
A Kernel Clustering Algorithm Based on
Diameters?

M. Fernanda P. Costa (�)1[0000−0001−6235−286X], Ana Maria A. C.
Rocha2[0000−0001−8679−2886], and Edite M. G. P. Fernandes2[0000−0003−0722−9361]

1 Centre of Mathematics,
University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal

mfc@math.uminho.pt
2 ALGORITMI Center,

University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
{arocha,emgpf}@dps.uminho.pt

Abstract. This paper analyzes an iterative kernel partitioning cluster-
ing algorithm that dynamically merges, removes and adds clusters using
some characteristics, like the radii and diameters of the clusters, and
distance between centers. The clustering is carried out in feature space
in terms of a kernel function so that non-linearly separable clusters are
identified. The preliminary experiments with seven datasets show that
the proposed algorithm is able to successfully converge to the expected
clustering. It is also shown that the algorithm performance is sensitive
to the parameter σ of the Gaussian kernel.

Keywords: Partitioning Clustering · Kernel function · Cluster Diame-
ter and Radius

1 Introduction

Clustering is an unsupervised machine learning task and consists of grouping a
set of data points in a way that similarity of the elements in a group – also called
cluster – is maximized, whereas similarity of elements in two different groups, is
minimized [1,2]. Applications of clustering are very common in areas like data
mining, bioinformatics, pattern recognition and image processing [3].

The partitioning and hierarchical clustering are the most popular. The well-
known K-means clustering is a partitioning type clustering [4] that subdivides
the dataset into K clusters, where K is specified a priori, and uses the centroid
(mean) of the data points belonging to a cluster as the representative point of
that cluster. Partitioning and hierarchical clustering are suitable to find convex
clusters since they work well when clusters are compact and separated. However,
they inaccurately identify clusters when non-convex clusters and noise points are

? This work has been supported by FCT – Fundação para a Ciência e Tecnologia
within the R&D Units Project Scope: UIDB/00319/2020, UIDB/00013/2020 and
UIDP/00013/2020 of CMAT-UM.

2 M.F.P. Costa, A.M.A.C. Rocha, E.M.G.P. Fernandes

present. When a partitioning clustering algorithm cannot identify clusters that
are non-linearly separable in the input space, the use of a kernel function solves
the problem [5]. The goal is to use an appropriate nonlinear function that maps
the points in the input space to points in some higher-dimensional feature space,
known as the kernel space. Then, the kernel clustering method can partition the
data points that are linearly separable in the new space [2].

Unlike K-means and pure hierarchical clustering, the partitioning clustering
algorithm of this study is able to iteratively adjust the number of clusters. The
algorithm may merge, remove and add clusters depending on some pre-defined
conditions. During the initialization of the algorithm, a number of clusters is
required to start the points assigning process, although this number is updated
whenever clusters are merged, removed or split. The kernel clustering algorithm
uses a distance-based methodology, a Gaussian kernel function to carry out the
clustering in the feature space, and concepts like the cluster diameter, and the
cluster radius, to select a cluster to be split, and to be merged, respectively.
Thus, the algorithm proceeds as follows. First, at each iteration, the algorithm
identifies the pair of clusters that may be merged and checks if a cluster center
may be deleted, and consequently the cluster is removed. Second, it identifies
the cluster that may be split according to conditions that involve the size of the
two clusters with closest centers. Finally, each point in the dataset is assigned
to the closest mean in feature space, resulting in a new clustering.

The paper is organized as follows. Section 2 briefly describes the ideas of
a cluster analysis and Sect. 3 presents the details of the new kernel clustering
diameter-based algorithm. In Sect. 4, the results of clustering seven sets of data
points with two attributes are shown. Finally, Sect. 5 contains the conclusions
of this work.

2 Cluster Analysis

Let a set of n data points (or vectors) of dimension a, the so-called attributes, be
given. These points can be represented by a data matrix X with n vectors/points
of dimension a. Each element Xi,j corresponds to the jth attribute of the ith
point [6]. Thus, given X, a partitioning clustering algorithm tries to find a par-
tition C = {C1, C2, . . . , CK} of K clusters (or groups), in a way that similarity
of the points in the same cluster is maximum and points from different clusters
differ as much as possible. In hard clustering, it is required that the partition
satisfies three conditions:

1. each cluster should have at least one point, i.e., |Ck| 6= 0, k = 1, . . . ,K;
2. a point should not belong to two different clusters, i.e., Ck

⋂
Cl = ∅, for

k, l = 1, . . . ,K, k 6= l;
3. each point should belong to a cluster, i.e.,

∑K
k=1 |Ck| = n;

where |Ck| is the number of points in cluster Ck. Since there are several ways
to partition the points and maintain these properties, a fitness function should
be provided to evaluate the adequacy of the partitioning. Thus, the goal in the

Kernel Clustering Algorithm 3

clustering problem is to find an optimal partition, C∗, that gives the optimal (or
near-optimal) adequacy, when compared to all the other feasible solutions.

3 Kernel Clustering Diameter-based Algorithm

To partition data points into clusters, the distance-based clustering algorithms
are the most popular, and are used in a large variety of applications [7]. In this
section, a clustering approach that uses the distance between specific points and
a kernel function is described.

