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The best bounds of the form B(α, β, γ, x) = (α +
√
β2 + γ2x2)/x for ratios of 

modified Bessel functions are characterized: if α, β and γ are chosen in such a way 
that B(α, β, γ, x) is a sharp approximation for Φν(x) = Iν−1(x)/Iν(x) as x → 0+

(respectively x → +∞) and the graphs of the functions B(α, β, γ, x) and Φν(x)
are tangent at some x = x∗ > 0, then B(α, β, γ, x) is an upper (respectively lower) 
bound for Φν(x) for any positive x, and it is the best possible at x∗. The same is true 
for the ratio Φν(x) = Kν+1(x)/Kν(x) but interchanging lower and upper bounds 
(and with a slightly more restricted range for ν). Bounds with maximal accuracy 
at 0+ and +∞ are recovered in the limits x∗ → 0+ and x∗ → +∞, and for these 
cases the coefficients have simple expressions. For the case of finite and positive x∗
we provide uniparametric families of bounds which are close to the optimal bounds 
and retain their confluence properties.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY-NC-ND license (http://

creativecommons .org /licenses /by -nc -nd /4 .0/).

1. Introduction

Modified Bessel functions and in particular the ratios of the first and second kind modified Bessel functions 
Iν−1(x)/Iν(x) and Kν+1(x)/Kν(x) are mathematical functions appearing in a huge number of applications. 
In many of these applications, sharp bounds for estimating these ratios are important; for recent references 
(later than 2019) where these bounds play an important role see for instance [3–5,7,11,21] for applications 
where bounds for the ratios of first kind Bessel functions appear and [4–6,9,13,18] for the case of second 
kind Bessel functions. The ratios of modified Bessel functions are important functions on their own and it 
is no surprise that bounding these ratios has been a topic of interest for many authors; see for instance 
[1,2,8,10,14–17,19,20].
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In most of the aforementioned papers (with the exception of [14,16]) the bounds are of the form

B(α, β, γ, x) = α +
√

β2 + γ2x2

x
. (1)

These bounds are widely used because they can be quite sharp, they are simple and it is easy to operate 
with them; other type of bounds (like in [14,16]) can be sharper but are not so easy to handle. The present 
paper culminates these previous studies on algebraic bounds of the form B(α, β, γ, x) in two senses: firstly, 
we summarize the previous algebraic bounds and classify and collect them in a table according to the 
accuracies at x = 0, +∞. Such classification will reveal that the set of most accurate bounds at x = 0
and/or x = +∞ is complete for the ratio Iν−1(x)/Iν(x), with bounds earlier described in [1,17,19], but not 
so for Kν+1(x)/Kν(x); this second case is completed in this paper. In the second place, we will recover the 
idea considered in [8] of building the best possible (and close to best possible) bounds around any given 
fixed positive value of x, but we go beyond the particular case of best lower bounds for first kind Bessel 
functions and we discuss both lower and upper bounds, and for both the first and second kind functions.

The main results we will obtain can be stated in a simple way (not counting details on the range of 
validity with respect to ν, which we later describe carefully). Namely, if α, β and γ are chosen such that 
B(α, β, γ, x) is a sharp approximation for Φν(x) = Iν−1(x)/Iν(x) as x → 0+ (respectively x → +∞) and 
the graphs of the functions B(α, β, γ, x) and Φν(x) are tangent at some x = x∗ > 0, then B(α, β, γ, x) is 
an upper (respectively lower) bound for Φν(x); the same is true for the ratio Φν(x) = Kν+1(x)/Kν(x) but 
interchanging lower and upper bounds.

This analysis will complete the description of the best possible upper and lower bounds of the form 
B(α, β, γ, x) around any given x∗ ∈ [0, +∞]. It will not be possible to give simple expressions for the 
coefficients α, β and γ as a function of x∗ when x∗ ∈ (0, +∞), but we will see how it is possible to give 
explicit bounds which are close to the best bounds (in fact, we will first derive the close to best bounds and 
later the best bounds). Bounds with maximal accuracy at 0 and +∞ are recovered in the limits x∗ → 0+

and x∗ → +∞, both for the best and close to best bounds, and these limiting cases are contained in the 
previously mentioned table of bounds.

The structure of the paper is as follows. We start by summarizing the existing bounds for the ratios of 
modified Bessel functions in section 2, and in section 3 we classify them in a systematic way according to 
their accuracy at x = 0 and x = +∞, filling a gap in this classification for the second kind functions. This 
classification, on the other hand, will reveal a mirror symmetry between the bounds for the first and second 
kind functions. Additionally, we will discuss two additional bounds with enhanced accuracy which result 
from modifying slightly the expression B(α, β, γ, x). In section 4 we build uniparametric families of bounds 
which are close to the best algebraic bounds of the form B(α, β, γ, x), and which also exhibit the mirror 
symmetry. These close to best bounds are the starting point for proving the existence of the best bounds in 
section 5. For the best bounds, properties of the coefficients α, β and γ as functions of the tangency point 
x∗ are also discussed.

2. Review of previous results

Most of the sharp bounds for ratios of modified Bessel function available so far can be obtained using 
very similar ideas, starting from the difference-differential system [12, 10.29.2]

I ′
ν(x) = Iν−1(x) − ν

xIν(x),

I ′ (x) = I (x) + ν − 1I (x)
(2)
ν−1 ν x ν−1
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(where Iν(x) denotes Iν(x), eiπνKν(x) or any linear combination of them), together with the unique behavior 
of Iν(x) as x → 0+ and of Kν(x) as x → +∞.

Starting from the DDE (2) we can obtain the Riccati equation satisfied by

hμ,ν(x) = x−μΦν(x) = x−μ Iν−1(x)
Iν(x) , (3)

which is

h′
μ,ν(x) = x−μ + 2ν − μ− 1

x
hμ,ν(x) − xμhμ,ν(x)2. (4)

As described in [14,16], solving h′
μ,ν(x) = 0 for hμ,ν(x) (which gives the nullclines of the Riccati equation), 

we get bounds for hμ,ν(x) for certain values of μ, and in particular for μ = −1, 0, 1. Next we summarize 
such bounds together with those that can be extracted from the application of the recurrence relation

Iν+1(x) + 2ν
x
Iν(x) − Iν−1(x) = 0. (5)

2.1. Bounds from the Riccati equation and the recurrence relation

From the analysis of the Riccati equation satisfied by hμ,ν(x), the following result can be proved ([16, 
Thm. 1]; see also [14])1:

Theorem 1. Let λμ,ν(x) = 1
x

{
ν − μ + 1

2 +
√(

ν − μ + 1
2

)2
+ x2

}
, the following bounds hold for real posi-

tive x:

1. Iν−1(x)/Iν(x) < λ−1,ν(x), ν ≥ 0
2. Iν−1(x)/Iν(x) > λ0,ν(x), ν ≥ 1/2
3. Iν−1(x)/Iν(x) > λ1,ν(x), ν ≥ 0
4. Kν(x)/Kν−1(x) < λ−1,ν(x), ν ∈ R

5. Kν(x)/Kν−1(x) < λ0,ν(x), ν > 1/2
6. Kν(x)/Kν−1(x) > λ1,ν(x), ν ∈ R

Remark 1. Kν(x)/Kν−1(x) = λ0,ν(x) = 1 if ν = 1/2.

Remark 2. The first three bounds were first proved in [1] for ν ≥ 1. The validity of the first and third 
bounds was extended to ν ≥ 0 in [20] and the range for the second bound was extended in [15] to ν ≥ 1/2
(see also [14]). The fourth bound was first proved in [10], the fifth in [15] and the last one in [14].

The recurrence relation (5) can be used to generate further bounds, as considered in [15]. For this purpose 
we write the recurrence as

Φν(x) = 2ν
x

+ Φν+1(x)−1, (6)

1 In this section the same compact notation for the bounds as in [16] is used, which is later droped in favor of the more general 
notation B(α, β, γ, x) (for all the bounds in this section γ = 1).
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and using an upper (respectively lower) bound for Φν+1(x) = Iν(x)
Iν+1(x) we obtain a lower (respectively 

upper) bound for Φν(x) if ν ≥ 0. In particular, considering the bounds of the form given in Theorem 1 we 
have:

Lemma 1. If λμ,ν(x) is a positive upper (respectively lower) bound for Iν−1(x)
Iν(x) when ν ≥ ν0 (ν0 ≥ 1) then

λ̃μ,ν(x) = 1
x

⎛
⎝ν + μ− 1

2 +

√(
ν − μ− 1

2

)2

+ x2

⎞
⎠

is a lower (respectively upper) bound for ν ≥ 0.

Remark 3. Taking the case μ = 1, that is, starting from the bound 3 of Theorem 1 we obtain the first bound 
of this same theorem; both bounds are then related by the recurrence. The cases μ = −1, 0 provide two 
additional bounds, which were already described in [1].

We can also rewrite the recurrence in the forward direction

−Φν(x) =
(

2(ν − 1)
x

− Φν−1

)−1

(7)

and using an upper (respectively lower) bound for −Φν−1(x) = Kν−1(x)/Kν−2(x) we obtain a lower (re-
spectively upper) bound for −Φν(x). Then we have:

Lemma 2. If λμ,ν(x) is a positive upper (respectively lower) bound for Kν(x)
Kν−1(x) when ν ≥ ν0 then λ̂μ,ν(x), 

where

λ̂μ,ν(x) = 1
x

⎛
⎝ν + μ− 1

2 +

√(
ν − μ + 3

2

)2

+ x2

⎞
⎠ ,

is a lower (respectively upper) bound for ν ≥ ν0 + 1

Remark 4. Taking the case μ = −1, that is, starting from the bound 4 of Theorem 1 we obtain the sixth 
bound of this same theorem; both bounds are then related by the recurrence. The cases μ = 0, 1 provide two 
additional bounds, which correspond to the bounds of Eq. (34) (μ = 1) and Eq. (35) (μ = 0) of reference 
[15].

2.2. Other bounds

We end this section summarizing other bounds that will be important in the classification of the best 
algebraic bounds of the form B(α, β, γ, x).

