore.com/virtualization-on-azure/
https://blog.sysfore.com/virtualization-on-azure/

	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Research Hypothesis
	1.4 Development Approach
	1.5 Document Structure

	2 State of the Art
	2.1 Stack vs Register Virtual Machines
	2.2 Virtualization
	2.3 Current Virtual Machines
	2.3.1 IBM Virtual Machine
	2.3.2 Java Virtual Machine
	2.3.3 Google Colab Virtual Machine
	2.3.4 Parrot Virtual Machine
	2.3.5 Python Virtual Machine
	2.3.6 MIPS Virtual Machine
	2.3.7 WebVm

	2.4 Summary

	3 VM, an Overview
	3.1 Architecture
	3.2 Functioning Principle
	3.3 Instructions
	3.3.1 Instruction Set

	3.4 Summary

	4 EWVM - Proposal
	5 EWVM - The Assembler
	6 EWVM - The Virtual Machine
	6.1 Memory Blocks
	6.2 Flow Chart Example

	7 EWVM - The Graphical User Interface
	7.1 Demonstration

	8 Conclusion