The algorithm uses the kernel trick to carry out the clustering in feature
space in terms of the Gaussian kernel function. Although the algorithm starts
by defining a set of K clusters, it has mechanisms to try to find the optimal (or
near-optimal) clustering by merging and removing clusters, and adding (split-
ting an existing cluster) based on some characteristics of the current clusters.
In particular, the largest distance between points in a cluster (diameter), the
smallest distance between cluster points, and the largest distance between the
points in a cluster and the center point (radius), are considered. It is termed
Kernel Clustering Diameter-based algorithm (KCDbased algorithm).

At the initial step, a number K of clusters must be provided and the cor-
responding centers m1,m2, . . . ,mK are randomly selected from the set of data
points X. Then, at each iteration, the KCDbased algorithm merges two featured
clusters, removes a rather small cluster, adds a new cluster by splitting a spe-
cific cluster, according to some conditions, and ends up by assigning the dataset
points to the existent clusters.

Next, the details of each procedure are presented.
After a set of points being randomly selected from X, to define the initial

cluster centers mk, k = 1, . . . ,K (given K), each point Xi (i = 1, . . . , n) is
assigned to a cluster. To find which cluster to assign the point Xi, the simplest
idea is to find the closest distance from Xi to the mk, k = 1, . . . ,K.

In a kernel function context, the details to compute the distance from a point
Xi to the centers mk, k = 1, . . . ,K follow. Let the cluster centers in the feature
space be given as mφ

k , k = 1, . . . ,K where

mφ
k =

1

|Ck|
∑

Xi∈Ck

φ(Xi), (1)

and φ is an appropriate nonlinear function that maps the points in the input
space to points in the higher-dimensional feature space [5]. In this space, the

distance of a point φ(Xi) to the mean mφ
k is defined as

‖φ(Xi)−mφ
k‖

2 = ‖φ(Xi)‖2 − 2φ(Xi)
Tmφ

k + ‖mφ
k‖

2

and consequently, using (1) and the kernel function K(·, ·) = φ(·)Tφ(·):

‖φ(Xi)−mφ
k‖

2 = K(Xi, Xi)−
2

|Ck|
∑

Xj∈Ck

K(Xj , Xi)+
1

|Ck|2
∑

Xj∈Ck

∑
Xl∈Ck

K(Xj , Xl).

(2)

4 M.F.P. Costa, A.M.A.C. Rocha, E.M.G.P. Fernandes

Algorithm 1 presents the details of the KCDbased algorithm.

Algorithm 1 KCDbased Algorithm

Require: n (number of dataset points), Xi, i = 1, . . . , n (points of the dataset); Itmax

1: Set initial K and Nmin; Set It = 1
2: Randomly select a set of K points from the dataset X to initialize the K cluster

centers mk, k = 1, . . . ,K
3: Assign each point Xi ∈ X to the cluster based on the closest center, using Algo-

rithm 2, to define K clusters CK = {C1, . . . , CK}
4: repeat
5: Compute the distance between the two closest cluster centers, Dmin, using (7)

and identify the indices ki and kj of the centers
6: Compute the largest distance of each center mφ

ki
(resp. mφ

kj
) to the points in

cluster Cki (resp. Ckj), rki (resp. rkj)

7: Compute the average distance of each center mφ
ki

(resp. mφ
kj

) to the points in

cluster Cki (resp. Ckj), r̄ki (resp. r̄kj)
8: Merge the 2 clusters with closest cluster centers (based on Dmin, rki , rkj , r̄ki and

r̄kj) and remove the cluster with fewer points (based on Nmin), using Algorithm 3
9: for k = 1 to K do

10: Compute distances dj,l = ‖φ(Xj)− φ(Xl)‖2 for all Xj , Xl ∈ Ck using (6)
11: Identify diameter Dk

1 = max dj,l and the minimum distance Dk
0 = min dj,l

12: end for
13: Identify the cluster Cki , where the index ki = arg maxk(Dk

1 − Dk
0), and the

points Xi1 , Xi2 ∈ Cki corresponding to Dki
1

14: Split the cluster Cki using Algorithm 4
15: Assign points to the cluster with closest center, using Algorithm 2
16: Set It = It+ 1
17: until It > Itmax OR number of points in clusters has not changed for two consec-

utive iterations
18: return K∗ and C∗ = {C∗

1 , . . . , C
∗
K}.

3.1 Assign Points to Clusters

To assign point Xi to the closest cluster center, the following condition is set:

Xi ∈ Cki such that ki = arg mink=1,...,K

(
‖φ(Xi)−mφ

k‖2
)

= arg mink=1,...,K (SqNk − 2Avgi,k)
(3)

where the SqNk (squared norm of cluster means) for each k = 1, . . . ,K is given
by:

SqNk =
1

|Ck|2
∑

Xj∈Ck

∑
Xl∈Ck

K(Xj , Xl), (4)

and the average kernel value for Xi and Ck, Avgi,k (i = 1, . . . , n and k =
1, . . . ,K), is

Avgi,k =
1

|Ck|
∑

Xj∈Ck

K(Xj , Xi). (5)

Kernel Clustering Algorithm 5

We note that in the last expression of (3), the term K(Xi, Xi) has not been
included because it is the same for all the clusters.

Subsequently, the distance of a point φ(Xj) to another point φ(Xl) of the
dataset in feature space, can be computed as

dj,l = ‖φ(Xj)− φ(Xl)‖2 = ‖φ(Xj)‖2 − 2φ(Xj)
Tφ(Xl) + ‖φ(Xl)‖2

= K(Xj , Xj)− 2K(Xj , Xl) + K(Xl, Xl).
(6)

The Algorithm 2 contains the steps required to the process of assigning points
to clusters.

