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A B S T R A C T   

Reverse electrodialysis (RED) is an emerging electro-membrane technology that generates electricity out of 
salinity differences between two solutions, a renewable source known as salinity gradient energy. Realizing full- 
scale RED would require more techno-economic and environmental assessments that consider full process design 
and operational decision space from the RED stack to the entire system. This work presents an optimization 
model formulated as a Generalized Disjunctive Programming (GDP) problem that incorporates a finite difference 
RED stack model from our research group to define the cost-optimal process design. The solution to the GDP 
problem provides the plant topology and the RED units’ working conditions that maximize the net present value 
of the RED process for given RED stack parameters and site-specific conditions. Our results show that, compared 
with simulation-based approaches, mathematical programming techniques are efficient and systematic to assist 
early-stage research and to extract optimal design and operation guidelines for large-scale RED implementation.   

1. Introduction 

Dispatchable low-carbon sources of power are essential to meet 
flexibility constraints in clean energy transitions (Davis et al., 2018). 
Salinity gradient energy (SGE), or the free energy released during the 
mixing of high salinity and low salinity waters (Pattle, 1954), is a vast 
yet largely untapped renewable source that can buffer the hour-to-hour 
variability of intermittent renewable power sources. According to Gibbs 
free energy of mixing, each cubic meter of river water (1.5 mM NaCl) 
flowing into the sea (0.6 M NaCl) stores 0.44 kWh of baseload and 
non-pollutant extractable energy (Yip et al., 2016). It is estimated that 
about 1.4 to 1.7 TW is available globally from major river mouths 
(Alvarez-Silva et al., 2016; Ramon et al., 2011), of which -60% could be 
harnessed depending on SGE conversion efficiency, siting constraints, 
freshwater availability, and environmental and legal constraints 
(Alvarez-Silva et al., 2016; Kuleszo et al., 2010; Ramon et al., 2011). 
Alternatively, anthropogenic waste streams of energy-intensive pro-
cesses such as desalination’s concentrates, reclaimed wastewater efflu-
ents, produced waters (a by-product of oil and gas extraction), or 
thermolytic salt solutions in energy storage and close-loop applications 
that recover low-grade waste heat energy, promise higher SGE (Tian 
et al., 2020; Tufa et al., 2018; Yip et al., 2016). For instance, seawater 

desalination brine (1.2 M NaCl) mixed with low salinity effluent from 
wastewater treatment (10 mM), almost doubles the seawater-river water 
pair’s SGE, e.g., 0.85 kWh per m3 of low salinity stream (Yip et al., 
2016). Global wastewater discharge into the sea could provide another 
18.5 GW of salinity-gradient power (Ramon et al., 2011). 

There are different technologies to capture SGE reported in the 
literature (Logan and Elimelech, 2012; Yip et al., 2016), among them 
reverse electrodialysis (RED) and pressure retarded osmosis (PRO) are in 
advanced development stages and have been demonstrated at pilot-scale 
(IRENA, 2020; Jang et al., 2020; Kempener and Neumann, 2014; 
Makabe et al., 2021; Mehdizadeh et al., 2021; Nam et al., 2019; 
Pärnamäe et al., 2020; Post et al., 2010; Tedesco et al., 2017). Both 
technologies use selective membranes to draw electricity out of the 
reversible mixing between high and low salinity streams. RED is an 
electrochemical technology that uses ion-exchange membranes (IEM) to 
directly generate electricity from chemical potential differences be-
tween the two salt-differing water solutions (Pattle, 1954). A RED stack 
(Fig. 1) comprises a series of repeating cell pairs framed on either side by 
electrodes. Each cell pair is made up of a cation-exchange membrane 
(CEM), an anion-exchange membrane (AEM), and two spacers in be-
tween to form alternate compartments where the high and low con-
centration streams flow. The IEMs allow selective permeation of 
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opposite-charged ions (counterions) while rejecting water and 
like-charged ions (co-ions). The concentration difference across the 
IEMs creates an electrochemical potential that drives the diffusion of 
cations across CEMs towards the cathode, and anions across AEMs to-
wards the anode, from the high concentration (HC) to the low concen-
tration (LC) solutions. Redox reactions at the electrodes convert the 
directional flow of ions into an electric current; the electric current and 
the electric potential yielded by the RED pile can then be used to power 
the external load connected to the electrodes (Pattle, 1954). 

Several authors have developed predictive models to fully capture 
the RED stack performance (Tristán et al., 2020a). Early modeling ap-
proaches dating back to the ’80s (Lacey, 1980; Weinstein and Leitz, 
1976) were updated and refined thereafter to consider non-idealities (e. 
g., concentration polarization, electric short-cut currents, electrode 
system resistance) (Culcasi et al., 2020; Gurreri et al., 2014; La Cerva 
et al., 2017; Ortiz-Imedio et al., 2019; Pawlowski et al., 2016; Post et al., 
2008; Tedesco et al., 2015a; Tristán et al., 2020a; Veerman et al., 2008), 
complex geometries (e.g., spacers’ designs or profiled membranes) 
(Ciofalo et al., 2019; Dong et al., 2022; Faghihi and Jalali, 2022; Gurreri 
et al., 2017; Kim et al., 2022; Pawlowski et al., 2016), flow patterns (e.g., 
co-, counter-, and cross-flow stacks) (Pintossi et al., 2021; Simões et al., 
2020; Tedesco et al., 2015b; Vermaas et al., 2013), advanced electrode 
systems (e.g., electrode segmentation) (Kim et al., 2022; Pintossi et al., 
2021; Simões et al., 2020; Veerman et al., 2011), and the presence of 
organic and inorganic pollutants and multi-valent ions on feed solutions 
(Gómez-Coma et al., 2019; Pintossi et al., 2021; Simões et al., 2022). 

The membrane power density, i.e., the power generated per total 
membrane area, the specific energy, i.e., the energy delivered per vol-
ume of HC and/or LC feedwater consumed, and the energy efficiency, i. 
e., the salinity gradient energy converted into useful work, are well- 
accepted metrics to assess RED energy production feasibility as they 
implicitly inform about its cost-competitiveness. Optimization studies 
mainly focus on the design and working conditions that maximize these 
key performance metrics, but few consider cost metrics (e.g., levelized 
cost of electricity and capital costs per unit of power) that are the pri-
mary drivers of technology adoption in any sector (Daniilidis et al., 
2014; Giacalone et al., 2019; Papapetrou et al., 2019; Weiner et al., 
2015). Genetic algorithms (Faghihi and Jalali, 2022; Long et al., 2018a, 

2018b), gradients-ascent algorithms (Ciofalo et al., 2019), and response 
surface methods with a central composite design (Altıok et al., 2022) are 
some of the approaches to solve single and multi-objective optimization 
problems, to define designs and operating conditions that maximize the 
net power density (Altıok et al., 2022; Ciofalo et al., 2019; Long et al., 
2018b), maximize the mass transfer and minimize the pressure drop in 
the RED cell (Faghihi and Jalali, 2022), or maximize the net power 
density and energy efficiency (Long et al., 2018a) of the RED stack. 

