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Abstract We examine the band-gap structure of the spectrum of the Neumann problem for
the Laplace operator in a strip with periodic dense transversal perforation by identical holes
of a small diameter ε > 0. The periodicity cell itself contains a string of holes at a distance
O(ε) between them. Under assumptions on the symmetry of the holes, we derive and justify
asymptotic formulas for the endpoints of the spectral bands in the low-frequency range of
the spectrum as ε → 0. We demonstrate that, for ε small enough, some spectral gaps are
open. The position and size of the opened gaps depend on the strip width, the perforation
period, and certain integral characteristics of the holes. The asymptotic behavior of the
dispersion curves near the band edges is described by means of a ‘fast Floquet variable’ and
involves boundary layers in the vicinity of the perforation string of holes. The dependence
on the Floquet parameter of the model problem in the periodicity cell requires a serious
modification of the standard justification scheme in homogenization of spectral problems.
Some open questions and possible generalizations are listed.
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1 Introduction

In this section, we formulate the spectral problem under consideration, cf. Section 1.1, and provide
some background which relates it with a parametric family of homogenization problems, the so-
called model problem. In Section 1.3 we provide the structure of the paper while its framework
in the literature is in Section 1.2.
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a) b)

Figure 1: a) The perforated strip Πε. b) The periodicity cell ̟ε.

1.1 Formulation of the problem

Let
Π = {x = (x1, x2) ∈ R

2 : x1 ∈ R, x2 ∈ (0, H)} (1.1)

be an open strip of width H > 0 and let ω be a domain in the plane R2 which is bounded by a
smooth simple closed curve ∂ω and has the compact closure ω = ω ∪ ∂ω inside Π. Let ε = N−1

where N is a large natural number. We introduce the strip Πε, see Figure 1 a), obtained from Π
perforated by the family of holes

ωε(j, k) = {x : ε−1(x1 − j, x2 − εkH) ∈ ω}, j ∈ Z, k = 0, 1, . . . , N − 1, (1.2)

distributed periodically along line segments parallel to the ordinate x2-axis. Each hole is homo-
thetic to ω of ratio ε and translation of εω = ωε(0, 0). Namely,

Πε = Π \ Ωε where Ωε =
⋃

j∈Z

N−1⋃

k=0

ωε(j, k). (1.3)

The period of perforation along the abscissa x1-axis in the domain Πε is made equal to one by
rescaling, which also fixes the dimensionless width H > 0. The period along the x2-axis is εH
with ε≪ 1.

We consider the spectral Neumann problem

−∆xu
ε(x) = λεuε(x), x ∈ Πε, (1.4)

∂νu
ε(x) = 0, x ∈ ∂Πε, (1.5)

where ∂ν is the directional derivative along the outward normal while ∂ν = ±∂/∂x2 at the lateral
sides Υ± = {x : x1 ∈ R, x2 = (H ± H)/2} of the strip (1.1). The variational formulation of
the problem (1.4), (1.5) reads: to find a function uε in the Sobolev space H1(Πε), uε 6≡ 0, and a
number λε ∈ C such that the integral identity

(∇xu
ε,∇xv

ε)Πε = λε(uε, vε)Πε ∀vε ∈ H1(Πε) (1.6)

is valid, cf. [19]. Here, ∇x = grad, ∆x = ∇x · ∇x is the Laplace operator and ( , )Πε stands for the
natural scalar product in the Lebesgue space L2(Πε).

Since the bi-linear form on the left of (1.6) is positive, symmetric, and closed in H1(Πε),
problem (1.6) is associated with a positive self-adjoint operator Aε in the Hilbert space L2(Πε)
with the domain

D(Aε) = {uε ∈ H2(Πε) : (1.5) is verified}.
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Figure 2: The strip Ξ with two different possible geometries for the hole ω.

Clearly, the spectrum σ(Aε) belongs to the closed real positive semi-axis [0,+∞) = R+ ⊂ C.
Moreover, according to the Floquet–Bloch–Gelfand theory, see for instance [40, 42, 33, 18, 1], the
spectrum gets the band-gap structure

σ(Aε) =
⋃
p∈N

βεp , (1.7)

where the bands βεp are connected and compact sets in R+ = [0,+∞). The βεp are related to the
eigenvalues, cf. (2.9), of the model problem in the periodicity cell

̟ε = {x ∈ Πε : |x1| < 1/2}, (1.8)

see Figure 1 b), which itself constitutes a homogenization problem, cf. (2.2)–(2.5). The spectral
bands βεp and βεp+1 may intersect each other but can also be disjoint so that the spectral gap γεp
becomes open between them. Recall that an open spectral gap is recognized as a nontrivial open
interval in R+ which is free of the essential spectrum but has both endpoints in it. If βεp∩βεp+1 6= ∅,
then we say that the gap γεp is closed. In Figure 5 the open spectral gaps correspond with the
projections of the shaded bands on the ordinate axis.

The main goal of our paper is to show that, under certain restrictions on the width H and the
perforation shape, the problem (1.4), (1.5) can get at least one open gap in its spectrum. Also, we
aim to derive asymptotic formulas for the position and geometric characteristics of several bands
and gaps in the low-frequency range of the spectrum. It should be mentioned that the traditional
homogenization procedure in the problem (1.4), (1.5) does not help to detect open gaps. The
crucial role is played by the boundary layer phenomenon, cf. Section 3, while the width of the
gaps is expressed in terms of certain integral characteristics of the Neumann hole ω of unit size
in the strip Π with the periodicity conditions at its lateral sides, cf. (7.3), (7.7) and Remark 3.4.
At the same time, we construct explicitly only the main correction term in the asymptotics of
eigenvalues of the model problem in the periodicity cell and analyze different situations when this
term is not sufficient to conclude whether a concrete spectral gap is actually open or not (see
Section 8). Moreover, for a technical reason, cf. Section 4.5, and for simplification of asymptotic
structures, we make the assumption

ω = {ξ = (ξ1, ξ2) ∈ R
2 : (ξ1, H − ξ2) ∈ ω}. (1.9)

which means that the holes possess the mirror symmetry (see Figure 2). Also, for simplicity, we
assume that the boundary of ω is of class C∞.

1.2 State of art

The continuous spectrum in a cylindrical waveguides of different physical nature is always a ray
[λ†,+∞) so that, above the cutoff value λ† ≥ 0 wave processes surely occur. The spectrum of a
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periodic waveguide gets far complicated band-gap structure (1.7) and the spectral bands implying
passing zones for waves can be separated from each other by spectral gaps which do not permit
propagation of waves with the corresponding frequencies and, therefore, become stopping zones.
This phenomenon is used in different engineering devices, such as wave filters and wave dampers.

Within the Floquet–Bloch–Gelfand theory, see e.g. [8, 40, 42, 41, 18, 33, 12], mathematical
studies of spectra with the band-gap structures need to find out the eigenvalues of spectral el-
liptic boundary value problems which are posed in the periodicity cell and involve an additional
continuous parameter η ∈ [−π, π], the Floquet parameter or the Gelfand dual variable. It is a
very rare situation when such a problem admits explicit solutions while computational methods
become rather expensive to present the whole family of dispersion curves, projections of which
on the ordinate λ-axis involve the spectral bands. As usual, variational and asymptotic methods
help to prove or disprove the existence of open spectral gaps in a certain range of the spectrum
and to estimate their geometrical characteristics.

There are numerous publications in which open spectral gaps are detected due to high-contrast
of coefficients in differential operators or shape irregularities of the periodicity cells, see [15, 16,
45, 29, 5, 4, 3, 6] and [26, 34, 39, 35, 7] among others. Such singular perturbations often provide
disintegration of the periodicity cells in the limit and, as a result, the appearance of sufficiently
wide gaps in the low- and/or middle-frequency ranges of the spectrum. Both variational and
asymptotic methods have been employed in the cited papers to detect and describe those gaps.

Another way to open spectral gaps related to the splitting of band edges, is used in our paper.
In the case when two spectral bands of the limit problem, cf. Section 2.2, intersect but just touch
each other at a point, that is, there is a common edge of the bands, small perturbations of the
coefficients or of the boundary may lead to a separation of these bands and the opening of a
narrow gap between them, cf. Sections 6.1, 6.4, 7.1 and 7.2. This effect is well-known in the
physical literature, but its mathematical study using operators theory and spectral perturbation
methods started in [27, 10, 11, 31]. In this paper a new type of the singular perturbation of the
periodicity cell is analyzed by means of the homogenization technique and several ways to open
spectral gaps are highlighted.

Finally, let us mention that, from a geometrical viewpoint, [32] is the closest paper in the
literature. It addresses the Dirichlet perforation in a quantum waveguide. The asymptotic of the
spectrum of the equation (1.4), with the Dirichlet condition uε = 0 on ∂Πε is considered, finding
out the position and sizes of the spectral gaps and bands. However, the results differ very much
from those in this paper. Indeed, roughly speaking, the Dirichlet spectrum consists of small, of
order O(ε), spectral bands which are separated from each other by spectral gaps of width O(1). In
contrast, the Neumann spectrum here considered consists of long, of order O(1), bands which are
separated from each other by short spectral gaps of order O(ε), or even less. The latter makes the
asymptotic analysis much more complicated and delicate; in particular, it becomes multiscale in
several variables, not only in the geometrical ones, but also in the Floquet parameter. As outlined
above, the justification procedure also becomes much more complicated. For a link between the
model problem in the waveguide with Neumann or Dirichlet conditions, let us mention [14].

1.3 Architecture of the paper

In Section 2 we formulate the model spectral problem in the periodicity cell, b) in Figure 1, which
is itself a parametric spectral homogenization problem. We obtain the homogenized problem by
the classical homogenization theory in perforated media, see, e.g., [20], that is, a problem in the
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Figure 3: The dispersion curves of the limit problem in the cases H < 1/3, H = 1/
√
8 and

H = 1/2.

rectangular periodicity cell without perforations. We list explicit solutions of the homogenized
problem and we study the dispersion curves which form the trusses in Figures 3 and 4, while
we classify the truss nodes, namely, the crossing points of the dispersion curves. In Section 2.3,
we show the convergence result for the spectrum of the model problem towards that of the ho-
mogenized one as a consequence of another stronger one, which also allows a perturbation of the
Floquet-parameter.

In Section 3 we discuss the boundary layer phenomenon arising in the vicinity of the perfora-
tion. In particular, we examine several solutions of the Laplace equation in the unbounded strip
Π with the only hole ω, and we introduce the integral characteristics m1(Ξ), m2(Ξ) and m3(Ξ)
for the Neumann problem in the domain Ξ = Π \ ω (see Figure 2 and (3.1)) with the periodicity
conditions on the lateral sides, cf. the traditional harmonic polarization and virtual mass tensors
in the exterior domain R2 \ ω in [38].

