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Abstract

It is often the case that while the specific interactions between individual constituents of complex
systems are unknown, their correlations are measurable. Reconstructing the strength of the in-
teractions from these correlations is known as an inverse problem. We focus on reconstructing
interactions from functional magnetic resonance imaging (fMRI) studies of the human brain, where
different regions of the brain are modelled as binary variables (on vs off). The overarching aim of
this work was to analyse these datasets from the perspective of statistical physics and to under-
stand whether the human brain exists at an order-disorder transition, i.e. a critical point. This
was motivated by a growing body of evidence which suggests that many complex biological systems
are tuned towards criticality. We construct equilibrium statistical physics models of the data via
a machine learning scheme termed Inverse Ising inference. We initially show that typical estima-
tors used for inverse Ising inference, such as pseudo-likelihood maximization (PLM), are biased
by testing the inference on simulated data. Understanding the performance of the inference on
small sample sizes is crucial to interpreting models fitted from real data, as the amount of data
available in experimental studies is limited. Using the Sherrington-Kirkpatrick (SK) model as a
benchmark, we show that PLM displays large biases in the critical regimes close to order-disorder
transitions, which may alter the qualitative interpretation of the inferred model. The bias causes
models inferred through PLM to appear closer to criticality than one would expect from the data.
We introduce data-driven methods to correct this bias and explore their application in a small fMRI
dataset. Our results indicate that additional care should be taken when attributing criticality to
real-world datasets, as limited dataset sizes overstate the criticality of the inferred model. We also
apply PLM to a large publicly available fMRI dataset from the human connectome project and
find that the resting state network of the human brain corresponds to a near-critical paramagnetic
state point. The inferred PLM model contains a highly structured coupling network with a heavy,
power-law-like tail and we show that negative couplings play a vital role in mediating correlations
within the network. We find that coupling networks are sparser than correlation networks, and
suggest that inverse methods such as PLM should replace standard correlation-based approaches
to network reconstruction in neuroimaging.
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Chapter 1

Introduction

As a result of the increasing availability of high-quality biological data, a
growing body of evidence suggests that some of the most interesting proper-
ties of living systems - such as memory or the ability to solve problems - are
emergent properties which arise out of the collective dynamics of relatively
simple individual constituents [2, 3]. This sentiment of “more is different”
[4] is perhaps most apparent in the context of ensembles of neurons. The dy-
namical activation profile of single neurons, and the non-linear interaction
by which they stimulate other neurons, have been known to some extent
since the 1950s [5]. Yet, it appears entirely hopeless to try and explain
the diverse goal-oriented macroscopic behaviours (cognitive, emotional or
otherwise) exhibited by living beings in terms of the simple dynamical rules
governing individual neurons. Ultimately, these behaviours must result from
emergent phenomena caused by the cooperative behaviour of the underlying
neuronal collection.

Not only does the experimental evidence point to emergent behaviour,
but it suggests that many biological systems exist near a critical point, that
is, an order-disorder phase transition [6, 7]. Criticality, the term used to
describe the phenomenology near such transitions, is believed to provide
biological systems with a range of advantageous properties, from maximis-
ing their sensitivity to inputs [8] to enabling them to exhibit an extensive
range of dynamic responses [9, 10]. The apparent ubiquity of close-to-
critical behaviour in biology has led some to conjecture that evolutionary
pressures may be responsible for fine-tuning biological systems towards a
critical point, and that criticality serves as a template from which complex
behaviours arise across a range of length scales. While the idea of criticality
being a generic feature of biological systems is still in its infancy, a grow-
ing pool of empirical results suggests it as a robust hypothesis specifically
in neuronal systems [7]. Indeed, the “distance” between the state of the
system and its supposed critical point is becoming an increasingly relevant
biological variable [11] and, in neuroscience for instance, is being considered
as a guiding route for clinical work [12].

This brings us to the work we report in this thesis. Inspired by recent
findings [13], we sought to investigate the criticality of coarse-grained brain
imaging data using methods from statistical physics, as statistical physics
is the branch of physics that deals with the study of emergence in complex
ensembles. Specifically, we construct equilibrium statistical physics models
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Figure 1.1: The dynamic activa-
tion profile of a neuron, where V
denotes changes in the membrane
potential of the cell. Upon receiving
a stimulus at time t = 0, the neu-
ron rapidly depolarises before re-
turning to its resting potential. The
state of the neuron is commonly de-
scribed as binary (i.e. on or off)
as this “spike” in activity occurs in
a short time window (∼ 1 millisec-
ond). The plotted activation profile
is from experiments on the squid gi-
ant axon, reproduced from [5].

that are parameterised to represent real data via a machine learning method
named inverse Ising inference [14–17]. Although our primary goal was to
analyse real data, we identified that sufficient methodological gaps existed in
the current literature and that the performance of inverse Ising inference was
not well characterised on datasets of limited size. Understanding the bias
of the inference when sample sizes are small is vital to correctly interpret
fitting results from real datasets. Our work is therefore composed of an
in-depth analysis of the predominant technique used to perform inverse
Ising inference (so-called pseudo-likelihood maximisation), as well as results
gathered by applying this technique to both small and large brain imaging
datasets.

1.1 A Physicist’s Introduction to the Brain

The aim of this interdisciplinary research project was to build physics-based
models that represent experimental data from neuroscience. As we chose to
specifically focus on data collected from neuroscience (from functional mag-
netic resonance imaging to be exact), we will begin by providing “a physi-
cist’s introduction to the brain”. While leaving out an egregious amount of
detail, this will hopefully allow us to establish the surface-level knowledge
required to interpret the rest of our work.

1.1.1 Neurons are Binary Variables

The elementary constituents of the nervous system (which for our purposes
is synonymous with the brain) are neurons. Neurons (like all cells) have
an electrical potential difference across the cell membrane which separates
the interior of the cell from the extracellular fluid. Unlike most cells, how-
ever, neurons are also excitable, so external inputs can cause the membrane
potential of the neuron to rapidly deviate from its baseline. This allows neu-
rons to propagate electric signals. In Nobel Prize-winning work, Hodgkin
and Huxley [5] introduced a quantitative model that described the initiation
and propagation of these potential changes in terms of ion currents across
the cell membrane. We show one such example potential for a single neuron
in Fig. 1.1. Upon receiving an input stimulus at time t = 0, the neuron
rapidly depolarizes, before returning to its original baseline voltage. The
initial period (t = 0ms to t = 2ms) of this profile is commonly referred to
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as the action potential, as a neuronal spike, or as the neuron firing. The
long-time behaviour (t > 2ms) where the membrane potential is below the
baseline is referred to as the refractory period, during which the neuron
cannot be re-excited. The entire spiking process occurs very rapidly (on
a millisecond time scale), and so it has long been standard to model the
activity of each neuron as an “all-or-none” process [18], i.e. as a binary
variable which can either be on or off. Indeed we see this reflected in the
terminology (i.e. spiking, firing, etc) commonly used to describe the state
of each neuron.

Ensembles of binary variables have been studied extensively in statisti-
cal physics. Historically, this research aimed to understand the collective
properties of atomic magnetic moments (i.e. spins) in metals1

1 The simplest example of such
a phenomenon is ferromagnetism,
where all magnetic spins align in
the same direction to generate a
macroscopic magnetic field.

. Binary rep-
resentations of these spins (i.e. where each spin can only be oriented in one of
two directions, usually referred to as up and down) have been shown to pro-
vide great pedagogical descriptions of the phenomenology of magnetism [19],
with the famous 2-dimensional Ising spin model being one of the archetypal
models with which statistical physics and phase transitions are understood
[20]. Although developed in the context of magnetism, these spin models
are sufficiently general to describe the interactions of many systems. As
such, results and techniques developed in the analysis of magnetism can
naturally be extended to the analysis of ensembles of neurons in the brain.
Indeed this connection has been recognised since the 1980s [21, 22], where
computational features such as a content addressable memory were shown
to emerge in simple spin-based statistical physics models. We will follow
this line of thinking and model the brain as an ensemble of binary variables.

1.1.2 Functional Magnetic Resonance Imaging

The brain of a healthy human adult consists of approximately 100 billion
neurons, each of which can be connected to around 1000 other neurons2

2 The points at which neurons
connect to one another are called
synapses. There are therefore ap-
proximately 100, 000 billion synap-
tic connections within our brains.

[24],
forming a complex network [25]. One of the key experimental challenges of
neuroscience is to establish this connectivity, and more so, how the structure
of the neural network is related to its function [26]. As one might expect,
experimentally characterising the structural connectivity of the brain with
cellular resolution is a gargantuan task. To date, the largest living organ-
ism for which we have measured a complete neuron-resolved structural con-
nectivity network is the nematode Caenorhabditis elegans (a roundworm),
which only has 302 neurons [27]. Moreover, we must also understand neu-
ral dynamics (i.e. neural correlations in time) to begin to understand the
function of each neuron or grouping of neurons [2]. Therefore, even if we
could characterise all synaptic connections within the brain, we may never
understand the function of each component without time-resolved data on
how signals propagate through the network [28].

One approach to tackling these issues is to employ so-called neuroimag-
ing methods. In these, neural activity is probed non-invasively by measur-
ing proxy quantities that can be related back to the activation of neurons.
Many neuroimaging modalities exist, but in this work, we focus exclusively
on data collected via functional magnetic resonance imaging (fMRI)3

3 Other notable examples include
electroencephalography (EEG) and
magnetoencephalography (MEG)
[29].

. As
the name suggests, fMRI works by measuring the magnetic resonances of
biological tissues, as hydrogen nuclei in different tissues have different inher-
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Figure 1.2: Schematic represen-
tation of how data collected from
fMRI studies is transformed into
the binary datasets we work with.
fMRI is a non-invasive neuroimag-
ing technique, which collects volu-
metric time series data. Each voxel
typically represents the activity of
hundreds of thousands of neurons.
The volumetric data is then seg-
mented into different neurologically
relevant regions of interest (ROIs),
e.g. V1 labels the first visual re-
gion of the brain. This process is
termed parcellation, and the parcel-
lation atlas shown here is adapted
from Ref. [23]. All ROIs are spa-
tially continuous but represent non-
uniform volumes. This produces
N continuous activity time series
of length B, one for each ROI,
with ROIs labelled by i and time
by t. Each series is then thresh-
olded to produce the binary time
series which we ultimately analyse.
We threshold the activity about 0,
so that the binary ROI states are
“activated” (si = +1, shown in
black) if the activity within the ROI
is above average, and deactivated
(si = −1, shown in white) if it is be-
low average. The goal of our work is
to infer the network of interactions
between ROIs from these binary ac-
tivation time series. Images of the
fMRI machinea, and volumetric ac-
tivityb were sourced from the inter-
net.

afMRI scanning image, accessed
(27/02/2023)

bvolumetric activity, accessed
(27/02/23)
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ent magnetic resonances. fMRI specifically uses the fact that deoxygenated
haemoglobin is paramagnetic, while oxygenated haemoglobin is diamag-
netic. The contrast between these two magnetic states then allows the flow
of oxygenated blood through the brain to be tracked [30]. The brain does
not store energy locally, and so the so-called blood oxygen level-dependent
(BOLD) signal indirectly represents neural activity by assuming that in-use
(i.e. active) areas of the brain require additional nutrients (in the form of
glucose, oxygen, etc) to operate [31], leading to changes in blood flow to
those areas. The BOLD signal is a proxy measure for neural activity as
blood oxygenation levels are also impacted by other physiological processes,
such as respiration and cardiac oscillations [32]. We will disregard these
details, as it is generally accepted that fluctuations in the BOLD signal do
indeed correlate with neural activity [33, 34], and assume that the data we
work with has either been pre-processed to account for these effects or that
they do not play a significant role (either way we leave this problem to the
neuroscientists).

fMRI acquires 3-dimensional volumetric data, with the sides of each
imaging voxel usually being around 5mm in length. The fMRI signal, there-
fore, does not represent the activity of individual neurons, but rather the
average activity of O(1, 000, 000) neurons within the imaging voxel. Sam-
ples are collected once every 1 to 3 seconds (i.e. with a sampling frequency
of around 0.5Hz). It is common practice to further reduce the complexity
of the data by segmenting the volumetric scan into pre-defined spatially
continuous regions of interest (ROIs) [23] and tracking the average signal
within each of these. We then threshold the activity time series from each
ROI to produce binary representations of the state of each region. These
binary fMRI signals now represent whether or not an entire region of the
brain is active or inactive. These steps are illustrated in Fig. 1.2. The fi-
nal datasets we analyse contain B binary observations (off or on) from N
regions of interest.

1.2 Objectives and Thesis Structure

The overarching aim of this thesis is to investigate criticality in human
resting-state fMRI data in the context of statistical physics. We do this
by using an inference (machine learning) method named inverse Ising in-
ference, which allows us to reconstruct pairwise interactions from binary
datasets. Models inferred via inverse Ising inference correspond to equilib-
rium statistical physics models which match the pairwise correlations of the
data. We will establish if these models are close to a critical point, and how
systematic errors within the inference technique might bias our conclusions.

There are three strands of literature underpinning our research, which
we detail in Chapters 2 to 4. We introduce the foundations of equilibrium
statistical physics as this is the framework we use to assess if our inferred
models are critical in Chapter 2. We know that the brain contains both pos-
itive (excitatory) and negative (inhibitory) connections. This competition
(termed quenched disorder in the physics literature) leads to the develop-
ment of a spin-glass phase at low temperatures. Recent [13] and historic [22]
work both connect brain data to this phase and so we also introduce the
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phenomenology of spin-glasses in the archetypal Sherrington-Kirkpatrick
(SK) [35] model in this chapter. We later use the SK model to characterise
the inference and to establish the types of errors we might encounter. In
chapter 3, we detail the inference method we use. We show that equilib-
rium models provide the least biased descriptions of the data [36], and that
making different observations from the data corresponds to selecting dif-
ferent model classes. We will measure up-to-pairwise correlations, which
corresponds to constraining our models to pairwise interactions. We com-
pare different methods with which inverse Ising inference can be performed,
and highlight that so-called pseudo-likelihood maximisation (PLM) [15] per-
forms best overall. We thus use PLM exclusively throughout this work. The
pairwise couplings inferred from PLM also allow us to gain insight into the
network topology of the fMRI data. In chapter 4, we discuss evidence sup-
porting the “critical brain hypothesis”, and provide an overview of how
biological systems might organise towards this special point.

In the remaining chapters (5 - 8), we present the results of our investiga-
tion. We begin by performing pseudo-likelihood maximisation on simulated
data from across the SK phase diagram in chapter 5. This was motivated
by previous observations that PLM inference errors depend on how close-
to-critical a given dataset is [16]. We validate these results for a range of
system sizes and find that errors are minimal near, but offset from, the phase
transitions of the SK model. Moreover, we find that PLM models inferred
from fluctuating data (i.e. data with similar dynamics to the fMRI signal)
are biased towards the critical point and that the severity of this effect is
state-point and dataset size dependent. We show that average quantities of
the model, such as the temperature, depend linearly on the inverse sample
number (1/B). We link this to standard results for the bias of maximum
likelihood parameter estimates [17, 37]. We conclude by cautioning against
claims of criticality when using PLM to analyse datasets with small sam-
ple sizes, as the apparent criticality of these could be the result of the bias
entirely. Due to these results, we introduce methods to correct the bias in
chapter 6. Our proposed corrective procedures allow us to establish a lower-
bound estimate for the temperature of the data, and significantly reduce the
inference error when the sample number is small. We conclude chapter 6
by recommending that an analysis of the bias should always be performed
(e.g. by sub-sampling the data) if one wishes confidently assert that their
inferred model is critical. Otherwise small sample size effects cannot be
discounted as the source of the apparent criticality.

In chapter 7, we perform a case study of a small fMRI dataset to demon-
strate how small sample size effects might impact real-world analyses. Two
biological conditions (mindfulness meditation vs no mindfulness meditation)
are compared. We investigated whether or not a) the control (no mindful-
ness condition) corresponds to a critical point, and b) whether practising
mindfulness meditation shifts the state of the brain towards criticality. We
show that applying PLM without consideration of the bias leads to incorrect
conclusions on both fronts and that neither condition corresponds to a crit-
ical state point. In chapter 8, we apply PLM to one of the largest openly
available fMRI datasets, the young adult study from the human connec-
tome project (HCP). We sub-sample the HCP dataset and establish that
this dataset is sufficiently large to disregard the effects of the bias. We find
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that the majority of connections in the brain are negative (inhibitory), but
that the overall distribution of couplings is skewed, with the positive tail of
couplings following a power-law distribution. We find that these negative
couplings are essential in mediating correlations within the network. We in-
vestigate the criticality of the inferred model and find that the HCP dataset
corresponds to a super-critical state point close to a statistical critical point.
We further show that inverse methods such as PLM provide insights into the
functional connectivity of the brain beyond those of traditional correlation-
based methods employed within neuroscience. We summarise our results
and provide an overall conclusion in chapter 9.
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Chapter 2

Statistical Mechanics of
Binary Variables

We will be modelling the brain as a collection of binary variables. Specifi-
cally, we will infer equilibrium statistical physics models that best represent
the brain data. The aim of this chapter is to establish the foundations
of this theory. A number of excellent textbooks exist which provide de-
tailed overviews of statistical mechanics [38–40]. We focus on presenting
the key concepts required to interpret our work. We introduce the notion
of criticality and phase transitions by making reference to the well-studied
two-dimensional (2D) Ising model on a regular lattice. We know neural
ensembles contain couplings which are both inhibitory (positive) and ex-
citatory (negative). Competition between positive and negative couplings
leads to the formation of so-called spin-glasses, the phenomenology of which
we introduce through the archetypal Sherrington-Kirkpatrick (SK) model.
We expect neural couplings to form complex networks and devote time to
introducing these.

2.1 A Brief Introduction to Statistical Mechanics

The overarching aim of statistical mechanics is to explain how interactions
between microscopic constituents (e.g. spins) lead to macroscopic properties
(e.g. spontaneous magnetisation). Here we will only describe equilibrium
statistical mechanics, that is, we will assume that our systems are in thermal
equilibrium; they are at a constant temperature without external perturba-
tions. We will consider a system of N interacting spins si ∈ ±1, indexed
by i = 1, . . . N . These spins can describe any arbitrary binary process, e.g.
flipping between up and down states for real electronic spins or switching
from on to off in the neuronal ensembles. We associate the microscopic state
si = +1 with up or on, while the state si = −1 describes a spin pointing
down or being off. The exact theory of statistical mechanics exists only in
the thermodynamic limit, when N → ∞, and for now we assume that this
is satisfied. When N is small so-called finite-size effects [41–43] are intro-
duced. The spins fluctuate in time, and for each of the N labelled regions,
we have time series of length B. The state of the entire spin vector at a time
t′, s(t = t′), is called a configuration, and the full dataset of B×N observa-
tions will either be referred to as a trajectory or as the dataset. These spins
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interact with each other, and (considering up-to-pairwise interactions) each
configuration is associated with an energy or Hamiltonian,

H(s|h,J) = −
∑
i

hisi −
1

2

∑
i ̸=j

Jijsisj . (2.1)

Here the parameters hi are local external fields acting on each spin si, which
bias the spin towards pointing up or down. Each Jij represents a pair-wise
coupling between the spins i and j and describes how much influence two
spins have on each other. The summation i ̸= j runs over all non-matching
pairs of i and j. The total energy of (2.1) is reduced when Jij > 0 and
the spins i and j are aligned. The length-N vector h contains each of the
external fields, while J is a symmetric N × N matrix of couplings with a
0-diagonal (as there are no self-interactions). The energy of the system is
therefore a combination of two sets of quantities: the spin configuration s
at time t′ and the constant parameters h and J which describe a given
model. To simplify our notation further we now introduce the parameter
matrix θ, which is a symmetric matrix containing all the model parameters,
with θii = hi and θij = Jij as all Jii = 0. When in equilibrium, the spins
will fluctuate and explore different configurations with probabilities given
by the Boltzmann distribution

P (s|θ) = 1

Z
exp{[−βH(s|θ)]}, (2.2)

where β = 1/kBT is the inverse temperature and Z the partition function.
Note that we set the Boltzmann constant kB = 1 throughout (or equiva-
lently report all temperatures T in units of kb). The temperature introduces
disorder (entropy) into the system, causing more fluctuations. The parti-
tion function, a type of normalisation constant, depends on all micro-states
of the system and is given by

Z =
∑
u

exp{[−βH(su|θ)]}, (2.3)

where u indexes one of the 2N possible configurations of the system. The
partition function is related to the (Helmholtz) free energy F of the system
via:

F = −T lnZ. (2.4)

As previously noted, the spin configuration itself fluctuates in time, and
macroscopic properties of the equilibrium system correspond to averages
with respect to (2.2). We denote this so-called thermodynamic average with
triangular brackets so that some measured macroscopic quantity A is given
by

⟨A⟩ =
∑
u

P (su)A(su). (2.5)

If we introduce some field a that can be used to observe A, we can addi-
tionally write that

⟨A⟩ = 1

β

∂ lnZ

∂a
, (2.6)
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Figure 2.1: Visualisation of the
parameter matrix θ of the 2D Ising
model with periodic boundary con-
ditions in zero external fields. The
diagonal elements of θ contain the
fields, i.e. θii = hi. The off-
diagonal elements contain the cou-
plings, so that if i ̸= j, θij = Jij . In
this case, the nearest-neighbour lat-
tice structure of the 2D Ising model
produces a regular parameter ma-
trix where each spin is connected
to 4 other spins with constant cou-
pling strength. The external field is
zero, h = 0, and the constant cou-
pling strength is J = 1/T = 1/3.
This is for a system of size N = 25.

that is to say, observables such as A are first-order derivatives of the free
energy. Note that calculating any quantity with (2.5) implicitly requires
the partition function over all possible micro-states to be computed. This is
often not possible and it is common practice in experiments and simulations
to approximate the thermodynamic average with the sample average as:

⟨A⟩ ≈ 1

B

B∑
t=1

A(t). (2.7)

This relation assumes that the system is ergodic, meaning that the system
would explore all possible accessible micro-states (configurations) given in-
finite time. Low-temperature phases, and spin-glasses in particular, often
break this ergodicity [44], making it difficult to sample them. The general
aim of statistical mechanics is to calculate macroscopic expectations using
(2.5) when theoretical calculation is possible or (2.7) when some represen-
tative sample of observations of the system is available.

2.2 Critical Points and Phase Transitions

Depending on the temperature T and specifics of θ, the spin system may
explore a range of macroscopic phases4

4 Similarly to how water might ex-
ist as a solid, liquid or a gas (along
with some less well known other
phases [45]).

. We quantify each phase by defin-
ing relevant order parameters for the system, which take unique values in
each phase. To further explore these concepts, let us introduce one of the
most well-studied models in physics: the Ising model [20]. The Ising model
describes an ensemble of interacting spins placed on a lattice (of some di-
mension) which interact only with their nearest neighbours through a con-
stant interaction of strength J . This system is described by the generalised
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Hamiltonian of (2.1), where we now encode the topology of the problem
within J by setting Jij = 0 when i and j are not neighbours, Jij = J when
i and j are neighbours. An example of a parameter matrix for such a 2D
lattice is shown in Fig. 2.1. Alternatively, we may simplify the Hamiltonian
to

H(s|h, J) = −h
∑
i

si −
J

2

∑
(i,j)

sisj , (2.8)

now only summing over nearest-neighbour pairs (i, j). In the following
discussion, we will specifically focus on the 2-dimensional Ising model, as
this model has an analytical solution [46] and undergoes a phase transition
at a finite, non-zero temperature. For now let us also assume that J > 0,
which as noted previously, means it is energetically favourable for spins to
align with each-other5

5 If we took J < 0 the ground
state would be an anti-aligned anti-
ferromagnet.

.

2.2.1 Order Parameters and Susceptibilities

The 2D Ising model undergoes a second-order phase transition at a critical
temperature Tc ≈ 2.269J [38, 46]. Above this temperature, the system ex-
ists in a disordered paramagnetic (P) phase, dominated by random thermal
fluctuations, and there is no preferred direction along which the spins point.
Yet as the system is cooled below Tc, the orientational symmetry of the spins
is broken, leading to the formation of an ordered aligned ferromagnetic (F)
phase. In the case of the Ising model, a suitable order parameter describing
this transition is the magnetisation m,

⟨m⟩ = 1

N

∑
i

⟨si⟩ =
1

Nβ

∂ lnZ

∂h
, (2.9)

which describes the global alignment of the spins. h is a constant exter-
nal field acting on all spins. The order parameter m varies smoothly i.e.
continuously as one crosses the critical temperature; from m = 0 in the
high-temperature disordered phase, to m = 1 in the low-temperature or-
dered phase. This transition from disorder to order is a collective process;
all spins must act cooperatively to produce the overall global phase change
that is observed. This implies that at the critical point, system-wide corre-
lations must emerge, or in other words, the correlation length between spins
must diverge. These long-range correlations are a core feature characteris-
ing the critical state, and are intimately related to the main phenomenology
by which critical points are characterised: the divergence of second-order
derivatives of the free energy, such as the magnetic susceptibility χ:

χ =
∂⟨m⟩
∂h

=
1

Nβ

∂2 lnZ

∂h2
= Nβ[⟨m2⟩ − ⟨m⟩2]. (2.10)

The point at which χ diverges is termed the critical point. We show the
dependence of m and χ on T for finite N simulations of the simple 2D
Ising model in Fig. 2.2. At the critical point, quantities like χ diverge as
power-laws in the reduced temperature:

χ(TR) ∼ T−γ
R , (2.11)

11



Figure 2.2: Finite size effects in
the 2D Ising model. The top panel
shows the ferromagnetic order pa-
rameter |m| as a function of the
temperature T , bottom panel the
susceptibility χ. Each line corre-
sponds to a different system size,
with the number of spins N shown
in the legend. The black verti-
cal line corresponds to Tc in the
N → ∞ thermodynamic limit. As
N increases the peak of χ increases,
sharpens and shifts towards the
black line. This is due to finite-size
effects.

where TR = (T − Tc)/Tc is the reduced temperature, describing proximity
to the critical point, and the power-law exponent γ is the critical exponent
associated with the susceptibility [40]. For simplicity, only the magnetic
susceptibility was considered in the above discussion. Other key divergent
quantities include the specific heat, scaling as C ∼ T−α

R , and the correlation
length, scaling as ξ ∼ T−ν

R . The exponents of the critical divergences may
be symmetric about TR = 0 (i.e. the critical point) or diverge with varying
exponents as the critical point is approached from above or below.

2.2.2 Finite-Size Effects

The power-law divergences of the derivatives of the free energy discussed
above are only truly defined in the thermodynamic limit, N →∞. When N
is finite, so-called finite-size effects cause the transitions to become rounded
and shifted [41, 42]. Continuing with the 2D Ising model example, in the
finite system we observe a rounded peak in χ, which occur at temperatures
shifted away from Tc(N = ∞). We show this behaviour for the simple 2D
Ising model in Fig. 2.2. The size and extent of this peak depend on N , and
investigating how a system’s correlation length scales with N allows one to
extrapolate the location of the critical point and exponents to the N →∞
limit, see Refs. [43, 47]. Any critical effects we discover in our finite N
systems will be blurred by finite-size effects.

2.2.3 Scale-Free Distributions

Power-law distributions such as (2.11) are said to be scale-free, as contri-
butions from all scales are of equal or similar importance. The correlation
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length ξ ∼ T−ν
R in the critical state also follows a power law, meaning that

fluctuations in the critical state occur across all length scales, and as a
consequence, a system near the critical point will look the same viewed on
microscopic, mesoscopic or macroscopic scales. Scale-free power-law dis-
tributions turn out to be a ubiquitous property of complex systems, from
neuronal activity [48] to human behaviour [49] to the World Wide Web and
the Internet [50].

2.2.4 Universality

Many diverse systems have been observed to share the same power-law
exponents at the critical point. This quality is termed universality [40, 47],
and models which share the same critical exponents in the thermodynamic
limit belong to the same universality class [51]. Universality implies that,
near the phase transition, the exact microscopic details of a system become
unimportant, and global features such as the symmetries of the Hamiltonian,
the dimensionality of the problem and the range of the interactions instead
predict its physical properties. The Ising model in fact defines one such
class - the Ising universality class [52]. Phase transitions in systems as
diverse as the liquid-gas transition in simple liquids [38], phase separation
in alloys [40], binary fluids [47], colloidal fluids [53, 54] and one component
liquid-liquid transitions [55], have all been shown to fall within the Ising
universality class. This means that, near the critical point, properties such
as the specific heat or the response to external fields of real systems with
complex interactions may be correctly predicted from simple toy models
such as the Ising model described above, provided one can calculate the
critical exponents of the real system.

2.3 The Brain, Spin-Glasses and Complex Net-
works

The lattice on which the 2D Ising model exists encodes a specific type of
regular (each spin has exactly 4 neighbours) and local (each spin only in-
teracts with its nearest neighbours) network topology. Interactions in the
brain are both non-local and irregular, indeed we shall see that they appear
to form so-called complex networks [25]. In this section, we introduce the
basic components required to describe these complex networks and estab-
lish how competition between positive and negative interactions on these
networks leads to the formation of spin-glasses when they are interpreted
in the framework of statistical physics.

2.3.1 Complex Networks

Lattice models can be described by structured networks with regular and
local interactions. But the vast majority of real-world networks (includ-
ing brain networks) exist in some other complex arrangement. The study of
these complex networks [50, 57, 58] exploded around the turn of the century,
with two particular topologies, small-world networks [59] and scale-free net-
works [60], appearing ubiquitously in real-world systems. We sketch these
topologies, along with regular and random arrangements, in Fig. 2.3. We

13



Figure 2.3: Example sketches of
characteristic network topologies.
Nodes are shown by coloured cir-
cles, and edges by lines. Panel (a)
shows a regular topology. Regu-
lar networks have long path lengths
(it takes many steps to pass from
one node to another) and high clus-
tering coefficients (nodes are locally
interconnected). Panel (b) shows
a random network. These have
short path lengths and low cluster-
ing coefficients. Panel (c) shows
a small world network, where path
lengths are short, and clustering is
high. This allows information to
rapidly propagate through the net-
work. Panel (d) shows a scale-
free network. The degree distri-
bution in scale-free networks fol-
lows a power law, causing some
nodes to have a very large number
of neighbours. These are termed
hubs and are shown by white and
striped nodes. Information propa-
gates through the network by pass-
ing through these hubs. Adapted
from [56].

14



will briefly introduce the key concepts of these networks so we may under-
stand why one might expect the brain to be organised in this way. We begin
by establishing the terminology required to describe complex networks:

• A network (or graph) consists of nodes connected by edges.

• The so-called adjacency matrix A encodes whether an edge connects
two nodes.

• Aij = 1 if the nodes ni and nj are connected, Aij = 0.

• The network is un-directed if A is symmetric. We will only consider
un-directed graphs here.

• We define the degree of a node ki as the sum of all connections;
ki =

∑
j Aij . The degree measures the “importance” of a node to

the network.

• Distances are measured by paths on the network.

We can now think of each of the spins si in our spin ensemble as sitting
on one of the nodes ni of the network. The couplings Jij communicate both
topology and the strength of the interaction; that is to say, they represent
a weighted adjacency matrix of the network. For a regular network, such as
the 2D lattice studied so far, we find some simple properties; the degree of
each node is constant ki = 4, and due to the nearest-neighbour locality of the
interactions, the average distances between nodes are long. Fully connected
networks by definition have high interconnectivity (ki = N − 1) and short
path lengths. Small-world and scale-free networks are differentiated from
these regular topologies as they have associated degree distributions, i.e. ki
is a random variable.

Small-world networks [59] may be generated by taking a lattice-like net-
work and randomly rewiring some of the nearest neighbour connections.
Small-world networks show high degrees of clustering and have approxi-
mately constant degree distributions and short average path lengths. Scale-
free networks [60] on the other hand are characterised by degree distribu-
tions that follow a power-law, P (ki) ∼ k−γ

i . Some nodes in this network
have very few neighbours, while others are connected with the entire net-
work. These highly connected nodes are termed “hubs” and facilitate the
flow of information through the network6

6 Interestingly, the structure of
scale-free networks means they are
robust to the deletion of random
nodes but vulnerable to attacks tar-
geted on the hub nodes [61].

. They also again act to reduce
the average path length between two nodes.

2.3.2 Complex Brain Networks

Perhaps unsurprisingly, a range of evidence also suggests that the connection
structure of the brain is a complex network, with studies showing that
different brain networks are both small-world [62–64] and scale-free [65,
66], see [25, 67, 68] for reviews. For neural computation in particular, small
world networks are said to enable a range of behaviours including supporting
synchronisation [69], rapid learning [70], synchronous processing [71] and
the efficient exchange of information [72]. One might then ask how these
network structures impact the phase transition we explored in the 2D lattice
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Ising model. Luckily the answer is available; simulations of both small-world
[73] and scale-free [74] topologies have shown that both models still undergo
a familiar P-F phase transition.

2.3.3 Brains as Spin-Glasses

In the simulation of Refs. [73, 74] it was again assumed that Jij = J > 0,
i.e. that all connected couplings were the same, and that these couplings
were excitatory (causing spins to align). It is well known however, that neu-
ral networks require both excitatory and inhibitory connections to function
properly [75, 76], with imbalances in the excitatory/inhibitory ratio linked
to neuropsychiatric disorders [77]. Our description of the brain must there-
fore include both excitatory (Jij > 0) and inhibitory (Jij < 0) couplings.
We do not know the exact values of each coupling, all we know is that they
are somehow specified by a probability distribution P (Jij). We will assume
that once drawn, each coupling will stay fixed, i.e. that the Jij do not vary
in time. This introduces quenched disorder into the system [44], and as
we will see briefly, leads to the creation of a new low-temperature phase,
the so-called spin-glass (SG). The SG phase has many interesting proper-
ties [78] and was first linked to neural computation in the 1980s, where it
was demonstrated that associative memories could be encoded in the many
meta-stable minima of the SG energy landscape [21, 22, 79]. Each spin si
now represents the binary state (on/off) of the ith neuron or brain region
in the network. The components hi of the field h describe the bias of a
particular brain region towards activity or inactivity. The couplings Jij
describe the synaptic strength when modelling individual neurons, or the
functional connectivity in coarse-grained neuro-imaging studies. Although
the coupling distribution P (Jij) may take any arbitrary form (and encode
any arbitrary network topology), the model is still described by the general
Hamiltonian of (2.1), which for clarity, we re-print here

H(s|h,J) = −
∑
i

hisi −
1

2

∑
i ̸=j

Jijsisj . (2.12)

The Hamiltonian shown in (2.12) is often also referred to as the Sherrington-
Kirkpatrick (SK) Hamiltonian [35, 80], after the pair who first solved and
understood the phase diagram of the fully connected (mean-field) spin-glass.
We will now provide a surface-level introduction to this model.