Theorem 2. The following bounds hold for positive x:

1. Iν−1(x)/Iν(x) > 1
x

(
ν − 1

2 +
√

ν2 − 1
4 + x2

)
, ν ≥ 1/2

2. Iν−1(x)/Iν(x) > 1
x

(
ν +

√
ν2 + ν

ν + 1x
2
)
, ν ≥ 0

3. Iν−1(x)/Iν(x) < 1
x

(
ν − 2 +

√
(ν + 2)2 + ν + 2

ν + 1x
2

)
, ν ≥ 0
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4. Kν+1(x)/Kν(x) < 1
x

(
ν +

√
ν2 + x2ν/(ν − 1)

)
, ν > 1

The first bound in the previous theorem appeared in [17] and its range of validity was extended in [8]. 
This is the only bound we have described so far that is not a direct consequence of the Riccati equation 
and the recurrence relation. However, the method of proof is similar in that it involves simple arguments 
regarding the monotonicity. Later, we improve this result and provide and analogous (upper) bound for 
Kν+1(x)/Kν(x).

The second and fourth bounds were proved in [15] as a consequence of the Turán-type inequalities satisfied 
by modified Bessel functions; such Turán inequalities were again obtained as a consequence of the analysis 
of the Riccati equation. The second bound appeared earlier in [2].

Finally, the third bound is the bound (4.10) of [19] (notice that the index ν has to be shifted and an 
extra factor x appears because they are bounding xIν(x)/Iν+1(x) instead of Iν−1(x)/Iν(x)). This bound 
appeared in [19] as the best of a set of uniparametric bounds; the use of the Frobenius series for first kind 
Bessel functions was considered in the proof. We note that this bound is a direct consequence of the second 
bound in the previous theorem and the application of the recurrence relation. Indeed, denoting by Lν(x)
this upper bound for Iν−1(x)/Iν(x) and using (6) we have

Iν−1(x)
Iν(x) <

2ν
x

+ Lν+1(x)−1 = 1
x

(
ν − 2 +

√
(ν + 2)2 + ν + 2

ν + 1x
2

)
, ν ≥ 0.

The recurrence relation can also be applied in the forward relation (7), but then, as we will discuss, the 
bound will be weaker. We have in this case

Iν−1(x)
Iν(x) =

(
−2(ν − 1)

x
+ Iν−2(x)

Iν−1(x)

)−1

<

(
−2(ν − 1)

x
+ Lν−1(x)

)−1

,

which gives

Iν−1(x)
Iν(x) <

1
x

(
ν +

√
ν2 + ν

ν − 1x
2
)
, ν > 1. (8)

3. Classification of the bounds

It will be helpful in clarifying the status of the known bounds so far to classify them in some way. A 
neat way to do this is to analyze the sharpness of the bounds at x = 0 and x = +∞, for this purpose, we 
compare the expansions

B(α, β, γ, x) = α + β
x + γ2x

2β − γ4x3

8β3 + O(x5), x → 0,

B(α, β, γ, x) = γ + α
x + β2

2γx2 + O(x−4), x → +∞,
(9)

(assuming, without loss of generality, that β ≥ 0, γ ≥ 0) with the expansions for Iν−1(x)/Iν(x) (41) and 
(43) (and similarly for the second kind function). We will say that a bound B(α, β, γ, x) has accuracy n ∈ N

at x = 0 if the first n terms of the expansion of B(α, β, γ, x) are the same as the first n terms in (41); we 
define in an analogous way the accuracy at x = +∞.

We first classify the bounds for the first kind Bessel function, and we will see that with respect to the 
accuracy at x = 0 and x = +∞, the set of bounds described so far is complete in a sense to be described 
later. However, this will not be the case of the second kind Bessel function, and the completion of the set of 
bounds will lead to finding new bounds. Later, we will enhance these sets of bounds with new bounds which 
are more accurate for intermediate values of x, completing the description of the best algebraic bounds.
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Table 3.1
Bounds for the ratio Iν−1(x)/Iν(x) of the type B(α, β, γ, x) = (α +

√
β2 + γ2x2)/x classified 

according to their accuracies at x = 0 (n) and x = +∞ (m). The range of validity of the bounds 
is given, and the type of bound is labeled as L for the lower bounds and U for the upper bounds.

(n,m) α β γ Range Type
(0, 1) ν − 1 ν − 1 1 ν ≥ 0 L
(2, 0) ν ν

√
ν/(ν + 1) ν ≥ 0 L

(0, 2) ν − 1
2 ν − 1

2 1 ν ≥ 1
2 L

(2, 1) ν − 1 ν + 1 1 ν ≥ 0 L
(0, 3) ν − 1

2

√
ν2 − 1

4 1 ν ≥ 1
2 L

(1, 0) ν ν
√
ν/(ν − 1) ν > 1 U

(1, 1) ν ν 1 ν ≥ 0 U
(1, 2) ν − 1

2 ν + 1
2 1 ν ≥ 0 U

(3, 0) ν − 2 ν + 2
√

(ν + 2)/(ν + 1) ν ≥ 0 U

3.1. Bounds for Iν−1(x)/Iν(x)

The bounds B(α, β, γ, x) we have described for Iν(x)/Iν−1(x) are classified in Table 3.1 according to the 
accuracy at x = 0 and x = +∞. We assign to each bound a pair (n, m), where n is the accuracy at x = 0
and m the accuracy at x = +∞.

All the bounds of this table have been described earlier in this paper. The bounds (0, 1), (0, 2) and (1, 1)
are given in Theorem 1; the bounds (2, 1) and (1, 2) are described in Lemma 1 and Remark 3; (0, 3), (2, 0)
and (3, 0) are collected in Theorem 2 and finally (1, 0) is Eq. (8).

Remark 5. Some important observations related to this table are:

1. There may exist more bounds B(α, β.γ, x) with accuracies such that n +m < 3 apart from those given 
in the table. For example, considering (6) we see that B(2ν, 0, 0, x) is a lower bound, and this is a bound 
of the type (1, 0).

2. Bounds B(α, β, γ, x) with n +m > 3 do not exist because the bounds depend of three parameters, and 
then it is not possible to reproduce more than three terms in the corresponding expansions.

3. The bounds with n + m = 3 are unique, and they are all contained in the table, as we next prove in 
Theorem 3

Theorem 3. Let

B(α, β, γ, x) = α +
√

β2 + γ2x2

x
.

B(α, β, γ, x) is a bound for Iν−1(x)/Iν(x) for all x > 0 and ν ≥ ν0, with ν0 not larger than 1/2, for 
each of the selections of α, β, γ such that three terms of the development of B(α, β, γ, x) in power series 
as x → 0+ and/or x → +∞ coincide with the corresponding expansions for Iν−1(x)/Iν(x) (three terms in 
total for both expansions). These correspond to the bounds with accuracies (n, m), n +m = 3.

Proof. Comparing the expansions for Iν−1(x)/Iν(x) (41) and (43) with (9) we see that the conditions for 
the first three terms to coincide with the expansion (43) are (we take β ≥ 0 and γ ≥ 0):

α + β = 2ν, β/γ2 = ν + 1, β3/γ4 = (ν + 1)2(ν + 2) (10)

(in increasing order) while the three conditions for the coincidence as x → +∞ are (starting from the first 
term)

γ = 1, α = ν − 1/2, β2/γ = ν2 − 1/4. (11)
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Considering, for instance, that the three conditions of (10) are satisfied we obtain

α = ν − 2, β = ν + 2, γ =
√

ν + 2
ν + 1 ,

which is the bound (3, 0) of the table. Similarly for (2, 1), (1, 2) and (0, 3), the coefficients α, β and γ are 
univocally determined and are as shown in Table 3.1. �

Let us denote by B(n,m)
ν (x) the bounds with accuracies (n, m) of Table 3.1, then

Lemma 3. A bound B(n1,m1)
ν (x) is sharper for all x > 0 than a bound B(n2,m2)

ν (x) of the same type (upper 
or lower) if and only if the following conditions are met: n1 ≥ n2, m1 ≥ m2, n1 + m1 > n2 + m2.

Proof. Assume that n1 ≥ n2, m1 ≥ m2, n1 + m1 > n2 + m2. First, it is easy to check that under these 
conditions the bounds in Table 3.1 are such that B

(n1,m1)
ν (x) �= B

(n2,m2)
ν (x) for all x > 0. With this it is 

obvious that B(n1,m1)
ν (x) is necessarily sharper than B(n2,m2)

ν (x). Indeed, the first bound is sharper at least 
at one of the end points x = 0 o x = +∞ and because B(n1,m1)

ν (x) �= B
(n2,m2)
ν (x) for all x > 0 then it is 

sharper for all x. �
A consequence of Theorem 3 and Lemma 3 is that the bounds with n + m = 3 are the best possible of 

the form B(α, β, γ, x) at x = 0 or x = +∞. The set of bounds for the ratio Iν−1(x)/Iν(x) is complete in 
the sense that all four best bounds at x = 0 or x = +∞ are given. The next results gives the region when 
each of these bounds is the best.

Corollary 1. For ν ≥ 1/2 the sharpest lower bound of Table 3.1 is either B(2,1)
ν (x) = B(ν − 1, ν + 1, 1, x)

or B(0,3)
ν (x) = B(ν − 1/2, 

√
ν2 − 1

4 , 1, x), depending on the value of x. B(2,1)
ν (x) is the sharpest bound for 

x < xl, xl =
√

3(ν + 1/2)(ν + 5/6) and B(0,3)
ν (x) for x > xl. B(2,1)

ν (x) is also valid for ν ∈ [0, 1/2).
For ν ≥ 0 the sharpest upper bound is either B(1,2)

ν (x) = B(ν − 1/2, ν + 1/2, 1, x) or B(3,0)
ν (x) = B(ν −

2, ν + 2, 
√

(ν + 2)/(ν + 1), x). B(3,0)
ν (x) is the sharpest bound for x < xu, xu =

√
3(ν + 1)(ν + 2) and 

B(1,2)(x) for x > xu.