In Section 4 we perform the preliminary formal asymptotic analysis for simple eigenvalues
using the method of matched asymptotic expansions, cf. [43, 41, 17, 21] for two scale asymptotic
expansions. In Section 5 we derive error estimates in the case of simple eigenvalues which will
help us to detect open gaps after a much more thorough analysis of multiple eigenvalues. The
perturbation of crossing dispersion curves require serious modifications of the standard asymptotic
procedures because we can no longer deal with a fixed Floquet parameter but we must investigate
the asymptotic behavior of the eigenvalues in a neighborhood of each truss node, i.e., with the
Floquet parameter in a certain short interval. Recalling an idea from paper [27], in Section 6 we
introduce a fast Floquet parameter to describe this behavior and detect, in different situations,
open spectral gaps of width O(ε), cf. Figure 5 a)–b), which appear due to splitting of the nodes
marked with ◦ and � in Figure 4. This involves the characterization of the projections of the
shaded rectangles on the ordinate axis in Figure 5, which represent the narrow gaps.

It should be noted that our detailed calculation in Section 5 demonstrates that the first cor-
rection term in the eigenvalue asymptotics is not able to assure the gap opening and we need to
discuss higher-order asymptotic terms. In fact, Section 6 is devoted to deriving the formal asymp-
totic analysis and its justification in the case where the eigenvalue under consideration is multiple
and therefore gives rise to a node of the dispersion curves in Figure 4 a)–b) for the homogenized
problem; in particular, we consider the nodes (η◦,Λ◦) = (0, 4π2) and (η�,Λ�) = (±π, π2). Provid-
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a) b) c)

Figure 4: The dispersion curves in the limit problem in the cases a) H ∈ (1/
√
8, 1/2), b) H ∈

(1/2, 1) but H 6= 1/
√
3 and c) H ∈ (1,+∞).

ing the error estimates for the whole range of the Floquet parameter adds the most complication
to the justification scheme (see Theorems 5.1, 6.1 and 6.3). The common procedure for deriving
error estimates in the homogenization theory does not support our conclusions of opening spec-
tral gaps (see Section 7) because the model problem in the periodicity cell ̟ε depends on the
Floquet parameter η ∈ [−π, π] and the eigenvalues (2.11) of the limit problem in ̟0 change their
multiplicity at the nodes. As usual, to provide appropriate error estimates, we use a well-known
result on almost eigenvalues and eigenfunctions from the spectral perturbation theory (see [44]
and Lemma 5.3). However, we need to construct different approximations for eigenfunctions in the
vicinity of the nodes and at a certain distance from them. This is performed in Sections 6.1 and
6.4. As a result, we find proper small bounds for asymptotic remainders that justify our formal
computations of the band edges and gap width. It turns out that these bounds are uniform in η
but in different regions.

As regards the spectral model problem, the somehow classical convergence of the spectrum
towards that of the homogenized problem is in Corollary 2.2. We obtain this result as a conse-
quence of a more general convergence result, cf. Theorem 2.1, which allows a certain perturbation
of the Floquet variable. This result is new in the literature of model problems for waveguides,
and shows somehow a strong stability of the model problem on the parameter η. It becomes
essential to control the number of eigenvalues below certain constants, cf. Propositions 2.3 and 2.4.
Theorem 5.1 provides some estimates which establish the closeness of eigenvalues depending on ε
and the first three dispersion curves. As a consequence, Corollary 5.2 gives a uniform bound for
the convergence rate of the first eigenvalue at a certain distance from the nodes. Theorems 6.1 and
6.3 involve a correcting term and improve convergence rates in a small neighborhood of the above
mentioned nodes (0, 4π2) and (±π, π2). Combining the results in Sections 5 and 6, in Section 7,
we determine the existence of opening gaps and their width depending on H , cf. Theorems 7.1
and 7.2. Finally, in Section 8, we provide some hints on open problems for other nodes in Figure 4
and other geometrical configurations, cf. Figures 13 and 14.
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2 The model problem in the periodicity cell

In this section, we introduce the spectral model problem and its limit problem, both of which
depend on the Floquet parameter η ∈ [−π, π], see Sections 2.1 and 2.2 respectively. In Section 2.3,
we show the spectral convergence as ε → 0, and its stability under a certain perturbation of the
parameter η. In particular, this proves useful for controlling the eigenvalue number of the model
problem below some bounds.

2.1 The FBG-transform and the quasi-periodicity conditions

The Floquet–Bloch–Gelfand transform (the FBG-transform in short), see [13, 40, 33, 42, 18],

uε(x) 7→ Uε(x; η) =
1√
2π

∑

p∈Z

e−ipηuε(x1 + p, x2) (2.1)

converts the problem (1.4), (1.5) in the infinite waveguide Πε into a boundary value problem in
the periodicity cell ̟ε defined by (1.8), cf. Figure 1 b).

This problem consists of the differential equation

−∆xU
ε(x; η) = Λε(η)Uε(x; η), x ∈ ̟ε, (2.2)

the quasi-periodicity conditions on the lateral walls

Uε
(1
2
, x2; η

)
= eiηUε

(
− 1

2
, x2; η

)
, x2 ∈ (0, H), (2.3)

∂Uε

∂x1

(1
2
, x2; η

)
= eiη

∂Uε

∂x1

(
− 1

2
, x2; η

)
, x2 ∈ (0, H), (2.4)

and the Neumann condition on the remaining part of the boundary of the periodicity cell (1.8)

∂νU
ε(x; η) = 0, x ∈ {x ∈ ∂̟ε : |x1| < 1/2}. (2.5)

Here, η ∈ [−π, π] is the Floquet parameter while Λε(η) and Uε(·; η), respectively, are the new
notations for the eigenvalues and eigenfunctions in the model problem. Notice that x ∈ Πε on the
left of (2.1) but x ∈ ̟ε on the right. Basic properties of the FBG-transform can be found in the
above-cited publications.

The variational statement of the problem (2.2)–(2.5) appeals to the integral identity [19]

(∇xU
ε,∇xV

ε)̟ε = Λε(Uε, V ε)̟ε ∀V ε ∈ H1,η
per(̟

ε), (2.6)

where H1,η
per(̟

ε) is the Sobolev space of functions satisfying the stable quasi-periodicity conditions
(2.3) and (2.4). In view of the compact embedding H1(̟ε) ⊂ L2(̟ε), the positive self-adjoint
operator Aε(η) in L2(̟ε) associated with the problem (2.6), cf. [9, Section 10.2], has a discrete
spectrum constituting the unbounded monotone sequence of eigenvalues

0 ≤ Λε1(η) ≤ Λε2(η) ≤ · · · ≤ Λεp(η) ≤ · · · → +∞, as p→ +∞, (2.7)
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Figure 5: The dispersion curves of the perturbed problem with the mirror symmetry of the hole
ω in the cases a) H ∈ (1/

√
8, 1/2), b) H ∈ (1/2, 1) but H 6= 1/

√
3 and c) H ∈ (1,+∞). Spectral

gaps are the projections of the shaded rectangles on the ordinate Λ-axis.

where their multiplicity is taken into account. Furthermore, the functions

[−π, π] ∋ η 7→ Λεp(η), p ∈ N, (2.8)

are continuous and 2π-periodic (see again any of the above-cited references). Hence, the sets in
(1.7)

βεp = {Λεp(η) : η ∈ [−π, π]} ⊂ R+ (2.9)

are closed, connected, and finite segments. Indeed, formulas (1.7) and (2.9) for the spectrum of
the operator Aε(η) and the boundary-value problem (1.4), (1.5) are well-known in the framework
of the Floquet–Bloch–Gelfand theory.

2.2 The limit problem and the limit dispersion curves

In Section 2.3 we will prove the relationship

Λεp(η) → Λ0
p(η) as ε→ +0 (2.10)

between entries of the sequence (2.7) and those of the sequence

0 ≤ Λ0
1(η) ≤ Λ0

2(η) ≤ · · · ≤ Λ0
p(η) ≤ · · · → +∞, as p→ +∞, (2.11)

which consists of eigenvalues of the limit problem in the rectangle

̟0 = {x : |x1| < 1/2, x2 ∈ (0, H)}

obtained from the periodicity cell (1.8) by filling all voids, cf. (3.2). Above, the convention of
repeated eigenvalues has been adopted, and the limit problem is also referred to as homogenized
problem. It involves the differential equation

−∆xU
0(x; η) = Λ0(η)U0(x; η), x ∈ ̟0, (2.12)
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a) b) c)

Figure 6: The hypothetical dispersion curves of the perturbed problem without the mirror sym-
metry of the hole ω in the cases a) H ∈ (1/

√
8, 1/2), b) H ∈ (1/2, 1) but H 6= 1/

√
3 and c)

H ∈ (1,+∞). Many more spectral gaps are opened than in Figure 5.

the Neumann conditions on the horizontal sides of the rectangle

∂U0

∂x2
(x1, 0; η) =

∂U0

∂x2
(x1, H ; η) = 0, x1 ∈

(
− 1

2
,
1

2

)
, (2.13)

and the quasi-periodicity conditions on its vertical sides, cf. (2.3) and (2.4),

U0
(1
2
, x2; η

)
= eiηU0

(
− 1

2
, x2; η

)
,

∂U0

∂x1

(1
2
, x2; η

)
= eiη

∂U0

∂x1

(
− 1

2
, x2; η

)
, x2 ∈ (0, H).

(2.14)

This problem has the following explicit eigenvalues and eigenfunctions

Λ0
jk(η) = (η + 2πj)2 + π2 k2

H2 ,
j ∈ Z, k ∈ N0 = N ∪ {0}.

U0
jk(x; η) = ei(η+2πj)x1 cos

(
πk x2

H

)
,

(2.15)

It should be mentioned that renumeration of the eigenvalues in (2.15) is needed to compose the
monotone sequence (2.11).

Graphs of several eigenvalues (2.15) of the problem (2.12)–(2.14), that is, the dispersion curves,
are drawn in Figure 4 a)–c), respectively, for the following cases:

a) H ∈
( 1√

8
,
1

2

)
b) H ∈

(1
2
, 1
)

c) H ∈ (1,+∞).

Figure 3 also displays dispersion curves of the limit problem in the cases H ∈ (0, 1/3), H = 1/
√
8

and H = 1/2, respectively. Figures 3 and 4 show the great variety of behaviors of the dispersion
curves and, consequently, the complexity to open spectral gaps depending on H .

As was mentioned in Section 1.2 and depicted in Figure 5, due to the perturbation by holes of
the periodicity cell, the dispersion curves for problem (2.2)–(2.5) may separate at the truss nodes
marked with the signs � and ◦ in Figure 4 (see Section 7).
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2.3 The convergence results

First, we obtain some estimates for the eigenvalues and provide an extension for eigenfunctions
over the whole ̟0 necessary to show the convergence. The constants appearing throughout the
section cm and Cm, are independent of both variables ε and η.