2.4 The Sherrington-Kirkpatrick model

The SK model [35, 80] was originally proposed as an exactly solvable model
with which to explain experimental [81] and theoretical evidence [82] of a
disordered magnetic phase, the spin-glass phase, in which competing inter-
actions cause the orientation of spins to be ”frozen” in random orientations
at low temperatures. The SK model is a so-called “mean-field” or infinite-
dimensional model, where every spin interacts with every other spin in the
system. Such models are generally easier to investigate mathematically, and
while the SK model can be solved analytically [35, 80, 83–86], the mathe-
matics by which this is achieved, namely the replica trick [35, 44, 78], are
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beyond the scope of this work and will not be given here. We will use results
from the SK model, such as the expected structure of the phase diagram, to
contextualise how we might expect models built from brain data to behave.
Brain data is dynamic (i.e. it fluctuates) and we thus expect that SK-like
models built to represent this data will sit outside of the spin-glass regime,
e.g. see [13]. The precise properties of the low-temperature frozen SG phase
are therefore of limited relevance for the work presented in this thesis, and
we only briefly introduce these for completeness.

As before, our ensemble of spins interacts via the Hamiltonian of (2.12).
In general, both h and J are now treated as random variables drawn from
some probability distribution. We will consider the original model formu-
lated by Sherrington and Kirkpatrick [35] in which all fields are zero (h = 0)
and the couplings Jij are independent and identically distributed (i.i.d) ran-
dom variables drawn from a Gaussian distribution with mean

µJ = E[Jij ] = µ/N, (2.13)

and standard deviation

σJ =
√

Var[Jij ] = σ/N1/2, (2.14)

where µ and σ are intensive variables. The state of the system is controlled
by the dimensionless averages µ/σ and T/σ, and different phases are ex-
plored by tuning these parameter ratios. We note that the distribution
P (Jij) need not be Gaussian, indeed a common alternative is to instead
take Jij = ±1 with equal probability [19, 87], and it has been proven that
any distribution which for N →∞ has the same first and second moments
as (2.13) and (2.14), and bounded non-infinite higher moments, will pro-
duce the same phase diagram [88]. Indeed recent computational studies
using empirical brain networks have shown that even these complex net-
works produce phase diagrams which closely mimic the SK phase diagram
[13].

2.4.1 The Spin-Glass Order Parameter

We previously introduced the magnetisation order parameter, m, to describe
the paramagnetic (P) - ferromagnetic (F) transition in the Ising model. For
clarity, m is defined as

m =
1

N

∑
i

mi, (2.15)

where mi = ⟨si⟩ are the “local” magnetisation’s of each spin. The or-
dered (low temperature) F phase is characterised by spins which are glob-
ally aligned in the same direction: m = 1. These spins are frozen, i.e. they
do not fluctuate and remain globally ordered. In the P phase, the spins ran-
domly fluctuate, and there is no global alignment: m = 0. The SG phase
however is characterised by spins which are frozen in random orientations
and thus m = 0 here also. The magnetisation m is therefore unable to
distinguish between P and SG phases, and we need to introduce another
order parameter to describe this transition. We define the spin-glass order
parameter, the (Edwards-Anderson) overlap q, as [82]
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Figure 2.4: Phase diagram of the
zero-field SK model in the thermo-
dynamic limit. The model exhibits
four phases; these are the paramag-
netic (P), ferromagnetic (F), replica
symmetry breaking ferromagnetic
(F’) and low-temperature spin-glass
(SG) phases. The AT stability line
indicates the onset of replica sym-
metry breaking. Highlighted in red
is the P-SG transition line, along
which SK-like models inferred from
fMRI neuroimaging data have been
recently found to lie [13]. The phase
diagram is adapted from [19].

q =
1

N

N∑
i=1

⟨si⟩2. (2.16)

The spin-glass order parameter again also has an associated susceptibility
χSG, which we define as [89]

χSG =
1

NT 2

N∑
i,j=1

C2
ij , (2.17)

and which diverges as spontaneous large correlations develop near the SG
phase boundaries. Here

Cij = ⟨sisj⟩ − ⟨si⟩⟨sj⟩, (2.18)

is the pairwise correlation between spins i and j and the sum i, j in (2.17)
runs over all pairs of i and j. q = 1, m = 1 in the F phase, q > 0, m = 0 in
the SG phase and q = 0, m = 0 in the P phase.

2.4.2 Phase Diagram

By tuning the parameter ratios µ/σ and T/σ one can access each of these
phases, and the corresponding phase diagram of the N → ∞ SK model
is shown in Figure 2.4. Many details have been omitted here, but loosely
speaking there are two solutions to the SK model, the replica symmetric
solution [35] and Parisi’s full replica symmetry breaking (fullRSB) solution
[78, 86]. The replica symmetric solution is valid in the paramagnetic (P)
phase, and in the ferromagnetic (F) phase above the de Almeida-Thouless
(AT) stability line [83]. Upon crossing below the AT line, the replica sym-
metric solution becomes unstable and gives a negative entropy which is
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non-physical for a model of Ising spins. Instead, a new solution (referred
to as the fullRSB solution) correctly describes this low temperature / weak
coupling strength region of phase space. At low temperatures, the fullRSB
solution gives rise to a spin-glass (SG) phase, the states of which are organ-
ised hierarchically and which corresponds to the richest possible organisa-
tion of phase space [90]. Recent work [13] found Ising models inferred from
large-scale neurological imaging data to sit in the P phase along the P-SG
phase boundary highlighted in Figure 2.4, and proposed that the brain may
derive some of its computational ability by exploiting the complex energy
landscape near this transition. Further evidence suggesting proximity to
this transition is required to provide merit to this idea, and these findings
form the starting point of the work presented in this thesis. In particular,
we will end up performing an in-depth analysis of the inference of data from
this region of phase space which will allow us to confidently appraise results
from real-world datasets.
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Summary of Chapter 2

• We introduced the basics of equilibrium statistical mechanics required to understand
and interpret our models. We considered models of binary spins exclusively.

• The statistics of an equilibrium system are governed by the Boltzmann distribution
and the macroscopic properties of a system are given by averages with respect to this
distribution. Complex systems can undergo phase transitions, which we characterise
by measuring order parameters and susceptibilities. The point where the system
undergoes a second-order phase transition is called the critical point.

Order Parameters
Order parameters allow us to characterise the macroscopic state of a system.
They change continuously near second-order phase transitions.

Susceptibilities
Susceptibilities measure the response of a system to external stimuli. They are
second-order derivatives of the free energy and diverge near second-order phase
transitions.

Finite Size Effects
Transitions between phases are only truly defined in the thermodynamic limit,
where the system size tends to infinity. For finite-sized systems, transitions are
blurred and shifted, and extended critical-like regimes appear.

• We discussed that connections in the brain form a complex network and that the
coupling matrix J of a generalised Ising model may be interpreted as a weighted
adjacency matrix describing the topology of a given model.

• Connections in the brain can be both inhibitory and excitatory, introducing quenched
disorder into the system. Systems with the quenched disorder tend to form spin-
glasses at low temperatures.

The Sherrington-Kirkpatrick Model
The SK model is an archetypal spin-glass model. It is a fully connected model
where all spins interact with all other spins, and has an analytical solution. We
later use this model to investigate our inference method as we expect models
inferred from neural data to explore a similar phase diagram.
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Chapter 3

Inverse Ising Inference

In this chapter, we will introduce methods which allow one to learn (i.e.
infer) parameters of equilibrium statistical physics models from real data in
a process known as maximum entropy modelling. By measuring pairwise
correlations in binary data one reconstructs models akin to the Sherrington-
Kirkpatrick model introduced in the previous chapter, i.e. one reconstructs
generalised Ising models, where the parameters hi and Jij are random vari-
ables drawn from some unknown distribution. Pairwise maximum entropy
modelling is therefore also commonly referred to as inverse Ising inference
when applied to binary data. We introduce a number of solutions to the in-
verse Ising problem in this chapter. We then detail how pairwise maximum
entropy models may be used for network reconstruction, and how networks
inferred via such inverse methods are superior to those constructed from
correlations. We finish this chapter by providing an overview of how max-
imum entropy modelling has been previously used to better understand a
variety of complex systems.

3.1 Maximum Entropy Models

In this section, we will show how statistical mechanics may be re-derived
purely from information-theoretic considerations. The motivation for this
is simple; doing so frees the theory from being a theory of physics describ-
ing interactions between real atoms and molecules in a volume, and allows
the construction of a more general probabilistic theory that describes the
behaviour of any collection of random variables. In this formalism equi-
librium statistical physics corresponds to calculating the probability distri-
bution which maximises the Shannon entropy [91] under some constraints
set by quantities we measure. By maximising this entropy we chose to
represent the data by a probability distribution that is exactly equivalent
to the Boltzmann equilibrium distribution obtained in classical statistical
mechanics.

This reformulation was first done in 1957 by Jaynes [36, 92], and we
will largely be following the same arguments in the section below. We
begin by considering a discrete random variable x, which can take values
xu for u = 1, 2, . . . , U , with probability P (xu). The precise distribution of
P (x) is unknown. The only information available about the system are the
expectation values of v = 1, 2, . . . , V observable functions fv(x)
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⟨fv(x)⟩ =
U∑

u=1

P (xu)fv(xu), (3.1)

with the usual normalisation condition that the probabilities must sum to
one ∑

u
P (xu) = 1. (3.2)

The Shannon entropy [91] of the probability distribution P (x) defines the
“amount of uncertainty” represented by that probability distribution and is
defined as

S [P (x)] = −K
∑

u
P (xu) lnP (xu), (3.3)

where K is a positive constant. Equation (3.3) is simply the usual expression
for the entropy in statistical mechanics, and thus the two may be considered
synonymous. Given that we have information about the system in the form
of the expectation values of equation (3.1) and the normalisation condition
of (3.2), we can calculate the probability distribution P that maximises
S under the constraints (3.1) and (3.2) through the standard method of
Lagrange multipliers [93]. One multiplier λ0 is introduced to account for
the normalisation constraint (3.2). Each observation made on the system
also introduces another multiplier, such that for each of the V measure-
ments ⟨fv(x)⟩ in (3.1) we introduce another multiplier, λv. Performing this
optimisation gives the maximum entropy probability distribution as:

P (xu) = exp

(
−λ0 −

V∑
v=1

λvfv(xu)

)
. (3.4)

To determine the multiplying constants one substitutes (3.4) into the con-
straint conditions (3.1) and (3.2). The Lagrange multiplier related to the
normalisation condition (3.2) is given by

λ0 = lnZ(λ1, . . . , λV ), (3.5)

where Z is the so-called partition function

Z(λ1, . . . , λV ) =
∑

u
e−

∑
u λvfv(xu), (3.6)

which acts as a normalisation constant on P (x). Similarly, the multipliers
associated with the measurements in (3.1) are given by

⟨fv(x)⟩ = −
∂ lnZ

∂λv
, (3.7)

and we see that the expectation values of the measurement functions are
related to derivatives of the partition function. Substituting the probability
distribution found in (3.4) into (3.3), we find the solution for the maximum
entropy as:

Smax = K
(
λ0 +

∑
v
λv⟨fv(x)⟩

)
. (3.8)
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3.1.1 Recovering the Canonical Ensemble

To demonstrate that the equations presented here are indeed mathemati-
cally identical to their counterparts in statistical physics, let us begin by
defining a system with an energy given by

Eu = E(xu|λ1, . . . , λV ) =
∑

v
λvfv(xu). (3.9)

Given that it is only possible to measure the average energy of our system
⟨E(x)⟩, Eq. 3.9 simplifies to Eu = λE(xu), and the maximum entropy
probability of equation (3.4) reduces exactly to the familiar equilibrium
Boltzmann distribution [38]

P (xu) =
1

Z
e−λEu . (3.10)

There is now only one conjugate Lagrange multiplier (associated with the
energy) which we identify as the inverse temperature, λ = β = (kbT )

−1.
Using the relation for the maximum entropy in (3.8) with K = kb, one finds
the usual expression for the free energy:

F = −(1/β) lnZ = ⟨E⟩ − TS. (3.11)

3.1.2 Recovering the Grand Canonical Ensemble

If one imposes additional constraints on the system, say by measuring the
average number of particles ⟨N(x)⟩, the maximum entropy probability dis-
tribution changes accordingly

P (xu) =
1

Z
e−[λ1E(xu)+λ2N(xu)], (3.12)

with λ1 = β and λ2 = −βµ, where µ is the chemical potential. Calculating
the new free energy with this additional constrain using (3.8) gives

F = −(1/β) lnZ = ⟨E⟩ − TS − µ⟨N⟩. (3.13)

Equations (3.12) and (3.13) are exactly those of the probability distribution
and free energy describing the grand canonical ensemble [38].

3.1.3 Recovering the Generalised Ising Model

Equations (3.10) and (3.12) serve as two simple examples of calculating the
maximum entropy distribution under given constraints in the information-
theoretic formalism. Let us now return to a system of interacting binary
spins and consider the constraints which would produce the maximum en-
tropy probability distribution of a generalised Ising model

P (su) =
1

Z
exp

−∑
i

hisi,u −
1

2

∑
i,j

Jijsi,usj,u

. (3.14)

Note that we have absorbed T into the definition of the fields and couplings.
Equation 3.14 is comprised of two types of conjugate Lagrange multipliers:
the fields hi which act on individual microscopic spins si and the pairwise
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couplings Jij which act on pairwise correlations between spins sisj . To
introduce these multipliers one must therefore measure the means ⟨si⟩ and
pairwise-correlations ⟨sisj⟩ of the spin distribution respectively. Systems
which follow the generalised Ising Hamiltonian (i.e. SK-like systems) are
therefore pairwise Maximum Entropy Models (MEMs).

3.2 Inferring Ising Models

Measuring the first and second moments of a spin distribution corresponds
to selecting a generalised (SK-like) Ising model in the maximum entropy
framework. We now explore how to learn the specific model parameters
h and J that best represent a given dataset. This process is known as
pairwise maximum entropy modelling or inverse Ising inference7

7 A brief note to explain the in-
verse terminology used here. In sta-
tistical mechanics, in the forward
problem the underlying model (e.g.
the parameter set θ) is known in
full and one aims to calculate av-
erages of some set of observables
⟨fr(x)⟩ (e.g. ⟨si⟩) from this known
model. The usual objective of sta-
tistical mechanics is to solve the for-
ward problem. The aim of the in-
verse problem is to do the opposite;
to estimate the model θ which best
represents some set of known obser-
vations measured from the data.

. We again
consider a system of N interacting binary spins si ∈ ±1, i = 1, . . . N , for
each of which we have a time series of length B. We describe the state of
the system at a given time t as a vector s(t). We label the full dataset of
B × N observations as {s}B = {s(t)}Bt=1. From this dataset, we measure
the empirical averages (local magnetisations)

me
i = ⟨si⟩e, (3.15)

and pairwise covariances

Ce
ij = ⟨sisj⟩e − ⟨si⟩e⟨sj⟩e, (3.16)

where ⟨A⟩e = 1
B

∑B
t=1A(t) is the empirical mean evaluated from the dataset.

We know that by measuring the (3.15) and (3.16) we constrain the maxi-
mum entropy model describing the data to a generalized equilibrium Ising
model. The inverse Ising problem, therefore, consists in determining the
vector of fields h and symmetric matrix of couplings J from the empirical
averages me and correlations Ce so that

⟨si⟩ = ⟨si⟩e, (3.17)

and

⟨sisj⟩ = ⟨sisj⟩e. (3.18)

Here ⟨A⟩ indicates taking the thermodynamic average of the inferred Ising
model, i.e. the average with respect to

P (s|h,J) = 1

Z(β,h,J)
exp{[−βH(s|h,J)]}, (3.19)

where

H(s|h,J) = −
∑
i

hisi −
1

2

∑
i ̸=j

Jijsisj . (3.20)

A number of techniques exist to solve the conditions (3.17) and (3.18) and
in what follows we provide a historical introduction to these. For notational
convenience we now absorb the temperature into the definition of our pa-
rameters, i.e. we set h = βh and J = βJ . This is equivalent to working in

24



units of T = 1. This means a “low temperature” state point is functionally
equivalent to a “strongly coupled” state point.

3.2.1 Exact Likelihood Maximisation: Boltzmann Learning

Motivated by the emergent computational properties (content addressable
memories etc) of SK-like models [21, 79, 80], Ackley et al. [94] introduced a
simple maximum likelihood estimator with which to solve the inverse Ising
problem. To construct this, we assume that the B samples of our dataset
{s}B are drawn in an independent and identically distributed (i.i.d.) fashion
from Eq. 3.19, so that we may write the log-likelihood of observing the
dataset as

L({s}B|h,J) = 1

B

B∑
t=1

ln [P (s(t)|h,J)]

= − lnZ +
∑
i

hi
1

B

∑
t

si(t) +
1

2

∑
i ̸=j

Jij
1

B

∑
t

si(t)sj(t)

=
∑
i

him
e
i +

1

2

∑
i ̸=j

Jij
(
me

im
e
j + Ce

ij

)
− lnZ.

(3.21)

The set of parameters {h∗,J∗} which maximise Eq. 3.21 is known as the
maximum likelihood estimate (MLE) of the inference problem [17]8

8 Maximising the likelihood is
equivalent to minimizing the Kull-
back–Leibler (KL) divergence [95],
which characterises the difference
between two probability distribu-
tions.

. To
find these one must obtain the gradients of L with respect to the fields and
couplings. Due to the linearity of (3.21) this is fortunately rather simple,
and we find that

∂L({s}B|h,J)
∂hi

= ⟨si⟩e −
∂ lnZ(h,J)

∂hi
= ⟨si⟩e − ⟨si⟩,

∂L({s}B|h,J)
∂Jij

= ⟨sisj⟩e −
∂ lnZ(h,J)

∂Jij
= ⟨sisj⟩e − ⟨sisj⟩.

(3.22)

The MLE solution is obtained when the gradients of (3.22) are zero (i.e.
when L is maximised), in which case the conditions (3.17) and (3.18) of
the inverse Ising problem are also satisfied. The parameters {h∗,J∗} which
maximise the likelihood defined in Eq. 3.21 therefore provide the solution
to the inverse Ising problem. When the number of spins N is very small
(typically a few tens), it is computationally feasible to enumerate Z and
perform this optimization analytically. However, as calculating Z requires
summing over all 2N possible configurations of the system, the problem
becomes rapidly intractable with increasing N , and a range of alternative
methods have been proposed to perform the maximisation. The oldest of
these is so-called Boltzmann learning [17, 94, 96] which uses Monte Carlo
(MC) simulations [97, 98] to approximate the gradients of (3.22) and update
them via a simple gradient ascent scheme [99, 100]. In this scheme, one
updates the parameter estimates via
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hn+1
i = hni + α [⟨si⟩e − ⟨si⟩(hn,Jn)] ,

Jn+1
ij = Jn

ij + α [⟨sisj⟩e − ⟨sisj⟩(hn,Jn)] ,
(3.23)

where α is a small constant known as the learning rate and n labels the
current step of the iterative parameter update process. A pseudo-algorithm
describing the complete Boltzmann learning scheme is shown in Algorithm 1.

Algorithm 1: Boltzmann Learning

1. Initialise MLE parameters: {h∗,J∗} ← {hn,Jn}

2. Estimate ⟨si⟩ and ⟨sisj⟩ at {hn,Jn} through MC sampling

3. Apply parameter update rule (3.23) giving {hn+1,Jn+1}

4. Set {hn,Jn} ← {hn+1,Jn+1} and repeat from step 2 until
parameters converge to constant value (within some tolerance)

5. Return {h∗,J∗}

It is theoretically possible to estimate {h,J} with unbounded accuracy
using Boltzmann learning (i.e. the method is asymptotically exact). This
highlights an interesting property of (3.21): the averages ⟨si⟩e and ⟨sisj⟩e
form sufficient statistics [101–103] for the maximum likelihood estimate,
and one cannot obtain better estimates of {h,J} by using all the B × N
available data points than by just measuring ⟨si⟩e (N observations) and
⟨sisj⟩e (N(N−1)/2 independent observations) [15]. While the accuracy may
be unbounded, the update steps (Step 3, Algorithm 1) require re-evaluating
the partition function through MC simulations, which is a computationally
hard problem. More generally, it has been shown that methods which rely
on sufficient statistics (such as Boltzmann learning) may gain accuracy at
the cost of computational complexity [104], and in real applications, this
has meant that Boltzmann learning is limited to small (N ∼ 120 [105])
system sizes. A range of approximate solutions to the inverse Ising problem
have been developed to overcome this limitation, which we will now go on
to discuss.

3.2.2 Statistical Physics Based Approximations

In this section, we introduce some analytical approximations with which
to solve the inverse Ising problem. These are predominantly based on the
plethora of results developed to understand the statistical physics of spin-
glasses throughout the 20th century [78, 89]. Although these approximations
are computationally fast, they generally produce larger errors than the ex-
act method of Boltzmann learning, and it is well known that they provide
poor performance in low-temperature (strong-coupling) or small-sample size
regimes (see [16, 106, 107] for reviews) when compared to Boltzmann learn-
ing. We will not use any of these techniques in this thesis and simply
highlight them here for completeness. The foundation of these methods is
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to construct mean-field theories [38] of varying complexity, and to use these
to estimate ⟨si⟩ and ⟨sisj⟩. Some of the most popular mean-field approaches
(in order of increasing refinement) are naive mean field (nMF) methods [108,
109], Thouless-Anderson-Palmer (TAP) inversion [109, 110], Bethe approx-
imations [111], susceptibility propagation [112–114], small correlation ex-
pansions [115] and cluster expansions [116, 117]. Bar the cluster expansion
method (which is computationally intense [118]), all these mean-field recon-
structions are known to fail near the transition to the low-temperature phase
[107, 112, 117], and we predominately regard them as exploratory methods
with which to obtain simple and reasonably representative initial estimates
of the model parameters [107]. These can then be used to initialise the
exact Boltzmann learning scheme or other more complex inference schemes
so that fewer iterations are required for these to converge.

While we do make use of any of these mean-field methods in this work,
we will provide a brief introduction to the simple nMF approximation to
establish how these methods are formulated. One begins by defining a set of
mean-field equations for the external fields of the generalized Ising model,
which in the nMF case is [39, 89]

hi = tanh−1(me
i )−

∑
k

Jikm
e
k. (3.24)

As we are building a mean-field theory for a specific dataset we make ex-
plicit reference to the empirical magnetisations me

i . Using the linear re-
sponse (fluctuation-dissipation) theorem [39], one may relate the pairwise
correlations Ce

ij to derivatives of (3.24) [109, 119], such that

Ce
ij =

∂me
i

∂hj
and ((Ce)−1)ij =

∂hi
∂me

j

, (3.25)

where ((Ce)−1)ij are the elements of the inverse correlation matrix. Differ-
entiating (3.24) w.r.t. me

j gives

((Ce)−1)ij =
∂hi
∂me

j

=
1

1− (me
i )

2
δij −

∑
k

Jikδkj ,

=
1

1− (me
i )

2
δij − Jij .

(3.26)

As there are no-self couplings in the model (we only calculate Jij for i ̸= j),
δij/(1− (me

i )
2) = 0 for all valid couplings. Thus, the nMF estimate for the

couplings matrix JnMF is simply

JnMF = −(Ce)−1. (3.27)

To calculate the nMF estimates of h and J one simply has to invert Ce, use
(3.27) to estimate J and then substitute these couplings into (3.24) to obtain
h. More advanced mean-field reconstructions are formulated identically, but
replace the initial mean-field equations (3.24) with more refined estimates,
such as the TAP mean-field equation [110]. In the next section we detail
our method of choice, so-called pseudo-likelihood maximisation, which has
been shown to outperform the above approximate schemes across a range of

27



Figure 3.1: Comparison of differ-
ent inverse Ising solvers for data
generated from an SK model of size
N = 64. β is the inverse temper-
ature. Different coloured lines cor-
respond to different methods. See
the text for a description of how
nMF, TAP and Bethe methods are
constructed. SCE indicates the
small correlation expansion [115],
ACE the adaptive cluster expan-
sion [116] and PLM the pseudo-
likelihood maximisation [15, 120]
method we use. We see PLM per-
forms better or as well as all other
methods for all β. The spin-glass
phase is at high β. This figure is
adapted from Ref. [16].

systems and coupling strength regimes [15, 16], see Fig. 3.1 for an example
in the SK model.

3.2.3 Pseudo-likelihood Maximisation

A powerful alternative solution, and the inverse Ising solver we choose for
our analysis, is pseudo-likelihood maximisation (PLM) [15]. In PLM one
approximates the inverse Ising log-likelihood (3.21) by a set of N pseudo-
log-likelihoods Lr [120]

Lr(hr,Jr|{s}B) =
1

B

B∑
t=1

lnP{hr,Jr}(sr(t)|s\r(t)), (3.28)

which depend only on the parameter hr and the rth row of entries Jr =
{Jrj}j ̸=r to the coupling matrix. Here we additionally introduced the con-
ditional probability distribution

P{hr,Jr}(sr|s\r) = 1/(1 + e−2sr[hr+
∑

r ̸=j Jrjsj ]), (3.29)

corresponding to the probability of observing the rth spin in state +1 or
−1 given all other N − 1 spins. Note that in the limit of B → ∞ the
PLM approach to inverse Ising inference is exact. Each of the Lr can be
maximised independently for each spin, making the problem highly suit-
able for parallelisation. Moreover, the structure of the pseudo-likelihood
means that each PLM optimisation is formally identical to logistic regres-
sion for which efficient computational algorithms exist 99 For this work, we perform

each logistic regression using the
sklearn.linear model.LogisticRegression
classifier from the Scikit-learn [121]
Python package with the L-BFGS-
B optimizer [122–124].

. As such, PLM
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depends on “all the data” [15], i.e. it is not a method based on sufficient
statistics and does not require the partition function to be computed. Note
that the coupling matrix inferred using PLM is generally not symmetric.
We therefore always perform a post-inference symmetrising step, setting
J∗ = 1

2 [J
∗
PLM + (J∗

PLM )T ] where T is the transpose of the matrix. PLM
reconstructions have been shown to outperform other approximate methods
for a range of topologies and coupling strength regimes [15, 16]. Moreover,
PLM may be efficiently implemented due to its inherent parallelism and
simple logistic regression form, making it possible to apply this method to
large system sizes. PLM is therefore considered the state-of-the-art method
with which to solve the inverse Ising problem, and this thesis focuses on
performing an in-depth study of PLM and its application to real
data. As a final comment, there is an alternative non-mean-field approx-
imate inverse Ising solver termed minimum probability flow [125]. PLM
generally outperforms this method when applied to real neurological data
[126] and we will thus not discuss it any further.

3.3 Network Reconstruction

One common aim of fMRI studies is to understand the network structure
of the brain. This is usually termed the functional connectivity (FC) of
the brain, and two regions are said to be functionally connected (i.e they
fulfil the same function) if there is some statistical correlation between the
activity time series from those regions [25, 67, 127]. Inverse Ising methods
provide a new pathway towards establishing functional connectivity, which
is represented by the couplings J of the inferred model. We now compare
how coupling networks constructed by inverse Ising inference differ from
the typical correlation-based networks encountered in the neuroimaging lit-
erature. While many complex measures of correlation have been defined
(see [128] for an exhaustive overview) studies which compare these correla-
tive methods [129–131] find that no singular best method exists for all use
cases. As such, the simplest measure of correlation, the linear (Pearson)
correlation coefficient

Rij =
Ce
ij

σe
i σ

e
j

=
⟨sisj⟩e − ⟨si⟩e⟨sj⟩e

σe
i σ

e
j

, (3.30)

still remains widely used to construct the FC of neurological data [62, 66,
132–134]. In (3.30) σe

i represents the standard deviation of the ith region
over the time series of the dataset. Rij varies between values of +1 and −1,
with values of +1 implying perfect correlation, −1 perfect anti-correlation
and 0 no correlation. Usually, Rij or |Rij | is then thresholded via some
scheme to construct the adjacency matrix of the graph: i.e. all Rij >
δ where δ is a threshold value are connected. This thresholding process
remains contentious [128, 135] as only considering positive correlations, or
correlation magnitudes does not allow the excitatory/inhibitory nature of
the connection to be assessed. Moreover, negative interactions are known
to help modulate brain dynamics, and their functional importance has been
demonstrated in neuroimaging studies [132, 136].
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Regardless of which thresholding scheme is used, the process of establish-
ing FC described above should immediately trigger some level of concern:
correlations do not imply connections. Even in the simple nMF inference
scheme (3.27) couplings are related to the inverse of correlations. Indeed,
let us consider a simple 1D Ising model with only nearest-neighbour inter-
actions (i.e. a chain of spins). At low temperatures this system develops
long-range exponentially decaying correlations; a connectivity network of
this model defined through correlations would therefore look much more
inter-connected than the true, sparse nearest neighbour couplings would
suggest. We demonstrate this enhanced connectivity effect for one of our
human fMRI datasets in Fig 3.2. More generally, critical points correspond
to regimes of large, long-range correlations and we thus expect that even
simple (e.g. 2D Ising model) coupling topologies can lead to complex, in-
terconnected correlation topologies. Fraiman et al. [137] demonstrate this
point beautifully, showing that by tuning the 2D Ising model towards its
critical point and defining a functional connectivity network through thresh-
olding Re

ij , one can mimic the properties of large-scale complex functional
brain networks. Simple, local coupling topologies tuned to the critical point
can therefore lead to complex correlation networks. This throws into doubt
some of the ubiquitous claims of complex networks in neuroscience [25, 67];
could these complex correlations simply be the result of simple connectivity
structures? Inverse methods, such as pairwise maximum entropy modelling
might provide a cure to this issue.

As previously noted, J can be interpreted as the weighted adjacency
matrix of a complex network [50, 58]. In practice, however, all Ising models
inferred from finite data will appear fully connected, with values of Jij for
truly disconnected couplings following some distribution about zero. Graph
reconstruction from inverse Ising models therefore also requires some sec-
ondary post-hoc thresholding step. Regardless, PLM with L1-regularisation10

10 L1 regularisation promotes pa-
rameter sparsity and is commonly
used when a large number of pa-
rameters are known (or assumed)
to be zero. The regularisation
strength λ can be tuned to produce
more or less regularisation.

[120] and post-hoc thresholding has been shown to perform excellently when
reconstructing known networks of a variety of topologies [15, 118]. Both
post-hoc threshold δ and regularisation strength λ are arbitrary hyper-
parameters, chosen at the discretion of the user. This introduces some
difficulty when approaching real data, as the best values to choose are un-
known. Moreover, while δ is easily discernible in say the 2D Ising model,
an appropriate value of the threshold is much less clear in cases where the
coupling distribution is continuous and centred on zero. An improvement
to PLM, so-called pseudo-likelihood decimation [138], performs similarly to
optimal choices of δ and λ and allows difficult-to-learn topologies to be ex-
tracted without the need to tune any hyper-parameters. All in all these
results demonstrate that PLM and its extensions are excellent network re-
constructors. In this work, we will not use decimation or regularisation as
we did not want to impose any additional assumptions of sparsity on the
data, and we observe that even without regularisation, coupling networks
are much sparser than connectivity networks (Fig. 3.2).
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Figure 3.2: We compare the em-
pirical correlations Rij (top) to the
inferred couplings θij (bottom) for
one of the fMRI datasets analysed
later. Although correlations and in-
teractions are clearly related, the
implied connectivity of the inter-
actions is much more sparse than
that of the correlations. Networks
constructed by thresholding corre-
lations are therefore likely to over-
represent the degree of interconnec-
tivity between brain regions.
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3.4 Maximum Entropy Models of Real Data

So far, we have introduced what maximum entropy models are and how
one might go about inferring their parameters. In this section, we highlight
some of the experimental systems where the maximum entropy modelling
framework11

11 As a reminder, pairwise MEMs
describing binary data are identi-
cal to generalised Ising models, and
pairwise maximum entropy mod-
elling is synonymous with inverse
Ising inference.

has found the most success. We begin by discussing maximum
entropy modelling in neural ensembles, where the method was first popu-
larised. We then discuss how extending the number of allowed spin states
from 2 to 21 (inferring so-called Potts models), allows contact networks be-
tween protein residues to be established. Extending the spins to continuous
states (inferring Heisenberg models) allows us to asses interactions between
birds in a flock. We also show how MEMs may be used to analyse financial
data, to highlight that these methods have applications beyond biological
systems.

3.4.1 Neural Activity (2 Spin States)

Following seminal work showing that pairwise MEMs can account for >
90% of the correlations of a network of retinal neurons [14], the maximum
entropy modelling framework has found broad adoption across a range of
disciplines. In neuroscience, pairwise MEMs are used to understand the
interaction network of ensembles of individual neurons (recorded via neuron-
resolution multi-electrode arrays), both in live animals [14, 139–141] and
in cell cultures [142]. The systems considered in these studies were small
(N ∼ 10 to 50) and each neuron is modelled as a binary variable (on/off).
For larger population sizes (N ∼ 100), the authors of Ref. [143] claim that
pairwise interactions no longer sufficiently capture the behaviour of the
neural network, and infer higher order (triplet and quadruple) interactions
to correct this. Ref. [105] notes the same, but addresses the divergence
from a pairwise description in an alternative way, instead constraining the
global activity of the network; i.e. measuring the probability that K out
of the N neurons activate at the same time [144]. This encodes the global
synchrony of the neural population and is similar to constraining the global
magnetisation of the network, with “K-pairwise” models providing excellent
agreement with large neural populations (N = 120) [105].

Pairwise maximum entropy modelling has also been used to analyse
coarse-grained fMRI datasets [13, 145–147]. Both resting-state [145, 146]
and task-specific datasets [147] can be analysed. Moreover, one can establish
the energy landscape of the MEM, and different brain states can be linked
to minima of this rough landscape [146, 147]. System sizes in fMRI analyses
range from N ∼ 10 [147] to N ∼ 250 [13].

In all the above we inherently assumed that the state of the system
is stationary and that the fields and couplings do not vary in time (note
that this is a necessary assumption of equilibrium models). This may not
be the case in real experiments, and Ref. [148] therefore infer MEMs with
stimulus-dependent (i.e. time-varying) magnetic fields. Ref. [149] further
extend these ideas and introduce a “state-space” model based on pairwise
maximum entropy modelling to infer time-varying fields and couplings. This
is computationally taxing, and limited to systems of size N ≤ 60. In our
work we consider resting-state state neuroimaging data only, which is as-
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sumed to be stationary, and thus will not infer time-varying parameters.