Few works address the synthesis and design of the RED process 
featuring these predictive models to devise technically and economically 
feasible flowsheet designs. Most of the reported studies in the open 
literature investigate the RED process as a separate unit or several units 
in either series or simple arrangements, focusing primarily on improving 
the power density and/or the energy conversion efficiency of RED. 
There is an intrinsic trade-off between efficiency and power of RED stack 
as maximizing both would require conflicting operating conditions, 
multi-staging or cascade operation and electrode segmentation of the 
RED stacks could attain efficient designs with higher power densities 
than once-through RED operation (Simões et al., 2021). Multi-stage RED 
adds several degrees of freedom, such as independent electrical control 
of the stages (Hu et al., 2020, 2019; Veerman, 2020) (as electrode seg-
mentation offers), asymmetric staging, and different configurations 
(Tedesco et al., 2015b; Veerman, 2020; Veerman et al., 2009). Simões 
et al. (Simões et al., 2022, 2021, 2020) and Pintossi et al. (Pintossi et al., 
2021) also investigated the effect of electrode segmentation and 
multi-staging of RED stacks under different flow configurations, both 
strategies provided higher power densities and energy efficiencies. 

Full-scale RED progress demands more techno-economic and envi-
ronmental assessments that consider full process design and operational 
decision space from stack to the whole system. These pioneering works 
evidence how challenging it is to model and estimate the cost of a 
complex system with interdependent processes and phenomena. Cost- 
optimization modeling can effectively assess the economic feasibility 
of RED as it can handle strongly coupled systems of equations with 
several degrees of freedom (Pistikopoulos et al., 2021). Hence, our aim is 
to develop a modeling tool to provide decision-making support from 
early-stage applied research to full-scale RED deployment in real sce-
narios. We present an optimization model formulated as a Generalized 

Fig. 1. Working principle of reverse electrodialysis (RED). CEM: Cation-exchange membrane; AEM: Anion-exchange membrane.  
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Disjunctive Programming (GDP) problem to define the cost-optimal RED 
process design for different deployment scenarios. The GDP optimiza-
tion model incorporates a semi-rigorous version of our RED stack model 
(Gómez-Coma et al., 2019; Ortiz-Imedio et al., 2019; Ortiz-Martínez 
et al., 2020; Tristán et al., 2020a) to determine the flowsheet design that 
maximize the net present value of the RED process. 

2. Problem statement and superstructure definition 

Given the site-specific working conditions, i.e., concentration, total 
flowrate, and temperature of the HC and LC feedwaters, and the stack 
parameters of the RED units, i.e., number of cell pairs, properties of 
membranes and spacers, the problem is to determine the RED plant to-
pology and the working conditions of each RED stack in the plant that 
maximize the net present value of the RED process. 

In the quest to tackle water scarcity, seawater reverse osmosis 

(SWRO) desalination and re-use of reclaimed wastewater effluents stand 
out above all else (UNESCO, 2020; van Vliet et al., 2021). A foreseeable 
scenario for RED promotion is next to these energy-intensive processes 
(Rani et al., 2022) that are heavily reliant on fossil fuels (IEA, 2016). The 
SGE embodied in the reversible mixing of the high-saline SWRO brine 
and low-salinity stream as treated wastewater could partially displace 
the carbon-intensive grid mix supply of these processes. Besides, envi-
ronmental and permitting challenges associated with brine discharge 
may incentivize RED technology mature. Hence, in all assessed sce-
narios, we assume the RED system recovers energy from a SWRO 
concentrate effluent (as HC feedstream) paired with a low-salinity 
water, e.g., freshwater, or reclaimed wastewater as LC feedstream. 

We have defined the superstructure of alternatives based on the 
Pyosyn Graph (PSG) representation (Chen et al., 2021b). The RED pro-
cess’ PSG representation in Fig. 2 consists of the following elements:  

(a) The RED Process Unit (RPU), where discrete decisions on the 
selection of the RED units are made, which embeds: (i) the set of 
Nr candidate RED units r ∈ RU = {r1…,rNr}; the set of permanent 
(ii) source rs ∈ RSU and (iii) sink rm ∈ RMU units for the high- 
salinity and low-salinity streams, i.e., sol ∈ SOL = {HC, LC}. 
The source and sink units govern the material inflows and out-
flows at the interface of the RPU parent block with the overall 
flowsheet (i.e., with the feed and discharge units).  

(b) The sets of concentrate and diluate feed units, fs ∈ FSU, and 
discharge units, dm ∈ DMU  

(c) The inlet and outlet ports p ∈ P = Pout ∪ Pin, i.e., mixers and 
splitters, where flows of material at the unit interface with other 
process units may take place.  

(d) The set of streams or feasible outlet-to-inlet port pairs, s ∈ S ⊆

Pout × Pin, defined considering the following screening rules:  
- The feed units, FSU, supply the concentrate and diluate feed 

streams, s ∈ Sfso ⊆ Sk, to the RED Process Unit (RPU); the 
discharge units DMU collect the exhausted high- and low- 
concentration RPU effluents, and the unused feed streams 
from the feed units FSU, s ∈ Sdmi ⊆ Si. 

Fig. 2. Superstructure representation of the RED process with Nr conditional RED units. The set of source (RSU) and sink (RMU) units and the set of candidate RED 
units (RU) are children of the parent RED Process unit (RPU). Dashed boxes indicate the association between the set of source units with its parent ports, rsi, and the 
set of sink units with its parent ports, rmo. The whole set of units, ports, and streams and their index notation is in Table 1. 

Table 1 
Indices and sets of units, ports, and streams of the RED process superstructure.  

Unit Port Streams 
s ∈ S ⊆ Pout × Pin  

In 
Pin 

Out 
Pout 

In 
i ∈ Si ⊆ S 

Out 
k ∈ Sk ⊆ S 

Feed unit 
fs ∈ FSU 

fsi fso in,fsi b fso,rsi 
fso,dmi 

Source unit 
rs ∈ RSU 

rsi rso fso,rsi rso,ri 

RED unita 

r ∈ RU 
ri ro rso,ri 

ro’,ric 
ro,rmi 
ro,ri’c 

Sink unit 
rm ∈ RMU 

rmi rmo ro,rmi rmo,dmi 

Discharge unit 
dm ∈ DMU 

dmi dmo fso,dmi 
rmo,dmi 

dmo,out  

a When the RED unit is active (Yr = True): i = (r, ro) in (7), k = (ri, r) in (8). 
b Known feed streams composition and volume according to RED’s imple-

mentation scenario. 
c Recycle or reuse. 
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- Within the RPU, the source units, RSU, supply the concentrate 
and diluate streams coming from the feed units FSU to one or 
more of the active RED units, s ∈ Srso ⊆ Sk. Once the active 
RED units exploit SGE from the inlet streams, s ∈ Sri ⊆ Si, the 
spent effluents, s ∈ Sro ⊆ Sk, may be recycled back, sent to 
other active RED units for reuse, or may be directed to the sink 
units, RMU. The RPU effluent from RMU, s ∈ Srmo ⊆ Sk, is 
disposed of in the overall discharge unit DMU.  

- No flow between the RSU and RMU is allowed; it only can take 
place between FSU and DMU.  

- Mixing between the concentrate and diluate streams only takes 
place within the candidate RED units owing to the flow of ions 
from high-salinity compartments to low-salinity ones through 
ion-exchange membranes (IEMs). 

Table 1 summarizes the indices and sets of units, ports, and streams 
of the general superstructure in Fig. 2, and Fig. 3 shows an example with 
two candidate RED units. 

