
Universidade do Minho
Escola de Engenharia
Departamento de Informática

Diogo Filipe Lopes Soares

Python-Tutor on program comprehension

December 2020

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Diogo Filipe Lopes Soares

Python-Tutor on program comprehension

Master dissertation
Intregrated Master’s in Informatics Engineering

Dissertation supervised by
Pedro Manuel Rangel Santos Henriques
Maria João Varanda

December 2020

S TAT E M E N T O F I N T E G R I T Y

I hereby declare having conducted this academic work with integrity. I confirm that I have
not used plagiarism or any form of undue use of information or falsification of results along
the process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the
University of Minho.

Diogo Soares

i

AU T H O R C O P Y R I G H T S A N D T E R M S O F U S A G E B Y T H I R D PA RT I E S

This is an academic work which can be utilized by third parties given that the rules and
good practices internationally accepted, regarding author copyrights and related copyrights.

Therefore, the present work can be utilized according to the terms provided in the license
bellow.

If the user needs permission to use the work in conditions not foreseen by the licensing
indicated, the user should contact the author, through the RepositóriUM of University of
Minho.

License provided to the users of this work

Attribution-NonCommercial
CC BY-NC
https://creativecommons.org/licenses/by-nc/4.0/

ii

A B S T R A C T

The time spent analysing a software with the goal of comprehending it is huge and
expensive. Reduce the time necessary to a professional understand a program is essential
for the advance of technology. Therefore, the program comprehension has always been
an area of interest as realizing how a programmer thinks can help facilitate many of their
daily activities, making the developer a more productive worker. As the world begins to
reshape itself thanks to the advances of technology, this area of research gains more and
more relevance. This project aim to study the tools developed within the comprehension of
programs that usually are associated to software maintenance and analysing the animation
web tool Python-Tutor. After this study, it’s required to explore Python-Tutor to understand
how it can be improved with the addition of important features to program comprehension
as Control Flow Graph (CFG), Data Flow Graph (DFG), Function Call Graph (FCG) and
System Control Graph (SCG). The idea behind this is to allow new programmers to view
their programs and create a visual image of them in order to understand them and improving
their skills to understand someone else’s programs.

Keywords: program comprehension, software visualization, Python-Tutor, graphs, soft-
ware animation

iii

R E S U M O

O tempo despendido a analisar um programa de forma a compreendê-lo é enorme e
dispendioso. Reduzir o tempo necessário para um profissional compreender um programa
é fulcral para o avanço da tecnologia. Assim, a compreensão de programas sempre foi
uma área de interesse pois perceber como um programador pensa pode ajudar a facilitar
muitas atividades diárias deste, tornando o programador num trabalhador mais produtivo.
À medida que o mundo se vai moldando à informática, esta área de pesquisa tem ganho
cada vez mais relevância. Neste projecto iremos estudar as ferramentas desenvolvidas no
âmbito da compreensão de programas associadas à manutenção de software e analisar
a ferramenta de animação web Python-Tutor. Iremos explorar esta ferramenta de modo a
perceber como a podemos melhorar através da inclusão de novos recursos importantes para
a compreensão de programas, tais como: o Grafo de Controlo de Fluxo, Grafo de Fluxo de
Dados e o Grafo de Chamadas de Funções. A ideia base passa então, por permitir aos novos
programadores visualizar os seus programas e criar uma imagem visual destes de modo a
os compreenderem e a melhorarem as suas competências para compreenderem programas
de outrem.

Palavras-chave: compreensão de programas, visualização de programas , Python-Tutor,
grafos, animação de programas

iv

C O N T E N T S

1 introduction 1

1.1 Context and Motivation 1

1.2 Goals 2

1.3 Research Hypothesis 2

1.4 Document Structure 3

2 state of the art 4

2.1 Program Comprehension Overview 4

2.1.1 What is Program Comprehension? 4

2.1.2 Evolution of Program Comprehension 5

2.2 Software Visualization 6

2.2.1 Visualization Techniques 7

2.3 Python-Tutor 10

2.3.1 Visualize Execution 11

2.3.2 Live Help 11

2.3.3 Tests 12

2.4 Other tools 12

2.4.1 AgileJ StructuredViews 12

2.4.2 Sourcetrail 13

2.4.3 CodeSonar’s visualization software 14

3 proposal 16

3.1 Expected Difficulties 16

3.2 Proposed Approach 16

3.3 System Workflow 17

3.4 System Architecture 18

4 graph generator 19

4.1 Grammar 19

4.2 Graphs 20

4.2.1 Function Call Graph 20

4.2.2 Control Flow Graph 22

4.2.3 Data Flow Graph 25

5 integration on python-tutor 28

5.1 System Architecture 28

5.2 Visual 29

v

contents vi

6 tests and results 32

6.1 Result Analysis 32

6.1.1 Programs Complexity 33

6.1.2 Graphs Accuracy 33

6.1.3 Graphs on Program Comprehension 35

6.1.4 Final thoughts 37

7 conclusion 38

7.1 Final Considerations 39

7.2 Future Work 39

a survey 43

a.1 Survey fulfillment instructions: 43

a.2 Survey Questions: General 44

a.3 Survey Questions: Function Call Graph Evaluation 45

a.4 Survey Questions: Control Flow Graph Evaluation 46

a.5 Survey Questions: Data Flow Graph Evaluation 47

b individual answers to the survey 48

L I S T O F F I G U R E S

Figure 1 Example of Nassi–Shneiderman diagram 8

Figure 2 Example of Tree-map diagram 8

Figure 3 Example of a sunburst diagram[Syn] 9

Figure 4 Example of a tree layout graph 9

Figure 5 Example of a hierarchy graph 10

Figure 6 Example of an orthogonal graph 10

Figure 7 Example of visualize execution on Python-Tutor 11

Figure 8 Example of a class diagram generated by AgileJ StructuredView 13

Figure 9 Sourcetrail example 14

Figure 10 Codesonar examples 15

Figure 11 System Workflow 17

Figure 12 System Architecture 18

Figure 13 A visual example of how the data of function call graph is stored and
its result 21

Figure 14 Function Call Graph example 22

Figure 15 Visual representation of data structure of Control Flow Graph 22

Figure 16 Examples of CFG with loops and conditionals statements 23

Figure 17 Transformation of code in data 24

Figure 18 Example of a CFG with break and continue statements 24

Figure 19 Transformation of code in data 26

Figure 20 Example of one DFG 26

Figure 21 Architecture of Python-Tutor’s new feature 29

Figure 22 Visual representation of the new feature 30

Figure 23 Zoom feature 31

Figure 24 Complexity level of functions used to test the feature 33

Figure 25 Accuracy of each type of graph 34

Figure 26 Perceptions on FCG 35

Figure 27 Perceptions on CFG 36

Figure 28 Perceptions on DFG 37

Figure 29 Example of a valid input 44

Figure 30 Example of a Function Call Graph 45

Figure 31 Example of a Control Flow Graph 46

Figure 32 Example of a Data Flow Graph 47

vii

1

I N T R O D U C T I O N

This first chapter will serve as an introduction overview on the work that will be pictured
here. It’ll start by presenting the problem and the context in which this project is inserted,
followed by its motivation. It’ll end with a list of the goals of this thesis and its structure.