3.4.2 Protein-Protein Interactions (21 Spin States)

Proteins are macromolecules constructed by folding linear chains of amino
acids, and only achieve their desired functional properties if correctly config-
ured into a specific 3-dimensional structure. Understanding how the amino
acid chain is folded to form these 3D structures has been one of the primary
pursuits of modern biochemistry [150]. In total there are 20 different types
of amino acids, which when linked in the protein sequence are referred to
as residues. Pairwise MEM can be used to infer 3D structures (more specif-
ically to infer direct residue contacts) by analysing pairwise correlations
between residues along the amino acid sequence [151–154]. Each residue
can assume 21 states, one for each type of amino acid and one for gaps
in alignment, and as such the pairwise MEM describing this dataset is a
generalised Potts model [155]12

12 Potts models are just generalisa-
tions of Ising models to many dis-
crete states.

. The fields hi now describe the preference

for a certain residue at the ith sequence position, and the couplings Jij in-
dicate if two types of amino acid are in contact or not. Ref. [156] provides a
physics-friendly introduction to the topic, as well as showing that the PLM
method may be extended to infer multi-state Potts models.

3.4.3 Flocks of Birds (Continuous Spin States)

Flocks of birds, specifically starlings, display correlations which are scale-
free [157]. By treating the (normalised) velocity of each bird as a Heisenberg
spin (i.e. a spin which can point in any direction on a unit sphere) Bialek et.
al [158] show that pairwise MEMs are sufficient to account for these corre-
lations. This description is developed further in [159], and it is shown that
the maximum entropy model describing the flock is tuned towards a critical
point, hence explaining the previously observed scale-free correlations.

3.4.4 Financial Markets (2 Spin States)

Financial signals (i.e. prices) can conceptually be reduced to binary vari-
ables by considering if the price is rising (bullish) or falling (bearish). Hence,
a number of authors have used pairwise MEMs to analyse market connec-
tivity, from identifying relations between companies operating in different
sectors [160] to understanding consumer purchasing behaviour [161]. More-
over, stock markets exhibit many phenomena associated to critical systems,
and pairwise MEMs have allowed these to be assessed in the context of
equilibrium statistical physics [162–164].

3.4.5 Summary

Maximum entropy modelling is used when the correlations of a complex
system can be measured but microscopic interactions are difficult (or im-
possible) to access. The most common use of pairwise MEMs is to recon-
struct interaction networks, and this can be done for binary, multi-state or
continuous variables. Many complex systems, from flocks of birds to collec-
tions of neurons to stock markets, display signatures of criticality13

13 Indeed we partly chose to high-
light the above systems as evidence
supporting criticality has been ob-
served in each of them.

. MEMs
also provide an intuitive way to investigate and validate any such claims
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of criticality, as the inferred models correspond exactly to equilibrium sta-
tistical physics models of the data. Our work will use pairwise maximum
entropy modelling for both of these proposes; we aim to understand if the
resting state of the brain is critical, and to use the inferred couplings to
better characterise the functional connectivity of the brain.
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Summary of Chapter 3

• We introduced the maximum entropy modelling framework. Maximum entropy mod-
els are statistical models which maximise the entropy of a dataset and their samples
follow the Boltzmann distribution.

Pairwise Maximum Entropy Models
Measuring up-to-pairwise correlations within a dataset corresponds to selecting a
maximum entropy model of up-to-pairwise interactions. This pairwise maximum
entropy model is parameterised by external fields h and pairwise couplings J .

Pairwise Maximum Entropy Modelling
Defines the process of inferring the parameters of a pairwise maximum entropy
model from real data via a statistical inference, e.g. through maximising some
likelihood function. This process is called inverse Ising inference when binary
datasets are considered, leading to the inference of generalised Ising-like models.

Pseudo-likelihood Maximisation
Pseudo-likelihood maximisation (PLM) is an approximate, data-driven method
with which to perform inverse Ising inference. PLM is based on logistic regres-
sion, and we will exclusively use this method to perform our inferences as it has
been shown to outperform alternative inverse Ising solvers.

• The criticality of pairwise maximum entropy models can be easily assessed within
the framework of statistical physics as the inferred models represent equilibrium sta-
tistical physics models of the data.

• Pairwise maximum entropy modelling is often used as a tool for network reconstruc-
tion. We discussed that pairwise maximum entropy modelling may provide less dense
and more truthful estimates of the network topology than correlation-based methods
used in neuroimaging.

• Maximum entropy modelling can be applied to a variety of complex systems; from
ensembles of neurons to financial markets. Although we focus on neuroimaging data,
any methodological conclusions we draw from our investigation will therefore have
further-reaching consequences for a variety of systems.
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Chapter 4

Criticality in Neuroscience

A number of complex systems appear to display phenomena indicative of
criticality. In this chapter, we try to understand what might cause critical-
ity to be so ubiquitous in nature, taking a specific focus on living complex
systems. We detail evidence supporting criticality in neuroscience, as this is
the primary focus of this work, followed by a general discussion of criticality
in maximum entropy models. We find that the performance of maximum
entropy models strongly depends on the state-point of the input data, which
forms the initial strand of our research. We conclude this chapter by pro-
viding a contextualised preview of our research output.

4.1 Criticality as an Organising Principle

A broad range of experimental evidence seems to suggest that many living
systems are tuned towards (or exist in the proximity of) a critical point [2,
3, 6, 7]. The apparent ubiquity of close-to-critical behaviour has led some
to conjecture that evolutionary pressures may be responsible for fine-tuning
biological systems towards the critical point, and that criticality serves as
a template from which complex behaviours arise across a range of length
scales [7]. Indeed a number of interesting properties are associated with
the critical state, including providing optimal dynamic range and sensi-
tivity to inputs [8], enabling long-range coordination between individual
elements [157, 165], allowing a large range of dynamic responses [9, 10] and
maximising computational ability through edge-of-chaos computation [166,
167], making such an organising principle theoretically appealing. In the
context of neural systems this school of thought has become known as the
critical brain hypothesis, which further states that the brain derives numer-
ous computational advantages from operating in a near-critical regime [168,
169] such as maximising information transmission and storage, and aiding
classification and non-linear input filtering [3, 13, 170–176].

4.1.1 Fine Tuning

In chapter 2 we showed that the order-disorder transition of the 2D Ising
model is controlled by a single parameter T and that the critical point repre-
sented a very special value, occurring at only at a single specific temperature
Tc. By analogy, for the brain to truly be a critical system, it must there-
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Figure 4.1: Overview of the con-
tact process. Panel (a) describes
the dynamical rules by which nodes
activate; panel (b) shows the re-
sulting non-equilibrium phase dia-
gram; panel (c) shows the time evo-
lution in the sub-critical λ < λc (or-
dered) phase, at the critical point
λ = λc and in the super-critical
λ > λc (disordered) phase; panel
(d) shows the resulting avalanche
distributions in each part of the
phase diagram. Taken from Ref. [7].

fore also operate in some (infinitely) small region of a control parameter
space. In other words, under the critical brain hypothesis, the brain must
be fine-tuned exactly to the parameter values of the critical point; any de-
viation from these parameters and the phenomenology (and advantageous
properties) of the critical state are lost. Such fine-tuning problems [177] are
well known in fundamental physics14

14 For instance in cosmology the
initial density of matter and en-
ergy in the universe must be tuned
to a critical value with an error
O(10−60) to account for the cur-
rently observed flatness of the uni-
verse [178].

and pose philosophical problems if no
reasonable explaining mechanism can be put forward. We now discuss two
commonly proposed solutions in the context of neuroscience.

4.1.2 Dynamic Systems and Self-Organised Criticality

The brain is an inherently dynamic system [66]. As such, neural activity
is commonly modelled as a dynamic non-equilibrium process, of which a
simple example is the contact process [179] - see Fig. 4.1. In the contact
process, nodes si of a network may be active or inactive (i.e. have a binary
state). Activity propagates through the network dynamically. At each
time step active sites deactivate, simultaneously causing random adjacent
(connected) inactive sites to activate at a rate λ (Fig. 4.1(a)). The system
can be made to undergo an order-disorder (absorbing-active) transition by
tuning λ, with a dynamical critical point occurring at λc = 1. We sketch out
this phase diagram in Fig. 4.1(b). For λ < λc the system is in an absorbing
phase (analogous to the ordered ferromagnetic phase) in which any initial
activity decays exponentially to a globally deactivated steady state. When
λ > λc the system is in an active phase (c.f. disordered paramagnetic phase)
where any initial activity explodes to a fluctuating steady state where the
density of active nodes is ρ = 1− (1/λ). At the critical point λ = λc, initial
bursts of activity form characteristic “avalanches” (see Fig. 4.1(c)) the size
and dynamics of which obey power-law distributions Fig. 4.1(d).

Real systems still need to be fine-tuned to λc to observe the dynamic
critical point described above. Per Bak et. al [180] introduced a generic
feedback mechanism through which a system can dynamically self-organise
towards criticality. In such self-organized criticality (SOC) the critical point
acts as an attractor which, regardless of whether initialised in an absorbing
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or active state, the system will evolve towards as time progresses. A varied
range of physical systems, from piles of rice [181], to earthquakes [182] to
neural networks [171], show scale-free power-law dynamics consistent with
SOC. SOC thus seems an appealing generic organising principle through
which dynamic systems are tuned towards the critical state. Note that SOC
can only be used to explain fine-tuning in dynamic non-equilibrium systems.
We will now detail an alternative solution to the fine-tuning problem which
is also applicable in equilibrium settings.

4.1.3 Extended Critical Regimes

The fine-tuning problem arises because the critical point is located at a
single uniquely defined set of parameters. What if instead there was an
extended critical regime, throughout which scale-free and power-law scaling
was observed? Luckily such a thermodynamic phase exists and is com-
monly termed the Griffiths phase [183, 184]. The Griffiths phase (similarly
to the spin-glass phase of chapter 2) arises when quenched disorder is intro-
duced into the Hamiltonian of the system, for instance by randomly diluting
(i.e. removing) couplings in the nearest-neighbour Ising model [185]. In-
troducing this disorder causes local clusters to form in the bulk material,
some of which will be highly inter-connected and weakly coupled to the
bulk. When approaching the clean critical temperature Tc of the disordered
system from above the strongly coupled clusters will organise into local fer-
romagnetic clusters, even though the global phase of the system remains
paramagnetic. These local clusters (often called rare regions) display slow
relaxation dynamics [186] and lead to a singularity in the free energy [183].
As these ordered clusters exist over an extended temperature range the
corresponding Griffiths singularities also occupy an extended temperature
regime, separating pure ordered and disordered phases. The same can also
occur for dynamic non-equilibrium models, and we show a sketch of the
associated modified phase diagram in Fig. 4.2(a).

If the disorder is uncorrelated then the effects of the Griffiths singularity
are weak [185]. But introducing quenched disorder that is correlated (e.g.
by introducing linear or planar defects into the lattice Ising model) can
greatly enhance the effects of the rare regions. Ref. [187] for instance shows,
using MC simulations, that introducing correlated disorder into the lattice
Ising model replaces the usual susceptibility cusp observed at Tc with an
extended T range in which the susceptibility is large, and bounded by two
susceptibility peaks. We reproduce this result in Fig 4.2(b).

Note that the local clusters which lead to the Griffiths phase inher-
ently require structured topologies with local couplings. For instance, even
though there is quenched disorder, we would not expect to see any cluster
formation in the fully connected SK model as the number of neighbours
tends to infinity. We would therefore also not expect to observe a Griffiths
phase in this model. Interestingly, simulations of the contact process on
small-world networks have shown that disorder introduced by the hetero-
geneity of the coupling topology alone may be sufficient to generate Griffiths
phases [189]. This idea is expanded further in [188] where simulated neural
dynamics on hierarchical modular networks which mimic real brain net-
works (see Fig 4.2(c)) were shown to display power-law avalanches for a
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Figure 4.2: The Griffiths phase
arises when there is disorder in the
connectivity of a model. (a) Sketch
of a phase diagram for a dynamic
model which includes a Griffiths
phase, where λ is a control parame-
ter as in the contact process. (b)
Shows the susceptibility χ of an
Ising model with correlated disor-
der as a function of the inverse tem-
perature β. Inset shows susceptibil-
ity when there is uncorrelated dis-
order. The model with correlated
disorder shows an extended critical
regime, corresponding to a Griffiths
phase. (c) Graphical representation
of a hierarchical and modular com-
plex network that mimics cortical
brain networks. Panels (a) and (b)
are taken from Ref. [188], and panel
(c) is from Ref. [187].

broad range of activity parameters λ (i.e. a Griffiths phase). This extended
critical regime is accompanied by a heightened dynamic range (analogous
to the susceptibility). Modular network topology is thus a sufficient condi-
tion for the formation of the rare regions required to observe the Griffiths
phase. Interestingly, evidence from fMRI studies suggests that the resting-
state brain wanders around a broad regime near the critical point [165],
supporting the idea of a neural Griffiths phase.

4.2 Evidence of Criticality in Neuroscience

Neuroscience is an expansive field, and a vast number of different exper-
imental modalities have been developed to understand the brain across a
hierarchy of length-scales [28]. Evidence supporting different types of phase
transitions has been observed using many of these experimental techniques
[7], and the topic is too vast to exhaustively discuss here. As the purpose of
this thesis is to understand and model the brain as an equilibrium system
(i.e. by construing a maximum entropy representation of the data), we will
focus our discussion on evidence supporting that the brain exists near a ther-
modynamic phase transition. Although all data collected in neuroscience is
inherently dynamic (i.e. follows some time-dependent update rule), maxi-
mum entropy models (MEMs) assume that each observation simply repre-
sents a sample drawn from some underlying probability distribution. We
will therefore refer to this type of criticality as statistical criticality. For
completeness, we also provide a surface-level overview of some of the most
well-studied evidence for dynamic criticality in neuroscience.
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Figure 4.3: Evidence for critical-
ity in maximum entropy models
of neural ensembles. Both panels
show the specific heat capacity C as
a function of a simulated tempera-
ture. The “natural” model inferred
from the data occurs at T = 1.
Both papers sub-sample their sys-
tem to perform a finite size analy-
sis, with each line corresponding to
a different system size N . Panel (a)
is from Ref. [190], and panel (b) is
from Ref. [191].

4.2.1 Statistical Criticality of Maximum Entropy Models

Following pioneering work on the construction of maximum entropy models
from populations of retinal neurons [14], a number of authors have applied
the maximum entropy modelling framework to neural systems. This frame-
work discards the neural dynamics, and simply considers each observation
of the system as corresponding to a sample drawn from the (equilibrium)
Boltzmann distribution. Interestingly, MEMs inferred from neural popu-
lations consistently appear to sit near an order-disorder transition [6, 144,
190, 191]. Refs. [190, 191] for example show this by simulating their inferred
models at a range of fictive temperatures T , which we reproduce in Fig. 4.3.
When T = 1 the inferred model is in its natural state, i.e. corresponds to
the MEM that was extracted from the data. By tracking the specific heat, a
second-order derivative of the free energy, as a function of T and performing
finite size scaling they find that the MEMs inferred from neural populations
sit very close to the systems critical point, i.e. that Tc = 1. While these are
positive results with regard to the critical brain hypothesis, we do note that
these studies were carried out for relatively small systems, with N ≤ 185.
From the literature we surveyed, there appears to be no direct evidence
of an extended critical regime (i.e. Griffiths phase) within MEMs inferred
from neural populations; for instance, the finite size extrapolations shown
in Fig. 4.3 both convergence towards a singular critical temperature.

Previous studies have also shown that simple Ising models tuned to their
critical point can replicate some of the complex dynamics of coarse-grained
experimental whole-brain datasets [137, 176, 192]. This suggests that large-
scale brain dynamics could be the result of a critical equilibrium process. All
these studies were comparative; they simply noted that critical Ising models
displayed some of the correlations as the brain, and made no use of the actual
data when building their models. Maximum entropy modelling allows this
analysis to be extended, and in a recent study, MEMs built from fMRI
data were found to exist near the spin-glass (SG) - paramagnetic (P) phase
transition of an SK-like model [13]. There is therefore evidence supporting
neural criticality from across a range of length scales, from ensembles of
neurons to coarse-grained fMRI data.
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4.2.2 Dynamical Criticality and Neural Avalanches

Perhaps the most well-studied example of neural criticality is that of “neu-
ronal avalanches”. Beggs and Plenz [171] observed that collections of neu-
rons (both in culture and in slices of rat cortex) activate in highly correlated
ways forming neural “avalanches”. More specifically, they found that the
size distribution of these avalanches follows a power-law with exponent 3/2
(c.f. Fig. 4.1(c) and (d)) and that this exponent agrees well with exponents
observed for a mean-field critical branching process [193]. While observing
power-laws does not strictly imply criticality (see [194] for a discussion),
the neuronal avalanches appear to obey finite size scaling [174] and can be
collapsed by a universal scaling function [195], both of which are strong
indicators of a true critical point. Moreover, avalanche dynamics have been
observed across a range of length scales, from neuron-resolved studies [196]
to fMRI datasets [165] supporting the idea that this process may be scale-
invariant. Interestingly, the critical state of the mean-field branching pro-
cess may be achieved via SOC [197], and more realistic biological models
of neurons have also been shown to tune to criticality via SOC [198, 199].
Neuronal avalanches may therefore be an example of a process self-organised
to criticality.

4.3 Maximum Entropy Models and Proximity to
Criticality

As noted in Section 4.2.1, MEMs inferred both from populations of neurons
[6, 144, 190, 191] and coarse-grained whole-brain studies [13] appear to sit
close to a thermodynamic (statistical) critical point. But these findings
are in fact much more ubiquitous; MEMs of diverse datasets, from protein
sequence banks [200] to flocks of birds [159] to natural images [201], all
appear close to criticality. This prevalence could be interpreted as evidence
supporting criticality as a generic organising principle for complex systems.
But it could also be a result of some systematic bias of the maximum entropy
inference, which tunes the inferred parameters towards their critical values.
This question forms the foundation of our first two results chapters, and
we now detail previous investigations which aimed to understand how well
maximum entropy models performed on simulated data.

4.3.1 Inference Errors in Simulated Systems

A number of authors have investigated the performance of pairwise maxi-
mum entropy modelling on simulated binary data (i.e. data from generalised
Ising models). Numerous network topologies, coupling disorders and sys-
tem sizes have been investigated, and to name but a few, previous authors
looked at 2D lattice Ising models with ferromagnetic couplings (N = 49)
[202], dilute and fully connected SK models (N = 16 to 128) [15], ferromag-
netic models on random graphs with a fixed degree, square lattices and fully
connected SK models (N = 64) [16], varied topologies for small system sizes
(N = 16) [118], and recently ferromagnetic couplings (i.e. Jij = J when
connected) on Erdős–Rényi networks (N = 50 to 400) [203]. Regardless of
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the precise topology or coupling distribution of these models, they all dis-
play an order-disorder transition at a critical point, which can be accessed
by varying a parameter like the temperature T (or equivalently the inverse
temperature β). We showed an example of one such investigation in the
previous chapter, see Fig. 3.1. Universally, all the above studies find that
reconstruction errors are smallest in the vicinity of the critical point, i.e.
when generating models at T ≈ Tc.

These results are commonly attributed to the theoretical finding that the
generalised susceptibility of the Ising model can be considered as a Fisher
information matrix [204], and that the maximisation of these quantities
at the critical point corresponds to a maximal density of distinguishable
models. One should consider the claims of minimum errors at Tc in the
above list of papers with a degree of scepticism as the system sizes probed
(bar Ref. [203]) were all small and likely to be strongly affected by finite
size effects. As a case study, let us consider the zero-field SK model for
N = 64 investigated in Ref. [16] and shown in Fig. 3.1. The authors find
a minimal error at T = 1, which for N → ∞ does indeed corresponds to
the critical temperature of the SG-P transition. However, careful finite-
size scaling studies of the SK model [205] show a peak in the specific heat
(which is an empirical way of determining the location of the finite size
critical temperature) at T fs

c ≈ 0.7. The region of minimum inference error
reported in Ref. [16] therefore occurs entirely within the paramagnetic phase
of their finite-size SK model. Simulations thus reveal that parameters from
datasets close to but offset from the critical point are easiest to learn. But
they also highlight another point; inference errors are highly dependent on
the true state point (i.e. temperature) that generated the data.

4.4 A Taste of Things to Come

This concludes the introductory chapters of this thesis. As mentioned pre-
viously, the primary scientific goal of this work is to infer maximum entropy
models of human brain data so that we may assess whether the mind is
positioned close to a thermodynamic critical point. This is motivated both
by theoretical work suggesting that the brain may derive a number of com-
putational advantages from operating near criticality, and also the breadth
of previous experimental evidence supporting neural criticality. We will
construct pairwise maximum entropy models (MEMs) of resting-state func-
tional magnetic resonance imaging (fMRI) data, which we assume to be
stationary (in a dynamical sense), allowing us to model the resting mind as
an equilibrium system. Inferring a pairwise MEM is equivalent to solving
the inverse Ising problem, and so we infer Ising-like models with complex
network structures that are encoded within the couplings between spins. A
number of methods exist to solve the inverse Ising problem, and compara-
tive studies by previous authors have found that pseudo-likelihood maximi-
sation (PLM) provides the best overall performance. This will therefore be
our method of choice and the only method we investigate.

In this chapter, we have shown that inference errors strongly depend on
the state point, e.g. the temperature, and the topology of the true gener-
ative model from which the data was drawn. It is generally impossible a
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priori to know the state point of any real-world dataset15
15 Otherwise we would not have to
perform the inference in the first
place...

. To confidently
assert that any models we infer from real datasets are close to criticality we
must first understand how PLM performs on data generated from known
models. We thus perform a detailed analysis of the PLM method on the
zero-field SK phase diagram for system sizes relevant to fMRI datasets in
chapter 5. This will reveal that, while PLM is exact for infinite data, pa-
rameter estimates are strongly biased when the sample size is finite, leading
to a tendency to overestimate the criticality of data drawn from param-
agnetic (i.e. fluctuating) state points. Any criticality reported for MEMs
inferred from small datasets may therefore be an artefact of the inference
scheme, throwing into doubt some of the ubiquitous claims of near-critical
maximum entropy models surveyed in section 4.3. We explain these findings
by analysing how the inference error depends on sample size. This reveals
that estimates of control parameters like the temperature depend linearly
on the inverse sample size, similar to the first-order bias of generic maxi-
mum likelihood estimators. We also present a number of ways to correct
this bias in chapter 6 and show that the PLM temperature estimate of a
dataset generally provides a lower bound estimate of the true temperature.

In chapter 7, we explore the effect of the PLM bias on a small fMRI
dataset on mindfulness meditation. This case study shows that not ac-
counting for the small sample bias can lead us to mischaracterise the phase
of data and to false claims of criticality. In chapter 8, we apply PLM to
one of the largest openly available neuroimaging datasets from the human
connectome project (HCP). We find that this dataset is large enough to
disregard small sample biases and that the overall human resting state cor-
responds to a super-critical state point with enhanced critical fluctuations.
The coupling structure of the HCP network is complex, and we find that the
coupling strengths obey a truncated power law. We analyse these models
and their structure and propose a self-consistent thresholding scheme with
which we extract a simplified model of the brain that conserves the correla-
tions of the input data. We further show that small couplings play a vital
role in mediating the fluctuations of the brain, and conclude that repre-
sentative network reconstructions must somehow account for these negative
edges.
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Summary of Chapter 4

• Evidence from a range of complex biological systems supports the hypothesis that
these operate at or near a phase transition. In the context of neuroscience, this is
known as the critical brain hypothesis.

• Complex systems must be fine-tuned towards the critical point to achieve criticality.
Two proposed solutions to this fine-tuning problem are:

Self-Organised Criticality
Feedback mechanisms can drive dynamic systems to self-organise towards crit-
icality. So-called neuronal avalanches agree closely with the critical exponents
of self-organised criticality.

Extended Critical Regimes
Disorder in the coupling structure of a network can lead to extended critical
regions where observables follow power-law scaling. These regions are called
Griffiths phases. Neural dynamics simulated on complex hierarchical and mod-
ular network topologies have been shown to form Griffiths phases, supporting
the idea of a neural Griffiths phase.

• We surveyed some of the most important results supporting neural criticality. These
can be split depending on whether one considers the data as a dynamic process or as
statistical samples from a probability distribution.

Dynamical Criticality
Refers to evidence for dynamic phase transitions, such as neural synchronisation
and neuronal avalanches.

Statistical Criticality
Refers to evidence for criticality in statistical models. Maximum entropy models
inferred from neural ensembles appear to support statistical criticality.

• Simulations have shown that inference errors in maximum entropy modelling depend
on the state point of the input data. Inference errors are the smallest in the param-
agnetic phase close to but offset from the phase transitions. This means that some
state points are harder to learn (i.e. require more data) than others.

44



Chapter 5

Pseudo-likelihood
Maximisation in the
Sherrington-Kirkpatrick
Model

In the preceding chapter, we established that inference errors in inverse
Ising inference strongly depend on the state point of the data. As we do not
know the state point of any given neurological dataset a priori we wanted
to understand how pseudo-likelihood maximisation (PLM) would perform
on a model with a well-understood phase diagram. Similarly to previous
authors, we chose the fully connected Sherrington Kirkpatrick (SK) model
as our benchmark model (see chapter 2 for an overview of the SK model
its and connection to neural systems). We will only investigate the PLM
solution to the inverse Ising problem, as numerous previous authors have
established that this provides the best parameter estimates (see chapter 3).
While PLM is exact in the limit of infinite samples B, we will focus on the
case where B is small and finite to establish any systematic errors that could
arise in relation to this. This will allow us to understand the types of errors
one might encounter in real datasets, which are always limited in size. We
will generate our datasets using Monte Carlo (MC) simulations, the details
of which are given below. We will find that small sample biases cause PLM
to overestimate the variance of the parameter distribution, biasing models
towards the critical point.

5.1 Problem Setup

In this chapter, we will generate data from across the SK phase diagram.
We denote the input (i.e. the true) parameter set θ0 = {h0,J0} with
the superscript 0. The maximum likelihood parameters estimated through
PLM will be indicated with the superscript ∗, and we will commonly refer
to θ∗ = {h∗,J∗} as the inferred model or the inferred parameters. We
perform un-regularised PLM inference on each trajectory, as the models are
not sparse. This section will discuss how we generate our input models and
datasets.
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5.1.1 Model Generation

We will benchmark the PLMmethod on a zero-field (h0 = 0) fully connected
SK model [35] using system sizes comparable to typical coarse-grained fMRI
brain region analyses [13, 23, 133], N = 50 to 800. We generate our input
couplings J0 by drawing from a Gaussian distribution with mean µJ =
µ/TN and standard deviation σJ = σ/TN1/2;

Jij ∼ N
(
µJ , σ

2
J

)
. (5.1)

Note that we have absorbed the temperature into our definition of the
model parameters. We do this as for real applications the “temperature”
(in a statistical physics sense) of the system is undefined, and only cou-
pling strengths can be extracted. Strongly coupled regimes correspond to
low temperatures and vice versa. µ and σ are intensive variables and the
state of the system is characterised by the dimensionless average coupling
strength µ/σ and temperature T/σ. We fix σ = 1 and sample from the
range µ ∈ [0, 2], T ∈ [0.5, 2], where in the N → ∞ thermodynamic limit,
the system explores all of its phases. These phases are a low-temperature
disordered spin-glass (SG), low-temperature ordered ferromagnetic (F) and
high-temperature disordered paramagnetic (P) phase; see chapter 2 for more
detail. When referring to the “state point” of the system we explicitly mean
a specific unique (µ, T ) pair. Generally, we will generate and simulate mul-
tiple models for each state point, with each set of couplings referred to as a
realisation of the model.

5.1.2 Data Generation

For every (µ, T ) we produce input datasets via standard Metropolis-Hastings
Monte Carlo (MC) sampling [97, 98]. This commonly employed sampling
technique is discussed at great length elsewhere, and we point the reader to
[206, 207] for extensive overviews. Briefly, MC sampling simulates a Markov
chain process where the probability of updating the state (i.e. configura-
tion) s(t) at a time t to a new configuration s(t+ 1) at time t+ 1 depends
on only on the current state of the system, s(t), and the probability dis-
tribution one wishes to sample. Here we wish to draw samples from the
equilibrium (Boltzmann) distribution. As before the probability of observ-
ing a configuration in equilibrium depends on the energy associated with
that configuration via

P (s) =
1

Z
e−H[s]/Tf , (5.2)

where we have introduced a “fictive temperature” Tf which for the time
being is set Tf = 1, but will come to play a role in the later chapters of
this thesis. Tf is not the same as the temperature of the model T , which
as stated above, has been absorbed into the definition of the parameters
h and J . We define the energy difference between the new configuration
s(t+1) and the old configuration s(t) as ∆H = H[s(t+1)]−H[s(t)], and our
MC algorithm updates the configuration with a probability dependent on
whether or not the new configuration lowers the energy of the system. New
configurations s(t+1) are proposed via a simple and standard local update
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rule; we choose a spin si at random with uniform probability 1/N and flip
the state of that spin, si(t+ 1) = −si(t). The probability of accepting this
proposal can then be shown to be

P (s(t)→ s(t+ 1)) =

{
1, if ∆H < 0,

e−∆H/Tf , if ∆H ≥ 0.
(5.3)

Note that because we perform local (i.e. small) changes to the configuration
at each time step the Markov chain will be highly correlated. Moreover, the
chain needs to be initialised with some configuration s(t = 0) which may
or may not be close to the equilibrium state. As such two rules of thumb
must be followed to obtain representative samples from MC simulations.
Firstly, the chain must be given time to “equilibrate” or “burn-in”, so that
it may evolve to a region of phase space representative of the state point
being simulated. Samples generated from this period should not be used to
estimate the thermodynamic properties of the system. Secondly, samples
should be drawn at sufficiently large time intervals, so that the correlation
between them is small and so that they may be considered independent and
identically distributed (i.i.d). There are thus 3 sampling meta-parameters
which need to be tuned when sampling from our MC algorithm: the equili-
bration time teq, the production time tpr and the sampling interval ts which
sets the time intervals at which we collect samples from the chain during the
production time. We will report all times in units of Monte Carlo sweeps,
where one sweep represents N spin update attempts. These sampling time
meta-parameters will vary throughout the results presented below, and in
order to report the MC meta-parameters in a concise way we will quote
them as pmc = {teq, tpr, ts}. For example, we will quote a MC simulation
which equilibrated for 105 sweeps, and from which B = 103 samples were
generated at intervals of 1 per 10 sweeps as pmc = {105, 104, 10}.

The full dataset of B × N observations obtained from the production
period will either be referred to as a trajectory or as the dataset. Thermody-
namic averages are then estimated from this trajectory as simple arithmetic
means

⟨x⟩ ≈ 1

B

t=B∑
t=1

x(s(t)), (5.4)

where t indexes time in the dataset. We commonly run multiple indepen-
dent MC chains for each state point over which we average to refine these
estimates. Unless stated otherwise, each MC chain was initialised with a
configuration of randomly oriented spins.

5.1.3 Relevant Observables

From each trajectory, we compute the following quantities to characterise
the SK phase diagram and assess the performance of the PLM method.
Starting from the microscopic spin averages

mi = ⟨si⟩, (5.5)

and correlations
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Cij = ⟨sisj⟩ − ⟨si⟩⟨sj⟩, (5.6)

we compute the spin-glass order parameter (the overlap) as

q =
1

N

N∑
i=1

⟨si⟩2, (5.7)

and the global (squared) covariance as

C2 =
1

N

N∑
i,j=1

C2
ij . (5.8)

C2 is related to the spin-glass susceptibility via χSG = C2/T 2 [13, 89].
When approaching the SG phase from the higher temperature P phase, the
susceptibility (and hence the covariance) increases rapidly, reflecting the
development of spontaneous large correlations near the phase transition, i.e.
the critical point. We track and measure C2 instead of χSG as this quantity
can be defined independently of T , and is therefore also measurable in real
datasets where T is unknown. q and C2 will be used to characterise the
phase boundaries of the finite size SK phase diagram. We further define the
auto-correlation Ct within the sample as

Ct(∆t) =
1

N

N∑
i=1

⟨si(t)si(t+∆t)⟩, (5.9)

where ∆t is the time delay. We define the auto-correlation time τ as the
delay when Ct(∆t = τ)/Ct(∆t = 0) = 1/e, and monitor τ to ensure that
subsequent MC samples are decorrelated and can be considered as i.i.d
samples. Turning now to the inference process, we define the inference
error ε according to

ε =

√√√√√√
∑

i≤j

(
θ∗ij − θ0ij

)2
∑

i≤j

(
θ0ij

)2 , (5.10)

which is a robust aggregate measure of the deviations in parameter estima-
tion previously defined in [16]. For clarity, we repeat that θ is the sym-
metric matrix containing all PLM parameters, with θii = hi and θij = Jij
as all Jii = 0 (there are no self-couplings). Note that the error is dom-
inated by contributions from the couplings as the number of couplings,
NJ = N(N − 1)/2, is much larger than the number of fields, Nh = N .

Each generated model realisation will deviate by a small amount from
T , and so we define the measured temperature of each input model reali-
sation as T 0 = 1/(σ0

JN
1/2), where σ0

J is the standard deviation computed
from the realised couplings. We similarly define the measured inferred tem-
perature as T ∗ = 1/(σ∗

JN
1/2) where σ∗

J is the standard deviation of the
corresponding inferred couplings. This allows us to define a second global
metric on the inference quality, i.e. how well the inferred model reproduces
the temperature. For brevity, we will refer to our total workflow (gener-
ating input models, simulating data from them and then inferring a PLM
reconstruction of that data) as a generate-simulate-inference (GSI) run.
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5.2 PLM for Example State Points

We ultimately want to understand the performance of PLM across the entire
SK phase diagram. But when doing so we will necessarily have to omit some
details of the inference output, and report only summary statistics such as
the error ε, which give no insight into which parameters θij specifically are
responsible for increases in the error. We thus use this section to explore
the parameter-specific (i.e. microscopic) origin of the inference error in each
phase. This will also allow us to establish familiarity with the matrix and
distribution representations of our model parameters. We perform a single
GSI run for 4 example state points from different parts of the zero-field
SK phase diagram, and investigate differences between the input parameter
matrix θ0 and the inferred parameter matrix θ∗ for each. One model was
generated for each of the main phases in the SK phase diagram with the
labels F, P and SG denoting the ferromagnetic, paramagnetic and spin-glass
phases respectively. We also generated a model from near the P-SG phase
transition to demonstrate how the inference performs in the vicinity of a
critical point. We present results for a small system of size N = 120 so that
full visualisations of the parameter matrices remain digestible. For each
simulation our MC meta-parameters were pmc = {105, 105 101}. We now
additionally simulate 6 independent MC chains for each model, appending
the generated data together to form a final dataset consisting of B = 6×104
samples.