Let η ∈ [−π, π] be fixed and let Uε
m(·; η) ∈ H1,η

per(̟
ε) be an eigenfunction of the problem (2.6)

corresponding to the eigenvalue Λεm(η). The minimax principle assures the estimate

Λεm(η) ≤ cm for ε ∈ (0, εm] (2.16)

with some positive εm and cm. Indeed, we write

Λεm(η) = min
Eε

m⊂H1,η
per(̟ε)

max
V ∈Eε

m,V 6=0

(∇xV,∇xV )̟ε

(V, V )̟ε

,

where the minimum is computed over the set of subspaces Eε
m of H1,η

per(̟
ε) with dimension m. To

prove (2.16), we take a particular Eε
m that we construct as follows: we consider the eigenfunc-

tions corresponding to the m first eigenvalues of the mixed eigenvalue problem in the rectangle
(1/4, 1/2) × (0, H), with Neumann condition on the part of the boundary {1/2} × (0, H), and
Dirichlet condition on the rest of the boundary. We extend these eigenfunctions by zero for
x ∈ [0, 1/4] × (0, H), and by symmetry for x ∈ [−1/2, 0] × (0, H). Finally, multiplying these
eigenfunctions by eiηx1 gives Eε

m and the right hand side of (2.16) holds.

Let us construct an extension for the eigenfunctions to be uniformly bounded in H1(̟0). Being
normalized in L2(̟ε), on account of (2.16), the eigenfunctions of (2.6) satisfy

‖∇xU
ε
m;L

2(̟ε)‖2 = Λεm(η)‖Uε
m;L

2(̟ε)‖2 = Λεm(η) ≤ cm for ε ∈ (0, εm].

Therefore, we can extend Uε
m(·; η) over the holes (3.2) and obtain a function Û ε

m(·; η) ∈ H1,η
per(̟

0)
such that for ε ∈ (0, εm],

Û ε
m(x; η) = Uε

m(x; η) for x ∈ ̟ε and

‖Û ε
m(·; η);H1(̟0)‖ ≤ C‖Uε

m;H
1(̟ε)‖ ≤ Cm,

(2.17)

see, for example, Section I.4.2 in [37] for such an extension. In addition, from (2.17) and the
estimate

‖V ;L2(̟0 ∩ {|x1| < ε})‖2 ≤ Cε‖V ;H1(̟0)‖2 ∀V ∈ H1(̟0)

(see, e.g., Lemma 2.4 in [22]), they satisfy

‖Û ε
m(·; η);L2(̟0 \̟ε)‖2 ≤ cε‖Uε

m;H
1(̟ε)‖2 ≤ Cmε. (2.18)

Moreover, the following results state the spectral convergence for problem (2.6), as ε → 0.
As a matter of fact, Theorem 2.1 also shows the stability of the limit of the spectrum of the
perturbation problem (2.2)–(2.5) under any perturbation of the Floquet-parameter η.

Theorem 2.1. For each sequence {(εk, ηk)}∞k=1 such that εk → 0 and ηk → η̂ ∈ [−π, π] as
k → +∞, the eigenvalues Λεkm (ηk) of problem (2.2)–(2.5) when (ε, η) ≡ (εk, ηk) converge, as
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k → +∞, towards the eigenvalues of problem (2.12)–(2.14) for η ≡ η̂ and there is conservation of
the multiplicity. Namely, for each m = 1, 2, · · · , the convergence

Λεkm (ηk) → Λ0
m(η̂), as k → +∞,

holds, where Λ0
m(η̂) is the m-th eigenvalue in the sequence

0 ≤ Λ0
1(η̂) ≤ Λ0

2(η̂) ≤ · · · ≤ Λ0
m(η̂) ≤ · · · → +∞, as m→ +∞,

of eigenvalues of (2.12)–(2.14) for η ≡ η̂, which are counted according to their multiplicities. In

addition, we can extract a subsequence, still denoted by εk, such that the extension {Û εk
m }∞m=1

converge in L2(̟0), as εk → 0, towards the eigenfunctions of (2.12)–(2.14) for η ≡ η̂, which form
an orthonormal basis of L2(̟0).

Proof. For each εk and ηk, we write the integral equation satisfied by the eigenvalue Λεkm (ηk) and
corresponding eigenfunction U εk

m (·, ηk):

(∇xU
εk
m ,∇xV

εk)̟εk = Λεkm (ηk)(U
εk
m , V

εk)̟εk ∀V εk ∈ H1,ηk
per (̟

εk), (2.19)

Since the constants appearing (2.17) and (2.18) are independent of η ∈ [−π, π] and ε, the
estimates hold ε and η ranging in sequences of {εk}k and {ηk}k, in the statement of the theorem.

Thus, we use an extension of Uεk
m (·; η) over the holes (3.2) denoted by Û εk

m (·; η) ∈ H1,ηk
per (̟

0), which
satisfies

‖Û εk
m (·; ηk);H1(̟0)‖ ≤ Cm, and

‖Û εk
m (·; ηk);L2(̟0 \̟εk)‖2 ≤ Cmεk‖U εk

m (·; ηk);H1(̟εk)‖2 ≤ Cmεk;
(2.20)

for sufficiently small εk, with a constant Cm independent of εk and ηk.
In view of (2.16) and (2.20), for each fixed m ≥ 1 and for each subsequence of k, we can extract

a subsequence, still denoted by k, such that

Λεkm (ηk) → Λ̂
0

m, as k → +∞,

Û εk
m (·; ηk) → Û

0

m weakly in H1(̟0) and strongly in L2(̟0), as k → +∞,
(2.21)

for some real number Λ̂0
m ≥ 0 and some function Û0

m ∈ H1(̟0) which we determine below
depending on η̂.

We take a test function V ∈ C∞(̟0) verifying the periodicity condition at the lateral sides of
̟0 and consider V k = V eiηkx1 which satisfies the quasi-periodicity condition in (2.14) with η ≡ ηk.
For V εk ≡ V k, we rewrite the integral identity (2.19) in the form

(∇xÛ
εk
m ,∇xV

k)̟0−Λεkm (ηk)(Û
εk
m , V k)̟0 = (∇xÛ

εk
m ,∇xV

k)̟0\̟εk −Λεkm (η)(Û εk
m , V k)̟0\̟εk . (2.22)

According to (2.20) and (2.16), the modulo of the right-hand side of (2.22) does not exceed

(1 + cmεk)‖Û εk
m ;H1(̟0)‖ ‖V k;H1(̟0 \̟εk)‖ ≤ cm(V

k)mes2(̟
0 \̟εk)

≤ cmmaxx∈̟0(|V k(x)|, |∂x1V k(x)|, |∂x2V k(x)|)εk ≤ Cm(V )(1 + ηk)εk.

(2.23)

Thus, the right hand side of (2.22) converges towards zero as k → +∞. Let us analyze the left
hand side in further detail.
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In order to do this, let us consider the well-known change Ûεk
m (·; ηk) = V εk

m (·; ηk)eiηkx1 which
converts the Laplacian into the differential operator

−
( ∂

∂x1
+ iη

)( ∂

∂x1
+ iη

)
− ∂2

∂x22
,

while the ηk quasi-periodicity condition for Ûεk
m (·; ηk) becomes a periodicity condition for V εk

m (·; ηk).
Consequently, V εk

m (·; ηk) ∈ H1
per(̟

0) and since ηk → η̂ as k → +∞ (equivalently, εk → 0), we
also have the bound for V εk

m in H1
per(̟

0) which holds uniformly in ηk and εk, and a convergence
of V εk

m (by subsequences, still denoted by k) towards a function V 0
m ∈ H1

per(̟
0) holds in the weak

topology of H1(̟0). Let us show that

V 0
m = Û0

me
−iη̂x1 . (2.24)

To do this, it suffices to show

‖Ûεk
m (·; ηk)e−iηkx1 − Û0

me
−iη̂x1;L2(̟0)‖ → 0 as k → +∞,

and we check this by considering

‖Ûεk
m (·; ηk)e−iηkx1 − Û0

me
−iη̂x1;L2(̟0)‖

≤ ‖
(
Ûεk
m (·; ηk)− Û0

m

)
e−iηkx1 ;L2(̟0)‖+ ‖Û0

m

(
e−iηkx1 − e−iη̂x1

)
;L2(̟0)‖,

the convergence (2.21), the smoothness of the exponential function and the convergence of ηk.
Introducing the change V k = V eiηkx1 in (2.22), we write

(∇xÛ
εk
m ,∇x(V e

iηkx1))̟0 − Λεkm (ηk)(Û
εk
m , V eiηkx1)̟0

= (∇xÛ
εk
m ,∇x(V e

iη̂x1))̟0 + (∇xÛ
εk
m ,∇x(V (e

iηkx1 − eiη̂x1)))̟0

−Λεkm (ηk)(Û
εk
m , V eiη̂x1)̟0 − Λεkm (ηk)(Û

εk
m , V (eiηkx1 − eiη̂x1))̟0 .

(2.25)

Let us show
V eiηkx1 → V eiη̂x1 in H1(̟0) as k → +∞ (2.26)

and therefore, from (2.21), also the convergence

(∇xÛ
εk
m ,∇x(V (eiηkx1 − eiη̂x1)))̟0 − Λεkm (ηk)(Û

εk
m , V (eiηkx1 − eiη̂x1)))̟0

k→+∞−−−−−→ 0,

holds. Indeed, on account of the smoothness of V , we have

‖V (eiηkx1 − eiη̂x1);H1(̟0)‖2

≤ C(V )
(
‖eiηkx1 − eiη̂x1 ;L2(̟0)‖2 + ‖ηkeiηkx1 − η̂eiη̂x1;L2(̟0)‖2

)
k→+∞−−−−−→ 0,

for a certain positive constant C(V ), and this shows (2.26).
Then, taking limits in (2.25) as k → ∞, on account of (2.21), (2.23), (2.26) and (2.24), we

obtain the integral identity

(∇xÛ
0
m,∇x(V e

iη̂x1))̟0 − Λ̂
0

m(Û
0
m, V e

iη̂x1)̟0 = 0 ∀V ∈ C∞(̟0) ∩H1
per(̟

0),
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while, by a completion argument, we can write

(∇xÛ
0
m,∇x(V e

iη̂x1))̟0 − Λ̂
0

m(Û
0
m, V e

iη̂x1)̟0 = 0 ∀V ∈ H1
per(̟

0),

or equivalently,

(∇xÛ
0
m,∇xV )̟0 − Λ̂

0

m(Û
0
m, V )̟0 = 0 ∀V ∈ H1,η̂

per(̟
0). (2.27)

On account of (2.24), also Û0
m ∈ H1,η̂

per(̟
0) and, consequently, (2.27) is nothing but the weak

formulation of (2.12)–(2.14) for η ≡ η̂.
Furthermore,

1 = ‖Uεk
m (·, ηk);L2(̟εk)‖2 = ‖Û εk

m (·, ηk);L2(̟0)‖2 − ‖Û εk
m (·, ηk);L2(̟0 \̟εk)‖2

and taking limits as k → +∞, on account of (2.20) and (2.21), gives

‖Û0
m;L

2(̟0)‖2 = 1.

This, together with (2.27), identifies (Λ̂
0

m, Û
0
m) with an eigenpair of (2.12)–(2.14) when η ≡ η̂.