We stress, as commented earlier in the introduction, that the best possible bounds of the form B(α, β, γ, x)
at x = 0 or x = +∞ for the ratio Iν−1(x)/Iν(x) were already known, with the bounds B(1,2)

ν (x) and B(2,1)
ν (x)

first described in [1], the bound B(0,3)
ν (x) in [17] (the range validity was extended in [8]) and the bound 

B
(3,0)
ν (x) in [19].

3.2. Bounds for Kν+1(x)/Kν(x)

We will denote by B̂(n,m)
ν (x) the bounds with n correct terms in the expansion as x → 0 and m correct 

terms as x → +∞ for the ratio Kν+1(x)/Kν(x). Taking into account the bounds described so far, we notice 
that the table analogous to Table 3.1 is not complete and that, in particular, the bounds B̂(3,0)

ν (x) and 
B̂

(0,3)
ν (x) are missing. That these bounds of the form B(α, β, γ, x) exist is guaranteed by the next theorem, 

which is analogous to Theorem 3:

Theorem 4. B(α, β, γ, x) is a bound for Kν+1(x)/Kν(x) for all x > 0 and ν ≥ ν0, with ν0 not smaller than 
2, for any of the selections of α, β, γ such that the three terms of the development of B(α, β, γ, x) in power 
series as x → 0+ and/or x → +∞ coincide with the corresponding expansions for Kν+1(x)/Kν(x) (three 
terms in total for both expansions).
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Proof. Using (9) and comparing with (45) and (43) (see the Appendix), the conditions for the coincidence 
of the first three terms of the expansion for Kν+1(x)/Kν(x) at x = 0 are

α + β = 2ν, β/γ2 = ν − 1, β3/γ4 = (ν − 1)2(ν − 2). (12)

We observe that the first condition only makes sense if ν > 0 because for smaller ν the first term in 
the expansion for Kν+1(x)/Kν(x) is no longer O(x−1) (see the Appendix, Eq. (45)). Similarly, the second 
condition is meaningful only for ν > 1 and the third condition for ν > 2.

Regarding the conditions as x → +∞ we have, considering (42):

γ = 1, α = ν + 1
2 , β

2/γ = ν2 − 1/4. (13)

Let us observe the symmetry between these conditions and the analogous conditions for the bounds of 
Iν−1(x)/Iν(x), which will imply that the bounds have very similar expressions.

Let us now consider the 4 different cases:
B̂

(3,0)
ν (x): we solve the system formed by the three equations in (12), and we get:

α = ν + 2, β = ν − 2, γ =
√

ν − 2
ν − 1 .

This gives

B̂(3,0)
ν (x) = 1

x

(
ν + 2 +

√
(ν − 2)2 + ν − 2

ν − 1x
2

)
,

which is an upper bound for ν ≥ 2. Indeed, we consider the fourth bound of Theorem 2 and use the 
recurrence in the form

Kν+1(x)
Kν(x) = 2ν

x
+ Kν−1(x)

Kν(x) , (14)

yielding

Kν+1(x)
Kν(x) >

2ν
x

+ x

ν − 1 +
√

(ν − 1)2 + ν − 1
ν − 2x

2

= B̂(3,0)
ν (x)

B̂
(2,1)
ν (x): α = ν + 1, β = ν − 1, γ = 1 which is the case μ = 1 of Lemma 2.

B̂
(1,2)
ν (x): α = ν + 1/2, β = ν − 1/2, γ = 1, case μ = 0 of Lemma 2.

B̂
(0,3)
ν (x): α = ν + 1

2 , β =
√

ν2 − 1/4, γ = 1, and one can prove that

Kν+1(x)
Kν(x) < B̂(0,3)

ν (x) =
ν + 1/2 +

√
ν2 + x2 − 1

4
x

, ν > 1/2.

In fact, we are giving in Theorem 5 a sharper bound. �
The bounds appearing in Table 3.2 either have already been described in the paper or a direct consequence 

of the application of the recurrence. Firstly, the (0, 1), (0, 2) and (1, 1) bounds are the results 4, 5 and 6 of 
Theorem 1; the cases (0, 1) and (1, 1) are related by the recurrence (case μ = −1 of Lemma 2). Similarly, 
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Table 3.2
Bounds for the ratio Kν+1(x)/Kν(x). For the (0.3) and (1, 2) bounds the equality holds when 
ν = 1/2.

(n,m) α β γ Range Type
(0, 1) ν + 1 ν + 1 1 ν ∈ R U
(2, 0) ν ν

√
ν/(ν − 1) ν > 1 U

(0, 2) ν + 1
2 ν + 1

2 1 ν ≥ −1/2 U
(2, 1) ν + 1 ν − 1 1 ν ∈ R U
(0, 3) ν + 1

2

√
ν2 − 1

4 1 ν > 1/2 U
(1, 0) ν ν

√
ν/(ν + 1) ν ≥ 0 L

(1, 1) ν ν 1 ν ∈ R L
(1, 2) ν + 1

2 ν − 1
2 1 ν > 1/2 L

(3, 0) ν + 2 ν − 2
√

(ν − 2)/(ν − 1) ν ≥ 2 L

the case (1, 2) is connected with (0, 2) and the case (2, 1) with (1, 1) (cases μ = 0, 1 of Lemma 2). The case 
(2, 0) is the result 4 of Theorem 2 and the case (3, 0), as shown in the proof of Theorem 4, is related to (2, 0)
through the recurrence relation; similarly, (1, 0) can be obtained from (2, 0) but applying the recurrence if 
the opposite direction. Finally, the (0, 3) case is proved in Theorem 5, which in fact gives and improvement 
of this (0, 3) bound.

Remark 6. We note the clear symmetry between Tables 3.1 and 3.2. If we take an upper (or lower) bound 
for Iν−1(x)/Iν(x) and when ν +μ appears we replace this value by ν−μ then we have a lower (respectively 
upper) bound for Kν+1(x)/Kν(x).

Remark 7. Considering the (1, 1) bounds both in 3.1 and 3.2 we conclude that Kν+1(x)/Kν(x) >

Iν−1(x)/Iν(x), ν ≥ 0. Therefore, the lower bounds for Iν−1(x)/Iν(x) are also lower bounds for 
Kν+1(x)/Kν(x) (though not as sharp) and the upper bounds for Kν+1(x)/Kν(x) are also upper bounds for 
Iν−1(x)/Iν(x) (but, again, not as sharp).

Remark 5 also holds for the results of Table 3.2. Lemma 3 holds for the bounds B̂(n,m)
ν (x) of Table 3.2

too, while Corollary 2 holds with the appropriate replacements (see Remark 6) and minor modifications. 
Next we give this last result explicitly:

Corollary 2. For ν ≥ 1/2 the sharpest upper bound of Table 3.1 is either B̂(2,1)
ν (x) = B(ν + 1, ν − 1, 1, x)

or B̂(0,3)
ν (x) = B(ν + 1/2, 

√
ν2 − 1

4 , 1, x), depending on the value of x. If ν > 5/6, B̂(2,1)
ν (x) is the sharpest 

bound for x < xl, xl =
√

3(ν − 1/2)(ν − 5/6) and B̂(0,3)
ν (x) for x > xl. For ν ∈ [1/2, 5/6] B̂

(0,3)
ν (x) is 

sharper for all positive x. B̂(2,1)
ν (x) is valid for all real ν.

For ν ≥ 2 the sharpest lower bound is either B̂(1,2)
ν (x) = B(ν + 1/2, ν − 1/2, 1, x) or B̂(3,0)

ν (x) = B(ν +
2, ν − 2, 

√
(ν − 2)/(ν − 1), x). B̂(3,0)

ν (x) is the sharpest bound for x < xu, xu =
√

3(ν − 1)(ν − 2) and 

B̂
(1,2)
ν (x) for x > xu. B̂(1,2)

ν (x) is valid for ν > 1/2.

3.3. Two additional bounds of the type (1, 3)

We end this section discussing a slightly different type of bound to the rest of the paper. These two 
bounds are not of the form (1), but are a minor modification. These new bounds improve the bounds of the 
type (0, 3) in Tables 3.1 and 3.2.

Theorem 5. Let φ−,ν(x) = xIν−1(x)/Iν(x) and φ+,ν(x) = xKν+1(x)/Kν(x), then both functions satisfy the 
following properties for ν ≥ 1/2 and x > 0

0 < φ′
±,ν(x) ≤ 1,
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B(1,3)
ν (x) ≡ ν +

√
ν2 + x(x− 1) < φ±,ν(x) ≤ ν +

√
ν2 + x(x + 1) ≡ B̂(1,3)

ν (x),

where the equalities only take place for φ+,ν(x) when ν = 1/2. The upper bound for φ+,ν(x) and the lower 
bound for φ−,ν(x) are of accuracy (1, 3).

Proof. The case ν = 1/2 is trivial. Let us assume that ν > 1/2.
We have that

xφ′
±,ν(x) = ∓(x2 + 2νφ±,ν(x) − φ±,ν(x)2). (15)

We observe that the inequalities (1, 1) of Tables 3.1 and 3.2 together with (15) imply that φ′
±,ν(x) > 0.

Next we prove the inequalities for φ±,ν(x), from which the upper bound for the derivatives follows 
immediately. Considering Remark 7 we have that φ−,ν(x) < φ+,ν(x) and we only need to prove the upper 
bound for φ+,ν(x) and the lower bound for φ−,ν(x).

Now let δ±,ν(x) = h±,ν(x) − φ±,ν(x), where h±,ν(x) = ν +
√

ν2 + x(x± 1). Taking the derivative and 
using (15) we can write:

δ′±,ν(x) = x± 1/2√
ν2 + x(x± 1)

∓ 1
x

(x2 + 2νφ±,ν(x) − φ±,ν(x)2)

which we can write as

δ′±,ν(x) = x± 1/2√
ν2 + x(x± 1)

− 1 ± 1
x
δ±,ν(x)(δ±,ν(x) + 2(h±,ν(x) − ν)).

Then, if x0 > 0 is a value such that δ±,ν(x0) = 0, because x ± 1/2 <
√
ν2 + x(x± 1) if ν > 1/2, we would 

have that δ′±,ν(x0) < 0. But this, as we see next, leads to a contradiction, which means that such x0 can 
not exist.

