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Abstract

This short communication uses numerical continuation to highlight the existence of

an isola in a simple one‐degree‐of‐freedom harmonically forced feedback system

with actuator rate limiting as its only nonlinear element. It was found that the isola

(1) contains only rate‐limited responses, (2) merges with the main branch when the

forcing amplitude is sufficiently large, and (3) includes stable solutions that create a

second attractor in regions where rate limiting is not expected. Furthermore, the

isola is composed of two solutions for a given forcing frequency. These solutions

have the same amplitudes in the state (pitch rate) projection; however, they

have distinct phases, and their amplitudes are also distinct when projected onto the

integrator state in the controller. The rich dynamics observed in such a simple

example underlines the impact of rate limiting on feedback systems. Specifically,

the combination of feedback and rate limiting can create detrimental dynamics that

is hard to predict and requires careful analysis.
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1 | INTRODUCTION

The existence of isolas in nonlinear harmonically forced systems

has been verified mathematically1,2 and experimentally.3,4 For

single degree‐of‐freedom (DOF) systems, researchers have attrib-

uted the formation of isolas to various factors, such as smooth

nonlinear damping,5 hysteresis,6 piecewise nonlinearities,7 and

piecewise asymmetries,8 among others. Many of these studies

have derived comprehensive analytical solutions to predict the

isolas' existence, although this has so far been limited to open‐loop

systems. Closed‐loop systems with rate limiting can better reflect

real‐world setups, although this presents a new set of challenges

to researchers. As far as the authors of the current manuscript are

concerned, feedback systems with rate limiting can show complex

dynamics with bifurcations9,10 and isolas,11,12 although this has

only been observed in unforced systems.

This short communication aims to facilitate further discussion

of isolas in a more realistic setting. Specifically, we will investigate

isola formation in a one‐DOF system with the following features:

harmonic forcing, feedback, and rate limiting. Feedback control and

actuator rate saturation are common features of many real‐world

mechanical systems. By demonstrating the existence of isolas in

a simple example with these features, we hope to highlight the

possibility of encountering complex dynamics in experimental setups

and encourage further studies.

Readers who are new to the topic can refer to the literature

review section of Ref. 5, which provides a comprehensive summary

of past and recent studies on isolas.
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2 | SIMULATION MODEL

Figure 1A shows the block‐diagram representation of the system

examined in this short communication. Starting from the right,

the plant is a linear second‐order system described by Equations

(1) and (2). Preceding the plant is an actuator described by

Equations (4) and (5) and Figure 1B. Essentially, this is a first‐

order lag with pole pa and a rate‐limiting term. Rate limiting is

triggered whenever the demanded rate R p u u= ( − )d a d exceeds

the maximum deflection rate ±Rmax. Finally, a standard propor-

tional‐integral (PI) controller is used to control the plant (via the

actuator) and match the feedback state x1 with the reference

input r . In this scheme, the only nonlinear component is the

piecewise rate‐limiting term in Equation (4a).

x a x a x b u̇ = + + ,1 11 1 12 2 11 (1)

x a x a x b u̇ = + + ,2 21 1 22 2 21 (2)

E x ṙ = − + ,I 1 (3)





 
u

R R R R

R
̇ =

× sgn( ) if > , (4a)

otherwise, (4b)

d d

d

max max

where

R p u u

p K x p K E p u p K r

= ( − )

= − + − + .
d a d

a p a i I a a p1
(5)

The plant chosen for the numerical demonstration is a

linearized model of the F‐16 fighter jet in straight‐and‐level

flight at speed 200 m/s, sea‐level altitude, 2.3° angle of attack,

with the center of gravity located at 25% mean aerodynamic

chord. This represents a normal flight condition, and the center of

gravity position makes the aircraft statically stable. The aircraft

model is reduced to second order to capture only the fast

dynamics of the aircraft in the longitudinal plane (the short‐

period mode), resulting in two states: x1 for pitch rate in rad/s and

x2 for angle of attack in rad. The input u to this plant is the all‐

moving tailplane (stabilator) deflection in degrees. The actuation

system of the tailplane is modeled as a first‐order lag with pole

pa= 50 rad/s and maximum deflection rate Rmax = 40°/s. Other

parameters and their numerical values are listed in Table 1. The

chosen plant and PI controller gains give conventional and stable

dynamics as shown in Figure 2, which is also indicative of an

aircraft with good handling qualities. For the tailplane parame-

ters, previous studies have shown that a first‐order model with

rate limiting can serve as an appropriate approximation.13,14 Note

that the two controller gains Kp and Ki are negative because b11

and b12 are negative due to sign convention, but this does not lead

to loss of generality. Furthermore, since the reference signal r

(A) (B)

F IGURE 1 (A) Block diagram and (B) the actuator model described by Equations (4) and (5).

TABLE 1 Parameters of the F‐16 simulation.

Symbol Meaning Unit/value

States x1 Pitch rate q rad/s

x2 Angle of attack α rad

EI Integrated error rad

u Stabilator deflection deg

Reference

input

r Demanded pitch rate (x1) °/s

Parameters pa First‐order actuator pole 50 rad/s

Rmax Maximum actuator
movement rate

40°/s

Kp Proportional gain –0.320 81

Ki Integrator gain –3.182 9

a11 A‐matrix element of
the plant

–8.871 5

a12 A‐matrix element of
the plant

–2.270 4

a21 A‐matrix element of
the plant

–1.447 4

a22 A‐matrix element of
the plant

0.905 22

b11 B‐matrix element of

the plant

–0.357 47

b21 B‐matrix element of

the plant

–0.003
261 4

Others ud Demanded stabilator
deflection

°

Rd Demanded stabilator
deflection rate

°/s

2 | NGUYEN ET AL.