Therefore, we conclude that Λ̂0
m is an eigenvalue with the corresponding eigenfunction Û0

m of

the limit problem (2.12)–(2.14) when η ≡ η̂, and we get a dependence of Λ̂0
m on η̂, so we write

Λ̂0
m := Λ̂0

m(η̂).
Note that the extracted subsequences and limits may depend on m. However, using a diag-

onalization argument, for each sequence of k, we can extract another subsequence, still denoted
by k, but independent of m, such that (2.21) holds ∀m ∈ N. Then, by the construction, we have
obtained an increasing sequence

0 ≤ Λ̂0
1(η̂) ≤ Λ̂0

2(η̂) ≤ · · · ≤ Λ̂0
m(η̂) ≤ . . . . (2.28)

In what follows we prove that the sequence {Λ̂0
m(η̂)}∞m=1 converges towards infinity while the whole

sequence coincides with that in (2.11) when η ≡ η̂.
From the orthogonality of Uεk

m (·; ηk) in L2(̟εk), we write

(Û εk
m (·; ηk), Û εk

n (·; ηk))̟0 = (Û εk
m (·; ηk), Û εk

n (·; ηk))̟0\̟εk ∀m,n ∈ N, m 6= n

and use (2.20) to get the orthogonality of the eigenfunctions {Û0
m}∞m=1 in L2(̟0). This shows

that the sequence in (2.28) converges towards infinity as m→ ∞.
In order to show that with the above limits (2.28) we reach all the eigenvalues in the entry

(2.11) when η ≡ η̂, namely, that Λ0
m(η̂) = Λ̂0

m(η̂), it suffices to show that the set {Û0
m}∞m=1 forms a

basis of L2(̟0). Indeed, this is a classical process of contradiction (see, for instance, Section III.1
of [37] and Section III.9.1 of [2]). In this way, we have proved that (2.10) holds for any p ∈ N,

where {Λ̂0
p(η̂)}∞p=1 are the set of eigenvalues of (2.12)–(2.14) when η ≡ η̂ and the eigenfunctions

{Û0
p}∞p=1 form an orthonormal basis of L2(̟0). Consequently, the sequence (2.28) coincides with

(2.11), and the theorem is proved.

Corollary 2.2. For any η ∈ [−π, π], the eigenvalues Λεm(η) of problem (2.2)–(2.5) in the sequence
(2.7) converge, as ε → +0, towards the eigenvalues of problem (2.12)–(2.14) in the sequence (2.11)
and there is conservation of the multiplicity. In addition, for each sequence, we can extract a
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subsequence, still denoted by ε, such that the extensions {Û ε
m}∞m=1 converge in L2(̟0), as ε → 0,

towards the eigenfunctions of (2.12)–(2.14), which form an orthonormal basis of L2(̟0). Also,
for each eigenfunction U0

p of (2.12)–(2.14) associated with the eigenvalue Λ0
p(η) of multiplicity np,

Λ0
p(η) = Λ0

p+1(η) = · · · = Λ0
p+np−1(η) in (2.11), there is a linear combination Uε of eigenfunctions

corresponding to the eigenvalues Λεp(η), Λ
ε
p+1(η), . . . , Λ

ε
p+np−1(η) in (2.7), that converges towards

U0
p in L2(ω).

Proof. The first two assertions hold from Theorem 2.1 taking ηk ≡ η fixed for all k with minor
modifications. Moreover, the last result is obtained using the technique in Theorem III.1.7 in
[37].

In addition to the bounds (2.16), we state the following lower bounds for the first eigenvalues
of problem (2.6).

Proposition 2.3. Let H ∈ (0, 1). Let δ1 > 0 (and < π). Then, there exists a positive constant
ε1 = ε1(H, δ1) such that the entries Λε2(η) and Λε3(η) of the eigenvalue sequence (2.7) meet the
estimates

Λε2(η) > π2 +K1 for η ∈ I1 = [−π + δ1, π − δ1], ε < ε1, (2.29)

Λε3(η) > π2 +K2 for η ∈ [−π, π], ε < ε1, (2.30)

where

K1 = min

{
2πδ1,

π2(1−H2)

2H2

}
, K2 = min

{
2π2,

2π2(1−H2)

3H2

}
. (2.31)

Proof. We proceed by contradiction, denying (2.29). This implies that for any ε1 > 0 there exist
ε < ε1 and η ∈ I1 such that Λε2(η) ≤ π2 +K1. It is clear that we can take a sequence {εk}∞k=1 such
that εk → 0 as k → +∞, and an associated sequence {ηk}∞k=1 which is bounded from above and
from below, and satisfies

Λεk2 (ηk) ≤ π2 +K1. (2.32)

By subsequences, we can construct a sequence (still denoted by k) such that

(ηk, εk) → (η̂, 0) as k → +∞,

for certain η̂ ∈ I1. Let us show that this last assertion leads us to a contradiction.
According to Theorem 2.1, taking limits in (2.32), we get Λ0

2(η̂) ≤ π2 +K1. Since Λ0
2(η̂) can

only be (2π − |η̂|)2 or (π/H)2 + |η̂|2 with η̂ ∈ I1, we obtain

min

{
(π + δ1)

2,
π2

H2

}
≤ Λ0

2(η̂) ≤ π2 +K1,

and this contradicts the hypothesis on the chosen K1. Consequently, (2.29) is proved.
Analogously, we proceed by contradiction, denying (2.30). Thus, as in the proof of (2.29), there

exists η̂ ∈ [−π, π] such that Λ0
3(η̂) ≤ π2+K2. Since Λ0

3(η̂) can be only (2π+ |η̂|)2 or (π/H)2+ |η̂|2
(η̂ ∈ [−π, π]),

min

{
4π2,

π2

H2

}
≤ Λ0

3(η̂) ≤ π2 +K2,

and this contradicts the hypothesis on the chosen K2.
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Proposition 2.4. Let H ∈ (0, 1/2). Let δ3 > 0 (and < π). Then, there exists a positive constant
ε1 = ε1(H, δ3) such that the entries Λε3(η) and Λε4(η) of the eigenvalue sequence (2.7) meet the
estimates

Λε3(η) > 4π2 +K3 for η ∈ I3 = [−π,−δ3] ∪ [δ3, π], ε < ε1, (2.33)

Λε4(η) > 4π2 +K4 for η ∈ [−π, π], ε < ε1, (2.34)

where

K3 = min

{
4πδ3,

π2(1− 4H2)

H2

}
> 0, K4 = min

{
4π2,

π2(1− 4H2)

2H2

}
> 0. (2.35)

Proof. First we prove (2.33) with the same analysis as in Proposition 2.3. We proceed by contradic-
tion, denying (2.33). Thus, as in the proof of (2.29), there exists η̂ ∈ I3 such that Λ0

3(η̂) ≤ 4π2+K3.
Since H < 1/2, Λ0

3(η̂) can only be (2π + |η̂|)2 or (π/H)2 + |η̂|2 (η̂ ∈ I3). Therefore, we get

min

{
(2π + δ3)

2,
π2

H2
+ δ23

}
≤ Λ0

3(η̂) ≤ 4π2 +K3,

and this contradicts the hypothesis on the chosen K3.
Finally, we proceed by contradiction, denying (2.34). Thus, as in the proof of (2.29), there

exists η̂ ∈ [−π, π] such that Λ0
4(η̂) ≤ 4π2 +K4. Since H < 1/2, Λ0

4(η̂) can only be (4π − |η̂|)2 or
(π/H)2 + |η̂|2 for η̂ ∈ [−π, π]. Therefore, we get

min

{
9π2,

π2

H2

}
≤ Λ0

4(η̂) ≤ 4π2 +K4,

and this contradicts the hypothesis on the chosen K4.

3 The boundary layer phenomenon in the periodicity cell

The traditional results of the homogenization theory given in Corollary 2.2 do not help to conclude
on the splitting of band edges and in this section we examine special solutions of a boundary-value
problem in the strip Π with the only hole ω of unit size. Let us define

Ξ := Π \ ω . (3.1)

Although we apply these solutions under the symmetry assumption (1.9), we only use it in Sec-
tion 3.4; see Figure 2.

3.1 The problems in Ξ and their solvability

According to [32], near the perforation string

ωε(0, 0), . . . , ωε(0, N − 1) ⊂ ̟0 = {x : |x1| < 1/2, x2 ∈ (0, H)}, (3.2)

cf., (1.2), there appears a boundary layer which is described in the stretched coordinates

ξ = (ξ1, ξ2) = ε−1(x1, x2 − εkH) (3.3)
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by means of a family of special solutions to the Laplace equation

−∆ξW (ξ) = 0, ξ ∈ Ξ, (3.4)

or the Poisson equation
−∆ξW (ξ) = F (ξ), ξ ∈ Ξ, (3.5)

with the periodicity conditions

W (ξ1, H) =W (ξ1, 0),
∂W

∂ξ2
(ξ1, H) =

∂W

∂ξ2
(ξ1, 0), ξ1 ∈ R, (3.6)

and the Neumann condition on the boundary of the hole ω inside the strip (1.1), either homoge-
neous

∂ν(ξ)W (ξ) = 0, ξ ∈ ∂ω, (3.7)

or inhomogeneous
∂ν(ξ)W (ξ) = G(ξ), ξ ∈ ∂ω, (3.8)

with particular functions F (ξ) and G(ξ). Here, ν(ξ) = (ν1(ξ), ν2(ξ)) is the outward (with respect
to Ξ) normal vector on ∂ω and, therefore, the inward one with respect to ω.

Remark 3.1. The boundary condition (3.7) is directly inherited from the original condition (1.5)
on the boundary of the perforation string (3.2). For any Λε ≤ C, we have

∆x + Λε = ε−2(∆ξ + ε2Λε) with ε2Λε ≤ Cε2

and the main asymptotic part ∆ξ of the above differential operator is involved with the Laplace
equation (3.4). The periodicity conditions (3.6) have no relation to the original quasi-periodicity
conditions (2.3), (2.4) but are needed to support the standard asymptotic ansatz

Uε ≈ w(x2)W (ε−1x),

where w is a smooth function in x2 ∈ [0, H ] and W is a function H-periodic in ξ2 = ε−1x2.

We proceed with the variational formulation

(∇ξW,∇ξV )Ξ = (F, V )Ξ + (G, V )∂ω ∀V ∈ H1
per(Ξ) (3.9)

of the Poisson equation (3.5) with the periodicity (3.6) and boundary (3.8) conditions. Here,
H1
per(Ξ) is the completion of the linear space C∞

per(Ξ) (infinitely differentiable H-periodic in ξ2
functions with compact supports) in the norm

‖W ;H1
per(Ξ)‖ =

(
‖∇ξW ;L2(Ξ)‖2 + ‖W ;L2(Ξ(2R))‖2

)1/2
, (3.10)

where R is a fixed positive constant such that

ω ⊂ Ξ(R) := {ξ ∈ Ξ : |ξ1| < R}. (3.11)

Also, for convenience, we introduce here the cut-off functions, χ± ∈ C∞(R),

χ±(t) = 1 for ± t > 2R and χ±(t) = 0 for ± t < R, (3.12)

with a fixed R > 0 satisfying (3.11).
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Proposition 3.2. Let the functions on the right-hand sides of the problem (3.5), (3.6), (3.8) meet
the inclusions

(1 + ξ21)
1/2F ∈ L2(Ξ), G ∈ L2(∂ω) (3.13)

and the orthogonality condition
∫

Ξ

F (ξ)dξ +

∫

∂ω

G(ξ)dsξ = 0. (3.14)

Then the problem has a solution W ∈ H1
per(Ξ) which is defined up to an additive constant.