Considering the expansions as x → +∞ we have

δ±,ν(x) = ±ν2 − 1/4
4x3 + O(x−4). (16)

Now, consider the plus sign (upper bound for the ratio of second kind function). We have that δ+,ν(x) > 0
for sufficiently large x, but then we must have that δ+,ν(x) > 0 for all positive x because, otherwise, if x0
was that largest value of x for which δ+,ν(x0) = 0 then we would have, as we have proved, that δ+,ν(x0) < 0, 
in contradiction with the fact that δ+,ν(x) > 0 if x > x0. This proves the upper bound for the ratio of 
second kind functions.

With respect to the lower bound for first kind functions, we see that in the limit x → 0

δ−,ν(x) = − x

2ν + O(x2)

and therefore δ−,ν(x) < 0 for x sufficiently close to 0, and it has to stay the same for all x > 0. Otherwise, 
if we let x0 > 0 to be the smallest positive value of x such that δ−,ν(x0) = 0, we would have δ′−,ν(x0) < 0, 
which is in contradiction with the fact that δ−,ν(x) < 0 for 0 < x < x0.

Finally, we observe that (16) shows that the corresponding expansions (lower bound for φ−,ν(x) and 
upper bound for φ+,ν(x)) have degree of exactness 3 as x → +∞. On the other hand, because h±,ν(0) = 2ν, 
we see that they are also sharp as x → 0. Therefore these are bounds of type (1, 3). �

Now, because it is easy to prove that the bound B(1,3)(x) (respectively B̂(1,3)(x)) is sharper than the 
bound B(0,3)(x) (respectively B̂(0,3)(x)) in Table 3.1 (respectively Table 3.2), we have the following:
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Corollary 3. For ν ≥ 1/2 the following holds:
Lν(x) = max{B(2,1)

ν (x), B(1,3)
ν (x)} is sharper than any other lower bound for Iν−1(x)/Iν(x) of the type 

(1) for any x > 0; B(2,1)
ν (x) < B

(1,3)
ν (x) if and only if x > 4

3 (1 + ν).
Uν(x) = min{B̂(2,1)

ν (x), B̂(1,3)
ν (x)} is sharper than any other upper bound for Kν+1(x)/Kν(x) of the type 

(1) for any x > 0; B̂(2,1)
ν (x) > B̂

(1,3)
ν (x) if and only if x > 4

3 (1 − ν).

4. Close to best possible bounds

In the rest of the paper, we refer exclusively to bounds of the type (1). The goal is to characterize which 
are the best possible bounds of this type, not necessarily around x = 0 or x = ∞.

Restricting to the bounds of type (1), those with total accuracy n + m = 3 at 0 and +∞ are the best 
possible. As we will see, it is also possible to consider bounds of this form which are the best possible at 
any chosen point x∗ > 0, although the coefficients are not explicitly computable in terms of elementary 
functions. Before this, we will obtain explicitly computable bounds which are close to these best bounds, 
and that are sharper than the bounds with maximal total accuracy at 0 and +∞ in finite positive intervals.

4.1. Bounds with interpolation at x = +∞

In this section we consider bounds of the form B(αν(λ), βν(λ), 1, x), which are sharp as x → +∞. We 
start with the first kind Bessel function, studied in [8].

4.1.1. Close to best lower bound for Iν−1(x)/Iν(x)
We adapt Theorem 7 of [8] in the following way:

Theorem 6. The following holds for λ ∈ [0, 1/2], ν ≥ 1
2 − λ and x > 0

Iν−1(x)
Iν(x) > L

(I)
ν (λ, x) = B(α(I)

ν (λ), β(I)
ν (λ), 1, x), (17)

where α(I)
ν (λ) = ν − 1/2 − λ, β(I)

ν (λ) =
√

2λ +
√
ν2 − (λ− 1

2 )2.

We don’t need to prove this result, which is explained in [8] (for the sake of clarity: notice that in 
[8], the function that is bounded is Iν+1(x)/Iν(x) instead of Iν−1(x)/Iν(x)). Our version contains minor 
modifications, but for brevity we prefer not to duplicate the proof. Instead, we prove in Theorem 7 a similar 
result for the ratio Kν+1(x)/Kν(x).

Remark 8. Observe that L(I)
ν (1/2, x) = B

(2,1)
ν (x), ν ≥ 0 and L(I)

ν (0, x) = B
(0,3)
ν (x), ν ≥ 1/2. The uni-

parametric set of bounds goes continuously from the best lower bound at x = 0 (λ = 1/2) to the best 
lower bound at x = +∞ (λ = 0) and for λ ∈ (0, 1/2) it gives close to best bounds around finite values of 
x = x∗ > 0.

For the rest of the close to best bounds we will obtain in this section the same will be true in the sense 
that they will connect continuously the corresponding best (upper or lower) bounds of Table 3.1 or Table 3.2. 
We will not insist in stressing these facts.

Remark 9. The validity of Theorem 6 extends to all λ ≥ 0 for ν ≥ |λ − 1/2|. However, for λ > 1/2 the 
bounds are less sharp than the bounds for λ = 1/2.
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4.1.2. Close to best upper bound for Kν+1(x)/Kν(x)
We are going to prove next a similar result to Theorem 6, which was proved in [8], but for the second 

kind Bessel function; the proof is similar to the proof in [8, Thm. 7]. This result, as we see next, maintains 
a similar type of symmetry as described in Remark 6.

Theorem 7. The following holds for λ ∈ [0, 1/2], ν ≥ 1/2 − λ and x > 0:

Kν+1(x)
Kν(x) < U (K)

ν (λ, x) = B(α(K)
ν (λ), β(K)

ν (λ), 1, x),

where

α(K)
ν (λ) = ν + 1/2 + λ, β(K)

ν (λ) = −
√

2λ +
√

ν2 − (λ− 1/2)2.

Proof. In the proof, we take λ > 0 (the case λ = 0 corresponds to the bound (0, 3) of Table 3.2).
Let φν(x) = xKν+1(x)/Kν(x), which satisfies xφ′

ν(x) = −x2−2νφν(x) +φν(x)2, and let δ(x) = hα,β(x) −
φν(x), where hα,β(x) = α +

√
β2 + x2.

Taking α = α
(K)
ν (λ) we have α > ν + 1/2 because λ > 0 and on account of (9) and (42) we find 

that δ(x) = hα,β(x) − φν(x) > 0 for large enough positive x. Next we prove that, for α = α
(K)
ν (λ) and 

β = β
(K)
ν (λ), δ(x) is never zero for any x > 0 and then that it stays positive for all x > 0.

Using (15) we can write

xδ′(x) = Qα,β(s)
s

+ (−2ν + 2hα,β(x) − δ(x))δ(x), (18)

where

s =
√
β2 + x2 (19)

and

Q(s) = −β2 + (2να− α2 − β2)s + (1 − 2α + 2ν)s2. (20)

The discriminant of the equation Q(s) = 0 can be written

Δ = (2να− α2 − β2 − 2β
√

2α− 2ν − 1)(2να− α2 − β2 + 2β
√

2α− 2ν − 1).

Solving Δ = 0 (using the first factor on the previous expression) we find that one of the solutions is

β = −
√

2α− 2ν − 1 +
√

(α− 1)(2ν + 1 − α),

which taking α = α
(K)
ν (λ) = ν + 1/2 + λ is precisely the value β(K)

ν (λ). With α = α
(K)
ν (λ), β = β

(K)
ν (λ) we 

then have

Q(s) = −γ(s− σ)2, γ = 2
(
α− ν − 1

2

)
, σ = β√

γ
, (21)

and γ > 0.
Now, let us assume that x0 > 0 is the largest value such that δ(x0) = 0. By assuming that such value 

x0 exists we will arrive to a contradiction, which proves that x0 does not exist and therefore δ(x) does not 
change sign for x > 0.
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The contradiction occurs because for α = α
(K)
ν (λ) and β = β

(K)
ν (λ) it happens that δ(x0) = 0 implies 

that either δ′(x0) < 0 or δ′(x0) = δ′′(x0) = 0 and δ′′′(x0) < 0; but then the sign of the derivatives implies 
that δ(x0 + h) < 0 for sufficiently small h > 0, which is not possible because δ(x) > 0 for x > x0 (because 
δ(x) > 0 for large enough x).

Indeed, because δ(x0) = 0, by (18) and (21) we have that

x0δ
′(x0) = Q(s0)/s0 < 0, s0 = s(x0) =

√
β2 + x2

0

if s0 �= σ. In the case s0 = σ we can prove that δ′(x0) = δ′′(x0) = 0 and δ′′′(x0) < 0. Indeed, using again 
(18) and (21) we can write

xδ′(x) = −γ
(s(x) − σ)2

s(x) + η(x)δ(x).

Now, δ(x0) = 0 implies δ′(x0) = 0 because s(x0) = σ. Taking a derivative we get that δ′′(x0) = 0, and a 
further derivation leads to x0δ

′′′(x0) = −γ(s′(x0))2/s(x0) < 0. �
Remark 10. The validity of Theorem 7 extends to λ ≥ 0 for ν ≥ |λ − 1/2|. However, for λ > 1/2 the bounds 
are less sharp than the bounds for λ = 1/2.

Two auxiliary lemmas We now prove two auxiliary lemmas that we will used later for proving the existence 
of the best algebraic bound of the type B(α, β, γ, x).

Lemma 4. Let α = ν + λ + 1/2, λ ∈ (0, 1/2), ν > λ + 1/2 and ν − λ − 1/2 < β < β
(K)
ν (λ) then both s-roots 

of Q(s) = 0, with Q(s) given by (20), are real and greater than β > 0.

Proof. First we notice that β(K)
ν (λ) (defined in Theorem 7) satisfies β(K)

ν (λ) > ν − λ − 1/2 if λ ∈ (0, 1/2), 
ν > λ + 1/2. Indeed, β(K)

ν (λ) − (ν − λ − 1/2) > 0 if 
√

ν2 + (λ− 1/2)2 >
√

2λ + ν − λ − 1/2, and squaring 
both sides this is equivalent to (1 −

√
2λ)2(ν − λ − 1/2) > 0, which holds.