1.1 context and motivation

We live in a time where the comprehension of the programming world is more valuable
than ever and it’s expected to continue like that as the world tends to became more and
more dependent of technology. However, the majority of people never had contact with
the skeleton of this world, in other words, the code that makes technology run, and those
who had, usually began this journey on their college years. But if this type of knowledge
is becoming more and more valuable, isn’t it urgent to teach people sooner? And people
that are already on the job market, wouldn’t it be important to them to learn how this world
works? But how can we teach some apparent complicated notions to people that are not
familiarized with them?

There’s also the self taught programmers that use the various tutorials along the web to
learn and refine their skills. The methods of these tutorials are usually very similar and the
majority of them use the same formula: displays an example and makes you write a similar
code. This method allows the user to learn how the language in question works and gives
the users the ability to write programs with it. But to being capable of full understanding
any language, you don’t need just to be shown how it’s done but also understand what truly
happens behind it and the correlations within a program.

With this type of knowledge and familiarity with coding, people will be able and feel
more comfortable to face nowadays problems and comprehend the until then unknown, side
of technology.

After learning how to code and becoming a professional in this area, is expected to a
normal developer spend much of its time working and looking to others programs and code
that isn’t their ones. If sometimes it’s already hard to understand your own code after some
time without looking at it, imagine to a software engineer that has to do the maintenance

1

1.2. Goals 2

of code he never saw before. The average developer spends about 60% to 90% of their
time understanding the program and this data isn’t changing over time[Sie16]. This data
is understandable because normally the programs tend to be complex and with numerous
lines and files. Also, everyone thinks different so everyone programs different, hindering the
process of understanding programs written by others. As a program is usually an attempt
to solve a real life problem[You14], programmers write their code according to the solution
they find to that problem. So, if you would take a different approach to that problem it can
also prejudice you on the comprehension of that program.

One way that could help understand the approach the original programmer took and
even understanding all the components of the program is through documentation but
unfortunately a good documentation is rare and when there is one, its stays quickly outdated.

Thereby, the idea behind this thesis is a platform where you can not only learn how to
program but also be capable to observe the entire structure of a program and how it is
organised, improving the perception of a new programmer of existing softwares and the
ability to comprehend a program faster. A tool where beginners can learn and understand
their code and maybe a tool that can even easy up the job of a software developer with
smaller programs and make him more productive. The way to do this is by ”giving programs
another aspect than that of their source code”[GH01].

1.2 goals

This master thesis aims to improve the program comprehension of a program by using
software visualization. With this in mind, the platform Python-Tutor will be improved by
incorporating a new and innovative feature to it.

It is intended to make this the platform that teachers will use and recommend to their
students in order to improve their programming skills. Furthermore, this feature is not only
aimed to people that are learning but also to be able to help experienced software developers
on their daily jobs.

The feature idealized for this will work with an input that will be the user code and it will
be inserted in Python-Tutor, where it will be analysed and then produce graphs allowing
the user to acquire a better comprehension of the program in question.

1.3 research hypothesis

The appropriate combination of software animation techniques with visualization tools
contributes to facilitate the comprehension of programs.

1.4. Document Structure 3

1.4 document structure

After the presentation of the motivation and the goals of this project in the present chapter,
the next one will contain the State of Art and the definition of some important concepts.

The state of art is composed by the definition of Program Comprehension, a fundamental
concept to understand in order to successfully achieve this project’s goal, and Software
Visualization. Still on this chapter it will be presented the web platform Python-Tutor from
the point of view of an user as well as some similar tools to the one that is aimed to be built.

On the next chapter it’s displayed how it is pretended to accomplish this project’s goals
and its challenges.

On chapter 4 it will be exposed how the tool developed works explaining all the steps
since the input as code until its final transformation in the various graphs available.

Still on the development side, the chapter 5 will contain the explanation of the process of
integration between the new feature with the platform already available.

The chapter 6 presents the results gathered in a survey about the feature developed and
has a analysis to that results.

On the final chapter lies the conclusion of this document as well as the work plan for the
future.

2

S TAT E O F T H E A RT

This chapter will contain the research that was done to be able to execute this master’s
project goal as well as possible. For being capable to build a tool that can help understand a
program it was needed to understand the concepts behind the construction of one tool like
this and to research what was being made and what is already done.

Thereby, this chapter will contain the research on the concepts: Program Comprehension
and Software Visualisation. The two pillars necessary for the successful construction of this
tool.

It will also contain research on Python-Tutor, the platform where it is intended to im-
plement this feature on, as well as other tools in order to visualize what is already on the
market and what can work or not. In other words, see what can be used from the different
tools available to build the best possible tool.

2.1 program comprehension overview

Researches on program comprehension were analysed to understand what are their
conclusions and what’s already accomplished in this area. The purpose of this study is
to recognize the best strategy to build a tool that can be actually helpful but first, what is
program comprehension?

2.1.1 What is Program Comprehension?

Program comprehension is the cognitive process of understanding a software’s goal and
how it is accomplished. This process involves detecting or inferring different kinds of
relations between program parts [Pen87]. As a cognitive process, it is difficult to formulate
an accurate conclusion since it’s dependent of the human factor. An easy example is the
difference of level of expertise of two programmers. The expertest one would usually
comprehend the program faster than the other.

This is due to the fact that the most experienced programmer has more general knowledge
than the other. This type of knowledge is one of the two types needed to comprehend a

4

2.1. Program Comprehension Overview 5

program. Also known as basic knowledge, it allows the programmer to recognise code
structures and algorithms. It’s related to a developer programming languages skills and
programming principles.

The other one is the software-specific knowledge that represents their level of understand-
ing of the software in question[MV95]. This second type of knowledge can be nonexistent
when the programmer first looks at the software or he can had already acquired some of this
knowledge, if he already knows the goal of the software, for example. If on one hand the
general knowledge is independent, on the other hand the specific knowledge will improve
as the programmer analyses the code. This process will be scrutinized with more detail
further on the next chapter.

2.1.2 Evolution of Program Comprehension

When program comprehension started to be a research field there were less information
and much less technology than now, so researchers had to be pragmatic and began these
studies with simple methods like think-aloud protocols. Think-aloud protocol is a method
that was used to understand the cognitive process[Yos08] where the person in study verbalize
all his thoughts.

The use of this method allowed us to realise that the thoughts of a developer differ
consonant the familiarity of a program’s domains[SV98]. With this in mind, it was derived
two concepts of comprehension models, the top-down comprehension model and the
bottom-up comprehension models.

The top-down approach is used when the programmer is familiar with the program he’s
trying to understand. He starts by creating a general hypotheses about the program goal and
how it is achieved by using his previous knowledge about the program. This is called the
‘expectation-based’ comprehension, where the programmer has pre-generated expectations
of the code’s meaning[OBS04].

After creating his hypotheses, the developer starts searching in the code for algorithm-
s/structures that he can link to his theory and refines his hypotheses as he does that[Bro83].
This is the ’inference-based’ comprehension[OBS04].

If the programmer has no previous knowledge about a program, he has no other choice
than analyse line by line to create a hypothesis about the program purpose. In this method,
the developer starts aggregating functions by their goals.

What usually happens is that developers end up by using an integrated model[MV93]
where they use top-down approach when possible and bottom-up when necessary.