Phase µ µ0 µ∗ T T 0 T ∗ µ∗
h Fig.

P 0.80 0.8 0.81 1.50 1.50 1.49 0.00 5.2
P-SG 0.30 0.39 0.35 0.50 0.50 0.48 0.00 5.3
SG 0.00 0.07 0.03 0.35 0.35 0.31 0.00 5.4
F 2.00 1.85 0.54 0.60 0.60 0.07 -0.14 5.5

Table 5.1: Summary statistics of PLM models inferred from data generated
at 4 zero-field SK model state points. Theoretical quantities have no su-
perscripts. Empirically measured quantities from the input parameters and
inferred parameters are indicated by superscripts 0 and ∗ respectively. Each
state point is explored in more detail in the corresponding figure.

Table 5.1 summarises the ability of PLM to capture the 4 selected state
points (i.e. to correctly estimate the intensive properties µ and T and
h). From each input model realisation we estimate µ using the relation
µ0 = µ0

J/(σ
0
JN

1/2), and similarly each inferred PLM model using µ∗ =
µ∗
J/(σ

∗
JN

1/2). The quantities µ0
J and µ∗

J are the measured empirical means
of the input and inferred couplings respectively. The relations with which we
calculate empirical temperatures T 0 and T ∗ are defined in section 5.1.3. We
also measure the spin averaged field in the inferred model µ∗

h, and expect
µ∗
h ≈ 0 for a perfect model reconstruction as we are analysing the zero-

field SK model. We find that there is generally some discrepancy between
the theoretical mean coupling strength µ and the realised mean coupling
strength µ0 of the input model. The temperatures T and T 0 are in much
closer agreement. PLM is best at reconstructing the P state point and
becomes progressively worse at capturing µ and T as T decreases, from P
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Figure 5.1: Semi-log plot of the
auto-correlation Ct(∆t) vs the de-
lay time ∆t for the 4 example state
points described in Table 5.1. Cor-
responding decay times are: τP = 1,
τP-SG = 164, τSG = 1333, τF =
5786. The slowing dynamics means
that datasets of size B collected
from e.g. the SG and F phases con-
tain less information than datasets
of similar B in the ergodic P phase.

to P-SG to SG state points. In the region µ < 1 the phase is not sensitive
to µ, i.e. all µ < 1 have a SG ground state. The temperature is therefore
the only relevant control parameter in this region. PLM systematically
underestimates T for all µ < 1 (P, P-SG, SG) example state points. This
corresponds to over-estimating the spread of the distribution, a finding that
we explore at length later in this chapter. In contrast, for the ferromagnetic
(µ > 1) state point the inferred model does not correspond to the input
model at all; T ∗ ≈ 0 and a negative average external field is found.

The simplest explanation for these differences is that the auto-correlation
time at each state point is different. We plot Ct in Fig. 5.1 on a semi-log
plot to investigate this and find that indeed, as T decreases τ increases
substantially. In the F case in particular, B/τF ≈ 2, i.e. only two indepen-
dent samples are contained within the dataset. There is thus not enough
information in the F dataset for PLM to infer the state point. Fig. 5.1
also reveals that both P-SG and SG state points still contain dynamically
fluctuating data, although the temporal correlations within these datasets
are much longer. This would explain why the PLM estimates (µ∗, T ∗) for
the P-SG and SG state points are further from the input values than the P
state point.

5.2.1 Single Realisation Investigation

To better understand how individual parameters contribute to the inference
error ε we provide overviews of the difference between input and inferred
models for P, P-SG, SG and F state points in Figs 5.2, 5.3, 5.4 and 5.5
respectively.
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Figure 5.2: Overview of the per-
formance of PLM on data from
a single realisation of a paramag-
netic state point, generated from
(µ, T ) = (0.8, 1.5). We show the
input parameter matrix θ0 in (a),
the inferred parameter matrix θ∗ in
(b), the parameter correlation in (c)
and coupling distribution for input
(black) and inferred (dark blue) pa-
rameters in (d). The colours shown
in (a) and (b) range from min(θ0)
(dark blue) to max(θ0) (light yel-
low). The number of spins is N =
120.

Figure 5.3: Overview of the per-
formance of PLM on data from a
single realisation of a state point
near the paramagnetic spin-glass
transition, generated from (µ, T ) =
(0.3, 0.5). We show the input pa-
rameter matrix θ0 in (a), the in-
ferred parameter matrix θ∗ in (b),
the parameter correlation in (c)
and coupling distribution for input
(black) and inferred (light blue) pa-
rameters in (d). The colours shown
in (a) and (b) range from min(θ0)
(dark blue) to max(θ0) (light yel-
low). The number of spins is N =
120.
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Figure 5.4: Overview of the per-
formance of PLM on data from a
single realisation of a state point
in the spin-glass regime, generated
from (µ, T ) = (0.0, 0.35). We show
the input parameter matrix θ0 in
(a), the inferred parameter matrix
θ∗ in (b), the parameter correlation
in (c) and coupling distribution for
input (black) and inferred (red) pa-
rameters in (d). The colours shown
in (a) and (b) range from min(θ0)
(dark blue) to max(θ0) (light yel-
low). The number of spins is N =
120.

Figure 5.5: Overview of the per-
formance of PLM on data from
a single realisation of a ferromag-
netic state point, generated from
(µ, T ) = (2.0, 0.6). We show the
input parameter matrix θ0 in (a),
the inferred parameter matrix θ∗ in
(b), the parameter correlation in (c)
and coupling distribution for input
(black) and inferred (orange) pa-
rameters in (d). The colours shown
in (a) and (b) range from min(θ0)
(dark blue) to max(θ0) (light yel-
low). The number of spins is N =
120.
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In these figures panel (a) shows the input parameter matrix θ0, panel (b) the
inferred parameter matrix θ∗, panel (c) the correlation between input and
inferred parameters and panel (d) the distribution of both input and output
parameters. Comparing panels (a) and (b) visually shows that for the µ <
1 (i.e. P, P-SG, and SG state points) there is a good overall agreement
between the parameter matrices (i.e. the structure of the input model is
captured), and input and inferred models cannot be visually distinguished.
The inferred F model however, displays a completely different behaviour;
whole rows (equivalently columns) of parameters contain large values that
are orders of magnitude greater than input the maximum coupling found in
the input model (J0

max ≈ 0.5 vs J∗
max ≈ 20).

The correlation plots in panels (c) communicate the parameter errors in
more detail. We see that for the P example, there is an (almost perfect)
linear correspondence between θ0ij and θ∗ij . As we decrease the temperature
to the P-SG and SG state points we find increasing deviations from this
linear relationship, and that the θ∗ij point cloud occupies a larger area of
the plot. This corresponds to an overall larger inference error. So while the
PLM still conserves the overall structure or the ranking of the couplings for
these state points, the values of the parameters themselves become more
error-prone. For the SG state point in particular we observe that θ∗ij point

cloud appears to be rotated about the line θ∗ij = θ0ij , i.e. negative values

of θ0ij become more negative, while positive values of θ0ij become more pos-
itive. This corresponds to a “streching” of the parameter distribution, and
through the relation T ∗ = 1/(σ∗

JN
1/2), a lower temperature state point.

PLM thus underestimates the temperature of data from these state points.
We study this effect in further detail later in this chapter and will find that
PLM always provides a biased estimate for the temperature that is sys-
tematically lower than the true temperature. The F correlation plot shows
extreme behaviour, with there being little correlation between input and
output couplings (i.e. PLM has failed to reconstruct the model). We set
the limits of the correlation plots to the maximum and minimum values of
θ0ij . In the F case, however, there are many extremal points outside these
bounds, and Fig. 5.6 shows the full correlation plot. Panels (d) further show

Figure 5.6: Expanded view
of θ0 vs θ∗ for the ferromag-
netic inference errors shown in
Fig 5.5(c). Highlights diver-
gence of specific inferred pa-
rameters to (infinitely) large
values.

that the inferred coupling distributions for P, P-SG and SG state points are
representative of the input model: they capture the gaussianity of the input
model. The inferred F model however is non-Gaussian, with long tails and
large couplings, corresponding to temperatures at zero temperature.

5.2.2 Error Distribution and Row Dependence

We further compare the distributions of the errors in h and J for each
example state-point in Fig. 5.7. We see the same behaviour as in panels
Fig. 5.2-5.5(c): as the temperature decreases and the dynamics slow the
size of the errors increases. Errors for the fields are generally small for P, P-
SG and SG state points, while large field values are inferred for the F state
point. Intuitively this makes sense; one way of generating a ferromagnetic
state is to have a strong uniform field acting on all of the spins. Turning
now to the couplings J , we note that the tails of the errors become longer
and larger as the coupling strength of the model increases from P to P-
SG to SG to F. Although we can clearly see that the overall error for the
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Figure 5.7: Probability distribu-
tions of the inference errors for the
fields (a) and couplings (b) for our
4 example SK state points. We ob-
serve that the average error magni-
tude increases as the temperature
decreases and that the tail of the
error distribution becomes longer as
the temperature decreases. We at-
tribute this to the slowing down of
the dynamics the system freezes on
approach to the SG and F phases.

F example will be larger than the others, the distribution representation
obscures the fact that certain parameter rows in particular contribute most
to the error. The distribution is therefore good at representing the gradual
increase in error when inference is possible, but not at identifying if the type
of catastrophic failure seen in Fig. 5.5 has occurred.

We therefore also plot the row error (i.e. the sum of all errors in the
ith row of the parameter matrix) as a function of i in Fig. 5.8. This clearly
highlights the two discussed behaviours. There is an overall average “base-
line” error for each state point which captures the difficulty of learning that
state point. As the coupling strength increases this baseline shifts up, and
the variation of the row error increases. For the F case with the strongest
coupling, we find that certain rows have errors orders of magnitude above
the baseline, and note that for these PLM has completely failed and inferred
arbitrarily large parameter values. For now, we simply state that these di-
vergent parameters are the result of a process called separation [208].

In summary, we have used this section to demonstrate how PLM per-
forms for 4 different example state points representative of the different
regions of the SK phase diagram. This has had two purposes: a) to estab-
lish familiarity with how to represent and compare parameter inputs and
outputs (parameter matrices, correlation plots, distributions etc.) and b)
to investigate how individual parameters contribute to the overall inference
error ε. We identify two separate sources of error when performing PLM on
finite data. Generally, PLM has a tendency to overestimate the size of indi-
vidual parameters θij , causing the inferred coupling distribution to appear
more spread than the true coupling distribution. This effect worsens (the
baseline error rises) as the coupling strength of the input model increases.
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Figure 5.8: The row error (i.e.
the sum of all errors in the ith row
of the parameter matrix) as a func-
tion of the row index i. We ob-
serve two trends. The baseline er-
ror increases as the temperature de-
creases, this reflects a smooth con-
tribution to the error as a result of a
decrease in sampling quality. Upon
approaching the static F phase, we
find specific rows with errors an or-
der of magnitude larger than the
baseline. These reflect a failure
of PLM to identify the underlying
model structure, c.f. Fig 5.5(a) and
(b), with arbitrarily large parame-
ters inferred for a subset of rows.

In the strongly coupled regime (as in the F example), specific parameter
rows appear to diverge to values that are orders of magnitude larger than
the maximal values expected from the input couplings θ0, representing a
failure of PLM to infer the couplings entirely. These rows dominate the
contribution to ε.

5.3 Overview of Inference Errors in the SK Model

From previous findings, we expect the inference to perform best near the
critical point [15, 16, 118], which for finite-sized systems is surrounded by
an extended regime of enhanced critical fluctuations. This region of phase
space is however notoriously hard to sample due to a phenomenon termed
critical slowing down [209], where the auto-correlation time τ (similarly
to other thermodynamic properties) diverges in the vicinity of the critical
point. To mitigate this, we chose a long sampling frequency ts = 1000 when
performing our initial survey of the phase diagram. We fix the MC meta-
parameters to pmc = {106, 107, 103} and collect B = 104 samples for all
state points. We being by showing results for a single fixed N = 200, as we
found that (bar finite size effects shifting and sharpening the transitions)
the results of our analysis were similar for all system sizes.

5.3.1 Error Phase Diagram

In Figure 5.9 we illustrate the overall phase behaviour of the SK model
and of the inference error for N = 200 and B = 10 000, with the phase
boundaries of the N =∞ system overlaid. Each pixel represents an average
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Figure 5.9: Overview of the order
parameter (a), susceptibility (b),
auto-correlation time (c) and er-
ror (d) for the N = 200 zero-
field SK phase diagram. The blue
lines show phase boundaries be-
tween the paramagnetic (P), ferro-
magnetic (F) and spin-glass (SG)
phases in the N → ∞ limit. We
have taken these from Ref. [19]. In
panel (d), white lines show contours
of ε and the pink line labels the line
µ = 0.1 across which a more de-
tailed examination of the error is
made in Fig. 5.10. The location
of the minimum error is denoted by
a dark blue circle. ε is thresholded
so that εmax = 1.5εmin. Each pixel
presents an average over 3 GSI runs.

of 3 input model realisations and GSI runs. In (a) we recover the known
SK phase diagram, with low values for the overlap in the paramagnetic (P)
and spin-glass (SG) phase compared to the ferromagnetic (F) phase. The
phase transitions correspond to regimes of increased susceptibility, which
peak at the phase boundaries but are blurred and shifted due to finite size
effects [42] as shown in (b). Deep in the F and P phases C2 is low due to
the lack of fluctuations in the F phase, and a lack of spin-spin correlations
in the P phase. Panel (c) shows that τ = 1 everywhere besides deep in the
F and low-temperature SG phases, reflecting that our sampling frequency
ts = 103 is sufficiently large to draw independent and identically distributed
(i.i.d) samples from most of the phase diagram. The F and SG phases are
static (i.e. do not fluctuate) and therefore will always have large values of τ .
From the discussion regarding optimal samples and inference in the previous
chapter, we intuitively expect PLM to perform poorly in these regions as
the drawn samples contain limited information about P (s).

Fig. 5.9(d) shows the performance of the PLM method as quantified
by the error in (5.10). We observe a minimum in ε in the paramagnetic
phase (µ = 0.4, T = 1.1), and a rapid increase as the two correlated F and
SG phases are approached. As discussed, this is consistent with previous
studies of the fully-connected SK model for N = 64 [15, 16], who found
the error to be minimized around T ∼ 1 for µ = 0. Although the error
minimum is close to the peak of the critical fluctuations, the two are not
coincident - in our simulations we find e.g. the P-SG C2 peak at T ≈ 0.6,
while finite size studies of the SK model have shown the critical fluctuations
of the specific heat of the P-SG transition to peak at T ≈ 0.7 for similar
system sizes [205]. The ε colour-map is capped at 1.5εmin but much larger
errors, O(103−104)×εmin, are observed in the correlated F and SG phases.
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Figure 5.10: Correlation measure
C2, auto-correlation time τ and er-
ror ε as functions of T for fixed
µ = 0.1. Error bars are the stan-
dard errors of the observables over
21 GSI repeats. Values T < 0.8
are not plotted as τ began to sub-
stantially deviate from 1 on the ap-
proach to the SG regime. pmc =
{106, 107, 103}.

For now, we attribute these large errors to the B configurations becoming
highly correlated (τ ≫ 1).

5.3.2 Error Dependence on Temperature

The region of minimal error in Fig. 5.9(d) is characterised by iso-contours
that run parallel to the phase transition lines, implying a strong dependence
of the error on the distance from the phase boundary. This is especially clear
at low µ, where the ε-contours lie roughly along lines of constant T . To un-
derstand the relationship between the inference error and the emergence of
criticality, we also study a profile of the phase diagram at fixed µ = 0.1,
away from the ferromagnetic phase. This profile characterises the SG-P
transition and is a function of the control parameter T only. This choice
of µ was also partially motivated by a recent PLM analysis of fMRI data
which showed the human mind to sit in the vicinity of the SG-P transition
[13]. In Fig. 5.10 we compare the inference error and C2 as a function of
T for this µ = 0.1 profile. Note that each point here corresponds to av-
erages obtained by carrying out GSI runs for 21 independent input model
realisations for each state point. This confirms that for N = 200, ε has a
flat minimum, centred around a temperate Tmin ≈ 1.1. The shape of the
minimum is asymmetric, with ε diverging slowly as T goes from Tmin →∞
and rapidly as Tmin → 0. At the minimum, the fluctuations C2(Tmin) are
3-4 times larger than their high-temperature limit. But as T decreases fur-
ther, the fluctuations continue to increase while the error rapidly diverges.
The divergence occurs without a significant increase in the auto-correlation
time, indicating that it is not due to poor sampling. The minimum error
is therefore within the regime of enhanced critical fluctuations and occurs
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close to but offset from the phase transition. At the supposed finite size crit-
ical temperature the inference fails due to the inherently highly correlated
nature of the data from this regime (τ is large).

Summarising; the PLM error on the SK phase diagram is encapsulated
by a linear dependence on the proximity to the phase transitions. While we
have only analysed the SG-P transition, similar results for F-P transitions
have previously been shown in the literature [118, 202]. We find the error to
be minimal when the data is super-critical, and near to but offset from the
phase transition. These results agree with previous numeric investigations
[15, 16], but contradict theoretical findings [204, 210], which would expect
the error to be minimized exactly at the critical point.

5.4 PLM Performance with Limited Data

In the previous sections, we established how the inference error ε depends
on the state point (µ, T ) of the SK model for a fixed number of samples
B. Like previous authors, we found that the state-point of the data has a
large impact on the ability of PLM to reconstruct the model (see Fig. 5.10),
and that the smallest reconstruction errors are observed in the P phase
near the P-SG transition. An alternative way to interpret ε is to say that
state points with large errors would require more samples to obtain the
same ε. We investigate the dependence of the PLM reconstruction on B in
this section as we do not know what phase our real-world datasets belong
to. We return to a system size N = 200, and again generate data along
the line of constant µ = 0.1 highlighted in Fig. 5.9. This allows us to
study PLM across the P-SG phase boundary. For every T we generate
21 independent model realisations, from which we run MC simulations with
pmc = {106, tpr, 103}, where tpr is set to generate datasets containing sample
sizes of B = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50}×103. Plotted quantities
then represent averages over these 21 GSI runs, with error bars being the
standard error over the same 21 runs.

5.4.1 Inferring Temperature from Finite Sized Datasets

The inference error ε is the combination of the error on each individual
parameter. It is dominated by the couplings Jij , as there are many more
couplings (NJ = N(N − 1)/2) than fields (Nh = N). In section 5.2 we
briefly noted that P-SG and SG state points showed inferred coupling dis-
tributions that were more “spread” than the input coupling distributions.
These effects were small in section 5.2 as we performed the analysis in a
high sample number setting, B = 6 × 104 for N = 120, i.e. near the lim-
iting case of B → ∞ where we know PLM to be an exact reconstruction
method. For small (finite) B these effects become much more apparent,
which we show by directly inspecting the probability distribution of J for a
selection of sample sizes B in the inset of Fig. 5.11. Specifically, we observe
that the inferred distributions remain symmetric and appear approximately
Gaussian, but that they systematically over-estimate the variance, gradu-
ally converging to that of the input distribution with increasing B. The
origin of this spread can be explained in terms of the bias of maximum
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Figure 5.11: The main figure
shows the inferred temperature T ∗

as a function of the input tempera-
ture T for a range of sample sizes
B. The darkest green line shows
results for the smallest B and the
brightest yellow line corresponds to
the largest B. Coloured crosses in-
dicate temperatures corresponding
to the coupling distributions in the
inset. N = 200, and points and
error bars are the mean and stan-
dard error over 21 GSI runs for each
T . The legend shows the number of
samples for each curve in units of
103. In the inset, we show prob-
ability distributions of the inferred
couplings for different B from the
same state point (µ = 0.1, T =
1.25) near the minimum ε in Fig.
5.10. Dark-blue, orange, red and
light-blue lines correspond to B =
{1, 2, 10, 50}×103 respectively. The
black dashed line shows the ground
truth distribution for reference.

likelihood estimators, as parameter estimates obtained from the logistic re-
gressions for each parameter row in PLM are known to be biased away from
0, i.e. over-estimated [37]. In our case, this spreads the overall distribution
of parameters. Since T ∗ = 1/(σ∗N1/2), applying PLM to small datasets
leads to an inaccurate estimate of the state point, biased towards a lower
temperature. For disordered datasets, this corresponds to biasing the model
towards the near-critical regime. The question is: how large is this effect?

In Fig. 5.11(b) we plot the dependence of the inferred temperature on
the input temperature for various B. Taking the worse case, B = 1000,
as an example, we find that the inference provides incorrect estimates of
the state point in the entire range of temperatures considered. Even at
the optimal conditions, where the inference error is minimal, T ∗ ≈ 0.4T 0,
mislabelling the state. Parameter estimates where PLM failed as in the
F example (Fig. 5.5) in Fig. 5.11(b) correspond to low T ∗ → 0, as the
anomalously large inferred parameters cause the variance to tend to infinity.
We clearly show that collecting more data allows the onset of this failure
effect to be delayed, and a lower temperature state points closer to the
P-SG transition to be correctly characterised. Irrespective of sample size,
the inferred temperature T ∗ is lower than the input temperature T 0. The
PLM temperature estimate is therefore systematically lower than the true
temperature. As the SK model is not sensitive to µ for µ < 1 we did not
study the dependence of µ∗ on µ0. Table. 5.1 however, provides some small
indication that we also expect PLM to under-estimate µ.
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Figure 5.12: Inferred tempera-
ture T ∗, panel (a), and susceptibil-
ity measure C2, panel (b), as func-
tions of the input temperature T
for three data quality conditions;
B = 1 × 103 (circles), B = 2 × 103

(squares), B = 1× 104 (diamonds).
The black lines show the tempera-
ture and susceptibility as measured
from simulations of the true model.
Each data point and error bar in
the black lines represents the mean
and standard error calculated over
3 (for each B condition) × 21 = 63
independent model realisations.

5.4.2 Inferring Susceptibility from Finite Sized Datasets

The critical state is characterised by large correlated fluctuations. As such,
we consider it important that the models we reconstruct via PLM accurately
capture the fluctuations of the data. However, we have just shown that
PLM on finite datasets will under-estimate the temperature, and expect
that these miss-attributed temperatures will cause the inferred models to
exhibit falsely enhanced critical fluctuations. This is because the spin-glass
correlation C2 (and susceptibility χSG) increase rapidly as T decreases and
one crosses the P-SG transition line. To investigate this, we re-simulate
the models inferred via PLM for each T and produce an estimate of the
correlations C2 corresponding to the inferred model. This process can be
summarized as follows. For every state point:

• Produce 21 independent datasets of sample size B

• Extract 21 PLM models (one per dataset)

• Run 6 MC simulations using the PLM estimate for 105 × N steps,
sampled every 10N steps ;

• Evaluate C2 over each simulation and average.

Fig. 5.12 shows the corresponding results for C2; the black line repre-
sents the correlations of the input models, while the coloured symbols show
those corresponding to the PLM estimates for three different sample sizes.
As suspected from the temperature shifts in Fig. 5.11, we observe that PLM
over-estimates C2 for input models generated at high T . With decreasing
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Figure 5.13: T ∗/T 0 as a function
ofB for three illustrative input tem-
peratures; (dark-blue) T = 0.95,
(grey) T = 1.4 and (yellow) T = 2.
Points and error bars for each B are
means and standard errors obtained
by repeating the GSI process for
21 independent input model realisa-
tions at each T . The coefficient of
determination of the heuristic arc-
tan fit (5.11) is R2 > 0.980 for all
B̃ plotted. See Fig. 5.15 for data
at lower temperatures where the fit-
ting quality is drastically reduced.

T , C2 reaches a peak value, which gets higher and is located closer in T to
the true C2 peak with increasing B. For small sample sizes the arbitrarily
strong couplings found for T < Tpeak fix C2 → 0. In summary, our nu-
merical experiments on the SK model indicate that PLM on small datasets
provides couplings that under-predict T and artificially enhance C2. PLM
will therefore misattribute finite datasets stemming from the fluctuating P
phase to a near-critical state point.

5.4.3 Formalising Temperature Dependence on Sample Size

In the previous section, we qualitatively described that the inferred temper-
ature depends on B. Here we quantitatively demonstrate that this effect is
governed by a slow 1/B convergence and that the temperature of the input
model sets the learning difficulty of the problem. In Fig. 5.13 we plot the
dependence of the ratio T ∗/T 0 on the sample size for different T . We find
that for increasing B the curves follow a saturating behaviour, which can
be fitted with high accuracy to the following heuristic model

T ∗ = (2TB→∞/π)× arctan
(
B/B̃

)
, (5.11)

where TB→∞ and B̃ are fitting parameters. TB→∞ measures the infinite
sample size prediction of the temperature, while B̃ quantifies the rate at
which information is accumulated about the temperature, providing a mea-
sure of how “easy” it is to learn a given state point. Smaller values of B̃
mean fewer samples are required to perfectly reconstruct the input temper-
ature.

We show the dependence of B̃ and ε on T in Fig. 5.14. Both share
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Figure 5.14: The empirical scal-
ing parameter B̃(T ) and the er-
ror ε(T ) when B = Bmax = 5 ×
104 samples are used for PLM.
Crosses show B̃ for the correspond-
ingly coloured T ∗/T 0(B) saturation
curves in FIG. 5.13. The last two
input temperatures for which B̃ ̸= 0
(i.e. for which the inference is pos-
sible from Bmax) are at T = 0.725,
with B̃ = 6014 and T = 0.8 with
B̃ = 2714. We do not show these
as τ diverges from 1 for T < 0.8
(see Fig. 5.10).

a non-monotonic behaviour indicating a correspondence between the scale
B̃ (quantifying the typical sample size to have small deviations in T ∗/T 0)
and the average error on the couplings ε. The minimum of B̃ is shifted
further into the P phase, to T ≈ 1.4. Note that for N = 200, the minimum
number of samples is B̃ ≳ 1000, pointing to the necessity of a minimum of
several thousand samples for reliable inference. For T < 0.8 PLM performs
so poorly that it becomes challenging to estimate B̃ accurately for the range
of B we explore. We show the saturating dependence of these low T state
points in Fig. 5.15 . For T = 0.5 and T = 0.57 B̃ is divergent; i.e. these

Figure 5.15: Tempera-
ture saturation plots as
in Fig. 5.13, but for low-
temperature input state
points. Plotted temperatures
are T = 0.5, 0.57, 0.65, 0.72
from dark to light.

temperatures cannot be learned even with our largest dataset B = 5× 104.
This highlights a poignant issue for real datasets; the bias decay parameter
B̃ is not known a priori and can vary by orders of magnitude depending on
the temperature of the input model. The limit defining a “small” dataset,
therefore, depends on the underlying state point of the data. For x =
B/B̃ ≥ 1 (i.e. high quality data limit) the empirical arc-tan fit can be
expanded as

arctan(x) =
π

2
− 1

x
+O(x−3), (5.12)

so that

T ∗ = TB→∞ − B̃′

B
+O(B−3), (5.13)

has a first-order linear dependence on 1/B. In summary, the PLM method
on the SK model displays biases that scale as the inverse of the sample size,
B−1. The magnitude of the bias strongly depends on the state point of the
input data. This small sample bias causes the temperature to be under-
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estimated, falsely enhancing the critical fluctuations exhibited by models
inferred from near-critical paramagnetic data. Any PLM model inferred
from fluctuating (i.e. dynamically varying) data will thus appear as closer-
to-critical than it actually is.

5.5 Explaining the Sample Size Bias

We have identified that properties related to averages of the couplings, such
as the temperature, are biased by small sample size effects. We explore the
origin of this bias in this section.

5.5.1 Bias of Maximum Likelihood Estimates

Let us briefly diverge from the specific case of solving PLM, and consider a
generic likelihood maximisation problem where the aim is to estimate some
true set of parameter θ0 = (θ00, · · · , θ0k, · · · , θ0n) form a dataset of B i.i.d
observations. The maximum likelihood estimate (MLE) of these parameters
is again indicated by θ∗, and it is well known that the bias of the MLE for
each θ0k may be expressed as [37, 211]

θ∗k = θ0k + bk
(
θ0, B

)
,

= θ0k +
b1,k

(
θ0
)

B
+

b2,k
(
θ0
)

B2
+

b3,k
(
θ0
)

B3
+ · · · .

(5.14)

The bias of the estimate of the kth parameter bk depends both on the com-
plete set of true parameters θ0 and the number of samples B. Clearly, as
B → ∞, bk → 0 and one recovers the true model perfectly. For simplicity,
we will only consider the first-order bias in our discussion, so that

bk
(
θ0, B

)
≈

b1,k
(
θ0
)

B
. (5.15)

We would therefore expect that each parameter of the logistic regressions
performed by PLM would contain a bias which decays (to the leading order)
as a function of 1/B. Our analysis of PLM additionally revealed that aver-
age properties of the inferred parameter set, such as the standard deviation
(i.e. the inverse temperature), also display a bias which vanishes linearly in
1/B (see Fig. 5.16). We now investigate PLM specifically to see why this
should be the case.

5.5.2 Bias of Average Properties in PLM

As a reminder, in PLM one maximises N pseudo-likelihoods Lr to produce
a set of non-symmetric inferred couplings. We will denote the PLM output
for each of the r logistic regressions as ϕ∗

r = (h∗r , {J∗
rj}j ̸=r). Each set ϕ∗

r

fills the rth row of the non-symmetric PLM parameter matrix ϕ∗. As we
require our couplings to be symmetric we always perform a post-inference
symmetrising step, setting θ∗ = 1

2 [ϕ
∗ + (ϕ∗)T ] where T is the transpose

of the matrix, to obtain our final PLM estimates of h and J . The final
symmetric PLM estimate of each parameter is θ∗ij = 1/2(ϕ∗

ij + ϕ∗
ji).
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Figure 5.16: Convergence of the
variance of the inferred couplings
(σ∗)2 (scaled by system size) vs in-
verse sample number 1/B. The
dashed lines indicate linear fits to
the asymptotic (large B) regime
of the data. Asymptotic inter-
cepts of the two SK state points
correspond to T ∗ = 1.40 and
T ∗ = 2.00; PLM is able to per-
fectly reproduce the state point
given infinite data. The gradient
b1 of the asymptotic fits sets the
severity of the small sample bias.
This gradient depends strongly
on the state point, system size
and topology of the input model,
e.g. we find b1(SK: T= 1.4) =
760, b1(SK: T= 2.0) = 450, and
b1(Brain) = 3416.

We now investigate how the bias of average properties of the inferred
parameter distribution, such as the variance Var[θ∗], arises from the bias
of each individual parameter. All ϕij have been obtained via a likelihood
maximisation process. As before, we may thus describe these in terms of
their first-order bias as

ϕ∗
ij ≈ ϕ0

ij +
b1,ij

(
ϕ0
)

B
, (5.16)

where each bias b1,ij
(
ϕ0
)
depends on the full true parameter set and we

discard all higher order bias terms. Note that the true values of θ0 and ϕ0

are equal, i.e. θ0ij ≡ ϕ0
ij . We now replace the index i with r to keep the

connection to the index of the rth row of the parameter matrix explicit.
The average of our PLM estimates θ∗ is:

E[θ∗] =
1

Np

∑
r≤j

θ∗rj , (5.17)

where Np = N + N(N − 1)/2 is the number of parameters in the upper
triangle and diagonal of the matrix θ∗, which due to the symmetry of θ∗

fully describes the model. Rewriting this in terms of ϕrj gives:

E[θ∗] =
1

2Np

∑
r≤j

(
ϕ∗
rj + ϕ∗

jr

)
. (5.18)

We then use (5.16) to write:
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E[θ∗] =
1

2Np

∑
r≤j

(
ϕ0
rj +

b1,rj
B

+ ϕ0
jr +

b1,jr
B

)

E[θ∗] =

 1

2Np

∑
r≤j

2ϕ0
rj

+

(∑
r≤j b1,rj + b1,jr

2NpB

)

E[θ∗] = E[θ0] +
b1,E[θ]

(
θ0
)

B
,

(5.19)

where in (5.19) we used the fact that ϕ0 ≡ θ0 and the symmetry of θ0. The
constant b1,E[θ] is made up of sums of the individual biases b1,ij , and depends
on θ0. We can now clearly see that the PLM estimate of the parameter mean
is also affected by a true model-dependent bias which decays as a function of
1/B. We noted previously that the phase of the SK model in the parameter
region we are interested in (i.e. the P-SG transition region) is not sensitive
to µ. Moreover, we have shown that we can use the variance of the coupling
distribution to define the temperature of our inferred models. We therefore
also want to express this in terms of the bias. The variance is defined as

σ2
θ = Var[θ∗] = E[(θ∗)2]− E[θ∗]2, (5.20)

and once more using (5.17) we find

E[(θ∗)2] =
1

4Np

∑
r≤j

[(
ϕ0
rj + ϕ0

jr

)2
+

2
(
b1,rj(ϕ

0
rj + ϕ0

jr) + b1,jr(ϕ
0
jr + ϕ0

rj)
)

B
+

O(B−2)
]

= E[(θ0)2] +
b1,E[θ2]

(
θ0
)

B
,

(5.21)

where b1,E[θ2] is another bias constant depended on the true model. We
again use the symmetry of ϕ0 and equivalence of the true distributions,
ϕ0 ≡ θ0, to get the final result. Using (5.19) and (5.21) we find that to the
first-order in 1/B

Var[θ∗] = Var[θ0] +
b1,σ2

θ

(
θ0
)

B
, (5.22)

where b1,σ2
θ
= b1,E[θ2] − 2E[θ0]b1,E[θ] is the constant setting the bias of the

estimated variance. The above results are calculated over the entire param-
eter set θ = {h,J}, but they also hold over the individual distributions of
h and J . We now have all the ingredients required to show how our PLM
temperature estimates depend on B. We previously defined the empirically
measured temperature of our inferred models via

T ∗ = 1/(σ∗
JN

1/2), (5.23)
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where σ∗
J =

√
Var[J∗]. Using (5.22) and expanding in the limit of small

bias (Var[J0]≫ b1,σ2
J
/B) we can express the asymptotic convergence of the

temperature estimate as

T ∗ =
1

σ∗
JN

1/2
=

1

N1/2

(
Var[J0] +

b1,σ2
J
(θ0)

B

)−1/2

,

≈ T 0 −
b1,σ2

J
(θ0)N(T 0)3

2B
+ . . . ,

= T 0 −
b1,T (θ

0)

B
,

(5.24)

to the leading order of 1/B. The individual first-order biases on each param-
eter thus cause average properties of the parameters like the temperature
to also vary as 1/B. We can now rationalise our previous empirical arc-tan
fit

T ∗ = (2TB→∞/π)× arctan
(
B/B̃

)
, (5.25)

by noting that for x = B/B̃ ≥ 1

arctan(x) =
π

2
− 1

x
+O(x−3), (5.26)

so that

T ∗ = TB→∞ −
B̃′

B
+O(B−3), (5.27)

follows the same first-order linear dependence on 1/B as (5.24). Collectively,
the prefactors b1,ij(h

0,J0) set the difficulty of learning a given state point
(i.e. model) by increasing or decreasing the amount of data required to
dissipate the bias. Biases to statistical averages, like the temperature or
standard deviation, are proportional to sums of these parameters. Our
investigation of the SK model however revealed that the bias strength (which
we measured via B̃) was a function of the state point (i.e. T 0) and not the
specific parameter realisation θ0. We thus additionally show that the bias
behaves as

b1,ij(h
0,J0) ≈ b1,ij(T

0), (5.28)

that is, the bias is, to a good approximation, purely a function of the state
point of the input model (i.e. the inverse temperature). We can now also
re-contextualise previous computational [15, 16, 118, 202] and theoretical
[204, 210] findings about the dependence of the inverse Ising inference error
on the input state point in terms of the bias. Topology, state point and
other properties of the true model set the size of the bias terms b1,ij(θ

0)
and modify the amount of data required to remove the bias. Irrespective of
the values of b1,ij however, the rate of convergence is always governed by a
slow dependence on 1/B.
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5.5.3 Small Sample Sizes and Logistic Regression

The above discussion explains why PLM generally underestimates the tem-
perature of the input dataset, especially when B is small. However, our
analysis of the bias has done little to explain the type of catastrophic failure
encountered in the strongly coupled F regime, as shown in Fig. 5.5. These
failures are instead the result of another small sample size effect specific
to each logistic regression performed in PLM. Logistic regression is known
to be affected by an additional small sample size issue termed separation
[208]. Separation occurs when a subset of covariates (e.g. ssep ⊂ s\r) in the
logistic regression can perfectly predict the outcome variable (sr). When
data is separated the MLE of the logistic regression does not exist [208],
and infinitely large parameter estimates are inferred [212].