Now we check that both s-roots are real. The discriminant of Q(s) = 0 can be written

Δ =
{
β2 − (β(K)

ν (λ))2
}{

β2 − (β(I)
ν (λ))2

}

where β(I)
ν (λ) =

√
2λ +

√
ν2 − (λ− 1/2)2 > β

(K)
ν (λ). Then it is obvious that the discriminant is positive, 

and therefore Q(s) = 0 has two real roots.
Next we prove that the two roots are greater than β > 0. We write Q(s) = 0 as

2λs2 + (β2 − ν2 + (λ + 1/2)2)s + β2 = 0, (22)

and now we make the change s = β + σ; the resulting equation is

2λσ2 +
(
β2 + 4λβ − ν2 + (λ + 1/2)2

)
σ + β((β + λ + 1/2)2 − ν2) = 0.

We know that both σ-roots are real and we have to prove that they are positive. For this, on account 
of Descartes rule of signs and because we already know that the two roots are real, it will be enough 
to prove that the first and third coefficients are positive (which is obvious) and the second negative. For 
proving that the second coefficient d(β) = β2 + 4λβ − ν2 + (λ + 1/2)2 is negative it is enough to prove 
that d(β(K)

ν (λ)) < 0. This is so because d(±∞) = +∞, d(0) < 0 and then if d(β(K)
ν (λ)) < 0 we will have 

d(β) < 0 for all β ∈ (0, β(K)
ν (λ)).
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After some algebra, we find that

d(β(K)
ν (λ)) = −2

√
2λ(1 −

√
2λ) ν2 − (λ + 1/2)2√

2λ +
√

ν2 − (λ− 1/2)2
,

and then d(β(K)
ν (λ)) < 0. �

Lemma 5. Under the conditions of the previous lemma and, with β = βν(λ) such that ν−λ −1/2 < βν(λ) ≤
β

(K)
ν (λ), the roots of Q(s) = 0, s1(λ) and s2(λ), are such that lim

λ→ν−1/2
si(λ) = 0.

Proof. From Eq. (22) and setting β = βν(λ) we see that s1(λ)s2(λ) = βν(λ)2/(2λ) and s1(λ) + s2(λ) =
−(β2 − ν2 + (λ + 1/2)2)/(2λ). Combining both

s1(λ)s2(λ) + s1(λ) + s2(λ) = (ν2 − (λ + 1/2)2)/(2λ)

And from this expression and the fact that both roots are real and positive (as proved in the previous 
lemma) the result is proved. �
4.2. Bounds with interpolation at x = 0

We are now considering that the bounds are sharp as x → 0+. For this purpose, we seek bounds of the 
form B(α, β, γ, x) with α + β = 2ν (see Eqs. (43) and (45)), and we will write α = ν − λ, β = ν + λ.

We will establish the bounds for Iν−1(x)/Iν(x) using a similar line of reasoning as for Theorem 7; we will 
not give a explicit proof for the case of Kν+1(x)/Kν(x) because the proof is very similar and the symmetry 
considerations (Remark 6) will also apply in this case.

4.2.1. Close to best upper bound for Iν−1(x)/Iν(x)
As a previous step for obtaining the new upper bounds for xIν−1(x)/Iν(x) we need to obtain a convenient 

expression for the derivative of the difference between this function and the potential bound. This is done 
in the next lemma.

Lemma 6. Let δ(x) = hλ,c(x) −φν(x), where hλ,c(x) = ν−λ +
√

(ν + λ)2 + cx2 and φν(x) = xIν−1(x)/Iν(x), 
then

xδ′(x) = x2

s(ν + λ + s)R(s) + (2hλ,c(x) − 2ν + δ(x))δ(x) (23)

where

R(s) = (c− 1)s2 + [c(ν − λ + 1) − ν − λ] s + c(ν + λ) (24)

and s =
√

(ν + λ)2 + cx2.

Proof.
xδ′(x) = cx2

s − x2 − 2νφν(x) + φν(x)2
= Q(s) + (2hλ,c(x) − 2ν + δ(x))δ(x),

where

Q(s) ≡ cx2
− x2 − 2νhλ,c(x) + hλ,c(x)2 = 1 [

T (s) + (c− 1)x2s
]
,

s s
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with

T (s) ≡ c(1 − 2λ)x2 − 2λ(ν + λ)2 + 2λ(ν + λ)s
= (1 − 2λ)s2 + 2λ(ν + λ)s− (ν + λ)2

= (1 − 2λ)(s− ν − λ)
(
s− ν + λ

2λ− 1
)

= (1 − 2λ) cx2

ν + λ + s

(
s− ν + λ

2λ− 1
)
.

And using this last expression for T in the formula for Q we have the result. �
Theorem 8. The following holds for ν ≥ 0, λ ∈ [1/2, 2] and x > 0:

Iν−1(x)
Iν(x) < U (I)

ν (λ, x) = B(ν − λ, ν + λ,

√
c
(I)
ν (λ), x), (25)

where

c(I)ν (λ) = ν + λ

ν − λ + 2
√

2λ− 1
.

Proof. In the proof we assume that 1/2 < λ < 2. The cases λ = 1/2 and λ = 2 correspond to the bounds 
B

(1,2)
ν (x) and B(3,0)

ν (x) respectively, which are already given in Table 3.1. Therefore we don’t need to consider 
this limit cases.

We are looking for a bound hλ,c(x) = ν − λ +
√

(ν + λ)2 + cx2 for φν(x) = xIν−1(x)/Iν(x). We start by 
computing the discriminant Δ of the equation R(s) = 0 (see the previous lemma)

Δ = [c(ν − λ + 1) − ν − λ]2 − 4(c− 1)c(ν + λ)
= {[ν + 1 − (

√
λ−

√
2)2]c− ν − λ}{[ν + 1 − (

√
λ +

√
2)2]c− ν − λ}. (26)

Now consider the equation Δ = 0 and we solve for c considering the first factor; this gives

c = c(I)ν (λ) = ν + λ

ν − λ + 2
√

2λ− 1
.

For this proof, differently to Theorem 7 and similarly as for proving the lower bound in Theorem 5, the 
condition that will be used is the sign of δ(0) > 0, and not that of δ(+∞). Taking into account (9) and (43)
we conclude that for 1/2 < λ < 2 we have δ(0) > 0: for these parameters the first term in the expansions 
of Iν−1(x)/Iν(x) and U (I)

ν (λ, x) at x = 0 coincide, but the second term in the expansion for the bound is 
larger. Indeed, because we have β = ν + λ and γ2 = c

(I)
ν (λ) (compare with (9)) with (25)) then

γ2

β
= c(I)ν (λ)

ν + λ
= 1

ν − λ + 2
√

2λ− 1
>

1
ν + 1 ,

because −λ + 2
√

2λ− 1 is positive for λ ∈ (1/2, 2) and it attains its maximum value (which is 1) at λ = 2.
Because δ(0+) > 0 and δ(x) is infinitely differentiable for all x > 0 if ν ≥ 0, all that remains to be 

proved is that if there existed a value x0 > 0 such that δ(x0) = 0 this would mean that either δ′(x0) > 0 or 
δ′(x0) = δ′′(x0) = 0 and δ′′′(x0) > 0, which implies that such x0 does not exist. But with c = c

(I)
ν (λ), R(s)

has a double root and using (23) we can write

xδ′(x) = μ(x)R(s(x)) + η(x)δ(x)

with
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R(s(x)) = (c− 1)(s(x) − σ)2, σ = ν + λ√
2λ− 1

. (27)

Now, we observe that c − 1 > 0 and μ(x) = x2

s(ν + λ + s) > 0 and we have that δ(x0) implies δ′(x0) =

μ(x0)(c −1)(s(x0) −σ)2 > 0 if s(x0) �= σ. On the other hand, if s(x0) = σ, then δ′(x0) = 0 and differentiating 
(27) we obtain δ′′(x0) = 0 and x0δ

′′′(x0) = 2μ(x0)s′(x0)2 > 0, which completes the proof. �
Remark 11. The validity of the bound of the previous theorem can be extended for non-negative values of 
λ such that c(I)ν (λ) > 1, which is guaranteed if ν ≥ 0 with ν > (

√
λ −

√
2)2 − 1, however the bounds with 

λ ∈ [1/2, 2] are sharper than those for values of λ outside this interval.

Two auxiliary lemmas We now prove two additional lemmas which will be used later in section 5.

Lemma 7. If λ ∈ (1/2, 2) and ν ≥ 0 the discriminant Δ of Eq. (26) is positive for 0 ≤ c < c
(I)
ν (λ).

Proof. The first factor in (26) is negative and the same is true for the second factor. First, if A = ν + 1 −
(
√
λ +

√
2)2 ≥ 0 we use that c < c

(I)
ν (λ) and then

[ν + 1 − (
√
λ +

√
2)2]c− ν − λ ≤ (ν + λ)

(
ν + 1 − (

√
λ +

√
2)2

ν + 1 − (
√
λ−

√
2)2

− 1
)

= − 4
√

2λ(ν + λ)
ν + 1 − (

√
λ−

√
2)2

= −4
√

2c(I)ν (λ)

and if A < 0 then, using that c ≥ 0

[ν + 1 − (
√
λ +

√
2)2]c− ν − λ ≤ −ν − λ �

Lemma 8. If λ ∈ (1/2, 2), ν ≥ 0 and max{1, ν + λ
ν + 1 } < c < c

(I)
ν (λ) the two roots of R(s) = 0 (Eq. (24)) are 

such that s > ν + λ.

Proof. That both roots are real is known from the previous lemma. Now, we substitute s = ν + λ + σ in 
the equation R(s) = 0 and get R̃(σ) = 0, with

R̃(σ) = (c− 1)σ2 + ((3ν + λ + 1)c− 3ν − 3λ)σ + 2(ν + λ)((ν + 1)c− (ν + λ))

Because of the condition c > max{1, ν + λ
ν + 1 } the first and last coefficients of the polynomial are positive. 