Another method used on the first researches was memorization where the programmer
have to rewrite the program after seeing it. Researchers conclude that this could be only
possible if the programmer had understood the program. They verified that developers

2.2. Software Visualization 6

could easily rewrite the program when it was written in order of execution. This means
that how the code is written affects the comprehension of it, which is good news right?
Not exactly, although it would be great have an uniformed structure that allowed a better
comprehension of programs, how that structured should be varies from person to person. A
different form of coding can really slow down the comprehension of a program for the most
experienced programmer[SE84]. On the other hand, there are global concepts that helps
achieving this like variables names or indentation rules[SMMH77].

Nowadays, there’s even more factors that can affect program comprehension. For example,
a simple color schema helps the programmers comprehending a program [Ram86] faster
and each text editor/IDE has its own so, this may imply discrepancies on the researches
results, just because the test was conducted on an environment more familiar to one person
that uses a software more similar to the one where the tests were conducted, as opposed to
others participants who prefer others tools.

Therefore, although difficult it is essential to create a neutral environment in order to get
the bests results and truly understand what helps in program comprehension.

On the other side, the evolution of technology also brought to us new ways to try to
decode program comprehension. One tool that is being tested is the eye tracking technology
where researchers can visualize where the developers focus when trying to comprehend
a program. Unfortunately, there is no conclusions for now because researches are still in
progress.

New studies will not only focus on the comprehension of the source-code, but also on
the comprehension of the programmer on structures, hierarchies and architecture of the
program as well on the relations between components[Sie16]. And these are aspects where
we think we can help to understand with the visualization of our diagrams.

2.2 software visualization

Software visualization is the process of giving to a program a more visual aspect. It takes
the information that is presented in the source code and converts it to a more graphical
representation with the goal of improving the comprehension of that program.

Although a visual image can help to understand a program, it’s not that simple since
a basic program can have multiple representations. The best one will depend on the task
in cause and what the developer wants to know. This also means that each representation
has to be thought for specific tasks and a good portray of the system is imperative for it
to be helpful. ”Simply repackaging massive textual information into a massive graphical
representation is not helpful”, so a linear translation is not ideal since ”experts want to see
software visualised in context – not just what the code does, but what it means”.[Pet02]

2.2. Software Visualization 7

This type of representations that portray the source code can be helpful for new program-
mers because it helps them to understand in a more visual way what the code does, but on
the other hand, for experts who are comfortable with the code itself, it does not bring new
information that can speed up the process of program comprehension.

Sometimes the representation of a big program is so compressed that doesn’t allow the
developer to gather the information he needs. This obstacle can be surpassed by making the
depiction interactive. One simple interaction that can make great difference is the ability of
zooming, allowing the user to focus on what he’s really interested in[Had18]. The addition
of interactivity also improves the user experience since he can choose what to do and what
to watch.

2.2.1 Visualization Techniques

Here it will be displayed some techniques for software visualization. There are two types
of software visualization, static and dynamic[LS06]. A static software visualization it’s when
it’s representation doesn’t change over time and it’s based on static information, so the
representation is just an image of the program. The techniques shown in this section will all
be static.

It’s dynamic when that representation is animated and the information that it displays
change as the program is executed. A good example of an animated visualization is
Python-Tutor itself that will be presented on the next section.

2.2.1.1 Nassi–Shneiderman diagram

This diagram is used to represent a control-flow of a program and it was created by Nassi
and Shneiderman[NS73]. It shows all the paths possible within a program with a simple
approach. It follows a top-down design and uses nested boxes to represent sub-problems.
In the example presented bellow it’s possible to visualize the different types of blocks that
this diagrams offer. There is the process blocks that represent the simple actions and when
that action is performed it advances to the next block. There’s also the branching blocks that
represent the conditional statements and divide the path in two. The last representation that
is possibly to identify is the loop one, where all actions inside the subset with a side-bar
extending out from the condition are executed in each loop. It’s not a common representation
nowadays.

2.2. Software Visualization 8

Figure 1: Example of Nassi–Shneiderman diagram

2.2.1.2 Space-Filling

Space-filling aims to compress the structured information of a program[LS06]. This
type of representation is used to present hierarchies like computer directory and file struc-
tures. Hierarchies are one of the most common and important information structures in
computing[SCGM00]. This technique also allow us to visualize code metrics and other code
related statistics[BE95].

2.2.1.2.1 Tree-maps

The tree-map visualization method maps hierarchical information to a rectangular 2-D
display in a space-filling manner[JS91]. The size of each component can be set to be propor-
tional to a given metric like its number of lines for example. Its color can be used to transmit
other data of the program as well.

Figure 2: Example of Tree-map diagram

2.2. Software Visualization 9

2.2.1.2.2 Sunburst

Sunburst is another space-filling technique but instead of a rectangular layout it uses a
radial one where the higher-level hierarchy items stay close to the center. Besides colors, the
radial angle corresponds to a directory or file size[SCGM00].

Figure 3: Example of a sunburst diagram[Syn]

2.2.1.3 Graphs

Graphs are the most common representation and most recognizable one. One graph
consists of nodes and arcs where the nodes represent blocks of code and the arcs its flow.
How the nodes are disposed can affect the readability and effectiveness of a graph[LS06]
making the choice of its layout an important one. It will now be presented some graphs
layouts.

2.2.1.3.1 Tree Layout

The tree layout hasn’t necessary the shape of a tree since it can be disposed in a radial
way. This layout has essentially two relations between nodes, ancestor or children. If node 1

is above node 2, then 1 is the ancestor of node 2 and 2 is children of 1. The ancestor can
have various children but each children only has one ancestor.

Figure 4: Example of a tree layout graph

2.3. Python-Tutor 10

2.2.1.3.2 Hierarchical Layout

This style represents the flow with a directed graph where the nodes, as the name indi-
cates, are disposed hierarchically by layers in a top-to-bottom orientation.

Figure 5: Example of a hierarchy graph

2.2.1.3.3 Orthogonal Layout

This layout is not as strict as the others since nodes can have a free disposition and the
relations between them are not limited. Useful to represent complex networks.

Figure 6: Example of an orthogonal graph

2.3 python-tutor

In this subsection it will be done a detailed presentation on Python-Tutor exposing all of
its features. Python-Tutor is an animation web tool that intends to help new programmers
understand their code and currently supports some of the most popular languages at the
moment like Python, Java, C, C++, JavaScript, TypeScript and Ruby[Put]. This software is
designed to help beginners to try their code and test it.

2.3. Python-Tutor 11

2.3.1 Visualize Execution

This is the main feature of Python-Tutor, an interactive step by step presentation that
shows the user what is really happening behind every line of code. This allows the user to
keep up with the modifications of values that each variable suffers as each line of code is
executed. The user has total control of this presentation as he can choose if he wants to go to
the next or previous step. As it can be seen on the next image the variables are aggregated
by function. If there’s a global variable it will appear on the global frame like the functions
in this example do. This feature allows the user to visualize data dependencies and also
follow its value modifications as the functions run.

Figure 7: Example of visualize execution on Python-Tutor

2.3.2 Live Help

Another groundbreaking feature that this platform offers is the possibility to discuss and
try to achieve a solution for a problem you have with others users. This is the way it works:

• An user that has a code goal ask to get live help;

• Others users can join his session;

• Each session has its own private chat;

• The session is synchronized for all users.

2.4. Other tools 12

Besides this, the user responsible for the session can close the session for others anytime
he wants or share his session by link. This is a great feature for someone who is struggling
on how to write determined function by himself because allows the communication and
discussions with others users allowing them to help each other.