3. Optimization model 

3.1. Generalized disjunctive programming (GDP) model 

The general form of the optimization model for the superstructure in 
Fig. 2, is formulated as a Generalized Disjunctive Programming (GDP) 
problem in (1). 

maxobj = f (x)

s.t. g(x) ≤ 0
[

Yr

rr(x) ≤ 0

]

∨

[
¬Yr

Br x = 0

]

r ∈ RU

Ω(Yr) = True

x ∈ X ⊆ Rn

Yr = {True,False} r ∈ RU

(1) 

The objective function f(x) maximizes the Net Present Value (NPV) 
of the RED process subject to inequality constraints (e.g., process spec-
ifications) and equality constraints (e.g., material, energy balances, and 
thermodynamic relationships). The variables x describe continuous 
variables (e.g., molar concentrations, volumetric flows) of all feasible 
streams and internal variables of the candidate RED units (e.g., electric 
current). The global constraints, g(x) ≤ 0, are equalities and inequalities 
describing specifications and physical relationships that apply for all 
feasible configurations in the superstructure, i.e., linking constraints, 
flow and mass balances of the feed, source, sink, and discharge units’ 
inlet and outlet ports, and bounds on streams variables (concentration 
and flowrate). The disjunctions—corresponding to logical-XOR re-
lationships such that at most one disjunct in each disjunction is 
True—describe the existence or absence of the RED units within the RED 
process unit. The Boolean variables Yr indicates whether a given RED 
unit exists or not. If a unit exists (Yr = True), the constraints rr(x) ≤ 0 

enforce the relevant mass and energy balances, thermodynamics, ki-
netics, or other physical/chemical phenomena taking place within the 
RED unit; if the unit is absent, the negation (¬Yr) sets to zero a subset of 
the continuous variables, and cost terms in the objective function 
through the Br x = 0 constraints. 

When the RED unit ports exist, mixing and splitting calculations, and 
linking constraints, which equate stream flow properties between the 
RED unit’s ports and its set of cell pairs, are included within the con-
straints rr(x) ≤ 0, and port absence in the linear constraints Br x = 0. 
We adopt the no-flow approach for modeling an absent unit, enforcing 
that if a stream does not exist, no flow may take place between the 
corresponding outlet-inlet port pair. 

The logical relationships (Ω(Yr) = True) establish the logic condi-
tions for selecting the candidate RED units. In the following sections, we 
will present the detailed equations and constraints after stating the 
major assumptions. 

3.2. Assumptions 

We consider the following simplifying assumptions in the develop-
ment of the GDP model:  

(a) The feed streams are pure sodium chloride (NaCl), ideal aqueous 
solutions (i.e., activity coefficients equal to 1), thus neglecting the 
non-idealities of aqueous solution and the existence of other 
species that would undermine the RED performance.  

(b) There is no non-ohmic contribution in the internal losses ascribed 
to concentration polarization phenomena in the concentrate and 
diluate membrane-solution interfaces, and due to concentration 
gradient decline along the main flow direction. We only consider 
the ohmic contribution of solutions’ ionic conductivity and 
membranes’ ionic resistance.  

(c) Membranes’ permselectivity and ionic resistance are constant 
regardless of solutions’ concentration and temperature.  

(d) There is no water transport due to osmosis from the low-salinity 
side to the high-salinity one across membranes, which implies a 
constant streamwise volumetric flowrate in RED’s channel.  

(e) Salt diffusivities in the membrane phase are constant whatever 
concentration and temperature.  

(f) All cell pairs behave equally, as we assume no fluid leakage or 
ionic shortcut currents in the RED stack’s manifolds.  

(g) Co-current flow of the high- and low-concentration streams.  
(h) The RED system operates under isothermal and isobaric 

conditions. 

3.3. RED stack model 

We use a semi-rigorous version of the RED stack model from our 
research group (Tristán et al., 2020a), to find a middle ground between 
model fidelity and tractability. The semi-rigorous model is a system of 
differential and algebraic equations defining RED performance from cell 
pair to module scale. The reader is referred to (Tristán et al., 2020a) 
work and supplementary material for more details on the RED stack 

Fig. 3. Example of RED process’ superstructure with two conditional RED units.  
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model. 
As nonlinear optimization solvers are unable to handle integrals or 

differential equations directly, we reformulate first-order ordinary dif-
ferential equations and integrals into algebraic equations, discretizing 
the x-domain with the backward finite difference method (implicit or 
backward Euler difference method) and applying the trapezoid rule, 
respectively (Butcher, 2016; Nicholson et al., 2017). 

When the RED unit is active (Yr = True), the discretized model 
(hr(x) ≤ 0) in (34) computes the net power output, NPr, that is added to 
the nameplate generating capacity of the RED system, i.e., the total net 
power output, TNP in Eq. (21); otherwise (¬Yr), the net power output 
and cost terms in the objective function are set to zero. 

3.4. Flow and mass balances formulation 

We formulate flow and mass balance equations considering total 
flows (volumetric flow rate, Q in m3⋅h− 1) and species composition 
(molar concentration of sodium chloride, C in mol⋅m− 3) Karuppiah and 
Grossmann, 2006; Quesada and Grossmann, 1995), of the high- and 
low-salinity streams. The general mass balances in ((2) and (3) are in 
both the global constraints (e.g., applied to the feed, discharge units in 
the overall flowsheet, and source and sink child units in RPU parent 
block) as well as in rr(x) ≤ 0 constraints when the RED unit is active. 

The mixer balances (2) apply to the inlet ports of the discharge units, 
the sink units, and the active RED units (i.e., when Yr = True); mixing 
equations are nonlinear and nonconvex due to bilinear terms from the 
product of volumetric flows times molar concentration, which makes it 
difficult to find the global optimum. 

Qk,sol Ck,sol =
∑

i∈Si⊆S
Qi,sol Ci,sol,

Qk,sol =
∑

i∈Si⊆S
Qi,sol,

∀ sol ∈ SOL, k ∈ Sk ⊆ S

(2) 

The linear splitter balances (3) apply to the outlet ports of the feed 
units, the source units, and the active RED units (i.e., when Yr = True). 

Ci,sol = Ck,sol,

Qi,sol =
∑

k∈ Sk⊆S
Qk,sol,

∀ sol ∈ SOL, i ∈ Si ⊆ S

(3) 

For the set of candidate RED units, the index k in splitting Eqs. (3) is 
(r,ro) corresponding to the exhausted streams from RED’s compartments 
leaving the high salinity and low salinity outlet ports. In the mixing 
equations (2), the index i refers to the streams flowing from the inlet port 
to the RED unit’s compartments (ri,r). The remainder index notations 
are summarized in Table 1. 

3.5. Bounds on variables 

Using (4) and (5), we calculate the value, and upper (superscript U) 
and lower (superscript L) bounds of candidate RED units’ flowrate (i.e., 
streams s ∈ Sr ⊆ S) in (6). Each RED unit has upper limits on the flow-
rate, according to the maximum linear crossflow velocity (m⋅s− 1), vU

r , 
along the channel’s length of the RED stack as the manufacturer spec-
ifies (Table 3). The lower bound vL

r is a designer specification. In (4) and 
(5), vr,sol is the average linear crossflow velocity along RED units’ 

channel length. The product Ncp εsp,sol b δsp,sol in (5) yields the cross- 
sectional area, Ar (m2), of all RED unit’s compartments, where Ncp is 
the number of cell pairs, εsp,sol (-) the porosity, b (m) the width, and δsp,sol 

(m) the thickness of the concentrate and diluate spacers, which are 
parameters of the RED stack model (see Table 3). 

vL
r ≤ vr,sol ≤ vU

r ∀ sol ∈ SOL, r ∈ RU (4)  

Qs,sol = vr,sol
(
Ncp εsp,sol b δsp,sol

)

r

= vr,sol Ar

∀ sol ∈ SOL, s ∈ Sr, r ∈ RU

(5)  

QL
r,sol ≤ Qs,sol ≤ QU

r,sol

∀ sol ∈ SOL, s ∈ Sr , r ∈ RU
(6) 

The subset of streams s ∈ S \Sr have upper bounds on flowrate (7), as 
given in (8) for outlet and inlet ports of the sink and source units, 
respectively (i.e., streams s∈Srmo ∪ Srsi), while for the inlet and outlet 
ports (i.e., streams s∈Srmi ∪ Srso) (9) applies. 