Proof. We consider the perturbed equation

−∆ξW (ξ) + µXR(ξ)W (ξ) = F (ξ), ξ ∈ Ξ, (3.15)

with the boundary conditions (3.6) and (3.8); here, µ > 0 is a parameter and XR is the charac-
teristic function of the truncated domain Ξ(2R), i.e. XR(ξ) = 1 for |ξ1| < 2R and XR(ξ) = 0 for
|ξ1| > 2R. The variational formulation of the problem (3.15), (3.8), (3.6) reads:

(∇ξW,∇ξV )Ξ + µ(W,V )Ξ(2R) = (F, V )Ξ + (G, V )∂ω ∀V ∈ H1
per(Ξ). (3.16)

In view of the one-dimensional Hardy inequality

+∞∫

R

∣∣∣ dZ
dξ1

(ξ1)
∣∣∣
2

dξ1 ≥
1

4

+∞∫

R

|Z(ξ1)|2
dξ1
ξ21

∀Z ∈ C∞
c (R,+∞),

applied to the functions Z(±ξ1, ξ2) = χ±(ξ1)W (ξ1, ξ2) with χ± defined by (3.12), and integrated
in ξ2 ∈ (0, H), the norm (3.10) is equivalent to the norm

(
‖∇ξW ;L2(Ξ)‖2 + ‖(1 + ξ21)

−1/2W ;L2(Ξ)‖2
)1/2

. (3.17)

Notice that the last Lebesgue norm in (3.10) is computed over a compact set while the weighted
Lebesgue norm in (3.17) involves the whole infinite domain Ξ.

It is self evident that the left-hand side of the integral identity (3.16) with µ > 0 can be taken
as a scalar product in the Hilbert space H1

per(Ξ). Hence, according to the equivalency of the
norms (3.10) and (3.17), and, owing to (3.13), the right-hand side of (3.16) defines a continuous
functional in H1

per(Ξ). Thus, the Riesz representation theorem assures that the problem (3.16)
with µ > 0 has a unique solution W ∈ H1

per(Ξ) in the case (3.13).
According to the above mentioned equivalence of norms, considering the space H1

per(Ξ) with
the norm (3.17), and the fact that the embedding H1

per(Ξ) ⊂ L2(Ξ(2R)) is compact, for any fixed
µ, the spectral problem associated to (3.16)

(∇ξW,∇ξV )Ξ + µ(W,V )Ξ(2R) = ν(W,V )Ξ(2R) ∀V ∈ H1
per(Ξ), (3.18)

has a discrete spectrum with the corresponding eigenfunctions being orthogonal both in H1
per(Ξ)

and L2(Ξ(2R)). In addition, ν = µ is an eigenvalue of (3.18) with the associated eigenspace
of the constant functions C. Thus, considering the decomposition H1

per(Ξ) = C
⊕

C
⊥ with C

⊥

the subspace formed by the elements of H1
per(Ξ) which are orthogonal to the constants, by the

Fredholm alternative, problem (3.9) has a unique solution in C
⊥ provided that the functional

on the right hand side of (3.9) is in the dual space (C⊥)∗, namely, provided that it satisfies the
orthogonality condition (3.14). This concludes the proof of the proposition.
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3.2 Integral characteristics

First of all, we recall that, according to the general theory of elliptic problems in domains with
cylindrical outlets to infinity, see [33, Ch. 5] and [24, Section 3, 5], the homogeneous problem
(3.4), (3.6), (3.7) has just two1 linearly independent solutions with the polynomial behavior at
infinity. It is evident that the first solution is a constant, and we set

W 0(ξ) = 1. (3.19)

Let us seek the second solution to the problem (3.4), (3.6), (3.7) in the form

W 1(ξ) = ξ1 +W 1
0 (ξ)+C (3.20)

where C is a certain constant, cf. (3.25), and W 1
0 ∈ H1

per(Ξ) satisfies the Laplace equation (3.4),
the periodicity conditions (3.6) and the inhomogeneous Neumann condition

∂ν(ξ)W
1
0 (ξ) = −∂ν(ξ)ξ1 = −ν1(ξ), ξ ∈ ∂ω. (3.21)

Proposition 3.3. There is a unique solution of problem (3.4), (3.6), (3.7) with the decomposition

W 1(ξ) =
∑

±

χ±(ξ1)(ξ1 ±m1(Ξ)) + W̃ 1(ξ) (3.22)

where χ± is defined by (3.11)–(3.12), m1(Ξ) is a constant, and the remainder W̃ 1(ξ) and its
derivatives get the exponential decay O(e−2π|ξ1|/H) as ξ1 → ±∞. The quantity m1(Ξ) in (3.22) is
given by

m1(Ξ) =
1

2H

(
‖∇ξW

1
0 ;L

2(Ξ)‖2 + |ω|
)
> 0, (3.23)

where |ω| = mes2 ω and W 1
0 is a solution of (3.4), (3.6) and (3.21) in the space H1

per(Ξ). In
addition, any solution of the problem (3.4), (3.6), (3.7) with polynomial growth at infinity is a
linear combination c0W

0 + c1W
1 with some coefficients c0, c1.

Proof. In the case F = 0 and G(ξ) = −∂νξ1 the equality (3.14) is evidently fulfilled and, thus,
the problem (3.4), (3.6), (3.21) in its variational form (3.9) has a solution W 1

0 ∈ H1
per(Ξ) which

is uniquely defined up to an additive constant. Since the boundary ∂ω is smooth, this solution is
infinitely differentiable in Ξ and the Fourier method, in particular, gives the decomposition

W 1
0 (ξ) =

∑
±

χ±(ξ1)C± + W̃ 1
0 (ξ) (3.24)

with the exponentially decaying remainder W̃ 1
0 , and some constants C± which can also depend on

R, cf. (3.11). Setting

C = −1

2
(C+ + C−), (3.25)

12 = 1

2
(2 × 2) where the last 2 is the number of outlets to infinity in the domain Ξ and the next to the last

2 is the number of linearly independent, H-periodic in ξ2 and polynomial in ξ1, harmonics in the intact strip Π,
namely 1 and ξ1 in our case. This mnemonic rule works for many other problems in domains with cylindrical and
periodic outlets to infinity, see the review paper [24, Section 3, 5].
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the function W 1(ξ) = ξ1 +W 1
0 (ξ) + C becomes the desired solution (3.20) of the problem (3.4),

(3.6), (3.7) admitting the representation (3.22) with m1(Ξ) =
1
2
(C+ − C−).

To prove the relation (3.23), we apply the Green formula twice and write

−
∫

∂ω

(ξ1 +W 1
0 (ξ))∂ν(ξ)ξ1dsξ = −

∫

∂ω

ξ1∂ν(ξ)ξ1dsξ +

∫

∂ω

W 1
0 (ξ)∂ν(ξ)W

1
0 (ξ)dsξ

=

∫

ω

|∇ξξ1|2dξ + ‖∇ξW
1
0 ;L

2(Ξ)‖2 = |ω|+ ‖∇ξW
1
0 ;L

2(Ξ)‖2,

where we have used equalities (3.21) and (3.9). Similarly, we write

∫

∂ω

(ξ1 +W 1
0 (ξ))∂ν(ξ)ξ1dsξ =

∫

∂ω

(
(ξ1 +W 1

0 (ξ))∂ν(ξ)ξ1 − ξ1∂ν(ξ)(ξ1 +W 1
0 (ξ))

)
dsξ

= lim
T→+∞

∑

±

∓
H∫

0

(
(ξ1 +W 1

0 (ξ))
∂ξ1
∂ξ1

− ξ1
∂

∂ξ1
(ξ1 +W 1

0 (ξ))
)∣∣∣∣
ξ1=±T

dξ2

= lim
T→+∞

∑

±

∓
H∫

0

W 1
0 (±T, ξ2)dξ2 = −2Hm1(Ξ),

and the relationship (3.23) follows immediately.

Remark 3.4. The quantity (3.23) is an integral characteristics of the Neumann hole ω in the
strip Π of width H with the periodicity conditions at the lateral sides. This characteristics looks
quite similar to the classical virtual mass tensor in the exterior Neumann problem, although it is
a scalar, cf., [38, Appendix G]. For any set ω of the positive area mes2 ω, we have m1(Ξ) > 0. At
the same time, in the case of a crack Υ = ω along the ξ1-axis we observe that ∂ν(ξ)ξ1 = 0 on ∂ω,
W 1

0 (ξ) = C1
0 and mes2Υ = 0, therefore, m1(Π \Υ) = 0. However, the smoothness assumption on

the boundary in Section 1.1 excludes cracks from our present consideration.

3.3 Other special solutions

It proves necessary to introduce here two solutions of boundary value problems in Ξ. First, let us
introduce W 2 a solution of the problem (3.4), (3.6) and the inhomogeneous Neumann condition
(3.21) with the replacement 1 7→ 2, namely

∂ν(ξ)W
2(ξ) = −∂ν(ξ)ξ2 = −ν2(ξ), ξ ∈ ∂ω. (3.26)

The compatibility condition (3.14) is again fulfilled so that the problem (3.4), (3.6), (3.26) has
a bounded solution which is uniquely defined up to an additive constant and, therefore, is fixed
uniquely in the form

W 2(ξ) =
∑

±

±χ±(ξ1)m2(Ξ) + W̃ 2(ξ) (3.27)

where m2(Ξ) is a constant, and the remainder W̃ 2(ξ) and its derivatives get the exponential decay
as ξ1 → ±∞.
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In contrast to the quantity (3.23) the coefficient m2(Ξ) in (3.27) can get arbitrary sign (see
Section 3.4). Notice that the following integral representation is valid, cf. (3.20) and (3.21):
∫

∂ω

W 1(ξ)∂ν(ξ)ξ2 dsξ =

∫

∂ω

(
W 2(ξ)∂ν(ξ)W

1(ξ)−W 1(ξ)∂ν(ξ)W
2(ξ)

)
dsξ

= lim
T→+∞

∑

∓

∓
H∫

0

(
W 2(±T, ξ2)

∂W 1

∂ξ1
(±T, ξ2)−W 1(±T, ξ2)

∂W 2

∂ξ1
(±T, ξ2)

)
dξ2 = −2Hm2(Ξ).