 27671402, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

sd2.12079 by T
est, W

iley O
nline L

ibrary on [03/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



(demanded pitch rate) has unit °/s, x1 (rad/s) in the feedback path

must be multiplied by 180/π to match the unit of the reference

signal. All results are presented in SI units for convenience. Data

of the full F‐16 model can be found in Nguyen et al.,15 and a

reduced data set upon which Equations (1) and (2) were obtained

can be found in the appendix of Nguyen et al.16

Regarding the relevance of the result presented, actuator rate

limiting can contribute to pilot‐induced oscillation, which has led

to some high‐profile crashes in the past.17,18 The presence of an

isola due to feedback and rate limiting can further exacerbate the

problem, potentially leading to the dangerous “flying quality cliff”

phenomenon.19

3 | RESULTS AND DISCUSSION

To generate the frequency response, the reference signal is now

set to r A ωt= sin , where A (°/s) is the forcing amplitude, ω (rad/s)

is the forcing frequency, and t (s) is time. The resulting steady‐state

oscillations are calculated using the Dynamical Systems Toolbox

(DST),20 which is the MATLAB/Simulink implementation of the

numerical continuation software AUTO‐07P. The procedure of

postprocessing of DST data and generation of a nonlinear Bode

plot is described in Nguyen et al.21

The r‐to‐x1 and r‐to‐EI Bode plots are shown in Figure 3. It can be

seen that the responses are split into two families of solutions: a main

(A) (B)

F IGURE 2 (A) Open‐ and (B) closed‐loop step responses without rate limiting.

(A) (B)

F IGURE 3 Nonlinear Bode plots at two different forcing amplitudes: (A) A = 7.50°/s and (B) A = 7.57°/s. Gain in dB is defined as 20 times the
common logarithm of x |r|| |/1 or E |r|| |/I .
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branch covering all frequency ranges and an isola that exists between

3.55 and 10.49 rad/s. Regarding the main branch, rate limiting causes a

sharper drop in both gain and phase at high frequencies compared to

the linearized response (not shown). For A = 7.50°/s (Figure 3A), this

drop begins at around 10.2 rad/s, causing a less smooth transition in

both the gain and phase plots around this frequency. Time simulations

at ω below 10.2 rad/s showed that rate limiting was not triggered as

long as the response remained close to the main branch.

The isola at A = 7.50°/s has three notable features:

− All solutions within the isola trigger rate limiting.

− The isola contains stable solutions near its left boundary, bounded

by a fold bifurcation to the left at 3.55 rad/s and a torus

bifurcation to the right at 4.82 rad/s. It is worth nothing that these

frequencies do not trigger rate limiting if the oscillation remains

close to the main branch instead of the isola.

− For each value of ω, all states except the integrated error EI have

two solutions with identical amplitudes but different phases.

When the forcing amplitude is increased slightly to A = 7.57°/

s, the isola merges with the main branch as shown in Figure 3B.

Increasing A further will lead to more complex responses and

eventually create a region near resonance with no stable

solutions.16

The same gain but different phase features noted above is

now examined. Figure 4 shows the three possible time‐domain

responses of the system at A = 7.50°/s and ω = 4.58 rad/s. As

noted above, the stable response originating from the main

branch does not trigger rate limiting and is therefore entirely

linear, whereas the isola produces one stable solution and one

unstable solution for each value of ω. These two solutions cause

the PI controller to create two EI responses, and this leads to two

different demanded actuator movements ud. However, due to

heavy rate saturation, the resulting two actuator responses u are

of the same amplitude as the actuator cannot catch up with such

a large command. The same amplitudes and different phases of

the two actual actuator movements cause all physical states to

have the same oscillation amplitudes and different phases, and

this explains the overlapping solutions in the gain plots of the

frequency responses (apart from EI).

Finally, the link between the isola size and the forcing amplitude

A is examined. Figure 5 shows that, by reducing A, the isola

becomes smaller while still retaining its overlapping‐solution

feature. At some point, no stable solution exists in the isola,

although the existence of the unstable solutions suggests that the

period‐1 response can still lose stability if given a large enough

perturbation. Lastly, it can be seen that reducing A to a small value

of 0.4°/s does not eliminate the isola.

On the basis of the classification system proposed by Hirai and

Sawai,22 the isola projection onto x1 with overlapping solutions does

not fit into any category, whereas the EI projection suggests a more

conventional “island” type. This suggests a novel type of response,

which is potentially caused by the combination of feedback and rate

limiting, and warrants further investigations.

F IGURE 4 Time‐domain responses at A = 7.50°/s and ω = 4.58 rad/s.

4 | NGUYEN ET AL.
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4 | CONCLUSIONS

This short communication has revealed the existence of isolas in a

simple one‐DOF system due to the combination of feedback and

rate limiting. Some special features are observed, most notably the

existence of two responses with the same amplitudes but different

phases. The rich dynamics observed in such a simple example underlines

the impact of rate limiting on the performance of feedback control, which

are all‐important elements of real‐world mechanical systems. Further

studies can consider experimental verification of the result and more

rigorous mathematical treatments of the isola origin.
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