0 ≤ Qs,sol ≤ QU
s,sol ∀ sol ∈ SOL (7)  

QU
s,sol =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

vU
r Ar, QU

r,sol ≤
∑

i∈Sfsi⊆Si

Qi,sol

∑

i∈Sfsi⊆Si

Qi,sol, QU
r,sol >

∑

i∈Sfsi⊆Si

Qi,sol

∀ sol ∈ SOL, s∈Srmo ∪ Srsi, r ∈ RU

(8)  

QU
s,sol =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Nr vU
r Ar, QU

r,sol Nr ≤
∑

i∈Sfsi⊆Si

Qi,sol

∑

i∈Sfsi⊆Si

Qi,sol, QU
r,sol Nr >

∑

i∈Sfsi⊆Si

Qi,sol

∀ sol ∈ SOL, s∈Srmi ∪ Srso, r ∈ RU

(9) 

We use (10)–(12) to define the upper and lower limits on the 
concentrate and diluate streams’ molar concentration (Table 2). 

ϕU
r =

QU
r,LC

QL
r,HC + QU

r,LC

ϕL
r =

QL
r,LC

QU
r,HC + QL

r,LC

∀r ∈ RU (10)  

where ϕ (-) is the ratio of diluate solution’s flowrate to the total flowrate 
that is fed to the RED unit. 

CU
M,r = ϕL

r max
i∈Sfsi⊆Si

(
Ci,LC

)
+
(
1 − ϕL

r

)
max

i∈Sfsi⊆Si

(
Ci,HC

)
,

CL
M,r = ϕU

r min
i∈Sfsi⊆Si

(
Ci,LC

)
+
(
1 − ϕU

r

)
min

i∈Sfsi⊆Si

(
Ci,HC

)
,

∀r ∈ RU

(11)  

CM,r (mol⋅m− 3) is the concentration of the mixed solution reaching 
equilibrium. 

CL
sol ≤ Cs,sol ≤ CU

sol ∀ sol ∈ SOL, s ∈ S (12) 

The high salinity streams’ concentration could be as high as the 
maximum concentration of the feed streams, in (if there are multiple 
feed alternatives), while for the low salinity streams, the molar con-
centration could be as high as the concentration reached after the 
complete mixing of the concentrate and diluate stream (if reached 
thermodynamic equilibrium). The opposite holds for the lower bound on 
the concentration of the concentrate and diluate streams. 

3.6. Boundary conditions and linking constraints 

When the RED unit is active (Yr = True), the boundary conditions 

Table 2 
Upper and lower bounds on concentration of superstructure’s streams.  

Bounds sol = HC sol = LC 

CU
sol max

i∈Sfsi⊆Si
(Ci,HC) CU

M,r 

CL
sol CL

M,r min
i∈Sfsi⊆Si

(Ci,LC)
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(13) link the inlet port ri with the RED unit’s inlet compartments (i.e., xr 
= 0), and (14) the outlet from the set of cell pairs (i.e., xr = L) with the 
outlet port ro of the RED unit. 

Cri,r,sol = C0,r,sol,

Qri,r,sol = Ncp Q0,r,sol,

∀ sol ∈ SOL, r ∈ RU, ri ∈ Pri ⊆ Pin

(13)  

Cr,ro,sol = CL,r,sol,

Qr,ro,sol = Ncp QL,r,sol,

∀ sol ∈ SOL, r ∈ RU, ro ∈ Pro ⊆ Pout

(14) 

When the RED unit is absent (¬Yr) (15) applies. 

Cs,sol = CL
sol ∀ s ∈ Sri ∪ Sro,

∑

i∈Sri⊆Si

Qi,sol = 0,

Qrso,ri,sol = 0 ∀ rso ∈ Prso, ri ∈ Pri,

∀ sol ∈ SOL

(15)  

3.7. Logic constraints 

We add the following logic propositions:  

(a) A programming logic constraint (16) enforcing that at least one 
RU is active in the RPU section: 

V
Nr

r=1
Yr (16)    

(b) Since all candidate RED units are equal, we added symmetry- 
breaking constraints (17) to avoid structural redundancy 
(combinatorial redundancy) by eliminating symmetric solutions, 
thus, easing the computational effort. 

Yr+1⇒Yr ∀ r ∈ RU (17)   

3.8. Objective function: maximize the net present value (NPV) 

The objective of the GDP problem is to maximize the NPV of the RED 
process. The NPV (18) considers operating (OPEX in USD2019⋅year− 1), 
and capital costs (CAPEX in USD2019) annualized over the expected 
lifetime of the plant, LT in years (Table 4). The CAPEX is annualized 
using the capital recovery factor (CRF) given in (20) with an interest rate 
r (Table 4). The annualized CAPEX and OPEX define the total annual 

cost (19), TAC, of the RED system. The NPV accounts for profits from 
RED’s electricity sales. We assume the surplus electricity unexpended by 
the RED plant is sold to the grid at EU-27 2019-average price of elec-
tricity for non-house consumers (Band IB: annual consumption between 
20 and 500 MWh excluding taxes and levies), i.e., ep = 0.11 €⋅kWh− 1 

($0.12 kWh− 1). 

Fig. 4. RED process superstructure with four conditional RED units. In the bottom graph, the parent RED Process Unit, RPU, embeds the set of candidate RED units, 
r ∈ RU, a pair of source, rs ∈ RSU, and sink, rm ∈ RMU, permanent units for the high-salinity, HC, and low-salinity, LC, streams. 
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NPV =
ep TNP 8760 LF − TAC

CRF
(18)  

TAC = CRF CAPEX + OPEX (19)  

CRF =
r

1 − (1 + r)− LT (20)  

TNP =
∑

r∈RU
NPr (21) 

The annual energy yield (kWh⋅year− 1) of the RED plant working at 
full capacity, i.e., 8760 full load hours per year, is corrected with a load 
factor, LF, of 90% (i.e., RED works 8000 h each year) to account for 
expected plant downtime due to membrane cleaning and system main-
tenance. The summation of the net power output over the candidate RED 
units yields the nominal capacity of the RED system (21) i.e., the total 
net power output, TNP, in kW. 

To estimate the capital investment, we determine the cost of RED 
stacks, pumps, and civil and electrical infrastructure cost. 

CAPEX =
∑

r∈RU
CCstack,r + CCpump + CCcivil (22) 

The RED unit’s cost, CCstack,r involves the cost of membranes, CCIEMs,r, 
i.e., total membrane area, 2 ( Ncp b L)r, times the specific price of 

Table 3 
Parameters of the commercial RED stack (Fumatech GmbH®, Germany).  