2.3.3 Tests

Python-Tutor also allows you to validate your own program with comparisons between the
output you say it should achieve with a certain input and the actual output your functions
calculate. This feature isn’t compatible with all languages that Python-Tutor supports as C,
C++ and Java are not supported.

2.4 other tools

In these subsections will be presented some other tools that use software visualization in
order to improve the program comprehension of users.

2.4.1 AgileJ StructuredViews

AgileJ StructuredViews is a plugin for eclipse that generates UML class diagrams from
the source code. UML is a language used to structure software projects that is easy to
understand so it can be shown to the developers and even to the client. The problem with
this language is that unlike other fields, in programming it’s not possible to build a software
following a plan in detail because of the constant changes to which it is subject to. This
makes the UML diagrams quickly out of date.

So, the strategy of this plugin is making things in the reverse way, it creates the UML
diagrams from the code creating an easy to read and updated representation of the code.
This is a plugin for Java programs that allows the user to visualize dynamically the program
structure by presenting it as class diagrams in a web browser. Unlike the Python-Tutor, this
tool is not about making the user understand how the functions in a program work but to
give the user an overview of the classes and their relationship in a program. This plugin
can be worth for someone who is looking for a program for the first time by helping them
understand how it is organised.

2.4. Other tools 13

Figure 8: Example of a class diagram generated by AgileJ StructuredView

2.4.2 Sourcetrail

Sourcetrail is a tool that can be connected to an IDE or a text editor that displays an
interactive dependency graph. It also offers to the user the possibility to see the code that
is represented on the graph and a search bar to search functions, classes or variables for
example. Its interactivity allows the user to see both of an overview of the program and the
detail of a function/variable. You can also see all the calls to a determined function or the
general function call graphs and the information of classes like its methods and variables.

So, Sourcetrail allows the user to visualize the relationships between classes as the previous
tool but offers much more besides that. The interactivity and the dynamism present in the
tool are what makes this tool looking so great. The user can navigate by all of his program
and goes direct to what he wants to see. There’s features of this tool that are offered to the
user for making it more easy to navigate and access every part of his program, but what is
connected and can help on the program comprehension is the fact that the user can see all
the dependencies of any class, variable or function and see how they relate to each other in
a very pleasant way.

2.4. Other tools 14

Figure 9: Sourcetrail example

2.4.3 CodeSonar’s visualization software

CodeSonar offers a visualization software that shows an interactive call graph where you
can see the directories, files and functions rearranged hierarchically. It allows you to choose
which metrics you want to be displayed in the graph as well compare functions/files based
on that metrics. One of this metrics are warnings, you can see how many warnings there is
by file and it even suggest which path may be the origin of a warning. It also allows the
user to change the layout of the graph and add notes to the nodes, like sourcetrail.

2.4. Other tools 15

(a) Overview call graph (b) Call graph of function

Figure 10: Codesonar examples

3

P R O P O S A L

In this chapter it will be presented the expected difficulties to accomplish this project goal
as well as the proposed solution. The graphs that will be implemented will be explained here
and its utilities to the user. It will also be shown the system workflow and its architecture.

3.1 expected difficulties

This project requires adaptability because it is intended to be implemented on other
software and as previous said on this report, it’s not easy to analyse someone else software
and that’s the first step of the implementation of this project. Therefore, it’s expected
some difficulty on the recognition of Python-Tutor structure and on finding the best way to
incorporate the new features in.

Another challenge that this project imposes is not how to generate the graphs wanted, but
make them different of the ones that already exist and make them appealing to the users so
that they can accomplish their purpose.

3.2 proposed approach

This master thesis main goal is to improve the platform Python-Tutor by incorporating
new and innovative features to it. The objective is an interactive tool where users can select
what kind of graphs/diagrams want to be displayed and be able to focus just on the desired
part of the code. Some graphs that can be helpful and can possible integrate this feature are:

– Control Flow Graph (CFG): It’s a representation of all paths that might be traversed
through a program during its execution where which node represents a basic block of
code. By observing a control flow graph we can see to where the values go and from
where they came. It’s a very useful graph to realize the dependencies that exist in
the program and which statements are influenced by others. A statement B is control
dependent on a statement A if B execution depends of the A outcome [Zel09].

16

3.3. System Workflow 17

– Data Flow Graph (DFG): In this graph we have two types of nodes where one represents
the values/variables and other the operators[Wol12]. This graph allows the user to
observe all operations that any variable suffers in its lifetime and the existing data
dependencies. It’s said that B is data dependent of A when A’s data is used in B.

– Function Call Graph (FCG): This type of graph displays the relationships between a
function and the functions it calls[Hol16]. It allows the user to identify the most used
functions and the ones that are not being used at all. Knowing which functions are
most called can be useful to improve the program performance since improving these
functions will affect a big part of the program.

3.3 system workflow

This feature will be incorporated on Python-Tutor so it has to be adapted to it. Currently
the Python-Tutor displays buttons to execute the features previously mentioned, so what is
intended to do is to add another one for the visualization of graphs. It will now be shown a
mock-up of the desired flow.

Figure 11: System Workflow

3.4. System Architecture 18

3.4 system architecture

The basis of this project will be the current Python-Tutor architecture, so it will be devel-
oped in python, like Python-Tutor. The user input will be passed through the Python-Tutor
front-end and then it will be parsed by Python-Tutor and follow the existent flow, or by the
new feature to be developed. The new feature will require the input to be parsed to collect
the information needed to build each graph. Depending of the requirements, the user input
will be parsed by a existent python parser or it will be required to build one. In case of it
be the last option, the new parser will be build with ANTLR. Once the information about
the user program is all gathered the next step is to build the graphs. Initially the graphs
will be build in python with the help of some libraries like igraph for example. Then it may
be required using external tools to accomplish a better visual graphs, interactive and more
appealing for users.

Figure 12: System Architecture

4

G R A P H G E N E R AT O R

In this chapter it will be presented all the steps required to build any type of graph that is
proposed on this thesis since the more technical work like the gathering of information to
the more visual one, like the drawing of graphs and examples of its result.

4.1 grammar

To gather the information that is presented in a input written in python language it’s
needed to understand that language and its rules. To do this it is needed to build a grammar.
A grammar is a set of rules that the input has to follow to be recognized. In this specific
case, it is required a grammar that follows python rules. Thereby, in this project it is used a
combination of two grammars made available on ANTLR’s github. One grammar[KLSK14]
was used because of how well and simple it is written and because it is prepared to python
2 as well as python 3, and the other one[Kie14] was used as a guideline to use the first one
with python programs.

In some cases, related to the python language and the information necessary to extract, it
was required to make some minor modifications on the original grammar like splitting one
grammar rule into three different ones in order to treat the data more specifically.

On the other hand, the actions of each rule had to be constantly updated. Every time
some piece of code allowed to detect an unhandled case of at least one of the graphs, actions
had to be added or changed to one or more rules.

How the information was processed had to be the most accurate as possible and the data
passed the necessary to build the graphs faithfully, so the structures and what they contain
also had to be updated in order to match the needs. On the next section, the final form of
this structures to each graph will be presented and explained as well the information they
hold.