Most commonly the separation will be quasi-complete and only param-
eters associated with ssep will be infinite, with the remaining parameter
estimates remaining relatively unaffected. In real settings, where the lo-
gistic regression is solved numerically, the precise values of the separated
parameters will not be infinite and instead depend on the convergence cri-
teria of the numerical optimization scheme [212]. Methods which implicitly
remove the first-order bias term through modifying the log-likelihood func-
tion [37] have been shown to control separation [212, 213], highlighting the
connection of this effect to the first-order bias. Separation is often encoun-
tered when sample sizes are (very) small due to physical limitations on the
available data, for example in social sciences [212] or medical studies [214].

With regards to PLM on the SK phase diagram, we expect that (quasi-
complete) separation may commonly occur when the system is governed by
slow dynamics, such as in the SG and F phases. The target variable of each
PLM equation is the spin si, and due to the slow dynamics, we expect that
throughout a given finite length trajectory there will commonly be at least
one spin sj ̸=i which perfectly correlates with si. Separation then causes
couplings of large size to be inferred for these specific Jij , with the inferred
value of the parameter Jij depending only on the convergence criteria chosen
for the numeric optimization of the logistic score function [212]. Although
the hallmark signs of separation have previously been commented on in
other studies of PLM (e.g. in Ref. [15]) none - to our knowledge - have
previously linked the two conceptually. To summarise, low temperature or
strongly coupled state points therefore cannot be inferred with this logistic
regression-based technique.

5.6 Inference for Varied System Sizes

So far we have largely focused our analysis on a single system size, N =
200. This is because the analysis of other system sizes lead to consistent
conclusions, because simulating this intermediate system size only required
intermediate computational resources, and because N = 200 was similar
to system sizes in real fMRI analyses [13]. However, we also looked at the
performance of PLM across the zero-field SK phase diagram for a variety
of other system sizes. We will present the results of these investigations
in this section and will show that they largely confirm what was already
stated for the N = 200 case. In total, we tested PLM on systems of size
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N = {50, 100, 200, 400, 800}. We generated multiple model realisations for
each state point in the phase diagram, the number of which depended on
N ; 6 realisations were drawn for N = 50 and 100, 3 for N = 200 and 400
and 1 for N = 800 due to computational limitations. For each realisation
we fixed the MC meta-parameters to pmc = {106, 107, 103} and collected
B = 104 samples for all state points.

5.6.1 Phase Diagrams

The resulting phase diagrams for q, C2 and ε are shown in Fig. 5.17. We see
that these phase diagrams look largely the same for varying N as they did
for N = 200. Finite size effects do however play a role and impact the phase
diagram. Focusing initially on q and C2, we see that (as expected) finite size
effects cause the transitions to shift towards the N → ∞ transition lines.
This is shown both by the peak of C2 shifting towards the transition lines
and by the regime of high q corresponding more closely to the F phase in the
thermodynamic limit. We also observe a “sharpening” of the transitions,
which we expect from finite-size scaling. The areas of parameter space with
heightened C2 become smaller and concentrate around heightened peak lines
of C2. These finite-size effects are also accompanied by interesting changes
to the behaviour of the error. The contours of ε remain parallel to the
phase transitions for all N . We do find, however, that the error becomes
smoother as N increases, and that the contours more closely align with the
transition lines. This reinforces our previous hypothesis that the error is a
function of distance to the phase transition only. The region of minimum
error remains in the paramagnetic phase for all N . The values of the errors
themselves increase with N , implying a dependence of the error on the size
of the system.
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Figure 5.17: The order parameter q, susceptibility measure C2 and inference error ε across the SK phase
diagram as the number of spins N varies. Each row shows the aforementioned observables for a fixed
value of N . Full lines have the same meanings as in Fig. 5.9. We threshold ε so that εmax = 1.5εmin.
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Figure 5.18: Average auto-
correlation time τ and inference
error ε as functions of T in the
µ ≤ 0.6 region of the SK phase
diagram for various N . We note
a non-trivial dependence of ε on
T for all N across a region where
τ = 1. The minimum error for
all N is within the paramagnetic
phase. The overall error increases
as N increases. We produce these
curves by averaging over all in-
ferred models with µ < 0.6 for each
T . Error bars represent standard
errors over the same samples.

5.6.2 Error across the P-SG transition

For µ < 1 the phase of the SK model is not sensitive to µ, and the transition
from P to SG phases is captured entirely by the temperature. We perform
a similar analysis as in section 5.3.2 and measure how ε, τ and C2 vary as
functions of temperature in this region of the phase diagram for different N .
We perform this analysis without generating additional data by averaging
over the observables overall µ ≤ 0.6 for each T , which we justify by the
above in-sensitivity to µ.

We track τ and ε as functions of T in Fig. 5.18 to again ensure that
the observed error dependence is truly a result of the PLM method and
not due to a reduction in the number of independent samples contained
in the dataset. As for our detailed analysis of the N = 200 model with
µ = 0.1, we find that τ = 1 for the entire T range when the error is
smooth. The observed minima and shape of ε are therefore consequences
of PLM only. We again highlight that the value of εmin increases with N ,
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Figure 5.19: Average susceptibil-
ity C2 and inference error ε as func-
tions of T for µ ≤ 0.6 and varying
N . As N increases we see that the
maximum of C2 increases and oc-
curs at higher temperatures. Our
data on the multiple system sizes
are not good enough to perform a
proper finite-size scaling analysis as
we cannot clearly identify the tem-
perature at which C2 is maximal for
each N . This is obvious if we com-
pare with Fig. 5.12, where we per-
formed higher quality simulations
for a single line of constant µ in the
N = 200 system and found C2 to
peak around T = 0.65, a feature
not present here. We produce these
curves by averaging over all inferred
models with µ < 0.6 for each T .
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and remains within the P regime. We then look at the co-dependence of
C2 and ε on T in Fig. 5.19. The minimum error occurs in a region with
small, but heightened critical fluctuations, corresponding to a super-critical
paramagnetic state point. Inference failure (which we define as the point
at which ε deviates from the smooth behaviour) occurs at progressively
higher temperatures as N increases. This may be due to finite size effects
shifting the transition temperature to higher T , or because larger systems
inherently require more parameters to be inferred and therefore require
more data for PLM to perform well near criticality. We do not have strong
enough statistics from our measurements to identify the exact location of
the C2 peak for each N to make definitive statements regarding this. We
track the temperatures at which the C2 maximum and ε minimum occur
and plot them as functions of N in Fig. 5.20 . Our data suggests that for

Figure 5.20: The temper-
atures at which C2 is max-
imised (blue) and ε is min-
imised (orange) as functions
of N .

N ≤ 200 TC2−max ≤ 0.5, and for N = 400, 800 TC2−max ≈ 0.6. Please note
that we recognise that our statistics are poor and that we treat these results
with a high degree of scepticism. Indeed we analysed the N = 200 model
in more detail in Fig. 5.12, and found that when more data was collected
the transition temperature could be identified within the range T ∈ [0.5, 2]
which we study. While the statistics of the C2 estimated obtained in the
critical regime are poor, estimates of the minimum error region are good. We
find that the location of Tε−min does not vary significantly with N , staying
constant at approximately T = 1.2. Interestingly, this independence would
suggest that as the system size grows the error minimum should converge
to a constant offset of δT ≈ 1.2 − Tc(N → ∞) = 1.2 − 1 = 0.2 above the
P-SG transition.

5.6.3 Error Dependence on System Size

So far we have only mentioned that ε generally increases as N increases.
We now wish to quantify this dependence. As noted, finite size effects will
cause the phase corresponding to each (µ, T ) pair to change as N increases.
We thus decided that the dependence of the error on N was best assessed
by tracking the minimum error state point in the phase diagram for each
N , indicated by the blue points in Fig. 5.17. We plot the dependence of
εmin on N in Fig. 5.21 and find that our data can be fitted with both with
a pure power-law, ε(N) = ANγ (R2

adj = 0.996, γ = 0.59) and a power-law

with fixed γ = 0.5 and an offset (R2
adj = 0.989) with high accuracy, leading

us to believe that ε ∼ N1/2 for fixed B.

5.6.4 Sub-Sampling to Find the Bias

In section 5.3, we generated a number of datasets of different lengths to
understand the convergence of the temperature as a function of the sample
size B. For real datasets, this process will not be possible. An alternative
standard approach is to draw “sub-samples” from the full dataset of length
B and perform PLM on each of these, tracking the observables of interest
(e.g. the temperature) as the size of the sub-sample increases. We now
extract bias parameters by sub-sampling datasets from the minimum error
state points for varying N identified in Fig. 5.17 (blue points)16

16 As a reminder, for N = 50 and
100 we analysed 6 realisations, for
N = 200 and 400 we analysed 3 re-
alisations, and N = 800 we anal-
ysed 1 realisation

. This is
exactly the same data we used in section 5.6.3. Each of these datasets
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Figure 5.21: The dependence of
the minimum error in each phase di-
agram (identified by the blue points
in the right column of Fig. 5.17)
on the system size N . We fit our
empirical data with two power-law
functions, the mathematical form of
which is shown in the legend.

contains a fixed Bmax = 104 samples. We generate each sub-sample in
a greedy way, by taking B samples from Bmax without replacement until
either Bmax/B sub-samples are generated or there are not enough unique
samples remaining to generate another complete sub-sample of length B.
We then perform PLM on each of these sub-samples, and average over the
output for each B. This way we ensure that as many as possible of the
Bmax samples are used in the analysis of each B condition.

We plot T ∗/T 0 as functions of the sub-sample size B for each N in
Fig. 5.22. Selecting only data with B ≥ 5 × 103, we perform an empirical
arc-tan fit for each curve, as was done in section 5.4.3. For N = 50 and
100, there is excellent agreement between the data and the fit even for
B ≤ 5× 103. But for N ≥ 200 we find a divergence between the fit and the
data for low B, suggesting that not all sample sizes are in the asymptotic
regime described by a 1/B convergence. We also find that the best estimate
for T rapidly decreases as N increases (as we expect from the behaviour of
ε), with the optimal estimate for N = 800 being ∼ 25% lower than the
true temperature. System size thus clearly also impacts the size of the bias
terms.

Although plotting T ∗/T 0(B) is an intuitive way to visualise how our es-
timates improve as we accumulate more information, analysing the depen-
dence of our observables in terms of 1/B allows us to more closely establish
how our estimates relate the first-order bias identified in section 5.5. With
this in mind, we also show the dependence of σ∗/σ0 on 1/B in Fig. 5.23.
We now make use of a statistical method to identify the first-order bias
regime for each N (see appendix A), showing points which are not part of
the linear bias regime as transparent. We see the linearity in B−1 holds for
all N ≤ 200. We show linear fits to the linear regime as black lines and note
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Figure 5.22: The saturation of
the inferred temperature T ∗/T 0 as
a function of B for the minimum er-
ror state points of varying N iden-
tified in Fig. 5.17. Transparent cir-
cles show inferred temperatures for
all individual sub-samples from dif-
ferent realisations at each B, while
black diamonds show averaged tem-
peratures over all sub-samples for
every B. We fit the average inferred
temperature with our empirical arc-
tan function to avoid biasing the fit
towards low B values where we have
more data points available. More
data is required to remove the bias
as N increases.

Figure 5.23: Errors in estimates
of the standard deviation σ∗/σ0 of
the couplings as a function of the in-
verse sample size B−1 for the min-
imum error state points of varying
N identified in Fig. 5.17. Colours
show different system sizes. Trans-
parent points show data outside of
the linear regime (see Appendix A).
Black lines indicate linear fits to the
linear bias regime and are used to
calculate the bias strength parame-
ter b1.
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Figure 5.24: We plot the two bias
strength measures B̃ and b1 calcu-
lated from the fits in Fig 5.22 and
Fig 5.23 respectively as functions of
N . These both show a linear de-
pendence on N . Full lines show lin-
ear fits, dashed lines show power-
law fits. The inset shows the depen-
dence of the minimum error εmin on
N for the same state points.

a clear divergence from these for small B for N = 400 and N = 800. The
error of the standard deviation (i.e. temperature) estimate at B = Bmax

approaches zero (i.e. σ∗/σ0 → 1) as N → 0. This clearly demonstrates that
for the same B different systems can experience vastly different amounts of
bias. Determining what constitutes a “small” sample size a priori is im-
possible. To confidently assert that a system is critical one must therefore
always carry out a convergence analysis, e.g. by sub-sampling as done here,
alongside the PLM analysis of the full dataset.

5.6.5 Bias Dependence on System Size

We have shown two valid ways of extracting the bias. By performing an
empirical arc-tan fit to T ∗(B) as in see Fig. 5.22 we obtain the bias measure
B̃. Similarly, we can obtain the b1 as the gradient of a linear fit to the
linear part of σ∗(1/B) (see Fig. 5.23). Intuitively we know that these two
parameters should capture similar properties of the system (and so have
the same dependence on N). To confirm this, we plot both as functions of
N in Fig. 5.24. We find both B̃ and b1 are well described by simple linear
functions of N . The values of the two bias measures are offset slightly from
one another, with b1 generally being lower than B̃. Importantly, we find
that the gradients of the linear fits to B̃(N) and b1(N) are numerically
very similar, taking values of 5.3 and 5.2 respectively. This confirms our
hypothesis that both B̃ and b1 capture the same property of the system,
encoding the “difficulty” of learning a given input model. We believe that
this linear dependence on N arises from the fact that although the full
inverse Ising problem deals with estimating N + N(N − 1)/2 parameters,
each individual logistic regression equation only infers N parameters.
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We previously found in Fig. 5.14 that B̃ and ε showed a similar depen-
dence on the state point. We thus considered these two variables as both
measuring the same core concept; the difficulty of inferring a given state
point. But we now find a discrepancy as our detailed analysis of the bias
revealed that B̃ ∼ N (equivalently b1 ∼ N), while our analysis of the infer-
ence errors showed ε ∼ N1/2, see Fig. 5.21. We consider our error measure
more closely to explain this discrepancy.

5.6.6 Explaining the Error-Bias Discrepancy

As a reminder, each of our zero-field (h = 0) SK model realisations has a
Gaussian distribution of couplings J with mean

µ0 = µ/TN, (5.29)

and standard deviation

σ0 = σ/TN1/2. (5.30)

Both µ0 and σ0 therefore implicitly depend on N . We can express the error
in terms of the bias as

ε =
1

B

√√√√√√
∑

i≤j

(
b1(θ0ij)

)2
∑

i≤j

(
θ0ij

)2 . (5.31)

As we have no fields we can express the denominator as∑
i≤j

(
θ0ij
)2

= NJ

[
(µ0)2 + (σ0)2

]
(5.32)

where NJ = N(N −1)/2 is the number of couplings. Let us now also define

a constant D =

√∑
i≤j

(
b1(θ0ij)

)2
which captures the sum of the state

point dependent bias of each coupling. We can therefore express the error
in terms of the bias and the intensive variables µ and σ as

ε =
D

BN
1/2
J

(
(µ0)2 + (σ0)2

)−1/2
,

ε =
D

BN
1/2
J

(
µ2

T 2N2
+

σ2

T 2N

)−1/2

,

ε =
D

BN
1/2
J

N1/2T

(
µ2

N
+ σ2

)−1/2

.

(5.33)

We now note that for the SG-P region of the SK phase diagram µ < 1 so
that µ2 ≪ 1, and that N ≫ 1 for all system sizes considered. This means
that in the SG-P region, the µ2/N term is negligible. Moreover, as N ≫ 1
we can approximateNJ = (N2−N)/2 ≈ N2/2 (even for our smallest system
size N = 50, N/N2 = 0.02) so that the error in the SG-P transition region
is given by
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ε ≈ D

BN1/2

T

σ
. (5.34)

Remembering that we found T (εmin) ≈ const and that σ = 1 throughout,
we finally find that for fixed B, ε ∝ N−1/2D. This explains the discrepancy
between the error ε and our bias measure b1, which we verify by comparing
the re-scaled error εN1/2 to b1 in Fig. 5.25. To conclude, the error measure

Figure 5.25: Rescaling the
error by N1/2 shows close-to-
perfect proportionality with
the bias measure b1.

ε does not accurately capture how the difficulty of the inverse problem de-
pends on the system size N . Analysing the bias reveals a linear dependence
on N , which is heuristically plausible as the number of parameters being
estimated by each logistic regression in PLM is proportional to N .

5.7 Conclusion

The aim of this chapter was to explore the performance of PLM on data
gathered from the much-studied SK model. We established familiarity with
the types of errors encountered in PLM in section 5.2 by focusing on specific
state points representative of the different phases in the SK phase diagram.
These showed us that, depending on the strength of the couplings in the true
model, we encounter two separate contributions to the inference error. We
find that the PLM estimates θ∗ of the true parameters θ0 are over-estimates
and that this contributes to the error for all state points. For weak couplings
(i.e. high temperatures) the overall structure or distribution of the input
parameters can be inferred. But in the strongly coupled regimes, we find a
secondary failure mode, whereby (infinitely) large parameters are inferred
for certain rows (corresponding to particular spins) of the parameter matrix,
causing a divergence of the error. We link this to a logistic regression-specific
effect termed separation.

In section 5.3 we show that the inference error does indeed have a strong
dependence on the state point of the data, verifying findings from previous
authors [16]. Moreover, we show that the error is a function of distance from
the critical point only as the error forms contours parallel to the phase tran-
sition lines. By analysing a line of constant µ we show that the minimum
error lies above the critical point in the paramagnetic phase. In section 5.4
we explore the origin of the error further, with a particular focus on finite
(i.e. small) sample sizes. We find that PLM systematically overestimates
the standard deviation of the input coupling distribution. By using the
definition of our SK model parameters we can relate the standard deviation
of the coupling distribution to the temperature of the model: PLM there-
fore systematically underestimates the temperature of the input model. We
re-simulate the models and further show that the critical fluctuations in
the inferred models are artificially enhanced. Models inferred from para-
magnetic (i.e. dynamically varying) datasets are therefore made to appear
more critical than they truly are. We further show that this effect drasti-
cally worsens when there is limited data available. The Brain is inherently
a dynamic system [66], and so this poses serious questions for claims of
criticality in models built using PLM from finite datasets. We formalise the
dependence of the inference error on the state point by studying the con-
vergence of the inferred temperature to the true temperature as a function
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of B and find that this is well described by an empirical arc-tan fit with an
asymptotic linear dependence on 1/B. We explain that this is a result of
the standard bias of maximum likelihood estimates.

In section 5.6 we analyse PLM for a range of system sizes which are
much larger than those previously reported in the literature. We find that
the phase diagram of the error is largely unaffected by system size, allowing
us to generalise the results from our detailed study of the N = 200 phase
diagram to other system sizes. We further find that the minimum error in
the phase diagram depends approximately on N1/2, but that the strength
of the bias scales as ∼ N . We conclude that the amount of data required
to learn a given state point depends linearly on N .

The results presented in this chapter will be essential when interpret-
ing inference results from real-world datasets where the underlying model
is unknown. While the dependence of inverse Ising inference on the state
point of the data is well understood for infinite datasets [204, 210], to the
best of our knowledge, no previous authors have identified the small sample
biases highlighted here. When analysing real-world datasets, the fact that
the learning factor B̃ depends on the unknown state point means that un-
derstanding the strength of the bias in a given dataset is vital to making
trustworthy claims about the criticality of any model inferred using PLM.
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Summary of Chapter 5

• We benchmark the performance of pseudo-likelihood maximisation (PLM) on data
simulated from the zero-field Sherrington-Kirkpatrick (SK) phase diagram. We varied
the system size N , the state point (µ, T ) and the number of input samples B to
understand how inference errors depended on these factors. We draw the following
headline conclusions:

Errors are minimal in the paramagnetic phase
Exploring the SK phase diagram for a range of (µ, T ) showed that errors were
minimal in the paramagnetic phase above the spin-glass (SG) - paramagnetic
(P) phase transition line.

Errors are functions of distance to the critical point
We found error contours to line parallel to the phase transition lines. This effect
becomes clearer as N increases and the phase transitions themselves sharpen.
This shows that the error is a function of distance to the phase transitions. The
behaviour across the SG-P transition line was explored in more depth by fixing
µ = 0.1 and varying T only.

PLM underestimates the temperature
We found that PLM systematically overestimates the standard deviation of the
model. This corresponds to underestimating the temperature of an SK-like
model. This effect worsens asB decreases and as the static SG and ferromagnetic
(F) phases are approached. The temperature bias can be severe enough to cause
the phase of the data to be misclassified.

PLM overestimates the susceptibility of dynamic data
As a result of the temperature bias, PLM models inferred from dynamically fluc-
tuating (i.e. paramagnetic) data exhibit falsely enhanced critical fluctuations.
Applying PLM to real dynamically fluctuating data thus biases the inferred model
towards criticality.

PLM fails at low temperatures due to separation
We show that low-temperature failures of PLM are the result of a logistic-
regression-specific effect termed separation.

• We link the temperature bias to the standard first-order bias of maximum likelihood
estimates and introduce an empirical way to measure the strength of this bias.

• We find the amount of data required to solve the inverse Ising problem using PLM
increases linearly with N .
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Chapter 6

Correcting the Bias of
Pseudo-Likelihood Estimates

In the previous chapter, we found that pseudo-likelihood maximisation
(PLM) produces biased estimates of the temperature, which depended lin-
early on the inverse sample size. We linked this to the standard first-order
bias of maximum likelihood estimators. We now explore ways to remove
this bias, with the aim of improving the accuracy of our state-point estima-
tion. We introduce a novel corrective method which removes the bias by
enforcing self-consistency between the critical fluctuations of the input data
and the inferred model.

6.1 Motivation and Success Metrics

Using the SK model as a benchmark, we established that PLM underesti-
mates the temperature of the dataset, with the size of this effect depending
both on the sample size B and the state-point (T 0) of the input dataset.
This effect arises as a result of generic biases in maximum likelihood meth-
ods which decays as a function of 1/B in the large B limit. In the vicinity of
the phase boundaries, we found that these biases may be sufficiently large
to alter the labelling of the inferred phase. We have also identified that the
failure of PLM in strongly coupled regimes can be related back to a logistic
regression-specific effect that is also the result of this first-order 1/B bias.
This naturally leads to the question: can we remove the first-order MLE
bias and produce better estimates of the state point from the same data?
We explore this proposal in this section.

A range of bias correction methods exist in the literature [211], which
can largely be grouped into explicit methods which correct for the bias af-
ter inferring the parameters, e.g. jackknife resampling [215], and implicit
methods which correct the bias during inference via a modification (penal-
ization) of the likelihood function [37, 212, 213, 216, 217]. Explicit methods
are generally simpler to implement but will inherit any instabilities of the
original MLE estimator. An example of such an instability is the infinite
PLM parameter estimates we observed in the strongly coupled regime due
to complete or quasi-complete separation [208, 212].

The focus of our research is to reliably estimate the unknown state-point
of a given dataset. As such, we will assess the success of each method on
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the following metrics: a) how well do they estimate the temperature T , i.e.
can we classify the state-point and b) how well do they estimate the critical
fluctuations C2, i.e. do they capture the essential correlations of the data.
We will assess the temperature of each corrected model through our stan-
dard relation with the standard deviation, T ∗ = 1/(σ∗

JN
1/2), and calculate

C2 by performing Monte Carlo simulations of each corrected model.

6.2 Explicit Corrections

Explicit methods are corrective, i.e. we first perform unmodified PLM to
estimate θ∗ and then shift the parameters in some way to obtain the bias-
corrected parameter estimates. We explore three explicit bias correction
methods, including standard jackknife re-sampling, a sub-sampling method
based on the empirical arctan fit we explore in the last chapter, and a self-
consistency enforcing correction based on our observation that the PLM
estimates over-estimate the critical fluctuations of the data.

6.2.1 Correction 1: Sub-Sampling Temperature Estimate

As explored in section 5.4, we observed that the effect of the bias is mainly
limited to a broadening of the parameter distribution, reflected by our un-
derestimates of T ∗ and overestimates of σ∗. We analysed the convergence
of the (inverse) temperature in B using

T ∗(B) = (2TB→∞/π)× arctan
(
B/B̃

)
, (6.1)

and 1/B using

σ∗(1/B) = σB→∞ +
b1
B
, (6.2)

to obtain estimates for the bias associated with a given state point. This
process conveniently also produces estimates for the temperature asB →∞,
through the fitting parameter TB→∞ or the intercept σB→∞ (remembering
that T ∗ = 1/σ∗N1/2), providing us with an estimate of the unbiased tem-
perature of our dataset. We can re-scale our PLM parameters to construct
a model which corresponds to this temperature by setting

θss =
θ∗

Tf
(6.3)

where we refer to Tf as the fictive temperature, which in this case is equal
to Tf = TB→∞/T ∗. Note that when TB→∞ ≥ T ∗, Tf ≥ 1 so that the
correction corresponds to “shrinking” the parameter distribution. As we
know that PLM over-estimates the spread, this intuitively shows that we
will correct towards T 0. We refer to this correction as the sub-sampling
(SS) correction. We note that the Jackknife correction shifts each param-
eter θij individually, but that the temperature correction we propose here
multiplies all couplings by a common constant Tf . This sub-sampling cor-
rection thus maintains the ranking of the PLM parameter estimates, only
re-scaling their values. The sub-sampling correction is less computationally
intense than performing Jackknife as one does not need to sub-sample for
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all B to establish TB→∞. Indeed we showed in the previous chapter that
15 data points were enough to produce accurate fits to the data.

6.2.2 Correction 2: Enforcing Self-Consistent Correlations

In the previous chapter, we demonstrated that the MLE bias of the PLM
parameters is captured by a global property of the parameter distribution
(the temperature) and that the inferred PLM models over-estimate C2. We
thus propose to correct the bias by requiring that the models we infer display
C2 as close as possible to that estimated from the input data. In other
words, we aim to infer models whose fluctuations are self-consistent with
those of the input dataset. To do so, we perform a second optimisation after
estimating the PLM parameters where we minimize the objective function

L′(Tf ) =
[
C2
input − C2

MC(Tf )
]2

, (6.4)

where C2
input is C2 measured from the input dataset and C2

MC(Tf ) is cal-
culated from MC simulations of a re-scaled PLM model with parameters
θTf = θ∗/Tf . Note again the introduction of the re-scaling parameter
Tf > 0, which acts as a fictive temperature which can shift the state-point
of the inferred model through phase-space. We denote the optimal value of
Tf by T sc

f , with the corresponding corrected parameter estimates being θsc,

and refer to this correction as the self-consistency (SC) correction. C2 has
a strong dependence on B, so we match the amount of data in the input
and in the MC simulations Binput = BMC (see Fig 6.1). In practice we

Figure 6.1: Dependence of
the critical fluctuation mea-
sure C2 on the sample size B
for randomly generated sam-
ples.

calculate C2
MC for 6 independent MC simulations of length Bdata for every

Tf , and then feed the average over these 6 runs into (6.4). We chose this
number the match the number of cores on the analysis computer, allowing
the simulations to be performed in parallel. We minimize the SC objective
function (6.4) using SciPy’s scipy.optimize.minimize routine [218] with
a simple Nelder–Mead [219] minimization, which we found to perform well
for this one-dimensional optimization problem.

6.2.3 Correction 3: Jackknife Resampling

A standard approach to remove the first-order bias of maximum likelihood
estimates is so-called Jackknife re-sampling. In a similar manner to our sub-
sampling analysis, the Jackknife correction requires PLM to be performed
on sub-samples of the full datasetB. Specifically, we will choose sub-samples
according to a “leave-one-out” scheme, so that each sub-sampleB\k contains
all except for the kth sample of the data. We then perform PLM on all B
Jackknife sub-samples (each of which is of length B − 1) and indicate the

PLM each for each of these sub-samples by θ
∗\k
ij . The Jackknife correction

is then given by

θjackij = Bθ∗ij −
B − 1

B

B∑
k=1

θ
∗\k
ij , (6.5)

and is known to remove the bias to O(B−2) [215]. Jackknife re-sampling
is computationally costly, as it requires performing the inference B times
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Figure 6.2: The inferred temper-
ature T ∗ (panel a) and the sus-
ceptibility measure C2 (panel b)
at different input temperatures T
for three data quality conditions;
B = 1 × 103 (circles), B = 2 ×
103 (squares), B = 1 × 104 (dia-
monds). Blue lines show observ-
ables for the PLM inference, and
orange lines show observables af-
ter performing the self-consistency
(SC) correction. Black lines are
the temperature and susceptibil-
ity of the input models at each
state point. N = 200, µ = 0.1,
with all plotted points correspond-
ing to means and standard errors
over 21 generate-simulate-inference
(GSI) runs.

for samples of almost identical length (B − 1), and therefore scales approx-
imately as O(B2). We can see how costly this becomes by looking at the
data used in section 5.2 to introduce the inference of the SK model. We
kept the system sizes relatively small, N = 120, and generated reasonably
large B = 6 × 104 samples for each system. Inferring each of these models
took approximately 5 seconds. Performing Jackknife for this dataset would
therefore take around 5 × 6 × 104 = 300, 000 seconds, or 83 hours. The
inference time per model would increase further with increasing N . The
Jackknife correction is therefore limited to small B and N . One interesting
feature of jackknife resampling is that each parameter is corrected individ-
ually, something we will find relevant later. Note that jackknife resampling
is largely included as a reference method through which to understand the
performance of our temperature-correcting methods.

6.2.4 Comparing Sub-Sampling and Self-Consistency Cor-
rections

We will now compare the outputs from each of our explicit corrections. We
do this as we ultimately wish to pick the best-performing explicit method,
and then compare this to the implicit correction we introduce in the next
section. As discussed, we assess each method on its ability to correctly
estimate T and C2. We will again look at the N = 200 µ = 0.1 SK
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Figure 6.3: Comparison of the
inferred temperature T ∗ (panel a)
and the susceptibility measure C2

(panel b) at different input tem-
peratures T for the self-consistency
(SC) and the sub-sampling (SS)
bias corrections we propose. Data
are plotted for input datasets of size
B = 1 × 104. Blue lines show ob-
servables for the PLM inference, or-
ange lines show observables after
performing the SC correction and
red lines those for the SS correction.
Black lines are the temperature and
susceptibility of the input models at
each state point. N = 200, µ = 0.1,
with all plotted points again corre-
sponding to means and standard er-
rors over 21 GSI runs.

model studied in Fig. 5.10, for which we generated 21 model realisations
across a range of temperatures T ∈ [0.5, 2.0]. We do so to understand
how each correction performs for different state points. To calculate C2

we will re-simulate the corrected models θss and θsc, collecting B = 104

samples for each state-point. The MC parameters for these simulations
were pmc = (105, 105, 10), and we generated data from 6 independent MC
chains for each realisation, averaging over chains and then realisations to
obtain our final estimates of C2.

We begin with the self-consistency correction, for which results are
shown for three data conditions, B = 103 (poor) B = 2 × 103 (intermedi-
ate), and B = 104 (good), in Fig. 6.2. The correction significantly improves
the reconstructed temperature and, by design, perfectly matches the fluc-
tuations of C2 when separation does not occur. The improvement to the
T ∗ prediction is particularly pronounced for small datasets and at high T .
At low T , where separation occurs, the corrective optimization fails to con-
verge and C2

input ̸= C2(T sc
f ). This highlights a pitfall of explicit methods;

they inherit any instabilities of the original MLE, such as those that lead to
separation in logistic regression [211, 212]. We note that the improvement
itself can also be used as a score on the reliability of the PLM estimates and
as an indication of the necessity of more data, with Tf → 1 as B →∞.

The sub-sampling correction cannot be performed for poor (B = 103)
and intermediate (B = 2× 103) sized datasets, as we require samples from
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the asymptotic linear 1/B regime to estimate TB→∞ accurately. We can
therefore only apply it to sufficiently large datasets, in which we expect
raw PLM to have given us a reasonable estimate of the state point. This
method might therefore be viewed as somewhat redundant. However, as
shown by our previous results, one should always perform a sub-sampling
analysis of the data when claiming criticality, and so usually obtains an
estimate for TB→∞ “for-free”. We compare PLM, the SC correction and
the SS correction to the true values of T and C2 for the good data condition
(B = 104) in Fig. 6.3. We find that the SS estimates of T provide a marked
improvement over both PLM and the SC correction, especially at high T .
At low T we are unable to accurately estimate TB→∞ (see Fig. 5.15) from
a dataset of this size, leading to the overshooting observed for T = 0.8 to
T = 1.0. Interestingly, although the temperatures are reproduced perfectly
for T > 1, we find that the corresponding values of C2 are under-predicted.
This is unsurprising, as increasing the temperature past T sc should naturally
lead to decreased fluctuations. The SS correction has shown us that a
simple multiplicative correction (the fictitious temperature Tf ) cannot fully
account for the PLM bias and that there is a trade-off between capturing
the temperature and the correlations of the model. We will explore this
final point further when discussing the Jackknife correction, as this does
indeed provide individualistic corrections to each θij .