Then, if we prove that the second coefficient is negative we conclude that the two roots of R̃(σ) are positive. 
This is shown using that c < c

(I)
ν (λ), which gives

(3ν + λ + 1)c− 3ν − 3λ < (3ν + λ + 1)c(I)ν (λ) − 3ν − 3λ =

= 2(λ + ν)(
√

2λ− 2)(
√

2λ− 1)
ν − λ + 2

√
2λ− 1

< 0

where the last inequality holds for λ ∈ (1/2, 2). �
4.2.2. Close to best lower bound for Kν+1(x)/Kν(x)

We end the description of the close to best bounds with the result analogous to Theorem 8 but for the 
second kind Bessel function. The proof, which is omitted, is very similar to that of Theorem 8, but with 
the difference that in this proof we start by comparing the ratio of Bessel functions with the bound at +∞
and not at x = 0 (as happened in the proof of Theorem 7).
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Theorem 9. The following holds for λ ∈ [1/2, 2], ν ≥ λ and x > 0

Kν+1(x)
Kν(x) > L(K)

ν (λ, x) = B(ν + λ, ν − λ,

√
c
(K)
ν (λ), x),

where

c(K)
ν (λ) = ν − λ

ν + λ− 2
√

2λ + 1
.

Remark 12. The mirror symmetry mentioned in Remark 6 is again noticeable when we compare Theorems 8
and 9.

Remark 13. In the previous theorem the condition ν ≥ λ is necessary so that c(K)
ν (λ) ≥ 0 (otherwise that 

bound can not hold for all x > 0). The validity of the bound can be extended to positive λ, however the 
bounds when λ ∈ [1/2, 2] are sharper than for values outside this interval.

5. Best possible bounds

From the previous close to best bounds, we can deduce the existence of best possible bounds which 
interpolate the function ratios at x = 0 or x = +∞ and at an intermediate value x∗ > 0, with interpo-
lating conditions up to the first derivative. In [8] the corresponding lower bound was shown for the ratio 
Iν−1(x)/Iν(x). Here we prove that the same type of result can be given for the upper bound for this ratio 
and for the lower and upper bounds for the ratio Kν+1(x)/Kν(x).

The idea for proving these best bounds is to pull down (for upper bounds) or up (for lower bounds) the 
close to best bound by changing one of the coefficients until the bound stops being a bound. Just before 
this happens, the graph of the bound will be tangent to the graph of the ratio of Bessel functions at some 
positive value of x = x∗, and the resulting osculatory bound will be the best possible around such value of 
x∗.

The following lemmas are immediate to prove and they will be used later. They give osculatory functions 
which are defined for all x > 0. What we will later prove is that such functions are in fact bounds (the best 
bounds).

We start with the functions which are sharp at x = +∞.

Lemma 9. Let φ−
ν (x) = xIν−1(x)/Iν(x) and φ+

ν (x) = xKν+1(x)/Kν(x), ν ≥ 1/2, and define

h±
ν (a, b, x) = a +

√
b + x2. (28)

Given x∗ > 0 there exist unique values a±∗ and b±∗ such that

φ±
ν (x∗) = h±

ν (a±∗ , b±∗ , x∗), φ±′
ν (x∗) = h±′

ν (a±∗ , b±∗ .x∗). (29)

As functions of the tangency point x∗ ∈ R+, a±∗ and b−∗ can be written as follows

a±∗ = φ±
ν (x∗) − x∗

φ±′
ν (x∗)

,

b±∗ = x2
∗
(
φ±′
ν (x∗)−2 − 1

)
.

(30)

Additionally we have b±∗ > 0 and therefore h±
ν (a±∗ , b±∗ , x) is real for all x ≥ 0.
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Proof. From the conditions (29) we easily get (30), and considering Theorem 5 we see that b±∗ > 0. �
Next, we consider functions B(α, β, γ, x) which are sharp at x = 0, that is, with α + β = 2ν.

Lemma 10. Let φ−
ν (x) = xIν−1(x)/Iν(x) and φ+

ν (x) = xKν+1(x)/Kν(x) and define

h±
ν (λ, c, x) = ν ± λ +

√
(ν ∓ λ)2 + cx2. (31)

Given x∗ > 0 there exist unique values λ±
∗ and c±∗ such that

φ±
ν (x∗) = h±

ν (λ±
∗ , c

±
∗ , x∗), φ±′

ν (x∗) = h±′
ν (λ±

∗ , c
±
∗ .x∗). (32)

As functions of the tangency point x∗ ∈ R+, λ−
∗ and c−∗ can be written in terms of φ∗ = φ−

∗ (x∗) as follows

λ−
∗ = −φ3

∗ + (1 − 3ν)φ2
∗ + (2ν(ν − 1) − x2

∗)φ∗ + νx2
∗

φ2
∗ + 2(1 − ν)φ∗ − x2

∗ − 4ν ,

c−∗ = − (φ2
∗ − 2νφ∗ − x2

∗)(φ∗ − 2ν)2
x2
∗(φ2

∗ + 2(1 − ν)φ∗ − x2
∗ − 4ν) .

The expressions for λ+
∗ and c+∗ are the same, replacing ν by −ν in the right-hand side and taking φ∗ =

−φ+
ν (x∗).
Additionally we have c±∗ > 0 and therefore h±

ν (λ±
∗ , c

±
∗ , x) is real for all x ≥ 0.

Proof. We just have to use the two conditions (32) for determining λ∗ and c∗.
Let us consider the case of φ−

ν (x); for φ+
ν (x) the derivation is analogous. Denoting S =√

(ν + λ−
∗ )2 + c−∗ x2

∗, the conditions (32) give

ν − λ−
∗ + S = φ∗,

c−∗ x∗
S

= φ−′
ν (x∗) (33)

Eliminating S in (33)

x2
∗c

−
∗ = x∗φ

−′
ν (x∗)(φ−

∗ − ν + λ−
∗ ) (34)

and squaring the first equality in (33)

x2
∗c

−
∗ = φ− 2

∗ − 2νφ−
∗ + 2λ−

∗ (φ−
∗ − 2ν).

From the last two equations we get λ−
∗ and c−∗ . Additionally, using x∗φ

−′
∗ (x∗) = x2

∗ + 2νφ−
∗ − φ− 2

∗ , we get 
the final expression. Similarly for φ+

ν (x).
Now, the fact that c±∗ > 0 is a consequence of the bounds of types (1, 1) and (2, 1) of Tables 3.1 and 

3.2. �
5.1. Best lower bound for Iν−1(x)/Iν(x)

The next result is an adaptation of [8, Theorem 10], and therefore does not need a proof. Later (Theo-
rem 11) we prove a similar result for second kind Bessel functions. These two theorems will characterize the 
best bounds around some x > 0 which are also sharp at x = +∞. In Theorems 12 and 13 we will close the 
analysis with the best bounds around any given x > 0 which are also sharp at x = 0. These four theorems 
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will give the best possible upper and lower bounds of the type B(α, β, γ, x) for the ratios of both the first 
and second kind Bessel functions.

Theorem 10. Let λ ∈ (0, 1/2) and ν ≥ 1
2 − λ, then there exists a value B(I)

ν (λ) > 0 such that

L(I)
ν (λ, x) = 1

x

(
ν − 1/2 − λ +

√
B(I)
ν (λ) + x2

)

satisfies

hν(x) = Iν−1(x)
Iν(x) ≥ L(I)

ν (λ, x), x > 0

where, for fixed ν and λ, the equality holds at one and only one value of the variable x∗ = x
(I)
ν (λ) > 0, 

where h′
ν(x∗) = L(I)′

ν (λ, x∗).
As a function of λ, B(I)

ν (λ) is increasing while x(I)
ν (λ) is decreasing and the following limits hold:

lim
λ→0

B(I)
ν (λ) = ν2 − 1

4 , lim
λ→1/2

B(I)
ν (λ) = (ν + 1)2,

lim
λ→0

x(I)
ν (λ) = +∞, lim

λ→1/2
x(I)
ν (λ) = 0

5.2. Best upper bound for Kν+1(x)/Kν(x)

Theorem 11. Let ν > 1/2 and 0 < λ < a, a = min{1
2 , ν − 1

2}, then there exists a value B(K)
ν (λ) > 0 such 

that

U (K)
ν (λ, x) = 1

x

(
ν + 1/2 + λ +

√
B(K)
ν (λ) + x2

)

satisfies

hν(x) = Kν+1(x)
Kν(x) ≤ U (K)

ν (λ, x), x > 0

where, for fixed ν and λ, the equality holds at one and only one value of the variable x∗ = x
(K)
ν (λ) > 0, 

where h′
ν(x∗) = U (K)′

ν (λ, x∗).
As a function of λ, both B(K)

ν (λ) and x(K)
ν (λ) are decreasing and the following limits hold for ν > 1/2:

lim
λ→0

B(K)
ν (λ) = ν2 − 1

4 , lim
λ→a

B(K)
ν (λ) = Θ(ν − 1)(ν − 1)2,

lim
λ→0

x(K)
ν (λ) = +∞, lim

λ→a
x(K)
ν (λ) = 0

with Θ(x) = 1 if x ≥ 0 and Θ(x) = 0 if x < 0.

Proof. For brevity, in the proof we denote x∗ = x
(K)
ν (λ), b∗ = B(K)

ν (λ).
In addition, we denote δν(λ, b, x) = uν(λ, b, x) −φν(x) where φν(x) = xhν(x) and uν(λ, b, x) = ν+λ +1/2 +√
b + x2. The conditions hν(x∗) = U (K)

ν (λ, x∗) and h′
ν(x∗) = U (K)′

ν (λ, x∗) are equivalent to δν(λ, b∗, x∗) = 0
and δ′ν(λ, b∗, x∗) = 0.

We start by noticing that, according to Theorem 7, for ν > 1/2 and for each λ ∈ (0, 1/2) there exist a 
value b(λ) = β

(K)
ν (λ)2 such that δν(λ, b(λ), x) > 0 for all x > 0. On the other hand, uν(λ, b, x) decreases as 
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b decreases, and, as we see next, under the conditions of the theorem there exists a minimal value b∗ such 
that δν(λ, b∗, x) ≥ 0 for all x > 0, where the equality holds for only one positive value x = x∗ > 0.