(3.28)

Finally, we introduce a solution W 3 to the Poisson equation

−∆ξW
3(ξ) = 1, ξ ∈ Ξ, (3.29)

with the boundary conditions (3.6), (3.7) which can be found in the form

W 3(ξ) = −1

2
ξ21 +

∑

±

±χ±(ξ1)

( |ω|
2H

ξ1 +m3(Ξ)

)
+ W̃ 3(ξ) (3.30)

where m3(Ξ) is a constant, and the remainder W̃ 3(ξ) and its derivatives get the exponential decay
as ξ1 → ±∞. To show this, we accept the representation W 3(ξ) = W 3

0 (ξ)− ξ21/2 and observe that
W 3

0 is a solution of the problem (3.4), (3.6) with the Neumann condition

∂ν(ξ)W
3
0 (ξ) = ν1(ξ)ξ1, ξ ∈ ∂ω.

Thus, the argument in the proof of Proposition 3.3 to get W 1
0 and W 1 (cf. (3.20)) gives us a

solution with the linear growth as ξ1 → ±∞, and we can provide the decomposition

W 3
0 (ξ) =

∑

±

±χ±(ξ1)
(
C3

1ξ1 + C3
0(ω)

)
+ W̃ 3(ξ),

for certain coefficients C3
1 and C3

0(ω).
To compute the coefficient C3

1 , we apply the Green formula twice as follows:

−|ω| =
∫

∂ω

1

2

∂

∂ν(ξ)
ξ21dsξ =

∫

∂ω

∂ν(ξ)W
3
0 (ξ)dsξ = lim

T→+∞

∑

±

∓
H∫

0

∂

∂ξ1
W 3

0 (±T, ξ2)dξ2 = −2HC3
1 .

In contrast to C3
1 , the coefficient C3

0 depends on the shape of ω but we will not use it in the sequel,
and we avoid introducing here its computation.

3.4 The symmetry assumption and its consequences

As pointed out in Section 1.1 we can describe the band-gap structure of the low-frequency range
of the spectrum (1.7) only in the case of the mirror symmetry of the hole. Therefore, we will
justify the derived asymptotics under the supposition (1.9), cf. Section 4. First of all, we realize
that

m2(Ξ) = 0, (3.31)

so that all asymptotic expansions will simplify. This is a consequence of the fact that the boundary
layer terms have the following important properties.

20



Lemma 3.5. Under the assumption (1.9), the functions W 1, W 3 and W 2, respectively, are even
and odd in the variable ξ2 −H/2 and, hence,

∂W j

∂ξ2
(ξ1, 0) =

∂W j

∂ξ2
(ξ1, H) = 0, ξ1 ∈ R, j = 1, 3,

W 2(ξ1, 0) = W 2(ξ1, H) = 0, ξ1 ∈ R.

(3.32)

The results in Lemma 3.5 are a consequence of the definition of functions W i, i = 1, 2, 3, and
the uniqueness of the solutions of the problems that they satisfy in the way stated throughout the
section. Equation (3.31) follows from the evenness of W 1 and formula (3.28).

4 Formal asymptotic analysis of simple eigenvalues

In this section, by means of matched asymptotic expansions, we construct a corrector improving
the first approximation (2.10). In particular, we provide the complete analysis of the first cor-
rection term of the eigenpairs of (2.2)–(2.5) in the case where the limit eigenvalue is simple (see
Remark 4.1 for multiple eigenvalues). The asymptotic structures here constructed will give us a
reason to introduce the symmetry assumption (1.9), see Section 4.5 and Remark 4.2.

4.1 Asymptotic ansätze

Let us fix the Floquet parameter η ∈ [−π, π] such that the eigenvalue Λ0
p(η) of the problem (2.12)–

(2.14) is simple. In other words, only one dispersion curve crosses the point (η,Λ0
p(η)). Let us fix

U0
p (·; η) a corresponding eigenfunction (see (4.24)). We employ the method of matched asymptotic

expansions, see e.g. [36, 21], in the interpretation [28, 30], to obtain corrector terms for Λ0
p(η) and

U0
p (·; η).
Let us accept the simplest asymptotic ansätze

Λεp(η) = Λ0
p(η) + εΛ′

p(η) + ε2Λ′′
p(η) + . . . , (4.1)

Uε
p (x; η) = U0

p (x; η) + εU ′
p(x; η) + ε2U ′′

p (x; η) + . . . , (4.2)

We regard (4.2) as the outer expansion, which fits in ̟0\ ς at a distance from the vertical mid-line
ς = {x : x1 = 0, x2 ∈ (0, H)}. We have excluded the line segment ς in the equation (4.2) because
of the perforation string (3.2) which provokes the boundary layer phenomenon. Here, and in what
follows, dots stand for higher-order terms which are inessential in our formal asymptotic analysis.

Note that, although we will not determine the second order terms Λ′′
p(η) and U ′′

p (x; η), they
are involved with the asymptotic procedure. Also, we emphasize that the main term U0

p in (4.2)
is a smooth function in ̟0 but the correction terms may present jumps through ς.

Inserting these ansätze into the equations (2.2)–(2.5) and extracting terms of order ε readily
yield the following restrictions for the first order terms Λ′

p(η) and U
′
p(x; η): the differential equation

−∆xU
′
p(x; η)− Λ0

p(η)U
′
p(x; η) = Λ′

p(η)U
0
p (x; η), x ∈ ̟0 \ ς, (4.3)

the quasi-periodicity conditions (2.14) at the vertical sides, the Neumann conditions on the punc-
tured horizontal sides

∂U ′
p

∂x2
(x1, 0; η) =

∂U ′
p

∂x2
(x1, H ; η) = 0, x1 ∈

(
− 1

2
, 0
)
∪
(
0,

1

2

)
, (4.4)
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and some transmission conditions on ς that we determine by the matching procedure (cf. (4.12)
and (4.23)). This is the aim of Section 4.2 and 4.3 below, while Λ′

p(η) is determined in Section 4.4.
In order to do this, we introduce the inner expansion

Uε
p (x; η) = w0

p(x2; η) + εw′
p(ξ, x2; η) + ε2w′′

p(ξ, x2; η) + . . . , (4.5)

where we have assumed that the main term w0
p is constant in ξ, cf. (3.3), while the functions arising

in further terms, w′
p and w′′

p , depend on ξ and satisfy a periodicity condition in the ξ2-direction,
namely, conditions (3.6).

4.2 The first transmission condition

The Taylor formula implies

U0
p (x; η) + εU ′

p(x; η) + ε2U ′′
p (x; η) = U0

p (0, x2; η) + ε
(
U ′
p(±0, x2; η) + ξ1

∂U0
p

∂x1
(0, x2; η)

)

+ ε2
(
U ′′
p (±0, x2; η) + ξ1

∂U ′
p

∂x1
(±0, x2; η) +

ξ21
2

∂2U0
p

∂x21
(0, x2; η)

)
+ . . . . (4.6)

Hence, comparing terms of order 1 in (4.5) and (4.6) leads us to the formula

w0
p(x2; η) = U0

p (0, x2; η). (4.7)

In addition, taking derivatives with respect to ξ in equations (2.2) and (2.5), inserting (4.5)
in (2.2) and (2.5), and extracting the terms of order ε, we obtain that the first order term in
the inner expansion (4.5) satisfies the equation (3.4), with periodicity conditions (3.6) and the
inhomogeneous Neumann condition

∂ν(ξ)w
′
p(ξ, x2; η) = −

∂U0
p

∂x2
(0, x2; η)∂ν(ξ)ξ2, ξ ∈ ∂ω, (4.8)

which takes into account the discrepancy in (3.7) of the main term (4.7) due to its dependence on
the slow variable x2. Indeed, we have used the formula for the directional derivative:

∂V

∂ν(x)
(ξ, x2) =

1

ε

∂V

∂ν(ξ)
(ξ, x2) + ν2(ξ)

∂V

∂x2
(ξ, x2).

Furthermore, the matching of the outer and inner expansions at the first order prescribes the
following behavior at infinity for w′

p

w′
p(ξ, x2; η) ∼ ξ1

∂U0
p

∂x1
(0, x2; η) + U ′

p(±0, x2; η) as ξ1 → ±∞, (4.9)

cf. (4.7) and the factor of ε on the right-hand side of (4.6).
The solution of the problem (3.4), (3.6), (4.8), (4.9) is nothing but a linear combination

w′
p(ξ, x2; η) =

∂U0
p

∂x1
(0, x2; η)W

1(ξ) +
∂U0

p

∂x2
(0, x2; η)W

2(ξ) + C ′
p(x2; η)W

0 (4.10)
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of the solutions of the problems on Ξ introduced in Section 3.2 and 3.3, see (3.1), where the
factor C ′

p(x2; η) is related to (4.9), not determined yet. However, it does not influence our further
analysis.

Using the decompositions (3.22), (3.27) and recalling (3.19), we find the following expressions
in (4.9):

U ′
p(±0, x2; η) = ±

(∂U0
p

∂x1
(0, x2; η)m1(Ξ) +

∂U0
p

∂x2
(0, x2; η)m2(Ξ)

)
+C ′

p(x2; η). (4.11)

Although the traces (4.11) are not yet fixed, we compute the jump of U ′
p through ς,

[U ′
p]0(x2; η) = U ′

p(+0, x2; η)− U ′
p(−0, x2; η),

that is,

[U ′
p]0(x2; η) = 2

∂U0
p

∂x1
(0, x2; η)m1(Ξ) + 2

∂U0
p

∂x2
(0, x2; η)m2(Ξ), x2 ∈ (0, H). (4.12)

4.3 The second transmission condition

To proceed, we have to deal with the third term of the inner expansion (4.5) which after inserting
into the problem (2.2)–(2.5) and extracting terms of order ε2 leads to the problem

−∆ξw
′′
p(ξ, x2; η) = f ′′

p (ξ, x2; η), ξ ∈ Ξ,

∂ν(ξ)w
′′
p(ξ, x2; η) = g′′p(ξ, x2; η), ξ ∈ ∂ω,

(4.13)

with the periodicity conditions (3.6). According to (4.7), (2.12) and (4.10), the right-hand sides
of (4.13) are given by

f ′′
p (ξ, x2; η) = ∆xw

0
p(ξ, x2; η) + Λ0

p(η)w
0
p(ξ, x2; η) + 2

∂2w′
p

∂x2∂ξ2
(ξ, x2; η)

= −
∂2U0

p

∂x21
(0, x2; η) + 2

∂2U0
p

∂x1∂x2
(0, x2; η)

∂W 1

∂ξ2
(ξ) + 2

∂2U0
p

∂x22
(0, x2; η)

∂W 2

∂ξ2
(ξ),

(4.14)

g′′p(ξ, x2; η) = −ν2(ξ)
∂w′

p

∂x2
(ξ, x2; η)

= −ν2(ξ)
∂2U0

p

∂x1∂x2
(0, x2; η)W

1(ξ)− ν2(ξ)
∂2U0

p

∂x22
(0, x2; η)W

2(ξ)− ν2(ξ)
∂C ′

p

∂x2
(x2; η).