In order to cover all cases, the rules had to ”communicate” between themselves because
each rule had some important information that another rule would need to know in order to
save the data accurately. This communication couldn’t be done in a direct way because this
types of rules weren’t always executed one after another and some rules handled information

19

4.2. Graphs 20

for more than one graph. So, in order to kept all the data available for each rule, it was
necessary to create a big amount of local variables.

This local variables were divided in two types, there are variables with the purpose of
saving information that is not complete yet and others that just hold a boolean value. The
last type were created just to pass informative value for example, the data presented in a
segment of code will be treated different depending if it’s in a conditional body or not, so
there’s a variable to allow the program to know in what context that segment had appeared.

4.2 graphs

In this section it will be shown how the python programs have its information recognized
by the grammar and how it is treated and gathered for each type of graph.

4.2.1 Function Call Graph

Let’s begin with function call graph. There are two types of functions that can be called in
any program, functions defined by the developer or functions that are available in python
libraries. A function is recognized by a word (its name) followed by parenthesis or, in case
of being a function written by the programmer and its first appearance being its definition,
by the keyword ”def”.

The functions calls present in a program are gathered in a python dictionary where the
key is the name of the function that calls the others functions and the value the functions
that are called.

On figure 13 it can be observed how it’s made the storage of the information required to
create a Function Call Graph and its result. On the final graph the two types of functions
are distinguished by color, blue for the functions created by the user and green for python’s
functions. As it is shown, the defined functions allow the program to identify its arguments.

4.2. Graphs 21

(a) Visual representation of call graph structure

(b) Result of the information saved on structure

Figure 13: A visual example of how the data of function call graph is stored and its result

It will be now presented a graph generated by the software built to one program that
simulates the positions (by coordinates) of hockey players during a game.

4.2. Graphs 22

Figure 14: Function Call Graph example

4.2.2 Control Flow Graph

The data for the construction of a CFG is stored in a similar way of the previous graph,
that is in a dictionary with an entry for each defined function. The information linked with
each function is the part that changes. As the construction of this graph is not so linear as
the previous one, it is required to save more information on the dictionary. So, instead of
saving just the statement that is in the code it also saves the type of that statement and the
number of body where it appears.

Figure 15: Visual representation of data structure of Control Flow Graph

A statement is each line of code that is in the input and can have four different types, it
can be of the simple type that represents statements that not affect the flow of execution.
It can be of the loop type (a ”for” or a ”while”), a conditional which is separated in two
types, ”if” or ”elif”, or the last case, it can be of an ”else” type. These types help building

4.2. Graphs 23

this graph because it adds information to the node that will represent each statement. For
example, a node of one statement of the ”loop” or ”conditional” type will have to have two
edges coming out of him, one in case of the condition being true and the other in case of
being false. A ”loop” node will also have to have at least one more edge coming in from the
last statement inside the loop. An ”else” node will always be preceded of one node of the
others non-simple types.

(a) A loop representation

(b) Conditional statements (c) A loop with conditional statements in its body and an else for
loop condition

Figure 16: Examples of CFG with loops and conditionals statements

The number of body represents the number of tabs before the statement, in other words,
if that statement depends of a condition. The body (group of statements that depends of
one statement) of non-simple statements will always have at least one more number of body
than that statement itself. When the number of body changes from one statement to another,

4.2. Graphs 24

it allows the software to recognize that it will start a new body of statements or that one just
ended.

Figure 17: Transformation of code in data

There’s other statements that affect the flow of a program but do not have a special type,
like for example the reserved words break and continue. Statements composed with one
of these words are of simple type because the statement is just the word itself. As they are
easily recognizable there was no need of creating a special type for them.

Figure 18: Example of a CFG with break and continue statements

As it is observable in the figure 16 and 18, the CFG also contains coloured arrows in
order to be more intuitive for the user to identify which path is followed if the condition
present in the node is true (green arrow) or false (red arrow). Besides the color difference,

4.2. Graphs 25

the true path arrowhead is filled unlike the false one, which is non-filled. This difference
was implemented in order to the feature become more accessible to different users.

4.2.3 Data Flow Graph

Unlike the others graphs, this one is not so linear because the dependencies of one variable
depends not only of the other variables or functions results but also of loops or conditional
statements. There’s also variables that only exist on a determined context like inside of the
bodies of the statements previously mentioned.

Although this conditions, the information needed to build this type of graph is gathered
in the same way of the previous ones, more specifically like is shown on figure 15 but the
data on the tuples is slightly different. Moreover, there are three types of tuples in the
construction of this graph, one that represents a change of value of a variable, one that serves
to control the loops and conditionals dependencies and the other one it will be explained
later.

The first type of tuple is composed by the number of body, the name of the variable that
had its value changed and the new value of the variable or operations that produce that
new value. The last data is passed inside a list where each of its positions corresponds to a
different node.

The second type is also composed by the number of body but, instead of the name of the
variable, it has the conditional or loop statement and on the third position of the tuple the
alternative path, if exists, of that statement.

Thanks to conditionals and loops statements, there are points of the program that one
variable can have multiple values depending on the path that the execution of the program
took. For example, if we have a program that has the following line of code a = 5 and inside
an condition statement has a += 1, at the end of the program the value of a can be 5 or 6

depending on the value of the condition statement. And that’s the reason why is a third type
of tuple, to gather all the possibles values in just on node. So, the third type is composed by
a number that identifies this type of tuple, which in this case is ”-2”, the name of the ”final”
variable and a list of the names of variables that contain the possible values that the ”final”
one can have.

There’s shown on figure 19 an example of how these tuples are created as the code are
being parsed. Note to the names of variables that contain symbols that help to identify the
nodes referring to the same variable. This symbols are not shown on the final graph as we
can see on figure 20.

4.2. Graphs 26

Figure 19: Transformation of code in data

In this graph was fundamental to use colors on the nodes for it became more intuitive
for the user. Therefore it is used the colour green on the nodes that represent the variables
which value changed and in red the node that aggregates all possible values of that variable
at determined moment. The other nodes illustrate values or operations.

For it became more intuitive and informative there’s also boxes on the graph representing
loops or conditional statements. The nodes inside these boxes are dependent of these
statements. In the figure 20 is possible to visualize how the information displayed in the
figure 19 is demonstrated.

Figure 20: Example of one DFG

Analysing the code with the graph generated it is possible to conclude that the graph is
not 100% accurate because the final state of the variable returnNumber never will be zero like
the graph suggest it can be.

4.2. Graphs 27

This happens because this variable’s value change inside the if statement as well as in the
else statement, so the final value it will be one of that cases.

On the other hand it’s hard to keep tracking of all variables that may appear on all
conditional statements because one variable may appear on the if ’s body but not on the
else’s one and vice-verse. There’s also possible elif statements that can be numerous, making
it even more difficult the process of tracking the variables.

Therefor it was made the decision of showing as one possibility of the final value of a
variable be its value before the conditional statements, which in some cases it will be true
but on the others it will be not.

5

I N T E G R AT I O N O N P Y T H O N - T U T O R

In this chapter it will be explained how the integration of the new feature with Python-
Tutor was done. It was necessary to adapt to the existing system and find the best way to
integrate it.