We now make some generic comments regarding the applicability and
suitability of these corrections. In particular, we note that the SS correction
can only be applied when B is already large, i.e. when there is less need for
a correction to begin with. The SC correction on the other hand was shown
to provide significantly better estimates of the temperature, especially so
when B was very small (B = 103 ≈ B̃). It is therefore highly applicable
in poor data quality settings, where corrective methods are most needed.
Further, the computational complexity of the SC correction is set by the
length of the MC simulation at each optimisation step (i.e. in estimating
C2
MC). As we set BMC = Binput, we thus also see that simulation times are

kept small when B is small. SC corrections are thus best when B is small,
while the SS correction can still provide moderate improvements when B
is large. For the specific purpose of inferring criticality, however, we argue
that the SC correction is much more useful, as it produces models which
exhibit correlations that correspond to those in the data.

6.2.5 Relating the Self-Consistency Correction to the First-
Order Bias

Both SC and SS corrections shift the state point by multiplying the PLM
couplings by a constant, 1/Tf . These do not strictly remove the bias on each
parameter, but instead remove the bias of the temperature, a global prop-
erty. We will now discuss the jackknife correction, which explicitly removes
the O(B−1) bias from each PLM estimate θ∗ij . We note that the computa-
tional intensity of the Jackknife method means that it cannot be used (or
at least is inconvenient to use) for the system sizes and sample numbers
considered in Fig. 6.2 and Fig. 6.3. We will instead look at a small system,
N = 50, for which PLM requires fewer data (remembering that b1 ∼ N),
and explore how the SC correction relates to the individual shifts in θ∗ij
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Figure 6.4: Comparing coupling
probability density functions for
data generated from a single model
realisation at µ = 0 and T = 2.0.
The black curve shows the true (i.e.
input) coupling distribution from
which we produced B = 750 sam-
ples via MC simulation. The sys-
tem size was small (N = 50) so that
the jackknife correction could be
performed. The blue line shows the
PLM estimate inferred from this
dataset, the orange line is the self-
consistency (SC) corrected parame-
ter distribution and the red line is
the jackknife (JK) corrected param-
eter distribution. All distributions
have been smoothed with a Gaus-
sian kernel to ease visualisation.

that the Jackknife correction provides. We will choose a high temperature
T = 2.0 state-point as we know both PLM and the SC correction will per-
form well here. We will generate B = 750, B = 1500 and B = 3000 samples
from this state-point (representing poor, average and good data) and anal-
yse the performance of the corrections for each of these. We equilibrate each
system for teq = 105 MC cycles and sample with ts = 10. The primary aim
of this investigation is to understand how the true bias corrections produced
by Jackknife re-sampling align with the global bias correction performed in
the SC correction.

We show the coupling distribution for the input model, the PLM model
and the SC and Jackknife corrections in Fig. 6.4 for B = 750. We choose the
smallest B as the effects of the bias are most pronounced. As before, we find
that PLM overestimates the spread of the couplings. Both SC and jackknife
corrections narrow the coupling distribution towards the true distribution
(i.e. increase the temperature), and we see little variation between the two.
This would imply that the bias on each parameter b1,ij is well described by
the simple global re-scaling we perform in the SC correction. To investigate
this further we assess how each correction shifts the individual couplings Jij
by defining

∆|Jij | =
|Jcor

ij | − |J∗
ij |

|J∗
ij |

, (6.6)

where Jcor
ij can stand for either Jackknife or SC correction. For the SC

correction ∆|Jij | = 1
T sc
f
− 1 = const for all Jij . But Jackknife re-sampling

will lead to a distribution of shifts. We plot ∆|Jij | in Fig. 6.5 for our 3
data quality conditions. Vertical lines indicate the constant ∆|Jij | shifts
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Figure 6.5: Tracking how indi-
vidual parameter shifts induced by
the jackknife correction compare to
the constant parameter re-scaling of
the self-consistency (SC) correction
as we increase the number of sam-
ples in the input dataset. Colour
represents different sample sizes B.
Probability density functions are
shown for the jackknife correction.
The constant rescaling of the SC
correction is shown by correspond-
ing vertical lines. The Jackknife
corrections are sharply peaked dis-
tributions, that align with the po-
sition of the SC correction as B in-
creases.

that result from the SC correction. We note that all of these are negative,
as the SC correction reduces the size of every coupling, and tend to 0 as
B → ∞. For the Jackknife correction, ∆|Jij | follow distributions which
are also peaked at negative values of ∆|Jij |. The overall effect of Jackknife
re-sampling is thus also to reduce the parameter size. As B increases these
peaks narrow and increase in height. More interestingly, the positions of
the jackknife peaks and the SC correction appear to coincide as B increases.
This suggests that in the limit of large B, J jack

ij = δ(J jack
ij −J ss

ij ). This shows
that the self-consistency correction we propose is approximately equal to
explicitly removing the first-order bias.

To establish this more clearly, we plot the parameter shifts as a function
of |J0

ij | in Fig. 6.6 for B = 3000 where the best agreement between Jackknife
and SC corrections is seen. We observe that shifts away from ∆|Jij |sc largely
affect small couplings. Indeed shifts for the largest parameters coincide
closely with the line ∆|Jij |sc. The tails of the |Jij |jack distribution therefore
correspond to small input couplings |J0

ij |, i.e. to weak couplings. Large
percentage shifts in these parameters have little effect on the model, and the
overall effect of the jackknife correction is well described by a constant shift
(reduction) of the most important parameters (the strong couplings). We
thus claim that our proposed self-consistency correction is approximately
equivalent to removing the first-order bias of the inference. Interestingly,
this means that constraining the fluctuations of the PLM model to those
of the input data removes the first-order bias. Having established this, we
will now compare our self-consistency correction to a standard method with
which to implicitly remove the first-order bias via a penalisation to the
log-likelihood.
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Figure 6.6: The parameter shift
∆|Jij | for each correction as a func-
tion of the size of the input parame-
ter |J0

ij | for B = 3000. On average,
parameters which are shifted by the
largest amount in the jackknife cor-
rection correspond to small (unim-
portant) input couplings. Jackknife
corrections to the largest parame-
ters align well with the global pa-
rameter shift implemented by the
self-consistency correction.

6.3 Implicit Correction

Implicit bias corrections remove the first-order bias during the inference
[211], for instance by penalizing the log-likelihood [37, 212, 213, 216, 217].
We previously highlighted a first-order bias effect termed separation [208]
as the reason behind the failure of PLM at low temperatures. Implicitly
removing this effect may therefore allow us to infer models at lower temper-
atures than previously possible. We will only explore a single implicit bias
correction, which we describe below.

6.3.1 Firth’s Penalized Logistic Regression

Firth [37] introduced an implicit correction through which to remove the
first-order bias of maximum likelihood estimates. This is achieved by adding
a penalty term to the log-likelihood function and then maximising this pe-
nalized likelihood. In the context of PLM, Firth’s correction corresponds to
maximising the penalized log-likelihood L′r:

L′r(hr,Jr|{s}B) = Lr(hr,Jr|{s}B) + 0.5 ln |F (hr,Jr)|, (6.7)

where |F (hr,Jr)| is the determinant of the Fisher information matrix for
each row of parameters r. When applied to logistic regression, F (hr,Jr)
takes a particularly simple form (see [212, 213]), allowing the penalised
log-likelihood to be maximised using standard methods. We implement
this computationally by modifying the Python code available at https:

//github.com/jzluo/firthlogist. The corrective term of eq. 6.7 tends to
0 as B →∞, returning the un-penalised likelihood. For small B the penalty
compensates the O(B−1) bias and is known to control separation in logistic
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Figure 6.7: Parameter matri-
ces θ for a subset of 50 spins
for un-penalized PLM (top) and
Firth’s penalized PLM (middle) at
two different temperatures. (Bot-
tom) probability density functions
(PDFs) of the corresponding in-
ferred parameters along with the
true parameter PDF (black line).
Firth’s correction controls the in-
ference at low T , leading to fi-
nite parameters and a PDF that
more closely matches the true in-
put model. At high T , firth’s cor-
rection shifts the inferred tempera-
ture towards the true temperature
(by reducing the spread of the pa-
rameter PDF). B = 103, N = 200
and µ = 0.1.
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regression [212, 213]. We thus expect that this penalized regression might
allow us to obtain reasonable parameter estimates even for data generated
from temperatures where separation occurs when un-penalized PLM is used.

In Fig. 6.7 we demonstrate the effect of the penalty on the inferred
parameters at a low T = 0.57 and a high T = 1.6 state point. At low T sep-
aration causes the un-penalized PLM parameters associated with specific si
to diverge, with max(θPLMij ) ≈ 400, leading to a non-Gaussian highly spread
PDF. In our language, models with these very strong couplings correspond
to zero temperature. Firth’s penalty controls this effect, and although we
still see large parameter estimates for the same si, these are orders of mag-
nitude smaller with max(θFirthij ) ≈ 4. Firth’s correction reduces the spread
of the inferred distribution and largely captures the Gaussian nature of the
input coupling distribution, even at low T . It, therefore, provides better T ∗

estimates than un-penalized PLM.

6.4 Comparing the Self-Consistency Correction to
Firth’s Penalized Regression

In Fig. 6.8 we compare the performance of the self-consistency (SC) correc-
tion and Firth’s (firth) correction for the smallest dataset, B = 1000, where
bias effects are most extreme. We again generate data from 21 independent
model realisations for each T and then apply each inference method to each
dataset separately. We naively assess if separation has occurred by checking
if |θ∗|max > µ∗

θ + 10σ∗
θ , where |θ∗| is the absolute value of the inferred pa-

rameters from each inference scheme. Any input T where a single inferred
model satisfied the separation condition (i.e. had “anomalously” large pa-
rameters) is indicated by the transparent points in Fig. 6.8. We note that
this is a conservative definition; if even a single inference fails we charac-
terise the whole state point as separation prone. We see that (according
to our definition) the onset of separation is delayed to much lower T when
using Firth’s penalty, and that Firth’s penalised logistic regression predicts
non-zero T ∗ for all T . At high T both corrections perform similarly well
in improving the estimated T ∗, although the dependence T ∗(T ) appears to
scale more favourably using the SC correction as T increases.

Fig. 6.8(b) shows how well each method reproduces the correlations of
the input data. We observe an interesting trade-off; although Firth’s cor-
rection provides better estimates for T , C2 of the corresponding models is
systematically under-predicted. Firth’s correction thus fails to capture the
correlations of the data. We note that this contrasts with the un-penalised
logistic regression results for PLM, which instead over-estimate C2. The
main advantage of Firth’s correction over the SC correction, therefore, ap-
pears that lower temperature sate-points can be estimated.

This naturally raises a question: can we apply the SC correction to
the models inferred using Firth’s penalization and improve the estimate
of both T and C2? The answer is negative: unsurprisingly, applying the
C2 correction to the penalized parameter estimates increases C2 at the
cost of lowering T ∗, and ultimately leads to the same estimates as simply
applying the SC correction to the un-penalized PLM model. We summarise
these findings in Table 6.1. There thus appears to be an inherent trade-off
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Figure 6.8: Comparison of the
corrective methods’ ability to cap-
ture the relevant observables T ∗

and C2 for a small sample size
B = 103. Self-consistency cor-
rection is labelled by C2 in the
legend. Transparent points indi-
cate T where separation occurred.
Firth’s correction gives reasonable
estimates for T ∗ at much lower T
than PLM, highlighting the ability
of this method to control separa-
tion. In contrast to normal PLM,
Firth’s correction under-estimates
C2 for all T . At high T Firth’s
correction and the self-consistency
correction perform similarly. Each
point represents an average over 21
independent datasets at that T .
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Table 6.1: Percentage errors of
the inferred estimates for T and
C2 for a single model realisation at
T = 1.025, µ = 0.1, with B = 104,
using a range of inference schemes.
Firth’s correction provides the best
estimate of the temperature but the
worst estimate of the critical fluc-
tuations. We demonstrate an im-
plicit trade-off between correctly in-
ferring T and C2. Applying the
C2 correction either to the PLM
model or to the Firth corrected
model produces the same T ∗ and
C2 pair. The temperature is under-
estimated, irrespective of the infer-
ence scheme used.

Method T % error C2 % error

PLM -6.9 3.4(8)
PLM → C2 -6.0 0.2(9)
Firth -4.0 -7.7(5)
Firth → C2 -6.1 -0.1(8)

between capturing the temperature and the correlations of a dataset. When
deciding which method is “best” one must therefore decide which property
is most important to encode correctly.

6.4.1 Implications for inference around criticality

So far we have shown that small-sample biases influence the determina-
tion of the state of Ising models inferred using PLM. The problem is that
what constitutes a “small” sample size itself depends on the state point
(and topology) of the true model that generated the data. Studies claim-
ing criticality in Ising models inferred using PLM thus need to control for
bias, for example through sub-sampling their data and performing a similar
analysis as in Fig. 5.23. They should also consider that the PLM model
they infer from any dataset which is dynamic (i.e. fluctuates) will be biased
towards the critical point and exhibits enhanced critical fluctuations when
simulated. In such cases, the SC correction may be applied to re-scale the
couplings and match the empirical correlations. This will also shift the in-
ferred temperature towards the true temperature. We note, however, that
the SC corrected temperature remains systematically smaller than the true
temperature, and should only be considered as a lower-bound estimate of
the true temperature. It may be appropriate to use Firth’s implicitly cor-
rected penalized logistic regression if separation is found to occur. This
correction will provide reasonable parameter estimates even for low T state
points, but it should be noted the fluctuations displayed by these models
are not representative of the data, which is important when considering
near-critical phenomena.

6.5 Conclusion

In this chapter, we described data-driven approaches to mitigate the ef-
fect of the first-order PLM bias. The bias may be removed explicitly (i.e.
corrected after inference) or implicitly (corrected during the inference). We
explore three explicit methods and one implicit method. We propose a novel
explicit bias correction which we term the self-consistency (SC) correction,
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which adjusts the temperature of the inferred model so that the susceptibil-
ity measure C2 of the inferred model matches C2 of the input dataset. We
show that the parameter rescaling of the SC correction is approximately the
same as performing a first-order bias correction by contrasting our method
with results from the standard jackknife bias correction procedure. We also
investigate an implicit bias correction in the form of Firth’s penalized logis-
tic regression. We find that Firth’s correction produces better temperature
estimates and worse susceptibility estimates than the self-consistency cor-
rection. This highlights an inherent trade-off between capturing the tem-
perature and the susceptibility of the model when the amount of data is
finite. Firth’s correction allows models to be inferred from datasets gen-
erated at low temperatures, where standard PLM fails due to separation.
Our self-consistency correction provides large improvements to the temper-
ature estimates when the sample size is small and allows us to place a lower
bound on the true temperature of a dataset. This will enable us to appraise
whether models inferred from unknown datasets that appear close to criti-
cal truly represent a near-critical state. The next chapter seeks to explore
this in a case study of typical neuroimaging data.
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Summary of Chapter 6

• We explored corrections to remove the first-order bias of pseudo-likelihood maximisa-
tion (PLM) parameter estimates, having previously identified that these cause PLM
to underpredict the temperature. We assess each corrective method based on its
ability to reproduce the temperature T and susceptibility C2 of the input model.

• Bias corrections may be split into two categories:

Explicit Corrections
Explicit corrections are applied after an inference has been performed. They
modify the existing parameter estimates.

Implicit Corrections
Implicit corrections are applied during the inference process. They modify the
likelihood functions, e.g. by introducing a penalty term, and produce unbiased
parameter estimates.

• We introduce two novel explicit bias corrections and compare these to the standard
jackknife resampling method. Our corrections are:

Sub-sampling to improve the temperature estimate
We can sub-sample data to obtain an unbiased estimate of the temperature.
This correction under-predicts the susceptibility C2. This is only possible when
large quantities of data are already available.

Enforcing self-consistency to improve the temperature estimate
We require that the susceptibility of our inferred model is equal to the suscep-
tibility of the input dataset. We enforce this self-consistency condition via a
second optimisation. This shifts the temperature of the inferred model closer
to the true temperature and perfectly reproduces the susceptibility so long as
separation does not occur.

• We also implement an implicit bias correction, in the form of Firth’s penalized logistic
regression. Firth’s correction provides better temperature estimates than the self-
consistency correction but underpredicts the susceptibility. Firth’s correction enables
the approximate inference of state points where separation occurs for unmodified
PLM.

• The self-consistency correction provides the best improvement to the temperature and
susceptibility estimates when the sample size is small and the data is paramagnetic.
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Chapter 7

Mindfulness Meditation: a
Small Sample Size Study

In this chapter, we explore the repercussions of the small sample bias of
pseudo-likelihood maximisation in interpreting inference results from real
data. We consider a functional magnetic resonance imaging (fMRI) dataset
of brain activity related to meditation as a case study. Although operating
at criticality is a tempting hypothesis (see chapter 4), our results lead us
to caution against claims of criticality in PLM models inferred from typical
fMRI data. We show that small sample size biases strongly affect these
inferences, and tune models inferred from dynamical (i.e. fluctuating) data
to a closer-to-critical state.

7.1 The Mindfulness Meditation Dataset

Mindfulness meditation (MM) is a meditation practice where one seeks to
actively concentrate on the present moment and is thought to be a low-cost
clinical intervention which may help with the treatment of several mental
health disorders [220]. fMRI may be used to assess whether practising MM
actively changes the functional connectivity (FC) of the brain [133]. We
have been provided with the dataset from Ref. [133] and will use this as a
case study to investigate how strongly the small sample size bias of PLM
affects inferences from typical fMRI datasets.

The key biological question underpinning the study of Ref. [133] was to
understand if mindfulness meditation changes the resting-state functional
connectivity of an individual. As such, imaging sessions were carried out on
separate days under two different conditions: those where the participant
practised mindfulness meditation (MM) before undergoing imaging, and
those where they did not (noMM). During each session, B = 236 samples
were collected from N = 399 grouped regions of interest (ROIs) within the
brain. We will consider each ROI as a spin si and perform inverse Ising
inference using PLM. The trajectories for each ROI, si(t), are continuous.
We thus binarised the data by removing the average from the signal and
setting si(t) < 0 = −1 and any si(t) ≥ 0 = +1. ROIs 0 to 359 originate
from the cerebral cortex (i.e. the outer layer of the brain) while ROIs
360 to 399 are from limbic and cerebellar regions of the brain. In total
BnoMM = 40 × 236 = 9440 samples were collected for the noMM condition
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Figure 7.1: The normalised auto-
correlation Ct as a function of the
delay time ∆t for both noMM
and MM conditions after binariz-
ing the data. Although there are
clearly non-trivial oscillatory dy-
namics present, we note that the
size of these correlations is small
(c.f. y-axis limits). We will con-
sider each time point as an inde-
pendent and identically distributed
(i.i.d) sample for the purposes of
our statistical analysis.
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and BMM = 18× 236 = 4248 for the MM condition.

To link the biological question of this study with criticality, we investi-
gate whether PLM inference leads to the identification of a close-to-critical
state and if this state is affected by the biological condition (i.e. practising
of mindfulness meditation). Moreover, we study if the inference biases iden-
tified in the last chapter significantly impact our conclusions. This investi-
gation shows that the small sample bias can severely skew the conclusions
of PLM analyses towards supporting criticality. Before moving on to the
inference results, we briefly plot the auto-correlation functions for both con-
ditions in Fig. 7.1. We do this as we require the data to be “uncorrelated”
for the independent and identically distributed (i.i.d) assumption of PLM
to hold. We see that the auto-correlation Ct rapidly decays to 0 with the
delay time ∆t, so that τ < 1 for this dataset. We, therefore, consider our
trajectories as “decorrelated” samples from this perspective. This does not
mean there are no features in the dynamics: indeed we see small oscilla-
tions in Ct, hinting that (of course) dynamics in the brain are governed by
much more complex processes than the simple equilibrium fluctuations we
modelled when generating Monte Carlo samples in the last two chapters.

7.2 Small Sample Bias in Real Data

From the perspective of criticality, we have two key questions for our analy-
sis. Firstly, does mindfulness meditation alter the state-point of the brain?
Secondly, is the resting state brain close to criticality (i.e. does criticality
facilitate normal function)? We now detail our attempt to address these.
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Figure 7.2: Probability density
functions (PDFs) for the inferred
couplings Jij of the noMM (blue)
and MM (orange) conditions. The
MM condition is more spread (i.e.
has a larger standard deviation).
We use the standard deviation to
calculate an inherent temperature
T ∗ for the model based on our
previous investigation of PLM in
the Sherrington-Kirkpatrick (SK)
model. Although noMM and MM
conditions initially appear to corre-
spond to different state points, we
later show that this is purely the
result of the small-sample bias of
PLM.

7.2.1 Impact on State-Point Classification

The distributions of the PLM parameters obtained from the full datasets
are shown in Fig. 7.2. First, as opposed to the SK model, the distributions
are skewed, with a long tail at positive values of the couplings. Second, the
MM condition corresponds to a larger variance in the couplings than the
noMM one. The immediate consequence is that the mapped temperatures
of the two full datasets are different, T ∗

full-MM = 0.98 and T ∗
full-noMM = 1.33.

However, the two sample sizes are BnoMM ≈ 2BMM. Can this lead to
a significant statistical effect in the estimation of the corresponding state
points? Fig. 7.3 provides an affirmative and quantitative answer: as we sub-
sample (ss) the noMM data we find that the PLM temperature estimate
decreases with reducing B, and when Bss-noMM = BMM, meets the same
estimated temperature of the MM data. Hence, for the data considered
here, there is no significant difference between the MM and the noMM data
when the bias is taken into account. We further find that below some critical
value, Bc ≈ 2000, separation occurs leading to the failure of the inference.

To refine the estimate of the noMM state point, we can apply the self-
consistency (SC) correction (yellow circles) and fit the empirical saturation
function to the PLM temperature estimates. Fitting data with B ≥ 2500,
we find TB→∞ = 1.72 and B̃ = 3465. The available datasets are with
BMM ≈ 1.2B̃ and BnoMM ≈ 2.7B̃, indicating that the small sample size
bias strongly impacts our conclusions here. We validate the applicability
of our empirical fit in Fig. 7.4, where the familiar linear dependence of the

Figure 7.4: The re-scaled
standard deviation for the
noMM condition vs 1/B.

inverse temperature on B−1 confirms that our analysis of the first-order bias
is appropriate.
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Figure 7.3: Sub-sampling anal-
ysis of the larger noMM dataset.
PLM temperature estimates for
each number of sub-samples are
shown in blue, and the corre-
sponding temperature of the self-
consistency (SC) corrected models
are shown in orange. The dashed
black line shows a fitted empirical
arc-tan model to the PLM temper-
ature data. Coloured crosses show
the temperatures and sample num-
bers corresponding to the distribu-
tions in Fig. 7.2.

7.2.2 Impact on Claims of Criticality

To contextualise the meaning of the inferred temperatures in Fig. 7.3 we
again introduce the fictive temperature Tf and perform MC simulations of
1
Tf
θ∗
noMM for a range of Tf , see Fig. 7.5. A peak of C2 at Tf = 1 would mean

that the PLM model is situated exactly at the critical point. We instead
find the peak at Tf = Tc = 0.78 and so θ∗

noMM is a paramagnetic state-
point above the transition, albeit still with substantial critical fluctuations
C2(Tf = 1) ≈ 0.15C2

max. The self-consistency correction shifts the model
further from Tc. Hence, the MM and noMM conditions appear to be at
best-near critical if not paramagnetic.

7.2.3 Ubiquitous Criticality is a Small Sample Size Effect

Summarising these results, initial analysis of the two conditions would lead
to the conclusions that a) practising mindfulness meditation changes the
state-point of the brain, and b) that the noMM condition represents a near-
critical paramagnetic state-point. Carefully accounting for the bias instead
reveals that both datasets more likely originate from the same state-point,
and the SC corrected temperature estimate shows that, as a lower bound,
the true state-point of the data lies far from the transition in the param-
agnetic phase. We, therefore, find no evidence to suggest that the resting
state fluctuations in this imaging study correspond to a critical brain state.
The results of our analysis pose serious challenges to the numerous claims of
criticality in inferred Ising models highlighted in chapter 4. We have shown
that small sample size effects severely bias models inferred from dynamic
data towards criticality. As the brain is inherently dynamic [66], pairwise
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Figure 7.5: Spin-glass order pa-
rameter q and susceptibility C2 as
functions of the fictive temperature
Tf for the model inferred from the
noMM condition, θ∗

noMM. The F
order parameter m was also mea-
sured and found to be 0 through-
out. Thus, this sweep characterises
a transition from a low-temperature
spin-glass to a high-temperature
paramagnetic phase. Points and er-
ror bars correspond to means and
standard errors of 60 independent
MC simulations with B = 104 sam-
ples; pmc = (105, 105, 10). Green
and red crosses correspond to the
PLM and self-consistency corrected
models of the noMM condition re-
spectively.

maximum entropy models inferred from brain datasets are thus always bi-
ased towards criticality. We have also shown that the severity of this bias
depends on factors such as state point, coupling structure and system size
(c.f. B̃ ≈ 1000 in the SK model vs here where B̃ ≈ 3465) and cannot be
predicted a priori. The amount of data required to accurately infer the
state-point of a dataset is thus also unknown, and can only be established
through studying the convergence of relevant observables as functions of B.
Conclusions of authors who have not properly accounted for the bias will
therefore be heavily skewed towards criticality and should be regarded with
a high degree of scepticism.

7.3 Structure and Statistical Mechanics of the noMM
Resting State Network

In this section, we will investigate the behaviour of the noMM PLM model
as a function of Tf in more detail. We show θ∗

noMM in full in Fig. 7.6.
Although we have established that θ∗

noMM most likely does not fully rep-
resent the ground truth model, we can still gain interesting insights from
this analysis. For instance, we see that the left (L, i = 0 to i = 180)
and right (R, i = 180 to i = 359) hemispheres of the cerebral cortex are
highly symmetric (as indicated by large coupling values in inter-hemisphere
diagonal θ∗

i,j=i+180). This symmetry is an expected and known result as
previous resting-state fMRI studies have also found highly symmetric con-
nectivity networks across the brain hemispheres [221, 222]. We find that
the L and R hemispheres are not perfectly mirrored, in line with findings
from other authors who state that small asymmetries exist and support a
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Figure 7.6: The inferred parame-
ter matrix θ∗

noMM from the noMM
condition. Dashed black lines label
boundaries of the left (i = 0 to i =
179) and right (i = 180 to i = 359)
cortical hemispheres. The full black
line delineates the cortical from the
limit and cerebellar ROIs. We ob-
serve a strong symmetry between
L and R cortical hemispheres (indi-
cated by large values in the diagonal
of the inter-hemisphere squares of
the matrix), and that there are few
strong connections between the cor-
tical hemispheres. We find almost
no interactions between the cortex
(i = 0 to i = 359) and the lim-
bic and cerebellar ROIs (i ≥ 360),
implying these operate largely inde-
pendently.

variety of behaviours [223]. The limbic and cerebellar ROIS (i ≥ 360) ap-
pear to operate largely independently of the cortex; indeed we see no strong
couplings between these systems. Although PLM has not identified the size
or distribution of the couplings correctly, it has still given us insights into
the organisation and connectivity of the network with features that appear
consistent with previous findings. The bias seems less important when PLM
is used purely as a network reconstruction method. We do note, however,
that PLM biases parameters to be larger, so that models inferred from small
datasets will naturally appear less sparse.

7.3.1 Couplings and Correlations

In section 3.3 we devoted some time to explaining how correlations Cij and
couplings Jij are not equivalent, and that simple network topologies can
lead to complex correlations [137]. Functional connectivity networks es-
tablished from correlations17

17 Doing so is still commonplace
in the neuro-imaging literature, in-
deed this was also done in the origi-
nal analysis from which we sourced
the mindfulness data analysed in
this chapter [133].

are unlikely to be representative of the true
connections in the model. To demonstrate this point we show the correla-
tion structure Cij of the noMM condition in Fig. 7.6. Comparing Fig. 7.6
and Fig. 7.7 reveals that, although features such as the inter-hemisphere
diagonal are present in both, Cij is much more densely populated than
Jij . Thresholding both these to extract adjacency matrices will therefore
produce networks with vastly differing topologies. Small-world properties
(i.e. clustering and short topological distances between nodes) observed
for networks constructed from correlations may therefore be the result of a
less-connected coupling structure.

To explore these ideas further, we investigate how correlation networks
associated with our inferred model θ∗

noMM change as we vary Tf . We will
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Figure 7.7: The covariance ma-
trix C (which here is equivalent to
Pearson’s correlation coefficients)
for the noMM condition. Black
lines represent the same structural
separations described in Fig 7.6.
The correlations display a simi-
lar structure to the couplings (c.f.
Fig 7.6) and we observe that highly
coupled ROIs are also highly cor-
related. The correlation matrix is
much more densely populated than
the corresponding inferred coupling
matrix, suggesting that networks
built from correlations may over-
represent the true connectivity.

Figure 7.8: Segments of spin tra-
jectories from the empirical brain
signal and from simulations of the
noMM PLM model for 5 different
fictive temperatures. We only plot
ROIs in the left hemisphere (i = 0
to i = 179). The ROI index runs
vertically, while time is shown hor-
izontally. We observe that the sim-
ulated dynamics of our model most
closely align with those of the em-
pirical brain signal at the fictive
temperature of the self-consistency
corrected model, Tf = 1.1. We
identified spin-glass (SG), critical
and paramagnetic state points us-
ing Fig. 7.5.
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Figure 7.9: Dependence of co-
variances Cij measured from MC
simulations of the noMM PLM
model at various fictive tempera-
tures Tf compared to those ob-
served in the binarized input noMM
fMRI dataset. Different colours
correspond to different Tf as shown
in the legend. The black line
shows perfect agreement. As Tf

approaches Tc = 0.8, the correla-
tions increase drastically, which is
reflected by C2 being maximised
at this temperature. We observe
that our proposed self-consistency
correction (SC) produces the model
which most closely matches the co-
variances observed in the data (i.e.
is closest to the black line). By
matching the global average metric
C2, our SC correction therefore also
improves agreement with individual
microscopic covariances Cij .

look at 5 temperatures in particular: Tf = 0.5 where the model yields a
SG, Tf = 0.8 the critical point, Tf = 1.0 the natural PLM model, Tf = 1.1
the SC corrected PLM model and Tf = 1.8 a P state-point. We identified
the SG, P and critical state points from Fig. 7.5. As a starting point, we
plot examples of trajectories from each of these state points along with the
empirical signal from one of the imaging days in Fig. 7.8. Although the
dynamics of the brain (empirical) and the simulated state points (Monte
Carlo) differ substantially, we see the strongest visual similarity between
the brain signal and inferred model at the SC temperature. This further
supports that the SC correction is more representative of the data than the
biased estimate obtained from PLM. We note that as Tf decreases the dy-
namics slow, and the correlations between spins increase. Cij will therefore
also vary as Tf varies.

To examine this behaviour quantitatively, we plot a scatter of the em-
pirical covariances Cij observed in the data vs the simulated covariances for
our selected temperatures (excluding the spin-glass) in Fig. 7.9. We exclude
the SG from our analysis as we know the data to be dynamic. As expected,
the (absolute) values of Cij increase as the critical point is approached. This
behaviour is captured by our global correlation metric C2. The spread of
Cij also increases (a larger area is occupied in our scatter). We also find the
covariances of the SC corrected model are most closely aligned with those
of the data. Constraining the global property C2 thus produces individual
adjustments which align the microscopic covariances with those observed in
the data. This provides further support for the use of the self-consistency
correction; it produces the model most consistent with the Cij , which is the
over-arching aim of pairwise maximum entropy modelling.

We now consider how networks constructed by applying a constant
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Figure 7.10: Adjacency matrices
constructed from the correlations in
Fig. 7.9 using a constant threshold
of δ = 0.1. We show the adja-
cency of the critical Tf = 0.8 state-
point in (a) of the un-modified PLM
model Tf = 1.0 in (b), of the self-
consistency corrected model Tf =
1.1 in (c) and of the paramagnetic
state-point Tf = 1.8 in (d). We
see that varying the temperature
drastically alters the implied net-
work topology when this is con-
structed from correlations. Cru-
cially, however, all these correla-
tions were generated by simulat-
ing the PLM model θ∗ shown in
Fig. 7.6.

threshold to Cij change with Tf , as is common practice in the neuro-imaging
community. We note that it is usually the linear correlation coefficient

Rij =
Cij

σiσj
=
⟨sisj⟩ − ⟨si⟩⟨sj⟩

σiσj
, (7.1)

that is thresholded. But as our spins only take values of si = ±1, we
find that Rij and Cij are numerically equivalent. We extract an adjacency
matrix A by applying a constant threshold δ = 0.1 to each Cij , setting
Aij = 1 if Cij ≥ δ and to 0 otherwise (i.e. we construct a network of posi-
tive correlations). The resulting adjacency matrices are shown in Fig. 7.10.
Bright pixels indicate connections. We clearly see that the correlation net-
work becomes more interconnected as we approach the critical point. At
the critical point, panel (a), Aij is highly connected18

18 Indeed had we chosen to con-
nect nodes based on absolute cor-
relations |Cij | ≥ δ, as done in [133],
we would find an almost fully con-
nected network.

, and the sparse cou-
pling structure we reported in Fig. 7.6 is obscured entirely. We see that
both panels (b) (the PLM model) and (c) (the SC correction model) rep-
resent topologies that are more connected than J∗

ij . In the paramagnetic
regime, panel (d), Aij mirrors the strongest couplings found in Fig. 7.6.
In summary, re-scaling the values of the inferred couplings by a constant
1/Tf leads to vastly differing adjacency matrices when these are constructed
by thresholding correlations, even though the underlying coupling structure
stays constant. Defining functional connectivity through correlations means
we are likely to overstate the inter-connectedness of the ROIs when there
are non-trivial correlations in the data (i.e. when we are not deeply in the
P phase). We thus show that networks with short topological path lengths
(i.e. those that exhibit small-world properties) often observed in neuroimag-
ing analyses [25, 67] can be the result of much simpler underlying coupling
structures [137]. This further highlights the necessity of inverse methods in
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establishing true functional connectivity.