Furthermore, the matching procedure and the Taylor formula (4.6), up to the order ε2, establish
the following behavior at infinity:

w′′
p(ξ, x2;η) ∼

ξ21
2

∂2U0
p

∂x21
(0, x2;η) + ξ1

∂U ′
p

∂x1
(±0, x2;η) + U ′′

p (±0, x2;η) as ξ1 → ±∞. (4.15)

We observe that, owing to (3.22) and (3.27), the derivatives ∂W q/∂ξ2 decay exponentially at
infinity while the first term on the right-hand side (4.14) is constant in ξ. Thus, a solution of the
problem (4.13), (3.6), (4.15) admits the quadratic growth as ξ1 → ±∞, and we set

w′′
p(ξ, x2; η) = −

∂2U0
p

∂x21
(0, x2; η)W

3(ξ) + ŵ ′′
p (ξ, x2; η), (4.16)
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where W 3 is given by (3.30). The remaining part ŵ ′′
p verifies the problem

−∆ξŵ
′′
p (ξ, x2; η) = f̂ ′′

p (ξ, x2; η), ξ ∈ Ξ,

∂ν(ξ)ŵ
′′
p (ξ, x2; η) = g′′p(ξ, x2; η), ξ ∈ ∂ω,

(4.17)

with the periodicity condition (3.6), where

f̂ ′′
p (ξ, x2; η) = f ′′

p (ξ, x2; η) +
∂2U0

p

∂x21
(0, x2; η) ∈ L2(Ξ),

and gets an exponential decay at infinity. A solution of such a problem exists in the form

ŵ ′′
p (ξ, x2; η) =

∑

±

±χ±(ξ1)(Ĉ1(x2; η)ξ1 + Ĉ0(x2; η)) + w̃ ′′
p (ξ, x2; η) (4.18)

for certain coefficients Ĉ0 and Ĉ1, and a remainder w̃ ′′
p which gets the exponential decay as

ξ1 → ±∞. To derive the second transmission condition for U ′
p arising in (4.3), it suffices to

compute the coefficient Ĉ1 because the other coefficient Ĉ0 proves to be of no further use.
Indeed, by applying the Green formula in (4.17), we readily obtain

∫

Ξ

f̂ ′′
p (ξ, x2; η)dξ +

∫

∂ω

g′′p(ξ, x2; η)dsξ = − lim
T→+∞

∑

±

±
H∫

0

∂ŵ ′′
p

∂ξ1
(±T, ξ2, x2; η)dξ2 = −2HĈ1(x2; η).

(4.19)
Let us to process the left-hand side. First, we take V = ξ2 and W =W q with q = 1, 2 in formula
(3.9), and we get

∫

Ξ

∂W q

∂ξ2
(ξ, x2)dξ −

∫

∂ω

ν2(ξ)W
q(ξ, x2)dsξ = 0, q = 1, 2.

Using these formulas in the definitions of f̂ ′′
p and g′′p , we have

∫

Ξ

f̂ ′′
p (ξ, x2; η)dξ +

∫

∂ω

g′′p(ξ, x2; η)dsξ =
∂2U0

p

∂x1∂x2
(0, x2; η)

∫

∂ω

ν2(ξ)W
1(ξ)dsξ

+
∂2U0

p

∂x22
(0, x2; η)

∫

∂ω

ν2(ξ)W
2(ξ)dsξ −

∂C ′
p

∂x2
(x2; η)

∫

∂ω

ν2(ξ)dsξ.

Now, let us note that by the Green formula it follows
∫

∂ω

ν2(ξ)dsξ =

∫

∂ω

∂ν(ξ)ξ2dsξ = 0,

which cancels the term containing the derivative of C ′
p(x2; η). Besides, from (3.26) and (3.9), we

obtain

−
∫

∂ω

ν2(ξ)W
2(ξ)dsξ =

∫

∂ω

W 2(ξ)∂ν(ξ)W
2(ξ)dsξ = ‖∇ξW

2;L2(Ξ)‖2 =:M(Ξ) > 0. (4.20)
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Finally, considering (3.28) and using (4.19)–(4.20), we get

−2HĈ1(x2; η) = 2H
∂2U0

p

∂x1∂x2
(0, x2; η)m2(Ξ)−

∂2U0
p

∂x22
(0, x2; η)M(Ξ). (4.21)

Gathering (4.15), (4.16), (4.18), (4.21) and (3.30) we conclude that

∂U ′
p

∂x1
(±0, x2; η) = ∓m2(Ξ)

∂2U0
p

∂x1∂x2
(0, x2; η)∓

|ω|
2H

∂2U0
p

∂x21
(0, x2; η)±

M(Ξ)

2H

∂2U0
p

∂x22
(0, x2; η). (4.22)

Thus, we obtain the jump through ς for the normal derivative of U ′
p

[∂U ′
p

∂x1

]
0
(x2; η) = −2m2(Ξ)

∂2U0
p

∂x1∂x2
(0, x2; η)−

|ω|
H

∂2U0
p

∂x21
(0, x2; η)+

M(Ξ)

H

∂2U0
p

∂x22
(0, x2; η). (4.23)

This completes the problem for correction terms Λ′
p(η) and U

′
p(·; η) in the ansätze (4.1) and (4.2).

Namely, they are the unknowns of the problem (4.3), (4.4), (2.14), (4.12) and (4.23). The existence
and uniqueness of both terms is provided below.

4.4 Computing the correction term in the eigenvalue asymptotics

Since, by our assumption, the eigenvalue Λ0
p(η) is simple, the solution of problem (4.3), (4.4),

(2.14), (4.12), (4.23) has only one compatibility condition. Indeed, it must satisfy the orthogonality
condition, in the sense of the Green formula, of the right-hand side of (4.3) to the eigenfunction

U0
p (x; η) := U0

jk(x; η) = ei(η+2πj)x1 cos
(
πk
x2
H

)
, (4.24)

see (2.15). This determines completely Λ′
p(η) as we show below (cf. (4.25)).

First, we observe that, by (4.24),

‖U0
p ;L

2(̟0)‖2 = ‖U0
p ;L

2(ς)‖2 = 1

2
(1 + δk,0)H,

where δk,l denotes the Kronecker symbol. Then, we multiply (4.3) by the conjugate of U0
p and

integrate over ̟0 \ ς to get

1

2
(1 + δk,0)HΛ′

p(η) = −
∫

̟0

(
∆xU

′
p(x; η) + Λ0

p(η)U
′
p(x; η)

)
U0
p (x; η)dx.

Because of (4.4), (2.14) and (4.24), the Green formula yields

1

2
(1 + δk,0)HΛ′

p(η) =

∫ H

0

(
U0
p (x; η)

∂U ′
p

∂x1
(x; η)− U ′

p(x; η)
∂U0

p

∂x1
(x; η)

)∣∣∣∣
+0

x1=−0

dx2

=

∫ H

0

(
U0
p (0, x2; η)

[∂U ′
p

∂x1

]
0
(x2; η)− [U ′

p]0(x2; η)
∂U0

p

∂x1
(0, x2; η)

)
dx2.

Now, taking into account the jump conditions (4.12) and (4.23), and using (4.24),

∫ H

0

cos2
(
πk
x2
H

)
dx2 =

H

2
(1 + δk,0) and

∫ H

0

cos
(
πk
x2
H

)
sin
(
πk
x2
H

)
dx2 = 0,
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we have

1

2
(1 + δk,0)HΛ′

p(η) =
H

2
(1 + δk,0)

(|ω|
H

(η + 2πj)2−M(Ξ)

H

(πk
H

)2
− 2(η + 2πj)2m1(Ξ)

)
.

As a result, we obtain the relationship

Λ′
p(η) = −2

(
π2k2

H2

M(Ξ)

2H
+ (η + 2πj)2

(
m1(Ξ)−

|ω|
2H

))
. (4.25)

Notice that, according to (4.20) and (3.23), the right-hand side of (4.25) is negative. Also, the
process determines uniquely the terms Λ′

p and U
′
p in the asymptotic series (4.1) and (4.2).

Remark 4.1. Assuming that (η,Λ0
p(η)) is a crossing point of two dispersion curves does not affect

the formal computations in Sections 4.1–4.3, U0
p (·, η) being any of the corresponding eigenfunctions

in (4.24) with k = 0. Also, in Section 4.4, when determining the second term of the asymptotic
expansions Λ′

p(η) and U ′
p(·, η), there is no contradiction since the corresponding eigenfunctions

only depend on x1, namely, rewriting computations we obtain

Λ′
p(η) = −2(η + 2πj)2

(
m1(Ξ)−

|ω|
2H

)

while there are two associated solutions U ′
p(·, η) one for each eigenfunction of Λ0

p(η).

4.5 On the symmetry assumption

The first term (4.7) of the inner expansion (4.5) meets the Neumann condition (2.5) at the sides
x2 = 0 and x2 = H of the periodicity cell ̟ε because U0

p does. Let us examine the second term
(4.10) which satisfies

∂w′
p

∂x2

(x
ε
, x2; η

)∣∣∣∣
x2=0

=
1

ε

(
∂W 1

∂ξ2

(x1
ε
, 0
)∂U0

p

∂x1
(0, 0; η) +

∂W 2

∂ξ2

(x1
ε
, 0
)∂U0

p

∂x2
(0, 0; η)

)

+
∂2U0

p

∂x1∂x2
(0, 0; η)W 1

(x1
ε
, 0
)
+
∂2U0

p

∂x22
(0, 0; η)W 2

(x1
ε
, 0
)
+
∂C ′

p

∂x2
(0; η).

(4.26)

A similar formula is valid at x2 = H . Using (2.13) the second and third terms on the right-hand
side of (4.26) vanish. Similarly, the last term vanishes because, by construction (cf. (4.10), (4.9)
and (4.4)), it satisfies

∂C ′
p

∂x2
(0; η) =

∂C ′
p

∂x2
(H ; η) = 0,

but the other addends do so only if

∂W 1

∂ξ2
(ξ1, 0) = 0, W 2(ξ1, 0) = 0, ξ1 ∈ R, (4.27)

cf. also (4.24). There is no reason for (4.27) to be fulfilled for any asymmetric hole ω but, owing to
Lemma 3.5, the assumption (1.9) gives us the relations (3.32) and, therefore, (4.27). Furthermore,
all terms on the right-hand side of (4.26) vanish.
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Remark 4.2. If the relation (4.27) is denied, the inner expansion (4.10) leaves in the Neumann
condition (2.5) discrepancies of order 1 which are localized in the vicinity of the points (0, 0),
(0, H) and decay exponentially at a distant from them. To compensate, a new boundary layer is
needed involving solutions to the Neumann problems for the Laplace operator in the half-planes
with semi-infinite families of holes, that is, in

R
2
+ \

∞⋃

k=0

ω(1, k) and R
2
− \

∞⋃

k=0

ω(1,−k),

cf. (1.3). Asymptotics at infinity of solutions to elliptic boundary-value problems in angular
domains with periodic boundaries have been investigated in [23, 25]. However, such a two-
dimensional boundary layer seriously complicates the asymptotic procedure and we postpone
the research in the case of more general perforation for another paper.