First we notice that

δν(λ, b, x) = λ + b− (ν2 − 1/4)
2x + O(x−2),

and therefore the bound remains an upper bound for large enough x (and it is sharp as x → +∞) when 
λ > 0. As λ → 0+ δν(λ, b, x) can not remain positive for all x > 0 unless b > ν2 − 1/4, otherwise δν(λ, b, x)
could become negative for large x (but not too large). Therefore we conclude that b∗ > ν2 − 1/4 for small 
enough λ > 0.

On the other hand, as x → 0+ we have:

δν(λ, b, x) =
√
b + λ + 1/2 − ν + O(x2).

We observe that if 
√
b < ν − λ − 1/2 (and λ < ν − 1/2 so that 

√
b can be positive2) δν(λ, b, 0) < 0 and 

therefore we no longer have an upper bound. From this, we see that 
√
b∗ ≥ ν − λ − 1/2 and in fact the 

inequality must be strict, as we next check. Setting 
√
b = ν − λ − 1/2 we have

δν(λ, ν − λ− 1/2, x) = λ− 1/2
2(ν − λ− 1/2)(ν − 1)x

2 + O(x4), ν > 1

and

δν(λ, ν − λ− 1/2, x) = −2νΓ(1 − ν)
Γ(1 + ν)

(x
2

)2ν
+ O(x2), ν ∈ (0, 1).

In both cases, because λ ∈ (0, 1/2), we have that δν(λ, ν − λ − 1/2, 0) = 0 but δν(λ, ν − λ − 1/2, x) < 0
for small enough x. Therefore uν(λ, b, x) is no longer an upper bound for φν(x) at least in some positive 
interval; by continuity, the same holds for ν = 1. We conclude that 

√
b∗ > ν − λ − 1/2 and therefore

ν − λ− 1/2 <
√

b∗(λ) < β(K)
ν (λ). (35)

We conclude that if ν > 1/2 and 0 < λ < a, a = min{1
2 , ν−

1
2} this value b∗ > 0 does exist. Furthermore, 

for if b = b∗ there must exist at least one value of x = x∗ > 0 such that δν(λ, b∗, x∗) = 0 and δ′ν(λ, b∗, x∗) = 0; 
indeed, because b∗ is the minimal value of b for which δν(λ, b, x) ≥ 0 for all x ≥ 0, there must exist at least 
one value x∗ ≥ 0 such that δν(λ, b∗, x∗) = 0 and δν(λ, b∗ − ε, x∗)δν(λ, b∗ + ε, x∗) < 0 for sufficiently small ε. 
From or previous discussion it is clear that x∗ �= 0 and because δν(λ, b∗, x∗) = 0 and δν(λ, b∗, x) ≥ 0 for all 
x ≥ 0 necessarily δ′ν(λ, b∗, x∗) = 0.

The previous discussion proved that there exists a point of tangency x∗(λ) for each λ. This point, on the 
other hand, must be a solution of the equation (20) with β =

√
b∗(λ), and because we have (35) we are in 

the conditions of Lemma 4, which means that both s-solutions are greater that β =
√

b∗(λ) and, therefore, 
because s =

√
β2 + x2 there are two positive real solutions x1(λ) and x2(λ) (and they are different because 

the discriminant of Q(s) = 0 is positive). One of this two solutions gives the tangency point and the other 
one plays no role, as we later prove.

Before this, we prove that b∗ is decreasing as a function of λ. This is a consequence of the fact that 
uν(λ, b, x) increases both as a function of λ and b. We assume the contrary and we arrive at a contra-
diction: we take λ1 < λ2 and we suppose that b∗(λ1) ≤ b∗(λ2), which implies that uν(λ1, b∗(λ1), x) <

2 Observe that the condition λ < a = min{1/2, ν − 1/2} is one of the hypotheses of the theorem.
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uν(λ2, b∗(λ2), x); but because uν(λ1, b∗(λ1), x) is an upper bound for φν(x) then uν(λ2, b∗(λ2), x) can not 
have a tangency point with φν(x), in contradiction with the definition of b∗(λ2).

With respect to the limits as λ → a, we first consider the case ν ≥ 1, which implies a = 1/2. Taking into 
account (35) we have limλ→1/2

√
b∗(λ) = ν − 1. On the other hand, using this limit in (22) we deduce that 

both s-roots are such that limλ→1/2 s(λ) = ν − 1, and therefore limλ→1/2 x∗(λ) = 0.
For ν ∈ (1/2, 1), because we have the condition λ < ν − 1/2, we must consider the limits λ → ν − 1/2. 

In this case, taking into account Lemma 5, both roots s(λ) of (22) tend to zero as λ → a, and because the 
variable s is defined as (19), this means that s(λ) =

√
b∗(λ) + x∗(λ)2, tends to zero, with b∗(λ) > 0, and 

therefore we have that b∗(λ) and x∗(λ) tend to zero.
Now, we investigate the limits λ → 0. Because by construction we know that b∗(λ) < B(K)

ν (λ) and, as 
discussed earlier in the proof, b∗(λ) > ν2 − 1/4 as λ → 0, for small λ we have

ν2 − 1/4 < b∗(λ) < B(K)
ν (λ)

and

lim
λ→0

b∗(λ) = ν2 − 1/4.

In addition, using (22) we see that both roots of the equation tend to infinity in this limit.
Finally, we prove that for each λ, the point of tangency x∗ ≡ x∗(λ) is unique and decreasing as a function 

of λ. As we mentioned before in this same proof, the point of tangency must be one of the solutions of 
Q(s) = 0, which has two distinct positive x-solutions. We have already proved that

lim
λ→0+

x∗(λ) = +∞, lim
λ→a

x∗(λ) = 0. (36)

Let us denote the two solutions as x(1)
∗ (λ) and x(2)

∗ (λ), with x(2)
∗ (λ) > x

(1)
∗ (λ). Only one of these solutions 

gives the point of tangency, which is therefore unique.
Indeed, given a value of the tangency point x∗, the corresponding value of λ = λ(x∗) is unique for any 

x∗ (Lemma 9); however, because of (36) and the continuity of x(i)
∗ (λ), i = 1, 2, for each x∗ > 0 there are at 

least two values of λ, say λ1 and λ2, λ1 �= λ2, such that x(1)
∗ (λ1) = x∗ and x(2)

∗ (λ2) = x∗; either λ∗ = λ1
or λ∗ = λ2, but not both, and therefore one of the solutions x(i)

∗ (λ), i = 1, 2 plays no role. On the other 
hand, it is not possible that the tangency point is given by x(1)

∗ (λ) or x(2)
∗ (λ) depending on the value of 

λ, because x(2)
∗ (λ) > x

(1)
∗ (λ), and the tangency point x∗ must be continuous as a function of λ. We have 

checked numerically that the tangency point is given by the smaller root: x∗(λ) = x
(◦)
∗ (λ) (this fact is not 

necessary for proving this theorem and we have not pursued its proof).
Finally, because of the limits (36) and the continuity of x∗(λ), it can be proved that x∗(λ) is decreasing 

by checking that the correspondence x∗ → λ(x∗) is injective, which is, because given x∗, the two conditions 
of tangency δν(λ, b∗, x∗) = 0 and δ′ν(λ, b∗, x∗) = 0 univocally determine λ = λ(x∗) and d∗(λ). �
5.3. Best upper bound for Iν−1(x)/Iν(x)

Theorem 12. Let ν ≥ 0. For each λ ∈ (1/2, 2), there exists a value C(I)
ν (λ) > 0 such that

U (I)
ν (λ, x) = 1

x

(
ν − λ +

√
(ν + λ)2 + C(I)

ν (λ)x2
)

satisfies

hν(x) = Iν−1(x) ≤ U (I)
ν (λ, x), x > 0
Iν(x)
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where, for fixed ν and λ, the equality holds at one and only one value of the variable x∗ = x
(I)
ν (λ) > 0, 

where h′
ν(x∗) = U (I)′

ν (λ, x∗).
As a function of λ, C(I)

ν (λ) is increasing while x(I)
ν (λ) is decreasing and the following limits hold:

lim
λ→1/2

C(I)
ν (λ) = 1, lim

λ→2
C(I)
ν (λ) = ν + 2

ν + 1 ,

lim
λ→1/2

x(I)
ν (λ) = +∞, lim

λ→2
x(I)
ν (λ) = 0

Proof. For brevity, in the proof we denote x∗ = x
(I)
ν (λ), c∗ = C(I)

ν (λ).
In addition, we denote δν(λ, c, x) = bν(λ, c, x) − φν(x) where φν(x) = xhν(x) and bν(λ, c, x) = ν −

λ +
√

(ν + λ)2 + cx2. The conditions hν(x∗) = U (I)
ν (λ, x∗) and h′

ν(x∗) = U (I)′
ν (λ, x∗) are equivalent to 

δν(λ, c∗, x∗) = 0 and δ′ν(λ, c∗, x∗) = 0.
We start by noticing that, according to Theorem 8, for each λ ∈ (1/2, 2) there exist a value c(I)ν (λ) such 

that δν(λ, c(I)ν (λ), x) > 0 for all x > 0. On the other hand, because bν(λ, c, x) decreases as d decreases and 
δν(λ, c(I)ν (λ), x) > 0 while δν(λ, 0, x) < 0 (because Iν−1(x)/Iν(x) > 2ν/x) there must be a value c∗ > 0 such 
that bν(λ, c, x) > 0 for c > c∗ for all x but that this does not hold for c < c∗.

We have that c∗ is the minimal value of c for which δν(λ, c, x) ≥ 0 for all x ≥ 0, and then there must exist 
at least one value x∗ ≥ 0 such that δν(λ, c∗, x∗) = 0 and δν(λ, c∗ − ε, x∗)δν(λ, c∗ + ε, x∗) < 0 for sufficiently 
small ε. We have x∗ �= 0 because δν(λ, c, 0) = 0 for all c. Then, x∗ > 0 and because δν(λ, c∗, x∗) = 0 and 
δν(λ, c∗, x) ≥ 0 for all x ≥ 0 necessarily δ′ν(λ, c∗, x∗) = 0. In other words:

hν(x∗) = U (I)
ν (λ, x∗), h′

ν(x∗) = U (I)′
ν (λ, x∗).