7.4 Conclusions

In this chapter, we have illustrated the importance of small sample size
biases when applying PLM to real neuroimaging data. We did this by
performing a case study of a typical fMRI dataset. Analysing the first-
order bias through sub-sampling showed that this dataset contained at most
BnoMM ≈ 2.7B̃ samples, and will be strongly affected by small sample size
effects. Not accounting for the bias severely impacts our conclusions, and
can lead to false claims of criticality as the bias tunes the PLM model to-
wards the critical point. Applying our purposed self-consistency correction
allows us to counteract this and establish a lower bound on the true tem-
perature of the data. Although PLM is exact in the limit of large sample
size, we thus show that this “large sample size” condition is often unlikely
to be achieved in real settings. Typical fMRI studies collect between 10-60
minutes of data per imaging session and sample every 1-2.5 seconds [13,
133, 224, 225]. We can therefore expect around B = 240−3600 samples per
imaging session. Applying PLM to single imaging session/participant stud-
ies poses a challenge, particularly if one wishes to consider more fine-grained
representations of the brain (i.e. more ROIs) as we have previously shown
that B̃ ∝ N . Conclusions drawn from models inferred from individuals, or
comparisons across individuals, should therefore be regarded with a high
degree of scrutiny. This is particularly important when one attempts to
explore whether different physiological conditions (e.g. sleep vs wakefulness
[199]) represent different state-points, as we have previously shown that B̃
is also a function of the state-point of the data and so collecting the same
number of samples B from each condition does not guarantee that the effect
of the bias has been mitigated equally.

We have demonstrated that, even in the under-sampled regime, PLM
still provides estimates of network structure which are consistent with pre-
vious authors’ findings. More importantly, we showed that networks con-
structed from correlations (as is common practice in the neuroimaging com-
munity) provide less reliable information regarding the underlying topology
than inverse methods which infer couplings such as PLM. We claim that
inverse methods are a necessity when trying to distinguish between true
connections and coincidental correlations in functional connectivity analy-
ses. This is especially so in the proximity of the critical point where large
correlations can arise from simple model topologies. We show that the
SC-corrected PLM model displays the best agreement with the empirical
covariances, providing further evidence for the validity of this re-scaling ap-
proach when B is small. We expect PLM to excel when trying to establish
generic features of the human state (i.e. properties of the average brain),
which are studied by analysing large multi-participant aggregate datasets
such as the 1000 Functional Connectomes Project∗ or the Human Connec-
tome Project†. This will be the aim of our next and final analysis chapter.

∗See http://fcon_1000.projects.nitrc.org/ for the 1000 Functional Connectomes
Project

†See https://www.humanconnectome.org/study/hcp-young-adult for the Human
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Summary of Chapter 7

• We applied pseudo-likelihood maximisation (PLM) to a typical resting-state func-
tional magnetic resonance imaging (fMRI) dataset, with the aim of understanding
how the inference bias impacts our conclusions.

• The dataset contains two biological conditions, which are mindfulness meditation
(MM) vs the (control) no mindfulness meditation (noMM). We assess whether these
two conditions constitute different state points and whether the inferred model is
close to a critical point.

Disregarding the Bias
If we disregard the bias, we conclude that mindfulness meditation measurably
alters the state point of the human brain. The MM model has a lower tem-
perature and it appears that practising mindfulness meditation tunes the brain
towards a critical point.

Accounting for the Bias
If we properly account for the bias, we conclude that the temperature difference
between noMM and MM conditions is purely an artefact of the small sample
size bias and that both models correspond to the same state point. Applying
our self-consistency correction further shows that this state point, as a lower
bound, is paramagnetic.

• We thus show that the small sample size bias can drastically alter conclusions in
fMRI datasets with typical sample numbers. We argue that any PLM analysis of
such data claiming criticality must therefore always perform an analysis of the bias
(e.g. through sub-sampling as we do) and that analyses that fail to do so should be
regarded with a high degree of scepticism.

• We find that the self-consistency correction improves our estimates of the individual
covariances Cij . This means that the self-consistency correction provides a better
solution to the inverse Ising problem than uncorrected PLM, further supporting the
use of this correction.

• We showed that a constant inferred coupling structure can lead to a range of cor-
relation networks, and advocate for the more widespread use of inverse methods for
network analyses of neuroimaging data.

Connectome Project
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Chapter 8

The Human Connectome
Project: a Large Sample Size
Study

We have now established that statistical biases affect the quality of pseudo-
likelihood maximisation (PLM) inferences (see chapters 5 - 7). Do existing
large datasets overcome these limitations? To assess this, we apply our
analysis to one of the largest openly available fMRI datasets, the Human
Connectome Project (HCP) young adult dataset. As we will see, this con-
tains a sufficiently large number of samples to largely disregard the effects
of the bias highlighted in the previous chapters. This allows us to investi-
gate whether the resting state of the brain is a critical state, knowing with
confidence that our conclusions will not be the result of the small sample
bias. We will find that the PLM model of the HCP dataset corresponds
to a near-critical paramagnetic state point. This is in line with the bias-
adjusted conclusions we drew from the small sample size dataset analysed
in the previous chapter. We will demonstrate that the functional connec-
tivity inferred from PLM is much sparser than that produced by commonly
applied correlation-based methods. We argue that the PLM model is a
better representation of the functional connectivity of the brain and advo-
cate for the more widespread adoption of inverse methods such as PLM.
We further analyse the effect that thresholding (i.e. setting some couplings
to zero) has on the statistical mechanics of our models and detail a self-
consistent method to threshold the couplings while conserving the overall
correlations of the input data. We find that this allows us to safely remove
15% of couplings without impacting the system’s statistics. This avoids
issues associated with the arbitrariness of thresholding when attempting to
construct network topologies from weighted quantities such as couplings or
correlations.

8.1 The HCP Resting-State Dataset

The Human Connectome Project (HCP)19
19 www.humanconnectome.org/

study/hcp-young-adult
provides a state-of-the-art openly

available aggregate fMRI dataset. With that said, extensive pre-processing
is required to extract the region-specific time series that we ultimately use as
our input datasets for PLM from the raw volumetric BOLD signal. I do not
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Figure 8.1: Regions of interest
in the multi-modal parcellation of
the human cerebral cortex defined
in Ref [23] There are 180 ROIs in
each cortical hemisphere, which are
replicated across the hemispheres
for a total of 360 ROIs, e.g. both
left and right hemispheres contain
a V1 region of interest. Both in-
flated (left and middle columns)
and flattened representations (right
column) of the cortical surface are
shown. Colours show the extent to
which each region is associated with
a specific function or task. Adapted
from Ref. [23].

have the expertise to perform this pre-processing and explicitly
acknowledge that this was done by our collaborator Dr. Hiroaki
Hamada at Araya Inc. The HCP dataset contains data both from resting-
state studies and from those where a specific task was performed. Here, we
will exclusively analyse the resting-state data. A PLM model inferred from
this dataset, therefore, represents the brain in an equilibrium-like stationary
condition.

In total, we will analyse data from 161 individuals, with B = 4724 sam-
ples collected from each of these. The data we receive has been parcellated
(i.e. segmented into regions of interest (ROIs)) according to the Atlas de-
fined in [23]. We show these regions in Fig. 8.1, and note that they do not
represent volumes of fixed size, but rather specific areas of the brain known
to be associated with specific functions. In total, there are N = 360 ROIs,
each of which we label as a spin si. ROIs i = 0 to i = 179 correspond to the
left (L) hemisphere of the cerebral cortex, while ROIs i = 180 to i = 359
have come from the right (R) hemisphere. Note that the ROI definitions
are symmetric, i.e. ROI i = 0 corresponds to the Visual 1 (V1) region of the
left hemisphere, while ROI i = 180 is the V1 region in the right hemisphere,
so that the same 180 regions of interest are defined within each hemisphere.
We will perform PLM on the total aggregate dataset, for which there are
B = 161 × 4724 = 760, 564 samples, and expect that this will ensure that
the bias of our inference remains minimal.

The values of each time series for each ROI are continuous. As in chap-
ter 7, we therefore again binarize the data by first removing the average
and normalising by the standard deviation (z-scoring) and then setting
si(t) < 0 = −1 and si(t) ≥ 0 = +1. We plot the autocorrelation of the
data in Fig. 8.2. We once more see that there are non-trivial dynamics,
but that the autocorrelation time remains small (τ = 1), which for our
purposes means we can consider each sample as independent and identi-
cally distributed (i.i.d). The similarity of Ct for the raw data, the z-scored
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Figure 8.2: The normalised auto-
correlation function Ct of each con-
figuration vs the delay time ∆t for
the HCP dataset. We show the dy-
namic correlations of the raw data,
the z-scored (i.e. normalised) data
and the binarised spin data. We ob-
serve that the binarisation process
does not have a significant impact
on Ct. As in the last chapter, the
overall size of the auto-correlation
is small (see the y-scale) and we
thus assume that we can take each
time point as representing an inde-
pendent and identically distributed
(i.i.d.) random sample of the sys-
tem. The plotted lines show the av-
erage over all participants and only
the first 1000 delays are shown.

data and the binarised data shows that the binarisation process has not
substantially affected the dynamics of the system.

8.2 The Resting-State Coupling Network

8.2.1 Sub-Sampling Analysis

We now perform PLM on the aggregate HCP resting-state dataset contain-
ing B = 760, 564 samples. So as to not fall into the pitfalls highlighted
throughout the previous chapters, we begin by sub-sampling our data and
performing PLM on each sub-sample. We again sub-sample in a greedy way,
drawing as many samples of size Bss as possible from B without repetition,
and then averaging over the PLM results from each of these sub-samples
for each Bss. This was to ensure that as much of the information contained
within B as possible is present for each Bss. The output of the sub-sampling
analysis can be seen in Fig. 8.3, where we plot the saturation of the re-scaled
standard deviation of the couplings σ∗N1/2 and the temperature T ∗ as func-
tions of 1/Bss. We clearly see from the inset (showing data corresponding
to Bss ≥ 105) that the dependence of the (inverse) temperature follows 1/B.
The aggregate HCP dataset, therefore, sits in the asymptotic first-order bias
regime. We now fit the saturation of the standard deviation of our inferred
models with

σ∗ = σ0 + b1/Bss, (8.1)

for Bss ≥ 105, and extract the asymptotic (unbiased) estimate σ0 and the
first order bias parameter b1 from this fit. We find that when B = Bmax,
there is only a 0.43% discrepancy between σ0 and σ∗ when considering
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Figure 8.3: The top panel shows
the rescaled standard deviation of
the inferred parameters σ∗N1/2 as
a function of the inverse sub-sample
size 1/Bss. The associated temper-
ature of the model for each Bss is
shown in the bottom panel. The
inverse sub-sample size is shown in
units of 10−4. Insets provide de-
tailed views of the large sample
size limit (Bss ≥ 105) from which
we estimate the bias parameter b1.
From our fit, we find σ0N1/2 =
0.32592±0.00001 (T 0 = 3.068) and
b1 = (0.1082 = 0.0003)× 104.

the full HCP sample. We conclude that the PLM model inferred from
the aggregate HCP dataset is free from significant bias effects. We will
therefore accept the estimated PLM model as representative of the ground
truth model, and perform no correction. We will then assess if this model
represents a critical state point to address our original hypothesis.

Before continuing with our primary analysis, we briefly use this oppor-
tunity to again highlight the difficulty of using PLM to analyse individual
imaging sessions, where limited data is available. We set the minimum sub-
sample size in Fig. 8.3 equal to B = 4724, which is equivalent to the sample
sizes collected for each of the 161 individuals in the dataset. We see immedi-
ately that T ∗

individual ≈ 0.5T ∗
aggregate. Halving the temperature of the inferred

model can drastically alter the phase attributed to that model. State points
inferred from individual imaging sessions are, therefore, unlikely to repre-
sent the true state point of the brain and are strongly influenced by the
small sample size bias. For this reason, we focus our discussion entirely
on the PLM model obtained from the full B = 760, 564 cross-participant
sample.

8.2.2 Overview of the Inferred Connectivity

We show the PLM model (i.e. the functional connectivity) inferred from the
full aggregate HCP dataset in Fig. 8.4. As there is no longer a known “true”
model to reference, we simplify our notation by dropping the ∗ superscript
and use Jij to denote our inferred PLM couplings from here on. The two
intra-hemisphere networks (i.e. L-L and R-R connections) are similar (cor-
relating parameters in the left hemisphere θL with those in the right hemi-
sphere θR yields R2 = 0.811, see Fig. 8.5). This is further highlighted by

Figure 8.5: Correlation of pa-
rameters in the L and R hemi-
spheres.
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Figure 8.4: The coupling ma-
trix Jij inferred from the aggre-
gate HCP resting-state dataset. A
similar structure to the mindfulness
dataset is observed. Left (i = 0
to i = 179) and right (i = 180 to
i = 359) hemispheres appear highly
symmetric, with many connections
within each hemisphere, but few
connections between hemispheres.
The colour map is limited to 0.2 as
few parameters exceed this value,
see Fig. 8.6.

the large positive couplings seen along the diagonal of the inter-hemisphere
network (L-R), i.e. the couplings Ji,j=i+180, telling us that nodes corre-
sponding to the same ROIs in L and R hemispheres are strongly functionally
connected (i.e. activate in unison). We, in fact, find that these couplings are
the largest couplings in the network as a whole, which we further illustrate
in Fig. 8.6. We identify a hierarchy of couplings. The strongest couplings
in the network (the diagonal elements of the L-R inter-hemisphere network)
encode the symmetry between identical ROIs in the L and R cortical hemi-
spheres, e.g. between the first visual area of the left (V1-L) and the right
(V1-R) hemispheres. Within each hemisphere (showing the left hemisphere
as an example in Fig. 8.6), we find a skewed coupling distribution with a
long positive tail. Strong positive (excitatory) intra-hemisphere couplings
are also present within each hemisphere. We note that the bulk of L-L cou-
plings (around 2/3) are negative (inhibitory) and weak. On average, the
weakest couplings in the network are those contained in the off-diagonal el-
ements of the L-R inter-hemisphere network. We find that the distribution
of these couplings has a smaller variance than the L-L network and contains
values much smaller than the diagonal L-R couplings.

Overall, this implies the resting-state brain is organised in the following
way. Within each hemisphere, we find a non-trivial coupling (connection)
distribution. The majority of these couplings are weak and inhibitory. We
do however identify a long tail of positive couplings, implying a strong
excitatory network exists within the hemispheres. This coupling structure
is highly symmetric and is found in both L and R hemispheres. Turning
now to the inter-hemisphere (L-R) connections, we find little evidence to
suggest any complex functional connectivity between the hemispheres. The
main identifiable source of interaction between the hemispheres is the “self”
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Figure 8.6: The distribution of in-
ferred PLM couplings Jij for dif-
ferent components of the network.
The distribution of couplings in the
left-left (L-L) intra-hemisphere net-
work is shown in orange, the diag-
onal elements of the left-right (L-
R) inter -hemisphere network are
shown in blue, and the off-diagonal
elements of the L-R network are
shown in green. Diagonal elements
of the L-R network represent the
coupling between regions of interest
with the same label in each hemi-
sphere, e.g. V1-Left to V1-Right.
The biggest couplings in the net-
work are the L-R diagonal elements.
Off diagonal elements of the L-R
network are, on average, smaller
than those of the L-L network.

coupling of identical regions (i.e. Ji,j=i+180) in both hemispheres. While
connectivity within L and R hemispheres is mirrored, we find that the off-
diagonal elements of the inter-hemisphere (L-R) network (Ji,j ̸=i+180) are
small, implying that non-matched ROIs in one hemisphere have little effect
on those in the other. This suggests that both hemispheres would be well
described by decoupled sub-networks which activate in unison.

8.2.3 Characterising the Inferred Coupling Distribution

Now that we have established the broad structure of the inferred network,
we want to devote some more time to understanding the distribution of the
couplings as a whole. We begin by plotting the probability density func-
tion (PDF) of the coupling distribution inferred from the HCP dataset in
Fig. 8.7. For reference, we also plot the coupling distribution corresponding
to the noMM dataset from the last chapter. We clearly see that the noMM
condition (for which B ≈ 10, 000) and the HCP distribution share some fea-
tures (including a peak at a small, negative Jij and a long extended tail for
positive couplings). The general magnitude of the couplings is larger in the
noMM dataset leading to a distribution with heavier tails. We again stress
that this is an effect of the small-sample bias of PLM. One can imagine,
however, that the shape of the noMM distribution may collapse to that of
the HCP distribution in the B →∞ limit.

The HCP distribution itself is characterised by the following features.
We note a sharp peak occurring when Jij is small (i.e. weak) and nega-
tive. The distribution is non-symmetric about Jij = 0, with a long slowly
decaying tail for the positive couplings. We further find min(Jij) ≈ −0.1
and max(Jij) ≈ 0.5, showing that negative interactions are more tightly
constrained than positive interactions. The distribution for Jij < 0 appears
approximately exponential (i.e. normal). We will now devote some time to
characterising the behaviour of the non-standard tail for Jij > 0. We look
at the role that negative couplings play in mediating the system in the next
section.

111



Figure 8.7: Comparison of the in-
ferred coupling distributions found
for the noMM (blue) dataset in
the last chapter and the aggre-
gate HCP dataset in this chapter
(orange). The sample size B is
much smaller in the noMM dataset
(c.f. B ≈ 10, 000 in the noMM
dataset vs B ≈ 1, 000, 000 in the
HCP dataset). Both distributions
display long tails for Jij > 0,
but the HCP distribution is much
more sharply peaked and contains
smaller parameters. We believe
that the difference between these
two distributions is largely an effect
of the small sample bias, highlight-
ing the need to properly account for
this effect.

8.2.4 Characterising the Positive Tail

We now devote some time to characterising the positive tail of the cou-
pling distribution. We previously noted in section 8.2.2 that the largest
couplings in the network were the diagonal elements of the L-R network.
These couplings represent a trivial component of the network (the symme-
try between hemispheres) and contain no real information regarding the
network structure found within each hemisphere. To better understand
the true connectivity of each hemisphere we exclude these elements from
our analysis and analyse the L-L and R-R sub-networks independently in-
stead. The convergence of slowly decaying (heavy-tailed) distributions is
more clearly represented on log-log axes, and as such, we plot PDFs of the
coupling distribution from the L-L and R-R sub-networks in the top and
bottom of Fig. 8.8 respectively. The tail of the coupling log-log PDF ap-
pears approximately linear, spanning roughly an order of magnitude in Jij ,
implying that the positive tails of the coupling distributions in this region
can be described by a (truncated) power law. We see this by noting that if
the probability P (Jij) of observing a coupling with value Jij is:

P (Jij) = AJ−γ
ij , (8.2)

where A is a normalisation constant and γ is the exponent of a power-law,
then

log(P (Jij)) = log(A)− γ log(Jij). (8.3)

However, we also know that the core of the coupling distribution at Jij ∼ 0
is well described by a Gaussian (see Fig. 8.7), and so expect there to be some
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Figure 8.8: Probability density
function (PDF) for positive cou-
plings (Jij > 0) in the left (a) and
right (b) hemispheres on double log-
arithmic axes. Linearly binned data
is shown by blue dots, while log-
arithmically binned data is shown
by the blue line. The approxi-
mate linearity of the tail on log-log
axes leads us to fit the tail with
power law functions via two meth-
ods (black and red lines), yielding
the exponents shown in Table 8.1.

value of Jij where we cross from Gaussian (exponential) behaviour to the
power-law behaviour of the large Jij tail. To properly characterise the tail
we need to find two values: the cross-over value (which we denote by xmin)
describing the minimum value of Jij above which the coupling distribution
is described by a power-law, and the exponent γ of the power-law. We
implement two methods to extract the values xmin and γ, and summarise
the headline results in Table 8.1. We now describe both methods in more
detail before discussing the values of the power-law parameters further.

Method xmin (Left) xmin (Right) γ (Left) γ (Right)

Method 1 4× 10−3 4× 10−3 1.8 1.9

Method 2 6× 10−3 7× 10−3 1.8 1.9

Table 8.1: Summary of results from the two power-law fitting methods for
the positive tail of the couplings in the left and right hemispheres. The
fitting methods are described in more detail below.

Method 1: Simple Binning and Fitting

As established, if we plot the probability distribution of Jij on double log-
arithmic axes we can perform a simple linear fit to extract the exponent
γ from (8.3). This requires us to first discretize (i.e. sort into bins) our
couplings. We bin our couplings by choosing 200 equally sized bins spaced
evenly between 0 and max(Jij). We only fit Eq. 8.3 for bins which contain
at least 1 coupling (i.e. where PDF(Jij) ̸= 0). To determine the cross-over
value xmin we vary the range of Jij (including only Jij ≥ xmin) over which we
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Figure 8.9: Summary of method
1, where we bin our data and per-
form a linear fit to the binned data
in double logarithmic space. The
left panels show how our fitting
metric R2 and the power-law ex-
ponent γ vary as functions of the
cross-over value xmin denoting the
start of the heavy tail. The black
dots show the values of R2 and
γ at xmin which maximises R2.
Orange regions show xmin values
where R2 ≥ 0.9, i.e. where there
is very good agreement with the fit.
The right panel shows how each fit-
ted power law corresponds to the
data. Blue dots show binned data.
Black lines show the optimal fit,
while orange lines show fits where
R2 ≥ 0.9. Grey lines correspond to
all other fits.

perform our fit and measure the coefficient of determination R2. We define
xmin as the value of Jij which maximises R2 in this process. We summarise
this fitting procedure visually in Fig. 8.9 for the left hemisphere (although
the analysis results are practically identical for the right hemisphere). The
left two panels track how R2 and γ vary as functions of xmin. The right
panel shows the range of possible fits for each xmin; orange fits satisfy the
condition R2 ≥ 0.9 (i.e. agree very well with the data), while the black
line shows the optimal solution. We clearly see that a broad range of xmin

(corresponding to a broad range of γ) agree well with the data. Although
we state the optimal value of the exponents as 1.8 in Table 8.1, we note
that γ = 1.7 to γ = 2.1 also satisfy R2 ≥ 0.9 and good produce agreement
with linearity.

Method 2: A Maximum Likelihood Method

The methodology described above is simple and widely used to test em-
pirical data for power-law dependency. However, Refs. [226, 227] note that
this process is subject to several systematic errors, for instance, that the ex-
tracted exponents depend on the size and spacing of the bins. Clauset et al.
[226] therefore propose an alternate maximum likelihood-based approach to
extracting the power-law exponent. Formally, we can express the correctly
normalised probability of observing a variable x distributed according to a
power-law with exponent γ above some minimum value xmin > 0 as

P (x) =
γ − 1

xmin

(
x

xmin

)−γ

. (8.4)
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Figure 8.10: Summary of method
2, where we use a maximum likeli-
hood approach to extract the power
law exponent of the heavy tail of
the couplings. Analysis of the left
hemisphere is shown in blue, and
the right hemisphere is in orange.
Top, the Kolmogorov-Smirnov dis-
tance metric D as a function of
xmin. Dashed vertical lines indicate
the value of xmin where D is mini-
mized if we require the error in γ
to be ≤ 5%. Bottom, the % er-
ror on the estimate obtained for γ
at each xmin. This increases mono-
tonically as xmin increases as fewer
data points are included in the fit.

Given that we have a random variable x sampled n times, denoting each
sample as xi, Clauset et al. [226] show that the maximum likelihood esti-
mate (MLE) obtained for γ from observations distributed according to (8.4)
can be derived analytically as

γ = 1 + n

[
n∑

i=1

ln
xi

xmin

]−1

. (8.5)

When estimating the exponent of the tail of our coupling distribution, we
note that n = N(N − 1)/2 (the upper triangle of the coupling matrix J),
with xi corresponding to each unique coupling Jij . Once again, one then
needs to find the cutoff value xmin defining the tail of the distribution by
varying xmin and minimizing some distance metric (c.f. R2 in the simple
binning method). We again stress that changing the value of xmin changes
the extracted exponent.

Fortunately, an extensive Python package (aptly named powerlaw) al-
ready exists to perform this optimization [228]. We now use this to extract
xmin and γ as in the previous method. We show the Kolmogorov-Smirnov
distance metric D and the estimated percentage error of γ as functions of
xmin in for both hemispheres in Fig. 8.10. We see that the landscape of D is
rugged with many local minima and that the global minimum of D occurs at
around xmin = 0.1 at which γ ≈ 5 for both L and R hemispheres. However,
we also see that the error is a monotonically increasing function of xmin,
which arises naturally from our previous discussion of MLE biases as fewer
data points are included in the optimisation, and that the global minima
in D correspond to errors in the region of 8 to 10%. Moreover, inspecting
the range of Jij defined by xmin ≥ 0.1 in Fig. 8.8 shows that the exponents
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at the global minima of D correspond to the “truncated” component of the
distribution. The global minima of D, therefore, do not capture the expo-
nent of the main power-law scaling regime between (10−2 ≤ Jij ≤ 10−1),
and instead characterise the rate of decay of the truncation. We instead now
look for the minima of D under the condition the percentage error of γ is
≤ 5%. These minima are marked with dashed vertical lines in Fig. 8.10, and
their corresponding exponents are reported in Table 8.1. We note that D is
flat in the vicinity of these minima, indicating that a range of xmin produce
equally good estimates for the onset of the tail. This provides a numeric
explanation for the wide range of xmin satisfying R2 > 0.9 in Fig. 8.9.

Power-law distributions are not the only distributions which lead to
heavy tails; indeed there are many other candidate distributions that may be
equally plausible for empirical data such as ours, e.g. stretched-exponential
and log-normal distributions. The powerlaw package [228] also implements
methods with which to test against these alternative distributions (by per-
forming a log-likelihood ratio test). We now briefly discuss this and re-
port p-values from the log-likelihood ratio test comparing the power law
to a number of alternative candidate distributions. This discussion holds
for both L and R hemispheres due to their similarity. The minimum re-
quirement for a distribution to be heavy-tailed is that it differs from an
exponential distribution (i.e. from a “normal” process). We find (p = 0.03)
in favour of a power law, indicating that the heavy-tailedness of the cou-
pling distribution is statistically significant. The likelihood ratio test de-
termines that other heavy-tailed alternatives including exponentially trun-
cated power-laws, stretched-exponentials and log-normal distributions are
all more likely candidate distributions (p ≈ 0). The pure power-law be-
haviour we have considered so far is therefore by no means the only appro-
priate description of the tail. However, as the tail only spans ∼ 1 order of
magnitude of Jij and as we cannot gather any additional data points, we
cannot identify exactly which of these equally plausible distributions truly
describes the data. Given our limited data, we claim that a simple power law
provides the most intuitive description of the behaviour of the tail. Either
way, testing against the exponential distribution clearly demonstrates that,
regardless of its specific functional form, the strengths of positive functional
connections in the brain are heavy-tailed.

Fitting Results Summary

We implemented two methods with which to characterise the right (positive)
tail of the coupling distribution. The fundamental assumption of these was
those couplings in the tail are distributed according to a power law. Our
fitting methods return two key parameters, xmin which determines the cross-
over from exponential to heavy-tailed behaviour, and γ the exponent of the
power law. We found both methods to be in good agreement with each
other, and moreover, that the general symmetry of L and R hemispheres also
causes the tails of the distribution to be similar (see Table 8.1). Although we
state the optimal exponents γ ≈ 1.8, our discussion of both fitting methods
has shown that the quality of our data in the tail is not sufficiently large to
accurately determine this value. For method 1, this is shown by the large
range of linear fits satisfyingR2, and the flatness of the Kolmogorov-Smirnov
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distance D in the vicinity of the optimal solution in method 2 implies the
same. We assess that (if we are to believe that the tail is truly distributed
according to a power law) the exponent lies somewhere between γ = 1.7 and
γ = 2.1. Other heavy-tailed candidate distributions also provide equally
good (or better) descriptions of the data. The only concrete conclusion we
make regarding the tail is that it is indeed heavy (i.e. non-exponential).
Nonetheless, we believe that the simple power-law description has value as
it provides a simple single-parameter (γ) interpretation of the decay of the
tail.

8.3 Criticality of the Inferred PLM Model

In the previous section, we characterised the structure of the inferred cou-
pling network, identifying symmetries between L and R hemispheres, and
that the distribution of couplings is centred on a small negative value of
Jij but contains a heavy (power-law like) tail for positive Jij . We now in-
vestigate the statistical physics of our inferred model. As a reminder, the
original motivation for our work was the observation that complex systems
derive a number of functional and computational advantages from operat-
ing at or near a critical point (i.e. near a second-order phase transition),
see chapter 4. We are therefore particularly interested in characterising
whether or not the resting state network we have inferred here, in a sta-
tistical physics sense, is positioned near a critical point. We will find that,
as for the mindfulness data, the inferred model corresponds to a paramag-
netic super-critical state-point, that is close to but offset from the phase
transition. The ground state (i.e. low-temperature limit) of our model is a
spin-glass (SG), and we will find that the small negative couplings play a
vital role in ensuring that the model correctly reproduces the correlations
of the data.

8.3.1 Fictive Temperature Sweep

Following the steps of chapter 7, we will assess the proximity of our in-
ferred model to a phase transition by introducing a fictive temperature
Tf , which we vary to simulate different state points close to our model.
Given θ∗ is the output model we receive from PLM, we will perform equi-
librium Monte Carlo (MC) simulations of the modified model 1

Tf
θ∗ for each

fictitious temperature20
20 The modified coupling distribu-
tion is therefore sharpened if Tf > 1
and spread if Tf < 1. Tf = 1
is equivalent to the “natural” PLM
model of the resting-state data.

. The MC parameters for each simulation were
pmc = (105, 105, 10), so that we produced B = 104 samples from each
simulation. We measure the ferromagnetic order parameter m, the spin-
glass order parameter q, and the critical fluctuation measure C2 from these
datasets. We performed 12 independent simulations for each Tf , and all pre-
sented results (errors) are averages (standard errors) over these independent
simulations.

The calculated observables from this fictive temperature sweep are shown
in Fig. 8.11: panel (a) tracks the order parameters m and q, while panel
(b) shows the susceptibility C2. The location of the “natural” PLM model
(i.e. the unmodified model where Tf = 1) is marked by the black vertical
line. Panel (a) shows that although q varies from 1 at low Tf to 0 at high
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Figure 8.11: Proximity of the
PLM model inferred from the HCP
dataset to criticality. The top panel
(a) shows the dependence of the fer-
romagnetic order parameter m and
spin-glass order parameter q on the
fictive temperature Tf . The bot-
tom panel (b) shows the same for
the susceptibility measure C2. The
originally inferred PLM model rep-
resenting the binarized fMRI data
corresponds to Tf = 1 and is
marked by a black vertical line. We
observe that the model undergoes
a transition from a paramagnet to
a spin-glass at Tf ≈ 0.8. The in-
ferred PLM model corresponds to
a super-critical paramagnetic state
point. Shaded regions represent er-
rors of 12 independent MC simula-
tions.

Tf , m = 0 throughout. The order-parameter m measures global alignment
(i.e. whether all spins point in the same direction throughout the trajec-
tory). In contrast, q measures individual alignment (i.e. whether each spin
remains pointed in a single direction throughout the trajectory). The mis-
match between these two thus tells us that the ground state (the low Tf

limit) of the PLM model is a spin-glass, i.e. a system where there is no
global ordering but where each spin remains frozen in a particular orien-
tation throughout the trajectory. Tracking the observables from low Tf to
high Tf , we further observe a single peak in C2 at Tf ≈ 0.8, which coincides
with a rapid, continuous drop in q. These two features together imply that
the system undergoes a phase transition in the range of Tf considered here,
with the critical temperature of the transition corresponding approximately
to Tc ≈ 0.8. For Tf > Tc bothm = 0 and q = 0, these unordered state points
are paramagnetic. The PLM model at Tf = 1 corresponds to a super-critical
paramagnetic state-point. We find C2(Tf = 1)/C2(Tf = Tc) ≈ 0.1 so that
the PLM model is within the regime of non-trivial enhanced fluctuations
that surrounds the transition.

To gain a better understanding of how these phases appear in data, we
plot sections of trajectories of the empirical brain signal and our MC sim-
ulations for several relevant temperatures in Fig. 8.12. We stress that the
(to us unknown) dynamics of the brain signal are different from those of
the MC simulations, but that it is nonetheless still interesting to compare
the two to examine the temporal correlations of our simulated model. For
the SG state point (Tf = 0.4), we clearly see that there is no overall global
ordering of the spins, but that each spin appears preferentially frozen in a
given direction. Interestingly, there appear to be bands within the data,
hinting that the couplings encode a clustered structure of highly connected
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Figure 8.12: Spin trajectory seg-
ments from the empirical brain sig-
nal and from Monte Carlo simula-
tions of the HCP PLM model at 4
different fictive temperatures. We
only plot ROIs in the left hemi-
sphere (i = 0 to i = 179) and show
t = 450 time points. The ROI index
runs vertically, while time is shown
horizontally. The simulated dy-
namics of the PLM model (Tf = 1)
most closely resemble the real dy-
namics of the empirical brain signal.
We identified spin-glass (SG), crit-
ical and paramagnetic state points
using Fig. 8.11. Purple pixels are
deactivated si(t) = −1, while yel-
low regions are activated si(t) =
+1.

sub-networks. We take this as evidence for the modular organisation of the
brain [188]. As the temperature increases, the spins start to unfreeze and
fluctuate. At the critical temperature Tf ≈ 0.8, we find large rearrange-
ments involving the entire system 21 21 We note that system-wide (i.e.

scale-free) cooperation is a key fea-
ture of the critical state.

. This highly correlated behaviour is
exemplified by the observation of a number of system-wide “flipping” events,
where the sign of almost all spins in the system simultaneously reverses,
within the trajectory except. We still observe the same banding structure,
but that activity within the bands now fluctuates between average periods
of activity (+1) and inactivity (−1), delineated by the flipping events. At
the natural temperature of the PLM model (Tf = 1), we no longer find
any system-wide rearrangements but continue to observe shorter periods of
activity/inactivity for clusters of specific spins. This data is visually most
consistent with the empirical binarised fMRI signal recorded from the brain.
In the high-temperature limit, Tf = 2.5, the data resembles Gaussian white
noise, with spins fluctuating randomly as expected from a paramagnetic
state-point.