Algorithm 2 Assign points to clusters

Require: K, n, Xi, i = 1, . . . , n, Ck, k = 1, . . . ,K
1: for k = 1 to K do
2: Compute squared norm of cluster means SqNk using (4)
3: end for
4: for all Xi, i = 1, . . . , n do
5: for all Ck, k = 1 to K do
6: Compute average kernel value Avgi,k using (5)
7: end for
8: end for
9: Set Ck = ∅, k = 1, . . . ,K

10: for i = 1 to n do
11: for k = 1 to K do
12: Compute di,k = SqNk − 2Avgi,k
13: end for
14: Assign point Xi to cluster Cki by identifying the index ki = arg mink=1,...,K di,k
15: end for
16: for k = 1 to K do
17: if |Ck| = 0 then
18: Remove Ck
19: end if
20: end for
21: Update K
22: return Ck, k = 1, . . . ,K

3.2 Merge Two Clusters

The two clusters with the closest centers are merged if the distance between
their centers satisfies some conditions based on their radii. Let the radius of a
cluster be defined by the largest distance from its center to the points of the
cluster, rk, k = 1, . . . ,K. The average of all the distances from the center to the
points of a cluster is denoted averaged radius and is represented by r̄k. The two
clusters with the closest centers may be merged if the distance between their
centers, Dmin, is not greater than the sum of their radii and at the same time
less than the average of their averaged radii multiplied by a positive factor ≥ 1,

6 M.F.P. Costa, A.M.A.C. Rocha, E.M.G.P. Fernandes

where Dmin is computed using

Dmin = mini=1,...,K,j>i

(
‖mφ

i −m
φ
j ‖2
)

= mini=1,...,K,j>i

(
‖mφ

i ‖2 − 2m̄i,j + ‖mφ
j ‖2
)

= mini=1,...,K,j>iK(mφ
i ,m

φ
i)− 2m̄i,j + K(mφ

j ,m
φ
j),

(7)

and m̄i,j , the average kernel value for Ci and Cj , is given by

m̄i,j =
1

|Ci||Cj |
∑

i=1,...,k

∑
j>i

K(mφ
i ,m

φ
j).

See details of the merge and remove clusters algorithm in Algorithm 3.

Algorithm 3 Merge and remove clusters

Require: n, K, Cki , Ckj , Dmin, r̄ki , r̄kj , rki , rkj , Nmin

1: if Dmin ≤ (rki + rkj) AND Dmin <
r̄ki + r̄kj

2

n

|Cki |+ |Ckj |
then

2: Include points of Cki into cluster Ckj and remove Cki
3: Update K and |Ckj |; set N0 = |Ckj | and N1 = 0
4: else
5: Set N0 = |Ckj | and N1 = |Cki |
6: end if
7: Identify the index kl such that |Ckl | = mink |Ck|
8: if |Ckl | < Nmin then
9: Define all points in Ckl as ‘noise/outlier’

10: Remove Ckl
11: Update K
12: end if
13: return Ck, k = 1, . . . ,K, N0, N1.

3.3 Split a Cluster

Based on the diameter of a cluster, defined as the largest distance between points
in that cluster, and on the minimum distance between points of the cluster, the
algorithm may split the cluster into two clusters. Let D1 be the diameter of
a cluster and D0 be the minimum distance between points of the cluster. The
candidate cluster to be split has the largest difference D1−D0. We choose to split
that cluster if its diameter exceeds the (previously identified) smallest distance
between centers and if its size (number of points in that cluster) exceeds the
size of the cluster when two clusters are merged or the size of the largest cluster
previously identified for the merging process. Algorithm 4 describes the main
steps of the splitting process.

Kernel Clustering Algorithm 7

Algorithm 4 Split a cluster

Require: K, ki, Cki , D
ki
1 , Xi1 , Xi2 ∈ Cki , Dmin, N0, N1

1: if Dki
1 > Dmin AND |Cki | > max(N0, N1) then

2: Assign points Xi ∈ Cki to the new clusters with the selected centers Xi1 and
Xi2 to define clusters CK+1 and CK+2

3: end if
4: Set Cki ← CK+2; K ← K + 1
5: return Cki and CK

4 Computational Results

In this section, some preliminary results are shown. Seven datasets of points with
two attributes are used to test the algorithm.

The Algorithm 1 is coded in MATLAB R©. Its performance depends on the
parameter of the Gaussian kernel, σ, where for U and V vectors,

K(U, V) = exp(−γ‖U − V ‖22) and γ = (2σ2)−1.

Note that this kernel value K is inversely related to the distance between the
two vectors. In practice, different values for σ are usually set by trial and error.
Other parameters that have not much influence in the algorithm performance
are initial K = max{v,min{2, d0.005ne}}, where v is a positive integer in [2, 6],
Nmin = max{5, d0.01ne}} and Itmax = 10. The algorithm is assumed to converge
when the cluster points do not change for two consecutive iterations.

The clustering obtained in this study is compared with those obtained by
two well-known partitioning algorithms, DBSCAN and K-means. DBSCAN is
a density-based clustering algorithm that is designed to discover clusters and
noise in data [8]. Noise points are outliers that do not belong to any cluster.
There are two parameters that must be provided before the algorithm stars, ε
and MinPts. A point is assigned to a cluster if it satisfies the condition that
its ε neighborhood contains at least a minimum number of neighbors, MinPts.
The distance metric used to measure the similarity between observations is the
Euclidean distance (default). K-means is an iterative partitioning algorithm that
assigns the n data points to one of K clusters, where K must be provided at the
beginning of the algorithm [9]. Each cluster is represented by the centroid and
the clustering aims to minimize the sum of squared distances of the points to
the centroids. The default distance metric for the minimization is the Euclidean
distance. The maximum number of iterations, MaxIter is also provided to the
algorithm.