Parameter Value 

Maximum flow velocity, vU
r (cm⋅s− 1) 3.0 

Number of cell pairs, Ncp (-) 1000 
Channel size, b (m) × L (m) 0.456 × 0.383 
Spacers 
Thickness, δsp (µm) 270a 

Porosity, εsp (-) 82.5% 
Membranes properties: fumasep® CEM (FKS-50) / AEM (FAS-50) 
Areal resistance, RIEM0 (Ω⋅cm2) 1.8 / 0.6b 

Permselectivity, αIEM0 (-) 0.93 
Thickness dry, δIEM (µm) 50 
Active area, b × L (m2) 0.175  

a Equal to inter-membrane distance i.e. height of the HC or the LC channels. 
b Measured in 0.5 M NaCl at 25 ◦C. 

Table 4 
Financial parameters for the RED plant.  

Parameter Value 

Plant lifetime, LT (years) 20 
Membranes’ lifetime, LTm (years) 2 
Load Factor, LF 90% 
Discount rate, r (IRENA, 2022) 7.5%  

Fig. 5. Port representation of the RED 
process superstructure of alternatives in 
Fig. 4. The top graph (a) shows all feasible 
links between HC ports and the bottom 
graph (b) between LC ports. The dark and 
light blue-colored arrows represent the RED 
units’ HC and LC recycled streams. Port 
notation: HC (high concentration ports), LC 
(low concentration ports), and RU (RED 
units’ HC and LC ports). For ease of repre-
sentation, the inlet and outlet ports of the 
feed, source, sink, and discharge units are 
lumped into ports fs, rsu, rmu, and dm.   
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membranes, cm, and the cost of electrodes and stack, which is assumed 
to be 51.7% of the current membrane cost (Papapetrou et al., 2019). 
When the RED unit is absent, the capital cost of the stack is set to zero. 

CCstack,r = CCIEMs,r (1 + 0.517)
= 2 cm

(
Ncp b L

)

r(1 + 0.517) (23) 

We estimate the concentrate and diluate pump costs, CCpump, using 
Sinnot and Towler’s (Sinnott and Towler, 2020) non-linear correlation 
as given in (24), valid between 0.2 and 126 L⋅s− 1 (0.72–453.6 m3⋅h− 1). 
The purchased pump’s cost on a U.S. Gulf Coast basis, Jan. 2007 is 
converted to 2019 dollars with the Chemical Engineering Plant Cost 

Index (CEPCI). 

CCpump =
CEPCI2019

CEPCIref

∑

sol∈SOL

[

a+ b

(
∑

k∈ Srso⊆Sk

Qk,sol

)β]

(24)  

CCpump =
CEPCI2019

CEPCIref

∑

sol∈SOL
[a+ b Zsol] (25)  

Zsol =

(
∑

k∈ Srso⊆Sk

Qk,sol

)β

(26)  

Zsol ≥

(
∑

k∈ Srso⊆Sk

Qk,sol

)β

(27)  

∑

k∈ Srso⊆Sk

Qk,sol − Z1/β
sol ≤ 0 (28)  

where a, b, and β are cost parameters and the sizing variable is the 
flowrate of streams leaving the source units in the RPU given in L⋅s− 1. 

Power law expressions whose exponent is lower than one, such as 
pumps’ investment cost, are concave and, as such, a source of compu-
tational difficulties due to unbound derivatives when the flows (the 
sizing variable) take zero values (Cafaro and Grossmann, 2014). 

A common workaround to bound gradients for zero flows is to add a 
small tolerance to the sizing variable in the concave cost function 

Table 5 
Specifications of the illustrative example and the cases of study.   

Candidate RED units, Nr LC Concentration (mM) Flowrate 
(m3⋅h− 1)    

HC LC 

Example 4 4 10 10 
Case study     
Scenario #1 10 4 100 100 
Scenario #2 10 40 10 10 

Membrane’s price is 2.0 €⋅m− 2. HC feed concentration = 1.23 M NaCl. T = 25 
◦C. 

Fig. 6. Illustrative example result: Port representation of the NPV-optimal RED process design with three active RED units. The top graph shows the links between 
HC ports and the bottom graph between LC ports. 
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(Ahmetović and Grossmann, 2011). Even though smaller tolerances 
provide better approximations of the original cost function, they also 
yield larger derivatives when flows are zero due to ill-conditioning for 
the NLP. Hence, to prevent this numerical issue, we propose to refor-
mulate the concave pump cost term (24) into a linear function (25), 
adding a new variable Zsol, defined in (26), to replace the size variable 
raised to the βth and rearranged into inequality (27) since it is guaran-
teed to be active due to the monotonicity of Zsol in the cost function (25) 
(Grossmann, 2021; Papalambros and Wilde, 2018). The inequality (27) 
is rearranged into inequality (28) by raising the left- and right-hand 
sides to the power 1/β. Note that Z1/β

sol in (28) has a bounded deriva-

tive (∂Z1/β
sol /∂Z = Z1/β− 1/β) at Zsol = 0 since 1/β − 1 > 0. The inequality 

(28) is still nonconvex, but it avoids the problem of unbounded deriv-
ative for zero values in the variable Qk,sol. 

We compute the civil and electrical infrastructure costs as follows: 

CCcivil = ccivil TNP (29)  

where ccivil is the cost parameter (250 €⋅kW− 1) (Papapetrou et al., 
2019). 

The annual operating cost comprises the electricity consumption cost 
of pumps, OCpump,r, the replacement cost of membranes, OCIEMsrep,r, and 
maintenance and labor costs (as 2% of CAPEX). 

OPEX =
∑

r∈RU
OCpump,r +

∑

r∈RU
OCIEMsrep,r + 0.02 CAPEX (30) 

When the RED unit is active, (31) and (32) are enforced, if not 
OCpump,r and OCIEMsrep,r are set to zero. 

In (31), ep (USD2019⋅kWh− 1) is the electricity price, and PPr in kW, 
the power consumed to overcome the pressure drop in the high- and 
low-concentrated channels of the RED unit. 

OCpump,r = ep LF 8760 PPr (31) 

To estimate the replacement cost of membranes (32), we convert the 
series of disbursements at the end of the lifetime of membranes, LTm 

(Table 4), into an equivalent yearly annuity considering the first pay-
ment as a future value over the first period (i.e., LTm) and finding the 
equivalent annuity over that period using the sinking fund factor. The 
sinking fund factor converts a single future amount, i.e., CCIEMs, into a 
series of equal-sized disbursements, OCIEMsrep,r, made over LTm equally 
spaced intervals, at the given interest rate r compounded annually 
(Fraser and Jewkes, 2012). 

OCIEMsrep,r = CCIEMs
r

(1 + r)LTm − 1
(32) 

Wherever needed, all currencies were converted to USD2019 ac-
cording to the historical average exchange rate of the corresponding 
publication year. 

3.9. Economic performance metrics: levelized cost of energy (LCOE) 

The LCOE (USD2019 kWh− 1), a common metric to benchmark 
different renewable power technologies, estimates the average cost per 
unit of energy generated across the lifetime of a power plant that would 
break even the RED project costs. The LCOE gives a first-order assess-
ment of 1he RED project viability (Krey et al., 2014). 

Assuming the energy provided annually is constant during the life-
time of the project, the LCOE reduces to (33). 

LCOE =
CRF CAPEX + OPEX

TNP 8760 LF
(33) 

The set of Eq. (34) shows the explicit representation of the GDP 
model (1) with Nr explicit disjunctions to decide whether the RED units 
exist or not. 