In summary, our analysis of the order parameters and susceptibility of
the inferred model at different fictive temperatures revealed that the resting-
state PLM model of the brain sits near an SG-P phase transition. The PLM
model corresponds to a super-critical paramagnetic state-point, which still
exhibits a degree of heightened correlations. By examining simulated MC
trajectories from the PLM model and the critical point in detail, we find
that the PLM model lacks features such as the system-wide cooperation
characteristic of a system at criticality. We conclude that, although the
correlations in the natural PLM model (Tf = 1) are non-trivial, the resting-
state brain network itself does not correspond to an equilibrium (statistical
physics) critical point. We find that the ground state of the brain (i.e. the
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Figure 8.13: Pearson’s correla-
tion coefficients Rij calculated from
the aggregate HCP resting-state
dataset. The overall correlation
structure implies much more con-
nectivity than the coupling struc-
ture we infer using our inverse
method (see. Fig. 8.4).

low Tf limit) corresponds to a spin-glass phase.

8.4 Thresholding and Network Construction

The general goal of most neuroimaging studies is to understand the connec-
tivity of the brain in the hope that this will reveal how organisation facili-
tates various cognitive functions. Most commonly, functional connectivity
(FC) is established by assessing correlations between ROIs, e.g. through
the linear (Pearson) correlation coefficient

Rij =
Cij

σiσj
=
⟨sisj⟩ − ⟨si⟩⟨sj⟩

σiσj
, (8.6)

which we show for the aggregate HCP dataset in Fig 8.13. Comparing
the correlations in Fig 8.13 to the couplings we inferred from the same
data in Fig 8.4 shows that correlations generally appear more connected
(i.e. denser networks) than the couplings. We also noted the same effect
when analysing the “small” dataset in the previous chapter (chapter 7),
where we showed that a range of correlation structures could be produced
by tuning the inferred PLM model towards the critical point. We thus
expect that networks constructed from correlation measures such as (8.6)
are likely to over-represent the connectivity of the data. This effect has been
explored in detail in Ref [137], where it was shown that simple coupling
topologies such as the two 2D nearest-neighbour Ising model, can produce
complex correlations that mimic those observed in functional connectivity
analyses of neuro-imaging data [137]. Some of the ubiquitous claims about
the functional connectivity of the brain established from correlations, such
as small world properties and short path lengths [25, 67], may therefore be
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the result of much simpler coupling topologies. In our view, inverse methods
such as PLM, provide a vital tool with which to discern whether two regions
of interest are truly connected or whether they simply co-vary through some
tertiary connection22

22 E.g. we can imagine that both
regions i and j and regions i and k
are strongly coupled. Regions j and
k would then be highly correlated,
and networks built from correlation
measures would associate the two.
Inverse methods such as PLM pre-
vent this, and produce an overall
sparser functional connectivity

, and we explore their use for this application in this
section.

Usual correlative functional connectivity neuroimaging analyses begin
first by measuring correlations, and then thresholding these to create links
(edges) between ROIs (nodes). Values below the threshold δ are discarded,
while those above δ are used to construct the FC network. A variety of
schemes are employed when thresholding, with authors constructing net-
works of positive correlations [66] (Rij ≥ δ), negative correlations [132]
(Rij ≤ δ) and absolute correlations [62, 133] (|Rij | ≥ δ) throughout the lit-
erature. These choices are highly contentious [128, 135]. For instance, only
considering positive correlations, or correlation magnitudes does not allow
for the excitatory/inhibitory nature of the connection to be assessed. More-
over, negative interactions are known to help modulate brain dynamics, and
their functional importance has been demonstrated in neuroimaging stud-
ies [132, 136]. Discarding them clearly discards an important component
of the network. We now wish to apply the same type of threshold to the
resting-state couplings J we inferred for the HCP dataset. Our analysis will
demonstrate the important role negative couplings play in mediating and
maintaining correlations within the inferred brain network.

8.4.1 Statistics of Thresholded Coupling Networks

We apply two common thresholding schemes to our inferred PLM model.
We again measure q and C2 as we vary the threshold δ to assess the impact
that discarding a given set of couplings has on the model. As a reminder, we
found that 2 out of 3 of the inferred HCP couplings were negative, but that
the distribution of couplings itself is skewed, with a heavy tail for positive
Jij . We will investigate two thresholding schemes, which emphasise different
properties of the network. The positive thresholding scheme

Jij =

{
Jij , if Jij ≥ δ

0, otherwise
, (8.7)

discards all negative couplings from the network, and is equivalent to con-
structing a network containing only the excitatory couplings. The symmet-
ric thresholding scheme

Jij =

{
Jij , if |Jij | ≥ δ

0, otherwise
, (8.8)

discards all “small” couplings, and therefore builds a network where only the
most important couplings are retained. Note that we do not set Jij = 1,
i.e. we keep the weights of the couplings. We now vary the threshold δ
and perform MC simulations of the thresholded models. The parameters
of these simulations were pmc = (105, 105, 10), producing B = 104 samples
from which we calculated q and C2. We again performed 12 independent
repeat simulations for each δ and report the averages over these runs. As
we previously noted a power-law tail, we chose to vary δ logarithmically.
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Figure 8.14: We track the depen-
dence of the spin-glass order pa-
rameter q (panel a), the susceptibil-
ity measure C2 (panel b) and the
remaining number of edges in the
network (panel c) as functions of
the threshold δ. Results for the
symmetric thresholding scheme are
shown in blue, while the positive
thresholding scheme is shown in yel-
low. We identify 3 threshold val-
ues of special importance. δ1 shows
the largest δ for which q and C2

of the symmetrically thresholded
model agree with those of the fully
connected PLM model. δ2 shows
where there is a peak in C2 for the
positive thresholding scheme. δ3
denotes the onset of network frag-
mentation (i.e. the largest value of
δ for which all ROIs form a sin-
gle connected network). Above this
multiple fragmented sub-networks
begin to form (grey region).

Fig. 8.14 shows the results of this analysis. Panels (a) and (b) show q and
C2 respectively. In panel (c) we track the % of edges (i.e. number of non-
zero Jij) present in the thresholded network compared to the initial fully
connected PLM model.

Assessing the two thresholding schemes in the limit δ → 0. For
the symmetric scheme, this corresponds exactly to the unmodified PLM
model, and we see good agreement with q and C2 when δ is small. But
for the positive scheme, by design, the threshold automatically discards
the majority (∼ 66%) of couplings as they were negative. Panels (a) and
(b) show that sampling from the positively thresholded models distorts the
phase of the system, indeed both q and C2 are far from the values observed
for the un-thresholded PLM model. These correspond to a highly coupled
ferromagnetic-like state-point, where due to a lack of connections, some
nodes continue to fluctuate, leading to q ̸= 1. Comparing this behaviour
with the trajectory excerpts of the empirical brain data and the simulated
PLM data Fig. 8.12 shows that the statistics of these positively thresholded
networks do not correspond to those of the data. Although the negative
couplings in the model are on-average smaller than the positive couplings
(see Fig. 8.7), this highlights the importance negative couplings play in
mediating correlations within the system. Negative correlations are required
to maintain the state-point of the system, and network analyses of the
positive connections alone are therefore unlikely to be representative of the
true connectivity of the brain.
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Assessing the two thresholding schemes when δ ̸= 0. Until δ ≈
10−3, we observe little change in q, C2 or the edge density. We then iden-
tify 3 key threshold values at which significant changes in behaviour occur.
The first of these, δ1, denotes the largest δ for which the correlation mea-
sure C2 of the symmetrically thresholded model is in agreement with C2

measured from simulations of the un-modified PLM model23
23 Note that we defined this by
measuring whether C2 for the sym-
metrically thresholded model was
within 5% of the un-modified PLM
model.

. Interestingly,
the number of retained edges in the symmetrically thresholded model at δ1
is around 86%, showing that 14% of couplings can be discarded (i.e. set to
0) without loss. Similarly to the self-consistency correction we proposed for
PLM in chapter 6, δ1 allows us to define a self-consistent threshold which
conserves the correlations of the data (i.e. matches C2). This circumvents
another critique of the thresholding process, which is that the choice of δ
is usually an arbitrarily defined hyperparameter. For δ > δ1, we find that
both C2 and the edge density monotonically decrease for the symmetric
scheme; as we reduce the number of connections in the network, the overall
coupling strength decreases and the data becomes more paramagnetic. On
the contrary, models obtained from the positive thresholding scheme ap-
pear to undergo a phase transition, and we find a peak in C2 at δ2. For
now, we explain this by the following reasoning. Increasing δ decreases
the number of couplings in the system, which lowers the overall coupling
strength of the model. As the positively thresholded model at δ = 0 is in
a ferromagnetic-like state, there must therefore be a value of δ where the
overall coupling strength becomes weak enough for the system to “melt”
and transition to a paramagnetic state. As shown in Fig. 8.11, in the δ → 0
limit, the symmetric model (i.e. the raw PLM model) already corresponds
to a paramagnetic state-point. Increasing δ further can only turn the sys-
tem more paramagnetic. We explore the inter-dependence between δ and
Tf further in section 8.4.2. Interestingly, the location of the peak for the
positive scheme corresponds to a plateau in C2 for the symmetric scheme.
This again highlights that negative couplings are essential in controlling the
system’s statistics. The point δ3 denotes the largest value of δ for which
we retain a single network24

24 I.e. in which a path exists be-
tween all N = 360 ROIs.

. The network fractures into sub-networks for
δ > δ3, and we shade this regime in grey in Fig. 8.14.

In summary, networks constructed by discarding all negative (i.e. “posi-
tive thresholding”) interactions fail to capture the statistics of the binarised
fMRI input data. Network analyses which remove negative couplings will
therefore not capture the true connectivity of the brain. By thresholding
symmetrically (i.e. removing all Jij for which |Jij | < δ) we show that up
to 15% of the smallest couplings may be removed without impacting the
statistics of the data. This provides us with a self-consistent route towards
identifying an appropriate threshold δ, couplings below which may safely
be viewed as artefacts of the inference and removed without issue. The re-
maining network is still close to fully connected (∼ 86% out of the original
fully connected (360 × 359)/2 = 64, 620 coupling are retained). We find
that the last δ for we retain a single connected component (i.e. for the net-
work does not fragment into sub-networks) occurs at a large δ = δ3 = 0.04.
The strongest couplings in the network form a sufficient “backbone” of con-
nectivity through which information can pass from any node to any other
node. We briefly mentioned that varying δ induced a phase transition in
the positive thresholding scheme. We attempt to formalise this observation
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Figure 8.15: Coupling distribu-
tions obtained after applying a sym-
metric threshold to the HCP PLM
model for the three values of δ
shown in Fig. 8.14. Blue shows δ1,
orange shows δ2 and red shows δ3.
We note that for δ1 the distribution
is dominated by small negative cou-
plings. The legend further shows
how many of the original couplings
each of these thresholded models
retain. The approximate value of
the onset of the heavy tail (see Ta-
ble. 8.1) is shown by the dashed ver-
tical line.

in the next section.

8.4.2 Thresholds and Phase Transitions

Although the spike at δ2 for the positive scheme appears like a second-
order phase transition in δ, we have no reference values of C2 to establish
whether C2(δ2) ≈ 15 is truly maximal for this particular δ. We will now
investigate this formally by re-introducing the fictive temperature and sim-
ulating each thresholded model for a range of Tf , in a similar process as
in Fig. 8.11. We again perform 6 independent Monte Carlo (MC) simula-
tions, using pmc = (105, 104, 10) to collect B = 103 samples, for each (δ, Tf )
pairing and present averages over these. We acknowledge that these are
relatively short simulation times, and that future work may aim to increase
these to improve the reliability of our conclusions. Nonetheless, we believe
that these sampling conditions are good enough to provide an illustrative
example of the phase behaviour of the thresholded models. We begin by
looking at the symmetric thresholding scheme.

Fictive Temperature Sweeps for Symmetric Thresholds

We begin by showing how thresholding at the three key values (δ1, δ2 and δ3)
identified in Fig. 8.14 impacts the distribution of couplings in the symmetric
thresholding scheme in Fig. 8.15. As a reminder, this scheme corresponds
to setting all |Jij | < δ to zero. For δ1 we again see that, by count, the
distribution is dominated by negative couplings, and that this is the last
threshold value for which the thresholded model reproduces the statistics
of the input data. Increasing δ places a greater emphasis on the positive
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Figure 8.16: The ferromagnetic
order parameter m, and the spin-
glass order parameter q as func-
tions of δ and Tf for the symmet-
ric thresholding scheme. Projection
(grey) shows the dependence of m
and q on δ at Tf = 1 (shown by
the black dashed line), i.e. the trace
shown in Fig. 8.14. As δ increases
the transition morphs from a spin-
glass-paramagnetic transition to a
ferromagnetic-paramagnetic transi-
tion. Plotted results are averages
from 6 independent MC simula-
tions.

couplings in the tail as the distribution is skewed, with δ3 composed almost
exclusively of large positive couplings. We show the approximate value of
xmin defining the start of the heavy tails for reference (see section 8.2.4).

In Fig. 8.14 we found that increasing δ monotonically decreased C2.
We stated that this was due to the raw PLM model already corresponding
to a paramagnetic state-point, and so weakening the interactions within
this model could only shift the state-point further into the paramagnetic
regime. We now expand on this concept by performing the aforementioned
temperature sweeps for a variety of δs. The calculated values for m and
q are shown in Fig. 8.16, while those for C2 are shown in Fig. 8.17. For
small δ, these simulations reinforce our view that the HCP PLM model
(regardless of the chosen threshold) is paramagnetic, as we measure a peak
in C2 at Tf < 1 for all δ. The dependence ofm and q on δ further shows that
increasing δ changes the ground state of the model (i.e. the low Tf limit),
from a spin-glass (m = 0, q ̸= 0) to a ferromagnet (m ̸= 0, q ̸= 0). This is
a result of the positive skew of the coupling distribution; as δ increases we
begin considering coupling distributions which are dominated by one sign
(i.e. positive couplings), in turn destroying the quenched disorder required
to form a spin-glass. An interesting side effect of this is that the peak
of C2 along each Tf plane decreases with δ. This is because values of
C2 associated with the spin-glass paramagnetic transition are larger than
those associated with the ferromagnetic paramagnetic transition (see e.g.
Fig. 5.21 of section 5.6.3). In summary, the transition behaviour of each
thresholded model has a complex dependence on δ. Networks constructed
from arbitrary choices of δ are therefore likely not only to mischaracterise
the statics of the data but can also lead to the incorrect identification of the
ground state associated with the model. We further find that the height
of the peak of C2 depends on δ in a non-trivial way, meaning that directly
comparing values of C2 at different δ is not a good metric for establishing
proximity to a phase transition.

Fictive Temperature Sweeps for Positive Thresholds

We now repeat the above analysis for the positive thresholding scheme,
where again for clarity, we set all Jij < δ to zero. This is equivalent to con-
structing a network representing the strongest excitatory functional con-
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Figure 8.17: The susceptibility
measure C2 as a function of δ
and Tf for the symmetric thresh-
olding scheme. Projection (grey)
shows the dependence of C2 on δ
at Tf = 1 (shown by the black
dashed line), i.e. the trace shown
in Fig. 8.14. Reduction in size of
the C2 peak as δ increases is the
result of the changing ground state
(from spin-glass to ferromagnetic)
of the model. Plotted results are
averages from 6 independent MC
simulations.

Figure 8.18: Coupling distribu-
tions obtained after applying the
positive thresholding scheme to the
HCP PLM model for the three val-
ues of δ shown in Fig. 8.14. We
plot these on a log-log axis as the
symmetric thresholding scheme dis-
cards all negative couplings, essen-
tially constructing a network con-
sisting only of the heavy tail dis-
cussed in section 8.2.4. Blue shows
δ1, orange shows δ2 and red shows
δ3. The legend further shows how
many of the original couplings each
of these thresholded models retain.
The approximate value of the onset
of the heavy tail (see Table. 8.1) is
shown by the dashed vertical line.
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Figure 8.19: The ferromagnetic
order parameter m, and the spin-
glass order parameter q as functions
of δ and Tf for the positive thresh-
olding scheme. Projection (grey)
shows the dependence of m and q
on δ at Tf = 1 (shown by the black
dashed line), i.e. the trace shown in
Fig. 8.14. Transitions found for all
δ are ferromagnetic-paramagnetic.
Plotted results are averages from 6
independent MC simulations.

nections in the brain. For the positive thresholding scheme, increasing δ
corresponds to selecting different components of the positive tail of the dis-
tribution. We show the coupling distribution for 3 example values of δ along
with xmin in Fig. 8.18.

We plot m and q for the positive thresholding scheme for δ and Tf in
Fig. 8.19. In contrast to the symmetric scheme, we find that both m and q
are similar (m ∝ q) for all δ and that in the small Tf limit both m ̸= 0 and
q ̸= 0, implying that the ground state of all positively thresholded models
is a ferromagnet. As before, Fig. 8.20 shows the dependence of C2 on δ
and Tf . Comparing the limits of the axes in Fig. 8.20 and Fig. 8.17 shows
that the phase transitions of the positively thresholded models have smaller
maximal values of C2. This is in line with our previous argument concerning
the values of C2 at the SG-P and F-P transition lines in the SK model.
Moreover, we find that as δ increases the temperature corresponding to the
peak of C2 crosses the line Tf = 1, leading to the C2 dependence we observe
in Fig. 8.14. This means that when applying the positive thresholding
scheme one can always identify a value of δ at which C2 is maximised at Tf =
1, i.e. that corresponds exactly to a (finite sized) thermodynamic critical
point. The threshold δ2 identified in Fig. 8.14 is close to this value. The
average peak value of C2 decreases as δ increases. This reinforces our finding
that values of C2 at different threshold levels cannot be compared directly
to assess proximity to the phase transition and that an investigation of e.g.
Tf is required to contextualise whether a given value of C2 is maximal. In
the limit of large δ both thresholding schemes converge to models exhibiting
similar thermodynamics (paramagnetic models with ferromagnetic ground
states), with exact equality occurring once δ > |min(Jij)| ≈ 0.05.

8.4.3 Thresholding Analysis Summary

Removing the negative interactions from the network (somewhat unsurpris-
ingly) fundamentally alters the statistical physics of the originally inferred
PLM model. As discussed, such thresholding schemes are however still
commonly employed to extract network topologies within the neuroimaging
literature [128]. We performed a detailed analysis of the statistical physics of
both symmetrically thresholded (retaining coupling of high magnitude) and
positively thresholded (keeping only positive couplings) PLM models. We
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Figure 8.20: The susceptibility
measure C2 as a function of δ
and Tf for the positive thresholding
scheme. Projection (grey) shows
the dependence of C2 on δ at Tf = 1
(shown by the black dashed line),
i.e. the trace shown in Fig. 8.14.
The maximum value of C2 is ≈
1/2 that is seen in the symmet-
ric scheme, see Fig 8.17. As δ in-
creases Tc (which we define by the
peak in C2) passes through Tf =
1 so that there exists a value of
δ at which the model is perfectly
at the ferromagnetic-paramagnetic
critical point. Plotted results are
averages from 6 independent MC
simulations.

established that the symmetric thresholding scheme allowed us to identify a
threshold value δ which preserved self-consistency with the empirical corre-
lations in the input data, while also removing around 15% of the couplings.
This model corresponds to a paramagnetic state. All networks constructed
from only positive couplings fail to preserve the correlations within the input
data and change the ground state of the model from a spin-glass to a ferro-
magnet. This highlights the importance of negative couplings in mediating
correlations within the brain. Complex networks which disregard these are
therefore unlikely to represent the true connectivity of the brain. Our work
further shows that for positive threshold models there always exists some
δ at which the model is perfectly tuned to a ferromagnetic-paramagnetic
critical point. Claims of criticality arising from thresholded models should
therefore be scrutinised thoroughly.

8.5 Conclusion

In this chapter, we applied pseudo-likelihood maximisation (PLM) to in-
fer the functional connectivity of the brain from the Human Connectome
Project resting-state fMRI dataset. We established that this dataset is large
enough to minimize contributions from the inference bias by sub-sampling
the data and re-performing the inference. The connections within the ex-
tracted PLM model are predominately negative, although the distribution
is skewed with a heavy, non-exponential positive tail. We find that this tail
can be approximately described by a power law, with an exponent in the
range γ = 1.7 to γ = 2.1. The PLM model further reveals strong sym-
metry between the left and right cortical hemispheres. We find a general
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lack of inter-hemisphere connectivity, with the only exception being regions
corresponding to the same label, e.g. L-V1 with R-V1, which are also on
average the strongest connections in the network. This suggests a func-
tional organisation whereby both hemispheres act “copies” of each other
which activate simultaneously but are otherwise independent. We stress
that the functional connectivity implied by the couplings of PLM is much
sparser than that of correlative measures, such as the linear correlation co-
efficient. Thresholded PLM models are therefore less likely to re-produce
small-world features such as short path lengths ubiquitously reported in
previous functional connectivity analyses, although more work is needed to
establish this numerically. We were also able to probe whether the rest-
ing state corresponded to a critical state, as the PLM representation of the
brain is equivalent to an equilibrium model in statistical physics. We found
that, although non-trivial fluctuations are present in the data, the resting-
state brain does not operate at a critical point, instead corresponding to a
super-critical paramagnetic state point. We also investigated how removing
weak couplings (i.e. thresholding) from the model impacted the thermody-
namics of the system. We found that schemes which remove all negative
couplings (i.e. those that only consider excitatory connections) cannot re-
produce the correlations of the empirical input data. However, applying
a symmetric threshold (i.e. extracting the most impactful inhibitory and
excitatory connections) allowed us to remove ∼ 15% of couplings without
altering the state-point of the model. These results together highlight the
essential role negative couplings play in mediating correlations within the
brain.
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Summary of Chapter 8

• We applied pseudo-likelihood maximisation (PLM) to the young adult dataset from
the Human Connectome Project (HCP). This is one of the highest quality openly
available resting-state functional magnetic resonance imaging (fMRI) datasets.

• We performed a sub-sampling analysis of this dataset and concluded that the effect
of the small sample size bias was negligible. We thus believe that our inferred model
is truly representative of the data.

• We find that the inferred PLM network (i.e. the functional connectivity) of the
resting human mind has the following features:

Hemispherical symmetry
Connections between regions of interest within the left and right cortical hemi-
spheres are highly symmetric. This is evident as the strongest couplings in the
network are those connecting self-similar regions, e.g. the couplings between the
left visual 1 region and the right visual 1 region.

Low inter-hemisphere connectivity
Bar self-similar connections, the functional connectivity between cortical hemi-
spheres is weak. The inter-hemisphere couplings are on average weaker than the
intra-hemisphere couplings.

Couplings are predominantly small and negative (inhibitory)
Two out of three couplings within the network are negative.

The distribution of positive (excitatory) couplings is heavy-tailed
The positive couplings form a power law like heavy tail. We approximate the
exponent of this power law as γ ≈ 1.7 to 2.1.

• We analysed the proximity of the PLM model to a phase transition by performing
Monte Carlo simulations of the model at a range of fictive temperatures.

The HCP dataset is paramagnetic and close to criticality
We find that the PLM model of the HCP dataset corresponds to a paramag-
netic state point. This state point is close to a spin-glass-paramagnetic phase
transition and exhibits non-trivial correlations.

• We thresholded the inferred PLM model to emulate standard procedures for network
analyses in neuroimaging studies. We find that:

Negative couplings mediate correlations
Thresholding schemes which discard all negative couplings are unable to repro-
duce the correlations of the input data. We argue that thresholding schemes
which discard these discard an essential feature of the network.

There is a self-consistent symmetric threshold
Applying a symmetric thresholding scheme to the couplings allows us to extract
a simplified representation of the model (with approximately 15% of connections
discarded) that conserves the correlations found within the data.
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Chapter 9

Conclusions

Increasingly, biologists are able to collect “big data” from experiments [7,
29], allowing us to probe complex systems at resolutions that were previ-
ously unobtainable. Inverse methods, such as the pairwise maximum en-
tropy modelling framework investigated here, provide a valuable tool set
with which to digest these datasets, and allow us to extract and examine
interactions that are not directly measurable from the data. Maximum en-
tropy modelling further allows us to assess these interactions within the
established framework of statistical physics and provides a tool for network
reconstruction when up-to-pairwise interactions are considered. In this the-
sis, we performed an in-depth characterisation of a particular implemen-
tation of pairwise maximum entropy modelling termed pseudo-likelihood
maximisation (PLM), which is considered a state-of-the-art solution. We
then applied PLM to datasets obtained from neuroimaging studies, con-
structing spin-glass models of these systems. Our over-arching aim was to
use PLM to contribute to the “critical brain hypothesis”, which asserts that
the brain derives some of its advanced computational properties from oper-
ating near an order-disorder phase transition. We found that no previous
studies had systematically established how models inferred via PLM depend
on the size of the input dataset and aimed to address this gap in knowledge.
We deemed this important as understanding how the inference is affected
by limited dataset sizes is essential if one wishes to properly interpret fit-
ting results from real-world experimental data, where sample numbers are
naturally limited.

We began by characterising PLM on simulated datasets from the Sher-
rington - Kirkpatrick (SK) spin-glass model in chapter 5. We demonstrated
that estimates of important physical quantities (such as the temperature)
which define the state of the inferred model depend linearly on the inverse
sample number 1/B, similar to the standard bias of maximum likelihood es-
timators. This causes models inferred from paramagnetic datasets to exhibit
enhanced critical fluctuations, with this effect worsening with decreasing B.
Paramagnetic data is therefore misclassified as near-critical for finite B, i.e.
PLM underestimates the distance from criticality. The inference error is
minimized close to but offset from the phase transition in the paramagnetic
regime. The development of strong correlations on the approach to the
critical point means that PLM fails due to separation at lower T . We note
that, although information-theoretic arguments suggest otherwise [204], for
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small or intermediate B the regime of failure occurs before the finite size
critical temperature is reached.

In chapter 6, we describe data-driven approaches to mitigate these ef-
fects. The self-consistent correction we propose improves the temperature
estimate while matching the critical fluctuations C2 of the dataset. It per-
forms well when a PLM solution can be found, i.e. when separation does
not occur. Firth’s penalized logistic regression may be used to estimate the
state point when standard PLM fails due to separation. Although Frith’s
correction produces reasonable parameter estimates at low temperatures, we
caution that the critical fluctuations inferred using Firth’s correction are not
representative of the data. These models thus fail to capture an essential
property of the system. Both the self-consistency correction and Firth’s
correction provide biased estimates of the temperature, with T ∗ → T 0 from
below as B →∞. The estimated temperatures T ∗ should therefore be con-
sidered as lower bounds on the true temperature of the dataset. In contrast
to other regularization techniques, neither correction requires a hyperpa-
rameter to be tuned.

In chapter 7, we show that the bias profoundly impacts the estimation
of criticality in a typical finite B dataset from neuroscience. Not accounting
for small sample size effects causes state points to be incorrectly classified.
For fluctuating, i.e. dynamically varying data, this corresponds to inferring
models which are falsely tuned towards the critical point. Applying the
self-consistency correction to this dataset allows us to counteract this and
establish that, as a lower bound, the data is paramagnetic. We conclude that
any PLM study claiming criticality in a real dataset must carry out a proper
analysis of the dependence of the inference on B, e.g. through the sub-
sampling scheme we describe. Otherwise, small sample size biases cannot
be ruled out as the primary cause of the criticality of the inferred model.
This is especially important as we have shown that the bias prefactors, e.g.
B̃, setting the learning difficulty of the model are functions of the state
point (and also topology [118]), and so one cannot establish a priori what
constitutes a “small” sample size.

In chapter 8, we apply PLM to the human connectome project (HCP)
young adult dataset. As a result of our previous investigations, we sub-
sample this dataset and establish that it is large enough to safely disregard
the small-sample size bias. We find that the resting-state network of the
human brain predominantly contains small negative couplings, although the
distribution of couplings is skewed, with the positive couplings forming a
power-law-like tail. We identified strong symmetry between the connectiv-
ity of the two hemispheres. We probed whether the PLM model of the
HCP dataset corresponded to a critical point by simulating the model at a
range of fictive temperatures, finding the resting-state brain to operate at
a paramagnetic state point close to the critical point. We also investigated
PLM as a general network reconstruction method, with the aim of supersed-
ing correlation-based measures that are currently used in the neuroimaging
community. Through simulations, we show that thresholding schemes which
construct network topologies by removing all negative couplings (i.e. those
that only consider excitatory connections) cannot reproduce the correlations
of the empirical input data. Conversely, applying symmetric thresholds (i.e.
extracting impactful inhibitory and excitatory connections) allowed us to
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remove ∼ 15% of couplings without altering the statistics of the model.
This allows us to establish a self-consistent thresholding scheme with which
to simplify the network.

Based on our investigations, we highlight the following avenues for fu-
ture work. We focused entirely on the study of binary data, as binary
representations of neural activity are common, and as computationally ef-
ficient solutions such as PLM exist with which to solve the inverse Ising
problem. Many datasets, including the raw fMRI data we study, however,
are not binary. As such, it would be interesting to extend PLM to e.g.
XY-like models (where spins are allowed to rotate continuously within a 2D
plane) [229]. Furthermore, in our study of the small sample bias we exclu-
sively generated data from the SK model, which perfectly matches the form
of the generalised Ising models we infer with PLM (i.e. we only generated
data from binary pairwise models). It is not immediately clear how our
conclusions would translate to the case of a model mismatch. Say we were
to generate data from models more representative of true neural dynamics,
such as the coupled oscillator Kuramoto model [230, 231], would we still ob-
serve the same biasing towards criticality? Analysing PLM for such models
would help provide a bridge between the inference errors we identify in the
best-case SK model sampling, and the unknown true model which generated
the experimental data. Finally, although we highlight PLM as a graph re-
construction method and qualitatively discuss the structure of the inferred
couplings for the HCP dataset, we were unable to carry out a detailed
graph-theoretic analysis of the resulting networks. Doing so would allow us
to strengthen our arguments regarding the difference between correlation
and coupling networks and assess whether coupling networks also display
the key small-world and scale-free properties previously reported in the neu-
roimaging literature. For anyone wishing to continue this work, the code
used to generate, simulate and infer the datasets throughout this thesis is
available as a Python package at https://github.com/maxkloucek/pyplm.
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Appendix A

Determining the Linear Bias
Regime

In our main analysis, we identify that statistical averages of the inferred
parameters depend linearly on 1/B, linking this with the standard first-
order bias of maximum likelihood estimators. In this appendix, we present
a method to identify the sample size B where this approximation is true.
We will look at the convergence of σJN

1/2 (i.e. the inverse temperature) as
a function of 1/B, using our varying N minimum error sub-sampling dataset
as a case study (see section 5.6). Setting y = σJN

1/2 for convenience, we
can write the maximum likelihood estimate of y as

y∗ = y0 +
b1
B

+O(B−2), (A.1)

where b1 is the first-order bias. If we are in a B regime dominated by the
first-order term, we then expect

∂y∗

∂B−1
≈ b1 = const. (A.2)

We plot y∗ as a function of B−1 in Fig.A.1 to exemplify the issue at hand.
The small (N = 50, N = 100 and N = 200) system sizes are well approx-
imated by a linear dependence. But for e.g. N = 800 we see that higher

Figure A.1: Dependence of
the inverse inferred temperature
σ∗
JN

1/2 on the inverse sample
size B−1 for sub-samples of
datasets from the minimum error
state-points shown in Fig. 5.17.
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Figure A.2: Statistical method to
establish if an observable depends
linearly on 1/B. Gradients are split
into windows of equal width in B
(shown by shaded rectangles). In
(a) N = 200 and all samples were
found to belong to the same dis-
tribution (i.e. the gradient is con-
stant). In (b) N = 400 and we find
a boundary above which the gradi-
ent was significantly different from
the gradient in the coalesced win-
dow. We mark the boundary with
a dashed line and the means and
standard deviations within each co-
alesced window with black triangles
and error bars.

order terms also contribute strongly to the bias.

A.1 Statistically Identifying a Constant Gradient

We develop a statistical method, with the aim of determining the region of
B in which ∂y∗/∂B−1 is approximately constant (i.e. in which y∗ is linear in
1/B). We proceed as follows. We calculate numerical gradients ∂y∗/∂B−1

for each sub-sample of size B. We then split the measured numerical gradi-
ents into Nw = 10 windows of equal length in B. We now treat the gradients
in each window as samples from some probability distribution. We denote
the start of the ith window as

wi = Bmax

(
Nw − i

Nw

)
, (A.3)

so that e.g. w0 runs from Bstart = Bmax to Bstop = 0.9Bmax. This process
is shown in Fig. A.2 for N = 200 and N = 400, with each coloured region
corresponding to a separate window. We start by performing a two-sample
Kolmogorov–Smirnov (KS) test between w0 and the next window w1. This
test assesses how likely it is that the samples from both windows were drawn
from the same probability distribution. If we find the samples of the gradient
in w0 and w1 to be from the same distribution we “coalesce” the window. We
then test the coalesced window w<2 against the next window w2, continuing
this process until we find w<i to be different from wi. We define this point
as the boundary between the linear asymptotic 1/B regime and the under-
sampled regime where higher order terms (O(B−2) etc.) strongly affect the
bias. This boundary is shown for N = 400 by the dotted vertical line in
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Figure A.3: Gradients for differ-
ent system sizes. We use our sta-
tistical coalescence scheme to iden-
tify whether gradients were drawn
from the same underlying popula-
tion. Each panel corresponds to
a different system size which is
shown in the legend. Full points de-
note the sample where the gradient
is constant (in a statistical sense).
Transparent points are those where
the gradient is different from the
constant sample. Triangles and er-
ror bars show the means and stan-
dard deviations for each constant
gradient sample.

Fig. A.2. In the linear regime, we can extrapolate observables like y∗ to the
B → ∞ limit and look at the intercept to obtain an “unbiased” estimate
for the observable in question. We can also calculate the bias parameters
b1 as the average in our sample w<i, which we indicate with black triangles
in Fig. A.2. This then allows us to assess if enough data has been collected
to trust our estimate of the state point. We acknowledge that this process
implicitly assumes that w0 belongs to the linear regime. We counter this
by noting that if this were not the case, we would find the boundary to lie
between w0 and w1 giving us a clear indication that more data is needed.

The results of this coalescence process for the gradients of y∗ = σ∗
JN

1/2

are shown for N ≥ 50 in Fig. A.3. Transparent points indicate those outside
of the first-order bias regime. We find that for N = 50, N = 100 and 200
all sub-sample sizes can be approximated by the linear regime and that the
inferred inverse temperature is well described by a 1/B dependence on the
number of sub-samples. We find that higher-order terms are relevant for
the two bigger systems. The average values of b1 = ∂y∗/∂B−1 within the
linear regime are shown by triangles. Increasing N corresponds to shifting
the onset of the 1/B regime to higher B, i.e. more data is required to learn
bigger systems.
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