The first two datasets of points are available in the internet. The others
are randomly generated datasets. In Figs. 1 - 7 below, the results obtained for
Problems 1 - 7 are depicted.

Problem 1. ‘mydata’. 300 data points and two attributes:
available at https://yarpiz.com/64/ypml101-evolutionary-clustering [10].

8 M.F.P. Costa, A.M.A.C. Rocha, E.M.G.P. Fernandes

-2 0 2 4 6 8

-2

-1

0

1

2

3

4

5

6

Initial centers randomly selected points

Cluster #1
Cluster #2
Cluster #3
Cluster #4
Cluster #5

(a) Initialization

-2 0 2 4 6 8

Iteration 1: merge+split+ASSIGN procedures

-2

-1

0

1

2

3

4

5

6
Cluster #1
Cluster #2
Cluster #3
Cluster #4

(b) 1st. iteration σ = 1.5

-2 0 2 4 6 8

Iteration 4: merge+split+ASSIGN procedures

-2

-1

0

1

2

3

4

5

6
Cluster #1
Cluster #2
Cluster #3

(c) Final iteration σ = 1.5

-2 0 2 4 6 8

Iteration 2: merge+split+ASSIGN procedures

-2

-1

0

1

2

3

4

5

6
Cluster #1
Cluster #2
Cluster #3

(d) 2nd. iteration σ = 0.5

-2 0 2 4 6 8

Iteration 3: merge+split+ASSIGN procedures

-2

-1

0

1

2

3

4

5

6
Cluster #1
Cluster #2

(e) 3rd. iteration σ = 0.5

-2 0 2 4 6 8

Iteration 5: merge+split+ASSIGN procedures

-2

-1

0

1

2

3

4

5

6
Cluster #1

(f) Final iteration σ = 0.5

-2 0 2 4 6 8

DB index 0.30693

-2

-1

0

1

2

3

4

5

6

DBSCAN (= 0.5, MinPts = 10), # clusters = 3

Noise
Cluster 1
Cluster 2
Cluster 3

(g) DBSCAN ε = 0.5

-2 0 2 4 6 8

DB index 0.49239

-2

-1

0

1

2

3

4

5

6

DBSCAN (= 0.75, MinPts = 10), # clusters = 3

Noise
Cluster 1
Cluster 2
Cluster 3

(h) DBSCAN ε = 0.75

-2 0 2 4 6 8

DB index 0.60831

-2

-1

0

1

2

3

4

5

6

K-means, # clusters = 3 after 10 iterations

Cluster 1
Cluster 2
Cluster 3

(i) K-means (10 iterations)

Fig. 1. Clustering process of Problem 1. Plots (a), (b) and (c) are from our algorithm
with σ = 1.5 in the Gaussian kernel, (d), (e) and (f) are from our algorithm with
σ = 0.5, (g) and (h) come from DBSCAN, and (i) is from K-means.

Algorithm 1 was tested with Problem 1 starting with 5 clusters (see Fig. 1).
Plot (a) shows the initial clustering with the 5 clusters. Plots (b) and (c) show the
obtained well succeeded clustering (1st. iteration and 4th. iteration respectively)
using σ = 1.5 in the Gaussian kernel. However, when σ = 0.5 is used, the iterative
process starts with the clustering shown in plot (a) - the initialization - and
converges to one cluster (see plots (d), (e) and (f)). Plots (g) and (h) show the
DBSCAN clustering when the parameter ε is set to 0.5 and 0.75, respectively,
with MinPts = 10 (for best clusterings) and both clustering identify 3 groups,
but with plenty of noise points. Finally, plot (i) shows the K-means successful
clustering when K = 3 is provided.

Problem 2. ‘mydataDBSCAN’. 1000 data points and two attributes:
available at https://yarpiz.com/255/ypml110-dbscan-clustering [11].

With Problem 2, the two values (1.5 and 0.5) of σ were tested, and the
results are depicted in Fig. 2. Starting with 4 clusters, plots (b) and (c) show a