5.1 system architecture

After the presentation of the features of Python-Tutor its now time to analyse how it was
build to understand how the new feature can be integrated. The system architecture of the
software it’s really well explained in its github page so the best way to describe it is quoting
it:

”The Online Python Tutor is implemented as a web application, with a JavaScript front-end
making AJAX calls to a pure-Python back-end. The front-end is HTML/JavaScript (using
the jQuery library). It’s responsible for the input text box, submitting the Python code
(as plaintext) to the back-end, receiving an execution trace from the back-end, and then
rendering that trace as data structure visualizations. The back-end is a server-side CGI
application that takes Python script source code as input, executes the entire script (up to 200

executed lines, to prevent infinite loops), and collects a full trace of all variable values (i.e.,
data structures) after each line has been executed. It then sends that full trace to the front-end
in a specially-encoded JSON format. The front-end then parses and visualizes that trace and
allows the user to single-step forwards AND backwards through execution.”[Ste11].

The input to use on the graph visualization is inserted on the home page of Python-Tutor
as well. It is used the maximum of the existing software as possible, so the input text is also
send to the back-end in order to receive the execution trace to check if the code passed as
the input is correct and compilable. Once the input is validated, it is time to start using the
new code present in the software. The system it will open a new web page created only to
visualize the graphs of the input. After the user choose the function and graph that he wants
to see the input is now passed through a new route that will pass it to the graph generator.
The graph generator will create an image with the graph in question and return its path to

28

5.2. Visual 29

the front-end. The front-end it will display the image in its page so the user can visualize it
and then remove the image in order to avoid an overcrowding of files.

Figure 21: Architecture of Python-Tutor’s new feature

5.2 visual

The final version of the visual side of the front-end is really close to the one presented on
the proposal. The user can choose the type of graph that wants to visualize. The FCG is
the only that is independent of functions because it’s a graph to visualize the relationships
between the functions (if there’s one). The other two are specified to one function so the
user has to choose which function he wants to see that graph being applied to.

5.2. Visual 30

(a)

(b)

(c)

Figure 22: Visual representation of the new feature

5.2. Visual 31

As it can be seen on the figure 23 there’s also new features in the front-end that makes the
graph clickable so that the user can interact with it, zooming-in and zooming-out allowing
the user a better visualisation and comprehension of the graph in question.

Figure 23: Zoom feature

6

T E S T S A N D R E S U LT S

In order to test and evaluate the new feature of Python-Tutor it was created a survey that
contained instructions for the testers to follow and then give their opinion and answer some
questions about the feature.

The testers had to satisfy a simple requisite that is they had to be familiarized with python
in order to be able to write python functions and compare it to the resulting graphs. This
survey was completed by thirty one participants.

The survey was performed with a tool called survio and it was also used a tool called
ngrok that allowed to share the local-host where the feature was running with the testers.

This survey was made with two purposes:

• test technical aspects like the accuracy of the generated graphs and possible bugs;

• get the insights of the testers on the opinion of the tool for example, if really can help
someone understand a program.

These two goals were accomplished as it was detected some errors in the graphs that
were generated related to specific ways to code in python that were corrected afterwards,
like for example multiple assignment (assign multiple values or the same value to multiple
variables). This survey also allowed to gather opinions on what could be done to improve
the intuition of the feature and some of these considerations were taken like the colourful
arrows of the CFG.

In the next section it will be made a more detailed analysis of the results.

6.1 result analysis

This section will be sub-divided in two categories that corresponds to the two purposes
mentioned previously. Firstly, it will be presented the results related to the technical side
like the accuracy of the tool and the level of the complexity of the functions used to test the
feature.

32

6.1. Result Analysis 33

Then it will be analysed the opinion of the testers of the feature. This results, unlike the
first ones, will be analysed individually to each graph so that we can understand which
graphs can help on a better program comprehension.

6.1.1 Programs Complexity

The first question of the survey was related to the complexity of the code the tester were
writing. This question was asked with the intuition of relate the accuracy of the resulting
graph with its complexity, but as it is observable on the pie-chart of the figure 24, the
majority of the functions written to test were of low complexity which, in this case, it’s not
bad because as Python-Tutor is directed to new programmers the expected inputs are of low
to medium complexity.

Figure 24: Complexity level of functions used to test the feature

6.1.2 Graphs Accuracy

After having an overview of the type of programs that were tested, we will now analyse
the tool accuracy by each graph.

6.1. Result Analysis 34

(a) FCG Accuracy

(b) CFG Accuracy (c) DFG Accuracy

Figure 25: Accuracy of each type of graph

The results indicate a good percentage of accuracy of each graph, with the most surpris-
ingly result being the FCG where it was expected to have the most high accuracy but ended
up being the one with the least. On the other hand, it was refreshing realise how accurate
was the CFG graph. This results were very satisfying mainly because the bugs reported were
corrected which means that this accuracy is now increased.

6.1. Result Analysis 35

6.1.3 Graphs on Program Comprehension

It is time now to see if this graphs can really help people on comprehending a program.
There are two questions for each graph involving this area, first the intuitiveness of each
graph, or in other words, if the graphs are easily read. For it be capable of helping one
understand their program, the graphs can’t be harder to understand than the program, so
an intuitive graph was always the goal and now we’ll see if it was accomplished.

The second question is a really direct one that is if the tester thinks the graphs can help
the comprehension of a program which is the whole idea behind of this thesis.

6.1.3.1 Function Call Graph

Following the order presented on this whole paper, let’s start with the FCG. With an 83.8%
of positive response on intuitiveness, the people who tested the tool think that, although of
it being a very simple graph displaying minor information as it only shows the functions
who are called by other functions, it really can improve a program comprehension.

(a) FCG Level of Intuitiveness (b) FCG On Program Comprehension

Figure 26: Perceptions on FCG

6.1.3.2 Control Flow Graph

These results come to reinforce the preconceived idea that this graph will be the strength
of the new feature. This vastly positively results boost the confidence that this graph can
really be helpful on program comprehension.

6.1. Result Analysis 36

(a) CFG Level of Intuitiveness (b) CFG On Program Comprehension

Figure 27: Perceptions on CFG

6.1.3.3 Data Flow Graph

As expected, this one was considered the least intuitive graph. This graph was the
most difficult to conceive and it really shows. Although the lack of intuitiveness of this
graph, a considerable high amount of people still thinks that it can improve the program
comprehension, which means that trying to improve the presentation of this graph as to be
a priority in the future.

6.1. Result Analysis 37

(a) DFG Level of Intuitiveness (b) DFG On Program Comprehension

Figure 28: Perceptions on DFG

6.1.4 Final thoughts

At the end, these results were very positive and increased the confidence on this feature
and what it can do by program comprehension. This survey let us identify some minor
bugs on the construction of the graphs that after corrected increased the accuracy and the
intuitiveness of the graphs, allowing ending up with a better final version of this tool.

7

C O N C L U S I O N

The last chapter of the dissertation presents the final considerations of all the work carried
out and also on the objectives that have been achieved. In addition, some improvements are
defined as important for the future of the project.

To understand a program after it has been fully developed is an hard task for programmers
in general, no matter if he is an expert or even its author. This fact creates big difficulties
in the area of program maintenance that is a necessary activity which takes a lot of time
and consumes many resources in the software companies. To overcome this actual difficulty,
researchers in various areas of computing started a joint effort to work out a new topic called
Program Comprehension aiming at the creation of theoretical analytic instruments and the
development of tools to make this process easier.

The use of CFG, DFG and FCG are some of those instruments that help to visualize
statically some program perspectives that depict its behavior.