Fig. 7. Illustrative example results: Polarization and power curves of the active RED units r1, r2, and r3. Markers denote the maximum net-power working conditions 
(max NPr) and the NPV-optimal RED process working conditions (RED system) of the RED units. 
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4. Illustrative example 

We illustrate the functionality of the RED process optimization 
model using the superstructure in Fig. 4, with four conditional 
industrial-scale RED stacks (relevant parameters in Table 3). An actual 
RED plant will probably house several hundred RED units, especially as 
regards economies-of-scale cost reduction. But we decide to stick to four 

RED units to provide an illustrative demonstration of the GDP model. 
The same logic applies to feeds volume; to represent a low-availability 
feed case, we set the volume of the HC and LC feeds roughly equal to 
the maximum inlet flowrate of the RED units (i.e., 
Qfso, rsi,sol ≅ QU

r,sol ∀ sol ∈ SOL). Later, in the Case Study, we assess the 
influence of the feeds availability on the optimal design of the RED 
process. The size and computational performance of the GDP model can 

(34)   
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be found in Section 6. For ease of representation, Fig. 5 shows a split 
view of the high salinity (top graph, a) and low salinity (bottom graph, 
b) units’ ports and all feasible streams of the RED process superstructure 
in Fig. 4. For the given high- and low-salinity feed streams’ properties (i. 
e., flow velocity, concentration, and temperature), and membranes cost 
in Table 5, and the given parameters (Tables 3 and 4), the solution of the 
GDP problem in Eqs. (1)–(34) provides the cost-optimal NPV topology, 
shown in Fig. 6, and decision variables that balance electricity produc-
tion and the increase in capital and operating expenses. Discrete de-
cisions involve the working RED units and the active water streams. 
Continuous decisions are the flowrate and concentration of the inlet 
streams and the electric current of each active RED stack. We set the 
volume of the HC and LC feeds roughly equal to the maximum inlet 
flowrate of the RED units (i.e., Qfso, rsi,sol ≅ QU

r,sol ∀ sol ∈ SOL). 
To assess the optimal solution to the GDP problem, we also estimate 

the working conditions (i.e., the concentration of the low-salinity inlet 
stream, the flowrate of the high and low-salinity inlet streams, and the 
electric current) that maximize the net power output of the stand-alone 
RED stack. 

The NPV-optimal solution, whose port representation is in Fig. 6, 
keeps three RED units working. The limited number of active RED units 
restricts the nominal capacity of the RED system (2.60 kW), as such, the 

capital and operational expenses outweigh the benefits from electricity 
sales resulting in an unprofitable design (negative NPV of $15,391, and 
LCOE of $194 MWh− 1 above electricity market price). Larger mem-
branes’ lifetimes, which it is acceptable given the mild working condi-
tions of the RED units, and economies of scale would bring clear cost 
reductions that would make the RED process profitable (Daniilidis et al., 
2014; Post et al., 2010). 

Regarding the working conditions of the optimal solution, the HC 
and LC flow velocity of the RED units declines below the estimated net- 
power-optimal value of the stand-alone RED stack (953 W) owing to 
pumps’ investment and electrical consumption costs. Lower velocity 
means longer residence time of the HC and LC streams in the RED unit 
compartments facilitating the ions’ transfer from the high salinity side to 
the low salinity one. Hence, to keep the concentration gradient for 
longer along channels, the LC inlet stream concentration of all RED units 
should be lower than the net-power optimal value (i.e., 40 mM). The 
limited high- and low-salinity feeds, however, constrain the inlet flow-
rate of the RED units and so the chances to reach the optimal LC inlet 
concentration. Hence, the recycled and reused LC streams from RED unit 
r3 increase the LC inlet stream concentration of all RED units above the 
optimal value (Fig. 6). 

The RED unit r3 works with a less saline LC inlet stream, a higher LC 

Fig. 8. Case Study. Port representation of the RED process superstructure with ten RED candidate units for scenarios #1 and #2. The top graph shows all feasible 
links between HC ports and the bottom graph between LC ports. The dark and light blue-colored arrows represent the RED units’ HC and LC recycled streams. Port 
notation: HC (high concentration ports), LC (low concentration ports), and RU (RED units’ ports). 
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flow, and a lower HC flow than the remainder active units such that the 
concentration of the LC inlet streams approaches the optimum once the 
r3’s outlet LC streams mix with the 4 mM LC feed (Fig. 6). The RPU’s 
source unit, rs, supplies a lower volume of HC than LC feed to the RED 
units, since higher flow velocities in LC than in HC compartments en-
hances the net power of the RED unit (Ortiz-Martínez et al., 2020; 
Tristán et al., 2020a). 

The polarization and power curves of the RED units (Fig. 7) vary 
according to the inlet streams’ flowrate and concentration, and so does 
the optimum working point. That is, the GDP model adjusts the electric 
current of each RED unit to peak its net power output except unit r3, 
whose electric current is reduced below the optimum to slow down the 
electromigration of ions across membranes. The reduced electro-
migrative transport thereby limits the LC stream concentration increase. 

5. Case study 

Once we have demonstrated the GDP model functionality in the 
illustrative example, we now apply the GDP optimization model to su-
perstructure in Fig. 8, with ten industrial-scale RED candidate units 
(with the same parameters as the illustrative example, Table 3) and two 
feed scenarios (see Table 5) to explore the influence of the feedstreams 
concentration and availability on the cost-optimal topology and oper-
ating conditions of the RED process. In the high-availability case 

(scenario #1), we set the flowrates of the HC and LC feeds equal to the 
RED unit’s maximum inlet flowrate times the number of candidate RED 
units in the superstructure (Qfso, rsi,sol ≅ Nr QU

r,sol ∀ sol ∈ SOL). In the 
low-availability case (scenario #2), the volume of the HC and LC feeds 
are nearly equal to the maximum inlet flowrate of the RED units 
(Qfso, rsi,sol ≅ QU

r,sol ∀ sol ∈ SOL). We discuss the model size and compu-
tational performance of the two cases of study in Section 6. As in the 
illustrative example, we compare the working conditions of each RED 
stack in the cost-optimal design with those that would maximize the net 
power of the stand-alone RED unit. To size the improvement in cost- 
competitiveness of the RED process, we also compare the optimal 
configuration in scenarios #1 and #2 with a series arrangement of the 
RED units without either recycling or reusing alternatives of the RED 
units’ outlet streams, and the same number of candidate units. To 
reproduce the series layout from our previous assessment (Tristán et al., 
2020b), we fix the net-power optimal concentration and flow velocities 
of the stand-alone RED unit to the inlet feedstreams of the series, the 
electric current of each RED unit is left as a decision variable and is 
adjusted to maximize the net power of the RED system. 

The GDP optimization model predicts the NPV-optimal flowsheet 
design from the representation of alternatives, whose port representa-
tion is in Fig. 8, for the given: (i) high- and low-salinity feed availability 
(i.e., ~100 and ~10 m3⋅h− 1) and (ii) low-salinity feed concentration (i. 
e., 40 and 4 mM NaCl) in scenarios #1 and #2. 

Fig. 9. Port representation of the optimal RED system design for feed scenario #1. The top graph shows the links between HC ports and the bottom graph between 
LC ports. 
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The cost-optimal flowsheet design in scenarios #1 (Fig. 9) and #2 
(Fig. 10) outperforms the conventional series arrangement (Table 6), 
albeit the feed conditions and the limited numbers of RED units in sce-
narios #1 and #2 render unprofitable RED process designs. Maximizing 
the total net power output requires larger disbursements that outweigh 
the meager profits from electricity sales, even if the feed conditions are 
more favorable than in scenario #2. 