Kernel Clustering Algorithm 9

-4 -3 -2 -1 0 1 2 3 4 5

-3

-2

-1

0

1

2

3

Initial centers randomly selected points

Cluster #1
Cluster #2
Cluster #3
Cluster #4

(a) Initialization

-4 -3 -2 -1 0 1 2 3 4 5

Iteration 1: merge+split+ASSIGN procedures

-3

-2

-1

0

1

2

3
Cluster #1
Cluster #2
Cluster #3
Cluster #4

(b) 1st. iteration σ = 1.5

-4 -3 -2 -1 0 1 2 3 4 5

Iteration 7: merge+split+ASSIGN procedures

-3

-2

-1

0

1

2

3
Cluster #1
Cluster #2

(c) Final iteration σ = 1.5

-4 -3 -2 -1 0 1 2 3 4 5

Iteration 1: merge+split+ASSIGN procedures

-3

-2

-1

0

1

2

3
Cluster #1
Cluster #2
Cluster #3

(d) 1st. iteration σ = 0.5

-4 -3 -2 -1 0 1 2 3 4 5

Iteration 2: merge+split+ASSIGN procedures

-3

-2

-1

0

1

2

3
Cluster #1
Cluster #2

(e) 2nd. iteration σ = 0.5

-4 -3 -2 -1 0 1 2 3 4 5

Iteration 4: merge+split+ASSIGN procedures

-3

-2

-1

0

1

2

3
Cluster #1

(f) Final iteration σ = 0.5

-4 -3 -2 -1 0 1 2 3 4 5

DB index 1.767

-3

-2

-1

0

1

2

3

DBSCAN (= 0.5, MinPts = 10), # clusters = 2

Noise
Cluster 1
Cluster 2

(g) DBSCAN ε = 0.5

-4 -3 -2 -1 0 1 2 3 4 5

DB index 0

-3

-2

-1

0

1

2

3

DBSCAN (= 0.75, MinPts = 10), # clusters = 1

Cluster 1

(h) DBSCAN ε = 0.75

-4 -3 -2 -1 0 1 2 3 4 5

DB index (X) = 1.2878

-3

-2

-1

0

1

2

3

K-means, # clusters = 2 after 10 iterations

Cluster 1
Cluster 2

(i) K-means (10 iterations)

Fig. 2. Clustering process of Problem 2. Plots (a), (b) and (c) are from our algorithm
with σ = 1.5 in the Gaussian kernel, (d), (e) and (f) are from our algorithm with
σ = 0.5, (g) and (h) come from DBSCAN, and (i) is from K-means.

successful clustering of Algorithm 1, while plots (d), (e) and (f) (starting with
the same 4 clusters) display an unsuccessful clustering. Plots (g) and (h), with
ε = 0.5 and ε = 0.75 respectively (with MinPts = 10), show a successful and
an unsuccessful clustering of DBSCAN. As expected, K-means clustering (with
provided K = 2) is unable to identify non-linearly separable clusters.

Problem 3. 400 data points with two attributes: (Four clusters with generated
points using multivariate Normal distributions with equal variances.)

Sigma = [0.5 0.05; 0.05 0.5]; f1 = mvnrnd([0.5 0],Sigma,100);

f2 = mvnrnd([0.5 0.5],Sigma,100); f3 = mvnrnd([0.5 1],Sigma,100);

f4 = mvnrnd([0.5 1.5],Sigma,100); X = [f1;f2;f3;f4];

When solving Problem 3, and using both σ = 1.5 and σ = 0.5, the perfor-
mance of the KCDbased algorithm, shown in Fig. 3, is similar to the two previous
examples. When σ = 1.5, and starting from the initial clustering (shown in plot

10 M.F.P. Costa, A.M.A.C. Rocha, E.M.G.P. Fernandes

-2 -1 0 1 2 3

-1

-0.5

0

0.5

1

1.5

2

2.5

Initial centers randomly selected points

Cluster #1
Cluster #2
Cluster #3
Cluster #4
Cluster #5
Cluster #6

(a) Initialization

-2 -1 0 1 2 3

Iteration 1: merge+split+ASSIGN procedures

-1

-0.5

0

0.5

1

1.5

2

2.5
Cluster #1
Cluster #2
Cluster #3
Cluster #4
Cluster #5

(b) 1st. iteration σ = 1.5

-2 -1 0 1 2 3

Iteration 9: merge+split+ASSIGN procedures

-1

-0.5

0

0.5

1

1.5

2

2.5
Cluster #1
Cluster #2
Cluster #3
Cluster #4

(c) Final iteration σ = 1.5

-2 -1 0 1 2 3

Iteration 1: merge+split+ASSIGN procedures

-1

-0.5

0

0.5

1

1.5

2

2.5
Cluster #1
Cluster #2
Cluster #3
Cluster #4
Cluster #5

(d) 1st. iteration σ = 0.5

-2 -1 0 1 2 3

Iteration 3: merge+split+ASSIGN procedures

-1

-0.5

0

0.5

1

1.5

2

2.5
Cluster #1
Cluster #2
Cluster #3

(e) 3rd. iteration σ = 0.5

-2 -1 0 1 2 3

Iteration 6: merge+split+ASSIGN procedures

-1

-0.5

0

0.5

1

1.5

2

2.5
Cluster #1

(f) Final iteration σ = 0.5

-2 -1 0 1 2 3

DB index 0

-1

-0.5

0

0.5

1

1.5

2

2.5

DBSCAN (= 0.5, MinPts = 5), # clusters = 1

Noise
Cluster 1

(g) DBSCAN ε = 0.5

-2 -1 0 1 2 3

DB index 0

-1

-0.5

0

0.5

1

1.5

2

2.5

DBSCAN (= 0.75, MinPts = 5), # clusters = 1

Noise
Cluster 1

(h) DBSCAN ε = 0.75

-2 -1 0 1 2 3

DB index 1.1243

-1

-0.5

0

0.5

1

1.5

2

2.5

K-means, # clusters = 4 after 10 iterations

Cluster 1
Cluster 2
Cluster 3
Cluster 4

(i) K-means (10 iterations)

Fig. 3. Clustering process of Problem 3. Plots (a), (b) and (c) are from our algorithm
with σ = 1.5 in the Gaussian kernel, (d), (e) and (f) are from our algorithm with
σ = 0.5, (g) and (h) come from DBSCAN, and (i) is from K-means.

(a)), the algorithm is able to identify 4 clusters (plots (b) and (c)). The 4 clusters
are not identified by DBSCAN when ε is set to 0.5 and 0.75, using MinPts = 5.
The same is true when MinPts = 10 is used. Setting K = 4, K-means identifies
4 linearly separable clusters.