On the other hand, program animation tools were developed to help in Program Com-
prehension as well as in teaching introductory programming courses. Program Animators
are a kind of high-level program debuggers that simulate the running of a program while
showing the internal (in terms of variables and computer memory) effect of each instruction
executed. The hope of Program Animators’ builders is that this visual representation of the
effects produced by each instruction can effectively help program Analysers to comprehend
them faster.

The Master’s work performed and described along the present dissertation is located in the
intersection of the above referred two areas: the use of graphs for Program Comprehension,
and the use of Program Animation tools.

As can be expected, at the beginning a wide and deep research was done to build the
state-of-the-art in Program Comprehension, Software Visualization, and respective tools, as
was written in Chapter 2. That chapter also describes in details Python-Tutor, the animator
chosen for the integration of graphs due to its large usage and nice capabilities.

After understanding clearly the project objectives and research approach, and after the
literature review, it was planned how to solve the problem and then an architecture of the
system to be developed was drawn as discussed in Chapter 3.

38

7.1. Final Considerations 39

Chapter 4 and 5 describe the implementation of the functions needed to create the various
graphs intended to be incorporated into the animator, as well as the integration process.

To support the thesis below, an experiment with real programmers was designed and
conducted to assess the developed system. The description of the experiment, results so far
attained and their discussion are the content of chapter 6.

At the end, the Master’s Thesis that was proven with the project can be stated as: It is
possible to include control-flow and data-flow graphs into Program Animation systems,
providing in that way to the programmer a better aid in the comprehension of programs’
behavior.

7.1 final considerations

In the end of this master’s project, it can be said that the main goal was achieved: to
build a tool that transforms a function to its corresponding control and data flow graphs
and to integrate it into the program animator tool Python-Tutor. The process of building
this tool had obviously some obstacles that had to be overtaken. The biggest difficulty
faced was related to the Python Grammar used that does not cover all the real program
situations causing many compiling exceptions that frequently arose. Other challenge was the
integration with Python-Tutor as this platform resorted to some outdated libraries. However,
all these troubles have been overcome ending up with a functional tool to help understand a
program like it was meant to be.

7.2 future work

As future work, the first proposal is to implement the same control-flow and data-flow
graphs for the other languages presented in the Python-Tutor like Java and C. It is expected
to be easier to implement it now as the new languages will only need the construction of a
grammar for each language as the graph generator can be reused and the integration with
Python-Tutor would only need a few adaptations.

The other direction for the future of this Python-Tutor add-on is to improve the aspect of
the DFG as the testers inquired said that it is not very intuitive and easy to comprehend.

B I B L I O G R A P H Y

[BE95] Marla Baker and Stephen Eick. Space-filling software visualization. Journal of
Visual Languages Computing, 6:119–133, 06 1995.

[Bro83] Ruven Brooks. Towards a theory of the comprehension of computer programs.
International Journal of Man-Machine Studies, 18(6):543 – 554, 1983.

[GH01] Luis M. Gómez-Henrı́quez. Software visualization: An overview, 2001.

[Had18] Martin Hadley. 3 benefits of interactive visualization. 01 2018.

[Hol16] Ben Holland. Call graph construction algorithms explained. 03 2016.

[JS91] B. Johnson and B. Shneiderman. Tree-maps: a space-filling approach to the
visualization of hierarchical information structures. In Proceeding Visualization
’91, pages 284–291, 1991.

[Kie14] Bart Kiers. Python 3 parser. https://github.com/antlr/grammars-v4/tree/

master/python/python3-py, 2014.

[KLSK14] Bart Kiers, Dmitriy Litovchenko, Nikita Subbotin, and Ivan Kochurkin. Python 2

and 3 universal grammar. https://github.com/antlr/grammars-v4/tree/master/

python/python, 2014.

[LS06] François Lemieux and Martin Salois. Visualization techniques for program
comprehension - a literature review. In SoMeT, 2006.

[MV93] A. Mayrhauser and A. Marie Vans. From program comprehension to tool
requirements for an industrial environment. pages 78 – 86, 08 1993.

[MV95] Anneliese Mayrhauser and A. Marie Vans. Program comprehension during
software maintenance and evolution. Computer, 28:44 – 55, 09 1995.

[NS73] Ike Nassi and B. Shneiderman. Flowchart techniques for structured program-
ming. ACM SIGPLAN Notices, 8:12–26, 08 1973.

[OBS04] Michael O’Brien, Jim Buckley, and Teresa Shaft. Expectation-based, inference-
based, and bottom-up software comprehension. Journal of Software Maintenance,
16:427–447, 11 2004.

40

https://github.com/antlr/grammars-v4/tree/master/python/python3-py
https://github.com/antlr/grammars-v4/tree/master/python/python3-py
https://github.com/antlr/grammars-v4/tree/master/python/python
https://github.com/antlr/grammars-v4/tree/master/python/python

bibliography 41

[Pen87] Nancy Pennington. Stimulus structures and mental representations in expert
comprehension of computer programs. Cognitive Psychology, 19:295–341, 1987.

[Pet02] Marian Petre. Mental imagery, visualisation tools and team work. 01 2002.

[Put] Ben Putano. A look at 5 of the most popular programming languages of
2019. https://stackify.com/popular-programming-languages-2018/. Accessed:
26-9-2019.

[Ram86] Gerard Rambally. The influence of color on program readability and compre-
hensibility. volume 18, pages 173–181, 02 1986.

[SCGM00] John Stasko, RICHARD CATRAMBONE, Mark Guzdial, and KEVIN MCDON-
ALD. Evaluation of space-filling information visualizations for depicting hierar-
chical structures. International Journal of Human-Computer Studies, 53:663–694, 11

2000.

[SE84] E. Soloway and K. Ehrlich. Empirical studies of programming knowledge. IEEE
Transactions on Software Engineering, SE-10(5):595–609, Sep. 1984.

[Sie16] J. Siegmund. Program comprehension: Past, present, and future. In 2016 IEEE
23rd International Conference on Software Analysis, Evolution, and Reengineering
(SANER), volume 5, pages 13–20, March 2016.

[SMMH77] Ben Shneiderman, Richard Mayer, Don McKay, and Peter Heller. Experimental
investigations of the utility of detailed flowcharts in programming. Commun.
ACM, 20:373–381, 06 1977.

[Ste11] Michael Stewart. Online python-tutor. https://github.com/hcientist/

OnlinePythonTutor, 2011.

[SV98] Teresa M. Shaft and Iris Vessey. The relevance of application domain knowledge:
Characterizing the computer program comprehension process. J. Manage. Inf.
Syst., 15(1):51–78, June 1998.

[Syn] Syncfusion. Hierarchical levels.

[Wol12] Marilyn Wolf. Computers As Components, Third Edition: Principles of Embedded
Computing System Design. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 3rd edition, 2012.

[Yos08] Mami Yoshida. Think-aloud protocols and type of reading task: The issue of
reactivity in l2 reading research. 01 2008.

[You14] Stephen Young. Why your code is so hard to understand. 11 2014.

https://stackify.com/popular-programming-languages-2018/
https://github.com/hcientist/OnlinePythonTutor
https://github.com/hcientist/OnlinePythonTutor

bibliography 42

[Zel09] Andreas Zeller. Chapter 7 - deducing errors. In Andreas Zeller, editor, Why
Programs Fail (Second Edition), pages 147 – 173. Morgan Kaufmann, Boston,
second edition edition, 2009.