Feed scenario #1 yields the RED process’ optimal design in Fig. 9. 
The larger feedstreams’ volume allows installing more RED units, and 
the 4 mM LC feed adds reuse and recycling alternatives to the decision 
space, enabling the active RED units to work closer to the optimal net 
power conditions of the stand-alone RED stack (Figs. 11 and 12). The 
increased number of RED units working in near-optimal conditions 
thereby enhances the RED system power rating to 9.35 kW. As a result, 
revenues almost break even the total cost of the RED process (i.e., the 
LCOE almost equals the electricity market price and the NPV gets closer 
to zero, see Table 6). 

The capital and operational costs of pumps cause the RED units’ HC 
and LC inlet flowrate (Fig. 12) to be lower than the one that would 
maximize the net power output of the RED stack. Hence, the RED unit 

would deplete the concentration gradient earlier unless the LC inlet 
stream concentration of all RED units is decreased below the net-power 
optimal value (i.e., below 40 mM) as the optimization model predicts; 
the recycled and reused low-salinity streams from RED units r1, r8, and 
r9 concentrate the LC inlet stream of all RED units to reach the optimal 
value (Figs. 9 and 12). The electric current of each RED unit maximizes 
the net power output according to the inlet flow and concentration 
(Fig. 11) as in the illustrative example. 

Feed scenario #2, shown in Fig. 10, yields an optimal flowsheet 
design with larger LCOE and lower NPV than scenario #1. The LC feed’s 
limited availability restricts, even more, the HC and LC inlet flowrate of 
the RED units for the sake of profitability. To maximize the NPV of the 
RED process, the number of active RED units should decrease from ten in 
scenario #1 to two, such that the RED units’ working conditions fit 
better to the adverse feed conditions. The 40 mM LC feed dwindles 
recycling and reuse alternatives that would improve the RED process 
power rating. A 4 mM rather than a 40 mM LC feed, as in the illustrative 
example, would enable adding a RED unit which results in a costlier but 
more productive RED system that offsets the TAC increase. The rise in 
the net power production from 1.78 to 2.60 kW would make the reve-
nues share of total annual costs increase from ~50% up to ~62%. 

Overall, these results illustrate how the GDP optimization model can 
assist the RED process conceptual design in determining the cost- 
optimal one out of a complex process configuration and working deci-
sion space. The reader must recall that the present study serves to 
illustrate the functionality of the GDP optimization model on the con-
ceptual design of the RED process rather than giving actual figures of the 
RED technology. The scale-up of the RED process’s nameplate capacity 
to the MW order with more candidate RED units and longer membranes’ 
lifetime would likely make the project profitable (Post et al., 2010). For 

Fig. 10. Port representation of the optimal RED system design for feed scenario #2. The top graph shows the links between HC ports and the bottom graph between 
LC ports. 

Table 6 
Case study optimal results: Techno-economic performance metrics of series 
layout, and scenarios #1 and #2.   

TNP (kW) LCOE($⋅MWh-1) NPV ($) 

Series 3.65 293 − 50,800 
Scenario #1 9.35 121 − 543 
Scenario #2 1.78 238 − 16,789 

TNP: Total Net Power; LCOE: Levelized Cost of Energy; NPV: Net Present Value. 
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instance, (Giacalone et al., 2019) estimated the LCOE of a large-scale 
RED plant recovering energy from several natural and anthropogenic 
SG sources. The authors assumed the high and low salinity feedwaters 
are equally split between a set of identical RED units arranged in par-
allel; the scarcer feed restricts the number of RED units that can be 
installed, and, accordingly, the nominal capacity of the RED plant. The 
RED plant sourced with SWRO brine (~1.2 M NaCl) and treated 
wastewater (17 mM NaCl)—akin to the Illustrative example and Case 
Study concentrations, but with far more feeds volume—would deliver 
two to three orders of magnitude more net power at a competitive cost. 
SGE-based technologies—yet in early development stages and, as such, 
costlier than other mature low-carbon power technologies—promise 
worthy benefits for society’s welfare and environment protection and 
conservation. Hence, it is important to note that actual investment de-
cisions must consider all these factors that LCOE and NPV, as they are 
defined, do not fully reflect. The GDP optimization model can incorpo-
rate sustainability criteria in the decision-making process through 
multi-objective optimization (MOO) coupled with life cycle assessment 
(LCA) principles (Guillén-Gosálbez et al., 2019; Kravanja and Čuček, 
2013). The solution of a MOO provides a set of Pareto points repre-
senting the optimal trade-off between the conflicting environmental, 
social, and economic objectives (Guillén-Gosálbez et al., 2019). Alter-
natively, the GPD model can be economically, environmentally and 
socially wise using a single-objective economic function where the social 

and environmental impacts from LCA are converted into equivalent 
monetary units (i.e., monetizing the LCA results) (Pieragostini et al., 
2012; Pizzol et al., 2015) 

6. Computational results 

Table 7 reports the GDP model sizes and solution times of the illus-
trative example with four candidate RED units, and the cases of study #1 
and #2 with ten candidate RED units; scenarios #1 and #2 have equal 
sizes but different solution times subject to the feed streams conditions. 
We code and solve the GDP model with Pyomo algebraic modeling 
language written in Python (Hart et al., 2017) and Pyomo.GDP modeling 
environment for logic-based modeling and optimization (Chen et al., 
2021a) on a machine running Windows 10 (x64) with 6 cores processor 
(Intel® Core™ i7–8700 CPU @3.2 GHz) and 16 GB of RAM. 

We apply the Global Logic-based Outer Approximation (GLOA) al-
gorithm (Chen et al., 2021a; Lee and Grossmann, 2001)—available in 
Pyomo.GDP through GDPopt solver—to solve the non-convex GDP 
problem (1)–(34). This strategy decomposes the solution to the GDP into 
reduced NLP subproblems and master MILP problems, to avoid “zero--
flow” numerical issues arising in nonlinear design problems when units 
or streams disappear. 

The MILP master problem is solved with CPLEX and the reduced NLP 
subproblems with the multistart heuristic algorithm MSNLP and 

Fig. 11. Case Study results: NPV-optimal working conditions of the active RED units for scenarios #1 and #2, and the working conditions that maximize the net 
power output of the stand-alone RED stack. EMF: Electromotive force (Nernst potential); E: Electric potential of the stack; I: Electric current of the stack; GP: Gross 
power; NP: Net power. 
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IPOPTH as local NLP solver. We access the solvers from GAMS 34.1.0 via 
the Pyomo-GAMS interface. 

Given the complexity of the NLP subproblems, the stopping criteria 
depend on the maximum number of iterations of the MSNLP solver. We 
set 500 gradient-based NLP solver calls from multiple starting points as 
it suffices to guarantee a near-optimal solution. The time limit for each 
run is set at 1 h (3600 CPU seconds). 

As expected, each RED unit added to the superstructure increases the 

size of the model and, as such, the time in solving the GDP problem (see 
Fig. 13). The most time-demanding steps are (set-covering) initial line-
arization of the GDP problem and solving the reduced NLP sub-
problems—together require almost 45% of the total solution time with 
four candidate RED units which scales up to ~80% with 20 RED units. 