Problem 4. 300 data points with two attributes: (Three clusters with generated
points using Uniform distributions.)

f1 = randn(100,2)*0.75+ones(100,2); f2 = randn(100,2)*0.5-ones(100,2);

f3 = randn(100,2)*0.75; X = [f1;f2;f3];

To cluster the dataset in Problem 4, σ = 1.5 and σ = 0.5 are also used (see
Fig. 4). The performance of the KCDbased algorithm is similar to the previ-
ous examples. We note that DBSCAN identifies one cluster with ε = 0.5 and
MinPts = 10, and only for ε = 0.25 is able to identify more than one cluster
but with plenty of noise points (see plots (g) and (h)). K-means converges by
linearly separating 3 clusters (plot (i)).

Kernel Clustering Algorithm 11

-2 -1 0 1 2 3

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3
Initial centers randomly selected points

Cluster #1
Cluster #2
Cluster #3
Cluster #4

(a) Initialization

-2 -1 0 1 2 3

Iteration 1: merge+split+ASSIGN procedures

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3
Cluster #1
Cluster #2
Cluster #3

(b) 1st. iteration σ = 1.5

-2 -1 0 1 2 3

Iteration 9: merge+split+ASSIGN procedures

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3
Cluster #1
Cluster #2
Cluster #3

(c) Final iteration σ = 1.5

-2 -1 0 1 2 3

Iteration 1: merge+split+ASSIGN procedures

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3
Cluster #1
Cluster #2
Cluster #3

(d) 1st. iteration σ = 0.5

-2 -1 0 1 2 3

Iteration 2: merge+split+ASSIGN procedures

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3
Cluster #1
Cluster #2

(e) 2nd. iteration σ = 0.5

-2 -1 0 1 2 3

Iteration 4: merge+split+ASSIGN procedures

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3
Cluster #1

(f) Final iteration σ = 0.5

-2 -1 0 1 2 3

DB index 0

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3
DBSCAN (= 0.5, MinPts = 10), # clusters = 1

Noise
Cluster 1

(g) DBSCAN ε = 0.5

-2 -1 0 1 2 3

DB index 0.72825

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3
DBSCAN (= 0.25, MinPts = 10), # clusters = 7

Noise
Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5
Cluster 6
Cluster 7

(h) DBSCAN ε = 0.25

-2 -1 0 1 2 3

DB index 1.1082

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3
K-means, # clusters = 3 after 10 iterations

Cluster 1
Cluster 2
Cluster 3

(i) K-means (10 iterations)

Fig. 4. Clustering process of Problem 4. Plots (a), (b) and (c) are from our algorithm
with σ = 1.5 in the Gaussian kernel, (d), (e) and (f) are from our algorithm with
σ = 0.5, (g) and (h) come from DBSCAN, and (i) is from K-means.

Problem 5. 300 data points with two attributes: (Two clusters with generated
points using multivariate Normal distributions.)

mu1 = [1 2]; sigma1 = [3 .2; .2 2]; mu2 = [-1 -2]; sigma2 = [2 0; 0 1];

f1 = mvnrnd(mu1,sigma1,200); f2 = mvnrnd(mu2,sigma2,100); X = [f1;f2];

To cluster the set of points in Problem 5, σ = 1.5 and σ = 0.5 are also used.
The initial clustering (plot(a)), based on 4 clusters, is the same for both exper-
iments. The performance of the KCDbased algorithm is similar to the previous
examples, as shown in Fig. 5. With the DBSCAN, MinPts is set to 10 to show
the best clustering found (plot (g) for ε = 0.5 and plot (h) for ε = 0.75). K-means
linearly separates 2 clusters (plot (i)).

Problem 6. 200 data points and two attributes: (Two clusters with generated
points giving two moons, distorted with some added noises.)

12 M.F.P. Costa, A.M.A.C. Rocha, E.M.G.P. Fernandes

-6 -4 -2 0 2 4 6 8

-4

-2

0

2

4

6
Initial centers randomly selected points

Cluster #1
Cluster #2
Cluster #3
Cluster #4

(a) Initialization

-6 -4 -2 0 2 4 6 8

Iteration 2: merge+split+ASSIGN procedures

-4

-2

0

2

4

6
Cluster #1
Cluster #2
Cluster #3

(b) 2nd. iteration σ = 1.5

-6 -4 -2 0 2 4 6 8

Iteration 7: merge+split+ASSIGN procedures

-4

-2

0

2

4

6
Cluster #1
Cluster #2

(c) Final iteration σ = 1.5

-6 -4 -2 0 2 4 6 8

Iteration 1: merge+split+ASSIGN procedures

-4

-2

0

2

4

6
Cluster #1
Cluster #2
Cluster #3

(d) 1st. iteration σ = 0.5

-6 -4 -2 0 2 4 6 8

Iteration 2: merge+split+ASSIGN procedures

-4

-2

0

2

4

6
Cluster #1
Cluster #2

(e) 2nd. iteration σ = 0.5

-6 -4 -2 0 2 4 6 8

Iteration 4: merge+split+ASSIGN procedures

-4

-2

0

2

4

6
Cluster #1

(f) Final iteration σ = 0.5

-6 -4 -2 0 2 4 6 8

DB index 0.38217

-4

-2

0

2

4

6
DBSCAN (= 0.5, MinPts = 10), # clusters = 2

Noise
Cluster 1
Cluster 2

(g) DBSCAN ε = 0.5

-6 -4 -2 0 2 4 6 8

DB index 0.60945

-4

-2

0

2

4

6
DBSCAN (= 0.75, MinPts = 10), # clusters = 2

Noise
Cluster 1
Cluster 2

(h) DBSCAN ε = 0.75

-6 -4 -2 0 2 4 6 8

DB index (X) = 0.86305

-4

-2

0

2

4

6
K-means, # clusters = 2 after 10 iterations

Cluster 1
Cluster 2

(i) K-means (10 iterations)