By construction, an upper bound for c∗ is c(I)ν (λ) and we can find lower bounds by comparing (9) (with 
the selection of α, β and γ in this theorem) with (41) and (43).

The first term in both expansions (9) and (43) coincides, while the second term is greater for bν(λ, c, x)
only if c > (ν + λ)/(ν + 1), while for c = (ν + λ)/(ν + 1) we have

δν(λ, c, x) = λ− 2
(ν + λ)(ν + 1)2(ν + 2)

x4 + O(x6).

Therefore, because λ ∈ (1, 2), δν(λ, c∗, x) < 0 close to x = 0 if c ≤ (ν + λ)/(ν + 1) and then bν(λ, c, x)
is no longer an upper bound for such values; hence c∗ > (ν + λ)/(ν + 1). On the other hand comparing 
the expansions as x → +∞ using (41), we conclude that δν(λ, c, x) < 0 if c < 1. Therefore c∗ ≥ 1 so that 
bν(λ, c∗, x) can be an upper bound. The value c = 1 is also excluded because in this case

δν(λ, c, x) =

1
2 − λ

x
+ O(x−2),

and then δν(λ, c, x) < 0 for large x.
With this we conclude that

max
{

1, ν + λ

ν + 1

}
< c∗ < c(I)ν (λ). (37)

In addition, because c(I)ν (1/2) = 1 and c(I)ν (2) = (ν + 2)/(ν + 1) we have, using the previous bounds, that 
limλ→1/2 c∗ = 1 and limλ→2 c∗ = (ν + 2)/(ν + 1).

Now we prove that c∗ ≡ c∗(λ) is increasing as a function of λ. We notice that bν(λ, c, x) is decreasing 
as a function of λ and increasing as a function of c. Then if λ1 < λ2 and c∗(λ1) ≥ c∗(λ2) we would have 
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bν(λ1, c∗(λ1), x) > bν(λ2, c∗(λ2), x) ≥ φν(x) for al x ≥ 0, but in the case there can not be a value x∗ of 
tangency for bν(λ1, c∗(λ1), x), in contradiction with the definition of the minimal value c∗(λ1). Therefore, 
if λ1 < λ2 then d(λ1) < d(λ2).

Finally, we prove that for each λ, the point of tangency x∗ ≡ x∗(λ) is unique and decreasing as a function 
of λ. First, denoting

s∗(λ) =
√

(ν + λ)2 + c∗(λ)x∗(λ)2 (38)

from the analysis of Lemma 6, we now that s∗ ≡ s∗(λ) must be solution of the equation R(s∗) = 0 (see 
Eq. (24)) with c = c∗(λ). We notice that, for λ ∈ (1/2, 2) there are two different real roots s∗ of (24) because 
the discriminant is positive (see Lemma 7) and both roots are greater than ν + λ (Lemma 8). Now, using 
(24) we see that both solutions satisfy

lim
λ→1/2

s∗(λ) = +∞, lim
λ→2

s∗(λ) = ν + λ. (39)

Now, considering (38) we see that there are two distinct positive real solutions of (24) in terms of x∗ and 
that both satisfy

lim
λ→1/2

x∗(λ) = +∞, lim
λ→2

x∗(λ) = 0. (40)

Because, as discussed, the discriminant is positive one of the solutions will be larger than the other one 
for all λ ∈ (1/2, 2). Let us denote the solutions as x(1)

∗ (λ) and x(2)
∗ (λ), with x(2)

∗ (λ) > x
(1)
∗ (λ). Only one of 

these solutions gives the point of tangency, which is therefore unique. This is proved similarly as was done 
in Theorem 12, now considering Lemma 10. We have checked numerically that the tangency point is given 
by the larger root: x∗(λ) = x

(2)
∗ (λ) (this fact is not necessary for proving this theorem). Also, similarly as 

in Theorem 12 it follows that the tangency point x∗(λ) is decreasing as a function of λ. �
5.4. Best lower bound for Kν+1(x)/Kν(x)

Theorem 13. Let λ ∈ (1/2, 2) and ν ≥ λ. There exists a value C(K)
ν (λ) > 0 such that

L(K)
ν (λ, x) = 1

x

(
ν + λ +

√
(ν − λ)2 + C(K)

ν (λ)x2
)

satisfies

hν(x) = Kν+1(x)
Kν(x) ≥ L(K)

ν (λ, x), x > 0

where, for fixed ν and λ, the equality holds at one and only one value of the variable x∗ = x
(K)
ν (λ) > 0, 

where h′
ν(x∗) = L(K)′

ν (λ, x∗).
As a function of λ, both C(K)

ν (λ) and x(K)
ν (λ) are decreasing and the following limits hold:

lim
λ→1/2

C(K)
ν (λ) = 1, lim

λ→2
C(K)
ν (λ) = ν − 2

ν − 1 ,

lim x(K)
ν (λ) = +∞, lim x(K)

ν (λ) = 0

λ→1/2 λ→2
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5.5. Summary of the best bounds

Finally, we summarize the best bounds considered in this section, skipping some details on the range of 
validity, and we show the relation with the best bounds at x = 0 and x = +∞ (the bounds with accuracies 
(1, 2), (3, 0), (2, 1) and (0, 3)).3

Theorem 14. Let hν(x) = Iν−1(x)/Iν(x) or hν(x) = Kν+1(x)/Kν(x). Let x∗ > 0 and B(α, β, γ, x) =
(α +

√
β2 + γ2x2)/x, with α, β and γ determined by the following three conditions:

1. Interpolatory conditions at x∗: hν(x∗) = B(α, β, γ, x∗), h′
ν(x∗) = B′(α, β, γ, x∗).

2. Sharpness condition: lim
x→xs

hν(x)/B(α, β, γ, x) = 1, where either xs = 0+ or xs = +∞.

Denoting B(j)
ν (xs, x∗, x) = B(α, β, γ, x), where we assign the label j = I for the case hν(x) = Iν−1(x)/Iν(x)

and j = K for hν(x) = Kν+1(x)/Kν(x), the following holds for x > 0:

1. B
(I)
ν (+∞, x∗, x) ≤ Iν−1(x)/Iν(x) ≤ B

(I)
ν (0, x∗, x).

2. B
(K)
ν (0, x∗, x) ≤ Kν+1(x)/Kν(x) ≤ B

(K)
ν (+∞, x∗, x),

where the equality only takes place at x = x∗. The inequalities are valid for the values of ν specified earlier 
for each particular case (ν ≥ 1/2 in the worst case for Iν−1(x)/Iν(x) and ν ≥ 2 in the worst case for 
Kν+1(x)/Kν(x)).

In addition, we have

lim
x∗→0+

B(I)
ν (0, x∗, x) = B(3,0)

ν (x), lim
x∗→+∞

B(I)
ν (0, x∗, x) = B(1,2)

ν (x),

lim
x∗→0+

B(I)
ν (+∞, x∗, (x) = B(2,1)

ν (x), lim
x∗→+∞

B(I)
ν (+∞, x∗, x) = B(0,3)

ν (x)

in a certain range of ν (at least ν ≥ 1/2) where B(n,m)
ν (x) are the bounds in Table 3.1. The bounds B(K)

ν

satisfy the same relations with respect to the bounds of Table 3.2 (for ν ≥ 2 in the worst case).

Acknowledgments

The author acknowledges support from Ministerio de Ciencia e Innovación, projects PGC2018-098279-B-
I00 (MCIU/AEI/FEDER, UE) and PID2021-127252NB-I00 (MCIN/AEI/10.13039/501100011033/FEDER, 
UE).

Appendix A

Using [12, 10.4.1] we obtain the following expansion as x → +∞:

Iν−1(x)
Iν(x) = 1 + ν − 1/2

x
+ ν2 − 1/4

2x2 + ν2 − 1/4
2x3 + O(x−4) (41)

and from [12, 10.4.1]

3 Animated images for these best bounds (as a function of x∗) and for the close to best bounds (as a function of λ) are available 
at http://personales .unican .es /segurajj /bounds .html, showing how these bounds evolve from the best bound at x = 0 to the best 
bound at x = +∞ with intermediate stages which constitute best (or close to best) bounds around the tangency point.

http://personales.unican.es/segurajj/bounds.html
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Kν+1(x)
Kν(x) = 1 + ν + 1/2

x
+ ν2 − 1/4

2x2 − ν2 − 1/4
2x3 + O(x−4) (42)

For ν ≥ 0 the series for the regular solution at x = 0 [12, 10.25.2] gives

Iν−1(x)
Iν(x) = 2ν

x
+ x

2(ν + 1) − x3

8(ν + 1)2(ν + 2)
+ O(x5). (43)

For the modified Bessel function of the second kind as x → 0+, because

Kν(x) = π

2
I−ν(x) − Iν(x)

sin(νπ) , (44)

we have that for ν > 0, ν /∈ N

Kν+1(x)
Kν(x) = −I−ν−1(x)

I−ν(x) (1 + O(x2m)), m = min{2, 2ν} (45)

and the expansion (43) can be used with ν replaced by −ν. In particular,

Kν+1(x)
Kν(x) = 2ν

x
+ x

2(ν − 1) + O(x3), ν > 1, (46)

Kν+1(x)
Kν(x) =

(
2ν
x

+ x

2(ν − 1)

)(
1 + Γ(1 − ν)

Γ(ν + 1)

(x
2

)2ν
+ O(x4ν)

)
, ν ∈ (0, 1) (47)

and

Kν+1(x)
Kν(x) = O(x−2ν−1) ν ∈ (−1, 0). (48)

Finally, for ν = n ∈ N, the first n terms in the expansion of Kν+1(x)/Kν(x) are obtained from (45), 
using the first n terms in (43) and adding a logarithmic factor to the error term in (45).
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