7. Conclusions 

In this work, we propose a non-convex GDP model to systematically 
synthesize and optimize the RED process for salinity-gradient-based 
electricity production. We apply the GLOA algorithm to solve the GDP 
problem. The solution to the GDP problem provides the hydraulic to-
pology, i.e., number of active RED units and their hydraulic arrange-
ment, and operating conditions of each RED stack that maximize the 
NPV of the RED system. To illustrate the functionality of the GDP model, 
we defined an example with four conditional RED units. Then, we 
assessed two feedstreams’ scenarios in an up-scaled system with ten 
candidate RED units. We compared the cost-optimal design in the two 
feed scenarios with a net-power optimal series arrangement. Even 
though the limited number of RED units and feed conditions render the 
RED process uneconomic, the optimal solution to the GDP problem in 
both scenarios yields more profitable designs than the conventional 
series staging of the RED units where the net power output is maximized. 
Longer lifespan of membranes and up-scaling of the RED process 
nameplate capacity would make the RED process profitable. Besides, the 
objective function can be extended, or the optimization problem refor-
mulated into multi-objective optimization to value additional environ-
mental and societal true benefits of RED technology towards 
sustainability. Our results have shown that mathematical programming 
techniques based on GDP are an efficient and systematic decision- 
making approach over simulation alone to advance full-scale RED 

Fig. 12. Case Study results: NPV-optimal inlet linear velocity and molar concentration of the active RED units for scenarios #1 and #2, and the working conditions 
that maximize the net power output of the stand-alone RED stack. v: linear crossflow velocity within the RED unit’s channel; C: NaCl molar concentration of the RED 
unit’s inlet stream. 

Table 7 
GDP model size, solution time, and objective function value for the illustrative example and the cases of study.    

vars Bool cont cons (nl) disjtn CPU Time (s) NPV ($) 

Example  1226 8 1218 1298 (278) 4 35 − 15,348 
Case study #1 

#2 
3278 20 3258 3458 (686) 10 282 

328 
− 543 

− 16,789 

Headings: vars = variables, Bool = Boolean variables, cont = continuous variables, cons = constraints, nl = nonlinear constraints, disjtn = disjunctions. 

Fig. 13. Model size and solution time as a function of candidate RED units in 
the superstructure for the feed conditions of the illustrative example 
(see Table 5). 
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progress. The GDP model could be a valuable tool to assist RED field 
demonstration and deployment stages in real environments. 

The present work laid the groundwork for subsequent modeling 
improvements; given the complexity and non-convex nature of the RED 
stack model, we will explore the development of a surrogate model to 
improve the computational effort and robustness of the GDP model 
while preserving the accuracy of our rigorous RED stack model. We will 
also extend the superstructure of alternatives and decision space with 
more discrete and continuous decision variables concerning the RED 
stack design (e.g., the number of cell pairs, properties of spacers and 
membranes) and the RED system (e.g., adding auxiliary equipment as 
DC-AC inverters, pre-treatment of feed solutions). We will also consider 
environmental and social concerns by combining multi-objective opti-
mization and life cycle assessment methodological framework. Alter-
natively, monetization of the LCA results allows the integration of 
economic, environmental, and social criteria in the optimization 
process. 
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Ahmetović, E., Grossmann, I.E., 2011. Global superstructure optimization for the design 
of integrated process water networks. AIChE J. 57, 434–457. https://doi.org/ 
10.1002/aic.12276. 

Altıok, E., Kaya, T.Z., Othman, N.H., Kınalı, O., Kitada, S., Güler, E., Kabay, N., 2022. 
Investigations on the effects of operational parameters in reverse electrodialysis 
system for salinity gradient power generation using central composite design (CCD). 
Desalination 525, 115508. https://doi.org/10.1016/J.DESAL.2021.115508. 

Alvarez-Silva, O.A., Osorio, A.F., Winter, C., 2016. Practical global salinity gradient 
energy potential. Renew. Sustain. Energy Rev. 60, 1387–1395. https://doi.org/ 
10.1016/j.rser.2016.03.021. 

Butcher, J.C., 2016. Numerical Differential Equation Methods. Numerical Methods for 
Ordinary Differential Equations. John Wiley & Sons, Ltd, pp. 55–142. https://doi. 
org/10.1002/9781119121534.CH2. 

Cafaro, D.C., Grossmann, I.E., 2014. Alternate approximation of concave cost functions 
for process design and supply chain optimization problems. Comput. Chem. Eng. 60, 
376–380. https://doi.org/10.1016/J.COMPCHEMENG.2013.10.001. 

Chen, Q., Johnson, E.S., Bernal, D.E., Valentin, R., Kale, S., Bates, J., Siirola, J.D., 
Grossmann, I.E., 2021a. Pyomo.GDP: an ecosystem for logic based modeling and 
optimization development. Optim. Eng. 1–36. https://doi.org/10.1007/s11081-021- 
09601-7. 

Chen, Q., Liu, Y., Seastream, G., Siirola, J.D., Grossmann, I.E., 2021b. Pyosyn: a new 
framework for conceptual design modeling and optimization. Comput. Chem. Eng. 
107414 https://doi.org/10.1016/J.COMPCHEMENG.2021.107414. 

Ciofalo, M., La Cerva, M., Di Liberto, M., Gurreri, L., Cipollina, A., Micale, G., 2019. 
Optimization of net power density in reverse electrodialysis. Energy 181, 576–588. 
https://doi.org/10.1016/J.ENERGY.2019.05.183. 

Culcasi, A., Gurreri, L., Zaffora, A., Cosenza, A., Tamburini, A., Cipollina, A., Micale, G., 
2020. Ionic shortcut currents via manifolds in reverse electrodialysis stacks. 
Desalination 485, 114450. https://doi.org/10.1016/J.DESAL.2020.114450. 

Daniilidis, A., Herber, R., Vermaas, D.A., 2014. Upscale potential and financial feasibility 
of a reverse electrodialysis power plant. Appl. Energy 119, 257–265. https://doi. 
org/10.1016/j.apenergy.2013.12.066. 

Davis, S.J., Lewis, N.S., Shaner, M., Aggarwal, S., Arent, D., Azevedo, I.L., Benson, S.M., 
Bradley, T., Brouwer, J., Chiang, Y.M., Clack, C.T.M., Cohen, A., Doig, S., 
Edmonds, J., Fennell, P., Field, C.B., Hannegan, B., Hodge, B.M., Hoffert, M.I., 
Ingersoll, E., Jaramillo, P., Lackner, K.S., Mach, K.J., Mastrandrea, M., Ogden, J., 
Peterson, P.F., Sanchez, D.L., Sperling, D., Stagner, J., Trancik, J.E., Yang, C.J., 
Caldeira, K., 2018. Net-zero emissions energy systems. Science 360, eaas9793. 
https://doi.org/10.1126/SCIENCE.AAS9793, 80.  

Dong, F., Jin, D., Xu, S., Wu, X., Wang, P., Wu, D., Xi, R., 2022. Three-dimensional multi- 
physical simulation of a reverse electrodialysis stack with profiled membranes. 
Desalination 537, 115894. https://doi.org/10.1016/J.DESAL.2022.115894. 

Faghihi, P., Jalali, A., 2022. An artificial neural network-based optimization of reverse 
electrodialysis power generating cells using CFD and genetic algorithm. Int. J. 
Energy Res. 1–17. https://doi.org/10.1002/ER.8379. 

Fraser, N.M., Jewkes, E.M., 2012. Non-Standard Annuities and Gradients, in: Engineering 
Economics : Financial Decision Making for Engineers. Pearson Education Canada, 
Toronto, pp. 65–67. 

Giacalone, F., Papapetrou, M., Kosmadakis, G., Tamburini, A., Micale, G., Cipollina, A., 
2019. Application of reverse electrodialysis to site-specific types of saline solutions: a 
techno-economic assessment. Energy 181, 532–547. https://doi.org/10.1016/j. 
energy.2019.05.161. 
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