Fig. 5. Clustering process of Problem 5. Plots (a), (b) and (c) are from our algorithm
with σ = 1.5 in the Gaussian kernel, (d), (e) and (f) are from our algorithm with
σ = 0.5, (g) and (h) come from DBSCAN, and (i) is from K-means.

for i=1:100

f1(i) = (-1+2*(i-1)/99, sqrt(1-(-1+2*(i-1)/99)^2)+unifrnd(-0.1,0.1));

f2(i) = (-2+4*(i-1)/99, -sqrt(4-(-2+4*(i-1)/99)^2)+unifrnd(-0.1,0.1));

end

X = [f1;f2];

The data points in Problem 6 constitute 2 non-convex clusters. The clustering
obtained by the Algorithm 1 when σ = 0.75 successfully identifies the 2 clusters
(plots (a), (b) and (c)) of Fig. 6. However, when σ = 1.5, there is a point that
is not assigned to the corresponding cluster when the algorithm stops (see plots
(d), (e) and (f)). DBSCAN successfully identifies the 2 clusters (setting MinPts
to 5), although for ε = 0.5 defines 2 noise points (see plots (g) and (h)). The
K-means clustering (plot (i)), with provided K = 2, identifies 2 clusters as if
they were linearly separable.

Kernel Clustering Algorithm 13

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1
Initial centers randomly selected points

Cluster #1
Cluster #2

(a) Initialization

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Iteration 1: merge+split+ASSIGN procedures

-2

-1.5

-1

-0.5

0

0.5

1
Cluster #1
Cluster #2

(b) 1st. iteration σ = 0.75

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Iteration 4: merge+split+ASSIGN procedures

-2

-1.5

-1

-0.5

0

0.5

1
Cluster #1
Cluster #2

(c) Final iteration σ = 0.75

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Iteration 1: merge+split+ASSIGN procedures

-2

-1.5

-1

-0.5

0

0.5

1
Cluster #1
Cluster #2

(d) 1st. iteration σ = 1.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Iteration 2: merge+split+ASSIGN procedures

-2

-1.5

-1

-0.5

0

0.5

1
Cluster #1
Cluster #2

(e) 2nd. iteration σ = 1.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Iteration 3: merge+split+ASSIGN procedures

-2

-1.5

-1

-0.5

0

0.5

1
Cluster #1
Cluster #2

(f) Final iteration σ = 1.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

DB index 0.77922

-2

-1.5

-1

-0.5

0

0.5

1
DBSCAN (= 0.5, MinPts = 5), # clusters = 2

Noise
Cluster 1
Cluster 2

(g) DBSCAN ε = 0.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

DB index 0.80787

-2

-1.5

-1

-0.5

0

0.5

1
DBSCAN (= 0.75, MinPts = 5), # clusters = 2

Cluster 1
Cluster 2

(h) DBSCAN ε = 0.75

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

DB index (X) = 0.81944

-2

-1.5

-1

-0.5

0

0.5

1
K-means, # clusters = 2 after 10 iterations

Cluster 1
Cluster 2

(i) K-means (10 iterations)

Fig. 6. Clustering process of Problem 6. Plots (a), (b) and (c) are from our algorithm
with σ = 0.75 in the Gaussian kernel, (d), (e) and (f) are from our algorithm with
σ = 1.5, (g) and (h) come from DBSCAN, and (i) is from K-means.

Problem 7. 150 data points and two attributes: (Three clusters with two spher-
ically shaped clusters inside 3/4 of a perturbed circle.)

for i=1:50

f1(i) = (0.4+1.1*sin(2*pi*(30+5*(i-1))/360),

0.8*cos(2*pi*(30+5*(i-1))/360)+unifrnd(-0.025,0.025));

end

Sigma = [0.01 0; 0 0.01]; mu1 = [0 0]; mu2 = [0.8 0];

f2 = mvnrnd(mu1,Sigma,50); f3 = mvnrnd(mu2,Sigma,50); X = [f1;f2;f3];

The data points in Problem 7 define non-linearly separable clusters. A suc-
cessful clustering is obtained by the KCDbased algorithm with a small value of
σ (0.35), starting with an initial clustering of 5 groups, as shown in plots (a),
(b) and (c) of Fig. 7. When σ is set to a larger value (1.5), the clustering process
evolves very slowly and the algorithm stops with still 5 clusters - plots (d), (e)
and (f). DBSCAN successfully identifies the 3 clusters when ε is set to 0.25 (plot

14 M.F.P. Costa, A.M.A.C. Rocha, E.M.G.P. Fernandes

-0.5 0 0.5 1 1.5

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Initial centers randomly selected points

Cluster #1
Cluster #2
Cluster #3
Cluster #4
Cluster #5

(a) Initialization

-0.5 0 0.5 1 1.5

Iteration 3: merge+split+ASSIGN procedures

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Cluster #1
Cluster #2
Cluster #3
Cluster #4

(b) 1st. iteration σ = 0.35

-0.5 0 0.5 1 1.5

Iteration 5: merge+split+ASSIGN procedures

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Cluster #1
Cluster #2
Cluster #3