A
S U RV E Y

In this appendix is presented the Survey (questions, introduction and comments) which
answers were analysed in Chapter 6.

a.1 survey fulfillment instructions :

Write one or more functions in python and click on the Visualize Graph functionality. To
be able to evaluate all types of graphs the functions follow the following requirements:

• contain function calls;

• contain assignment / changes of variable values;

These requirements can be present in a single function or spread over several functions.
In the following question you can see the type of entry we want.

After exploring the features of the tool, proceed to the questions. Always respond in
accordance with your functions/graphs and not with examples displayed.

43

A.2. Survey Questions: General 44

a.2 survey questions : general

Q1. Level of complexity of your functions:*

Figure 29: Example of a valid input

• Low

• Medium

• High

A.3. Survey Questions: Function Call Graph Evaluation 45

a.3 survey questions : function call graph evaluation

Q2. Do you think that this type of graphs is intuitive and easy to understand?*

Figure 30: Example of a Function Call Graph

• Not Intuitive

• Intuitive

• Very Intuitive

Q3. Do you believe that this graphs can help to comprehend a program?*

• Yes

• No

Q4. Is the resulting graph reliable to the input?*

• Yes

• No

A.4. Survey Questions: Control Flow Graph Evaluation 46

a.4 survey questions : control flow graph evaluation

Q5. Do you think that this type of graphs is intuitive and easy to understand?*

Figure 31: Example of a Control Flow Graph

• Not Intuitive

• Intuitive

• Very Intuitive

Q6. Do you believe that this graphs can help to comprehend a program?*

• Yes

• No

Q7. Is the resulting graph reliable to the input?*

• Yes

• No

A.5. Survey Questions: Data Flow Graph Evaluation 47

a.5 survey questions : data flow graph evaluation

Q8. Do you think that this type of graphs is intuitive and easy to understand?*

Figure 32: Example of a Data Flow Graph

• Not Intuitive

• Intuitive

• Very Intuitive

Q9. Do you believe that this graphs can help to comprehend a program?*

• Yes

• No

Q10. Is the resulting graph reliable to the input?*

• Yes

• No

Thanks for your time.

B
I N D I V I D UA L A N S W E R S T O T H E S U RV E Y

Here is presented all the answers that each participant gave to each question.

Q.1 Q.2 Q.3 Q.4 Q.5 Q.6 Q.7 Q.8 Q.9 Q.10

1 Low Intuitive Yes Yes Very Intuitive Yes Yes Intuitive Yes Yes

2 Low Intuitive Yes Yes Intuitive Yes Yes Not Intuitive Yes Yes

3 Low Intuitive No Yes Intuitive Yes Yes Not Intuitive Yes Yes

4 Medium Intuitive Yes Yes Intuitive Yes Yes Intuitive Yes Yes

5 Low Not Intuitive Yes No Very Intuitive Yes Yes Not Intuitive Yes Yes

6 Low Intuitive Yes Yes Very Intuitive Yes Yes Intuitive Yes Yes

7 Low Intuitive Yes Yes Very Intuitive Yes Yes Intuitive Yes Yes

8 Low Not Intuitive No Yes Very Intuitive Yes Yes Intuitive Yes Yes

9 High Very Intuitive Yes Yes Very Intuitive Yes Yes Very Intuitive Yes No

10 Low Intuitive Yes Yes Intuitive Yes Yes Intuitive Yes Yes

11 Low Not Intuitive Yes Yes Intuitive Yes Yes Not Intuitive Yes Yes

12 Low Very Intuitive Yes Yes Not Intuitive Yes Yes Intuitive Yes Yes

13 Low Intuitive Yes No Intuitive Yes Yes Intuitive Yes Yes

14 Low Very Intuitive Yes Yes Very Intuitive Yes Yes Intuitive Yes Yes

15 Medium Not Intuitive No No Intuitive Yes Yes Not Intuitive No No

16 Low Intuitive Yes No Not Intuitive No No Not Intuitive No No

17 High Intuitive Yes Yes Not Intuitive Yes Yes Not Intuitive Yes Yes

18 Low Very Intuitive Yes Yes Very Intuitive Yes Yes Not Intuitive No Yes

19 Low Very Intuitive Yes Yes Very Intuitive Yes Yes Not Intuitive No Yes

20 Low Intuitive Yes No Intuitive No No Intuitive No Yes

21 Low Intuitive Yes Yes Intuitive Yes Yes Not Intuitive No No

22 Low Not Intuitive No No Intuitive Yes Yes Intuitive Yes Yes

23 High Intuitive Yes Yes Very Intuitive Yes Yes Intuitive Yes Yes

24 Medium Intuitive Yes No Very Intuitive Yes Yes Not Intuitive No No

Continued on next page

48

49

Table 1 – Continued from previous page
Q.1 Q.2 Q.3 Q.4 Q.5 Q.6 Q.7 Q.8 Q.9 Q.10

25 Low Intuitive Yes No Very Intuitive Yes No Not Intuitive No No

26 Low Intuitive Yes Yes Very Intuitive Yes Yes Not Intuitive Yes Yes

27 Medium Intuitive Yes Yes Intuitive Yes Yes Intuitive Yes No

28 High Intuitive Yes No Intuitive Yes Yes Not Intuitive No Yes

29 Medium Intuitive Yes Yes Very Intuitive Yes Yes Intuitive Yes Yes

30 Low Intuitive Yes Yes Not Intuitive Yes Yes Not Intuitive Yes Yes

31 Low Intuitive Yes Yes Intuitive Yes Yes Intuitive Yes Yes

32 Low Intuitive Yes Yes Intuitive Yes Yes Intuitive Yes Yes

	1 Introduction
	1.1 Context and Motivation
	1.2 Goals
	1.3 Research Hypothesis
	1.4 Document Structure

	2 State of the Art
	2.1 Program Comprehension Overview
	2.1.1 What is Program Comprehension?
	2.1.2 Evolution of Program Comprehension

	2.2 Software Visualization
	2.2.1 Visualization Techniques

	2.3 Python-Tutor
	2.3.1 Visualize Execution
	2.3.2 Live Help
	2.3.3 Tests

	2.4 Other tools
	2.4.1 AgileJ StructuredViews
	2.4.2 Sourcetrail
	2.4.3 CodeSonar's visualization software

	3 Proposal
	3.1 Expected Difficulties
	3.2 Proposed Approach
	3.3 System Workflow
	3.4 System Architecture

	4 Graph Generator
	4.1 Grammar
	4.2 Graphs
	4.2.1 Function Call Graph
	4.2.2 Control Flow Graph
	4.2.3 Data Flow Graph

	5 Integration on Python-Tutor
	5.1 System Architecture
	5.2 Visual

	6 Tests and Results
	6.1 Result Analysis
	6.1.1 Programs Complexity
	6.1.2 Graphs Accuracy
	6.1.3 Graphs on Program Comprehension
	6.1.4 Final thoughts

	7 Conclusion
	7.1 Final Considerations
	7.2 Future Work

	A Survey
	A.1 Survey fulfillment instructions:
	A.2 Survey Questions: General
	A.3 Survey Questions: Function Call Graph Evaluation
	A.4 Survey Questions: Control Flow Graph Evaluation
	A.5 Survey Questions: Data Flow Graph Evaluation

	B Individual answers to the survey