(c) Final iteration σ = 0.35

-0.5 0 0.5 1 1.5

Iteration 2: merge+split+ASSIGN procedures

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Cluster #1
Cluster #2
Cluster #3
Cluster #4
Cluster #5

(d) 2nd. iteration σ = 1.5

-0.5 0 0.5 1 1.5

Iteration 4: merge+split+ASSIGN procedures

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Cluster #1
Cluster #2
Cluster #3
Cluster #4
Cluster #5

(e) 4th. iteration σ = 1.5

-0.5 0 0.5 1 1.5

Iteration 7: merge+split+ASSIGN procedures

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Cluster #1
Cluster #2
Cluster #3
Cluster #4
Cluster #5

(f) Final iteration σ = 1.5

-0.5 0 0.5 1 1.5

DB index 0

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
DBSCAN (= 0.5, MinPts = 5), # clusters = 1

Cluster 1

(g) DBSCAN ε = 0.5

-0.5 0 0.5 1 1.5

DB index 2.5536

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
DBSCAN (= 0.25, MinPts = 5), # clusters = 3

Cluster 1
Cluster 2
Cluster 3

(h) DBSCAN ε = 0.25

-0.5 0 0.5 1 1.5

DB index (X) = 1.0094

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
K-means, # clusters = 3 after 10 iterations

Cluster 1
Cluster 2
Cluster 3

(i) K-means (10 iterations)

Fig. 7. Clustering process of Problem 7. Plots (a), (b) and (c) are from our algorithm
with σ = 0.35 in the Gaussian kernel, (d), (e) and (f) are from our algorithm with
σ = 1.5, (g) and (h) come from DBSCAN, and (i) is from K-means.

(h)), but converges to just one cluster when ε = 0.5 (plot (g)). The MinPts was
set to 5 so that the successful clustering in plot (h) is obtained. As expected,
K-means (setting K = 3) converges to 3 clusters assuming that they are linearly
separable.

5 Conclusions

A kernel-based partitioning clustering algorithm is presented to address the is-
sue related to the identification of non-linearly separable clusters. The Kernel
Clustering Diameter-based algorithm iteratively merges clusters, based on the
radii and average radii of the two clusters with the closest centers, and removes a
cluster that has a very small number of points. The algorithm is also able to split
a cluster that has the largest difference between its diameter and the smallest
distance between its cluster points. To activate the splitting process, the cluster
diameter and the number of points in the cluster have to satisfy some conditions.

Kernel Clustering Algorithm 15

In the kernel sense, assigning points to clusters involves minimizing the sum
of the squared distances of the points to the centers in the feature/kernel space.
The Gaussian kernel is used to compute the squared distances of the points to
the centers, between centers, and between points of a cluster.

The experiments with seven datasets show that the performance of the KCD-
based algorithm is sensitive to the value of the parameter σ, in the Gaussian
kernel. A large value gives a successful clustering for datasets with clusters not
well separated, and a small value is better when the points in the dataset form
well separated clusters. Furthermore, larger values of σ imply larger Gaussian
kernel values.

The experiments with this algorithm will be extended to higher dimensional
datasets. Furthermore, as the iterations proceed, the smallest distance between
points of two clusters will be used to identify well separated clusters and select
an adequate value for the parameter σ.

Acknowledgments. The authors wish to thank the three anonymous referees for

their comments and suggestions to improve the paper.

References

1. Xu, D., Tian, Y.: A comprehensive survey of clustering algorithms. Ann. Data Sci.
2(2), 165–193 (2015)

2. Mohammed, J.Z., Meira Jr., W.: Data Mining and Machine Learning: Fundamental
Concepts and Algorithms, 2nd Edition, Cambridge University Press (2020)

3. Greenlaw, R., Kantabutra, S.: Survey of clustering: algorithms and applications.
Int. J. Inf. Retr. Res. 3(2), 29 pages (2013)

4. MacQueen, J.B.: Some methods for classification and analysis of multivariate ob-
servations. In L.M. Le Cam, J. Neyman (Eds.), Proceedings of the fifth Berkeley
Symposium on Mathematical Statistics and Probability, University of California
Press, vol. 1, 281–297 (1967)

5. Schölkopf, B., Smola, A., Müller, K.R.: Nonlinear component analysis as a kernel
eigenvalue problem. Neural Comput. 10, 1299–1319 (1998)

6. Jain A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput.
Surv. 31(3), 264–323 (1999)

7. Xu, R., Wunsch II, D.: Survey of clustering algorithms. IEEE Trans. Neural Netw.
16(3), 645–678 (2005)

8. Ester, M., Kriegel, H.-P., Sander, J., Xiaowei, X.: A density-based algorithm for
discovering clusters in large spatial databases with noise. In Proceedings of the
Second International Conference on Knowledge Discovery in Databases and Data
Mining, 226–231. Portland, OR: AAAI Press, (1996)

9. Lloyd, S. P.: Least Squares Quantization in PCM. IEEE Trans. Inf. Theory 28,
129–137 (1982)

10. Heris, M.K.: Evolutionary Data Clustering in MATLAB.
https://yarpiz.com/64/ypml101-evolutionary-clustering, Yarpiz, (2015)

11. Heris, M.K.: DBSCAN Clustering in MATLAB. https://yarpiz.com/255/ypml110-
dbscan-clustering, Yarpiz, (2015)

	Lecture Notes in Computer Science