5 Some bounds for convergence rates

In this section, we obtain some important complementary results on the approximation (2.10). In
particular, we get some estimates which establish the closeness of eigenvalues Λε(η) of problem
(2.2)–(2.5) and the first three dispersion curves of the homogenized problem (see Theorem 5.1).
As a consequence, we can identify the first eigenvalue Λε1(η) at a certain distance from the nodes
(η�,Λ�) = (±π, π2) where the question of their splitting does not appear at all (see Corollary 5.2).
For this first eigenvalue, we get a uniform bound for the convergence rate. The analysis of this
section does not take into account the multiplicity of the eigenvalues of the limit problem.

Let us summarize the results of the section:

Theorem 5.1. There exist Λε⋆(η) and Λε±(η) eigenvalues of the problem (2.2)–(2.5) which satisfy

|Λε⋆(η)− Λ0
1(η)| ≤ C0ε for η ∈ [−π, π], 0 < ε < ε0, (5.1)

|Λε±(η)− Λ0
±(η)| ≤ C0ε for η ∈ [−π, π], 0 < ε < ε0, (5.2)

where Λ0
1(η) = η2 and Λ0

±(η) = (η±2π)2 are eigenvalues of problem (2.12)–(2.14), and the positive
constants ε0 and C0 are independent of ε and η.

Corollary 5.2. Let H ∈ (0, 1). Fixed δ ∈ (0, π), there exists ε0 = ε0(H) such that the eigenvalue
Λε1(η) of problem (2.2)–(2.5) in the sequence (2.7), and the eigenvalue Λ0

1(η) of problem (2.12)–
(2.14) in the sequence (2.11) satisfy

|Λε1(η)− Λ0
1(η)| ≤ C0ε for η ∈ [−π + δ, π − δ] and 0 < ε < ε0,

where the positive constant C0 is independent of the parameters ε and η.

The proofs of these results are in Section 5.4 and use the lemma on almost eigenvalues which
we introduce in Section 5.1. They rely on the construction of approximations to eigenvalues and
eigenfunctions which is done in Sections 5.2 and 5.3.
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5.1 The abstract setting

We first reformulate the spectral problem (2.2)–(2.5) in terms of operators on Hilbert spaces, cf.
(5.5). In the space H1,η

per(̟
ε) we consider the scalar product

〈Uε, V ε〉εη = (∇xU
ε,∇xV

ε)̟ε + (Uε, V ε)̟ε (5.3)

and the positive, compact and symmetric operator Bε(η),

〈Bε(η)Uε, V ε〉εη = (Uε, V ε)̟ε ∀Uε, V ε ∈ H1,η
per(̟

ε). (5.4)

The space H1,η
per(̟

ε) equipped with the scalar product (5.3) is denoted by Hε(η) and ‖Uε;Hε(η)‖
denotes the norm generated by (5.3).

Comparing (5.3), (5.4) with (2.6), we see that the variational formulation of the problem
(2.2)–(2.5) is equivalent to the equation

Bε(η)Uε(η) =Mε(η)Uε(η) in Hε(η) (5.5)

with the new spectral parameter

Mε(η) = (1 + Λε(η))−1. (5.6)

The following result (a lemma on almost eigenvalues, cf. [44]) is a consequence of the spectral
decomposition of resolvent, cf. [9, Ch. 6].

Lemma 5.3. Let Mε
as(η) ∈ R and Uε

as(η) ∈ Hε(η) \ {0} verify the relationship

‖Bε(η)Uε
as(η)−Mε

as(η)U
ε
as(η);Hε(η)‖ = δε‖Uε

as(η);Hε(η)‖. (5.7)

Then, there exists an eigenvalue Mε(η) of the operator Bε(η) such that

|Mε(η)−Mε
as(η)| ≤ δε.

In Sections 5.2 and 5.3 below, we provide Mε
as(η) and U

ε
as(η) and obtain a bound for the rest

δε in (5.7).

5.2 Approximate eigenvalue and eigenfunction

Let Λ0
±(η) = (η ± 2π)2 be eigenvalues in (2.15) corresponding to a fixed Floquet parameter

η ∈ [−π, π]. According to (5.6) we take

M0
±(η) = (1 + Λ0

±(η))
−1 (5.8)

as an approximate eigenvalue (± respectively), and

Uε
±(x; η) = Xε(x1)U

0
±(x1; η) + (1−Xε(x1))

(
U0
±(0; η) + x1

∂U0
±

∂x1
(0; η)

)
+ εχ0(x1)

∂U0
±

∂x1
(0; η)W 1

0

(x
ε

)
,

(5.9)
as an approximate eigenfunction constructed from the asymptotic expansions in Section 4 (cf.
(4.2), (4.5), (4.7) and (4.10) which holds for η ∈ [−π, π]). W 1

0 is the bounded harmonics in Ξ, see
(3.20) and (3.24),

U0
±(x1; η) = ei(η±2π)x1 , (5.10)
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Xε(x1) = 1−χ+(x1/ε)−χ−(x1/ε), i.e. X
ε(x1) = 1 for |x1| ≥ 2Rε, Xε(x1) = 0 for |x1| ≤ Rε,

χ0 ∈ C∞(R), χ0(x1) = 1 for |x1| ≤ 1/6, χ0(x1) = 0 for |x1| ≥ 1/3, (5.11)

where the even smooth cut-off functions χ± are defined by (3.12). Notice that, for 0 < |η| < π,
Λ0

±(η) is a simple eigenvalue so that it corresponds to the only eigenfunction (5.10), see (2.15)
with j = ±1 and k = 0, so that the sign plus or minus is fixed in these formulas.

5.3 Estimating the discrepancy

The function (5.9) satisfies the Neumann condition (2.5) as well as the quasi-periodicity conditions
(2.3), (2.4). To conclude these assertions, we recall (3.32) and (3.21), and observe that Xε(x1) = 1
and χ0(x1) = 0 near the points x1 = ±1/2.

In order to apply Lemma 5.3, we multiply (5.7) by ‖Uε
as(η);Hε(η)‖−1 and obtain the relation

δε±(η) := ‖Uε
±;Hε(η)‖−1‖Bε(η)Uε

± −M0
±(η)U

ε
±;Hε(η)‖

= ‖Uε
±;Hε(η)‖−1M0

±(η) sup |(∇xU
ε
±,∇xV

ε)̟ε − Λ0
±(η)(U

ε
±, V

ε)̟ε|
= ‖Uε

±;Hε(η)‖−1M0
±(η) sup |(∆xU

ε
± + Λ0

±(η))U
ε
±, V

ε)̟ε|.
(5.12)

Here, the supreme is computed over all function V ε ∈ Hε(η) with unit norm and this calculation
takes into account definitions (5.3), (5.4), (5.8) and the Green formula together with the Neumann
and quasi-periodicity conditions for Uε

± and the Neumann and periodicity conditions forW 1
0 , (3.6)

and (3.21), respectively. Let us show the estimate

δε±(η) ≤ cε for ε ≤ ε0, (5.13)

with some constants c and ε0 independent of η.
Indeed, by (5.9), we write

∆xU
ε
±(x; η) + Λ0

±(η)U
ε
±(x; η) =:

6∑

j=1

Sεj,±(x; η) (5.14)

with

Sε1,±(x; η) = Xε(x1)(∆xU
0
±(x1;ψ) + Λ0

±(η)U
0
±(x1;ψ)),

Sε2,±(x; η) = [∆x, X
ε(x1)]

(
U0
±(x1; η)− U0

±(0; η)− x1
∂U0

±

∂x1
(0; η)

)
,

Sε3,±(x; η) =
1

ε

∂U0
±

∂x1
(0; η)χ0(x1)∆ξW

1
0 (ξ),

Sε4,±(x; η) = εΛ0
±(η)χ0(x1)

∂U0
±

∂x1
(0; η)W 1

0 (ξ),

Sε5,±(x; η) = ε
∂U0

±

∂x1
(0; η)[∆x, χ0(x1)]W

1
0 (ξ),

Sε6,±(x; η) = Λ0
±(η)(1−Xε(x1))

(
U0
±(0; η) + x1

∂U0
±

∂x1
(0; η)

)
;

here, [∆x, χ] stands for the commutator, i.e. [∆x, χ]U := ∆x(χU)− χ∆xU . Note that [∆x, χ]U =
2∇xχ · ∇xU + U∆xχ and [∆x, 1−Xε(x1)] = −[∆x, X

ε(x1)].
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We have Sε1,±(x; η) = 0 and Sε3,±(x; η) = 0 because of the equations (2.2) for U0
± and (3.4)

for W 1
0 . Since W 1

0 admits the representation (3.24) and, therefore, is bounded together with its
derivative, we conclude that

|(Sε4,±, V ε)̟ε| ≤ c ε sup
ξ∈Ξ

|W 1
0 (ξ)| ‖V ε;L2(̟ε)‖ ≤ C ε ‖V ε;L2(̟ε)‖. (5.15)

Moreover, since the coefficients in the commutator [∆x, χ0(x1)] do not depend on ε and have their
supports in the union of the rectangles Υ0

± = {x : ±x1 ∈ [1/6, 1/3], x2 ∈ [0, H ]}, and ∇ξW
1
0 has

an exponential decay, we have

|(Sε5,±, V ε)̟ε| ≤ c ε sup
ξ∈Ξ

(|W 1
0 (ξ)|+ |ξ1||∇ξ1W

1
0 (ξ)|) ‖V ε;L2(̟ε)‖ ≤ C ε ‖V ε;L2(̟ε)‖. (5.16)

On the other hand, owing to (5.11), the support of Sε2,± belongs to the union of the thin
rectangles Υε

± = {x : ±x1 ∈ [Rε, 2Rε], x2 ∈ [0, H ]} and the coefficient of the derivative and the
free coefficient in the commutator

[∆x, X
ε(x1)](·) = 2

∂Xε

∂x1
(x1)

∂(·)
∂x1

+∆xX
ε(x1)(·)

are of order ε−1 and ε−2 respectively. Besides, the inequality

‖V ε;L2(Υε
±)‖ ≤ cε1/2‖V ε;Hε(η)‖

is valid, see for example the proof of (2.17) and (2.18). Thus, based on the Taylor formula for U0
±,

we see that

|(Sε2,±, V ε)̟ε| ≤ c
∑

±

|Υε
±|1/2 max

x∈Υε
±

∣∣∣∣
∂2U0

±

∂x21
(x1; η)

∣∣∣∣ ‖V ε;L2(Υε
±)‖ ≤ cε ‖V ε;Hε(η)‖. (5.17)

Similarly, since the support of Sε6,± is included in Θε = [−2Rε, 2Rε]× [0, H ], we have

|(Sε6,±, V ε)̟ε| ≤ C|Θε|1/2‖V ε;L2(Θε)‖ ≤ C ε ‖V ε;Hε(η)‖. (5.18)

Finally, by definition of Uε
± (see (5.9) and (5.10)), it can be proved that

‖Uε
±;Hε(η)‖2 ε→0−−−−−→‖U0

±;L
2(̟0)‖2 + ‖∇xU

0
±;L

2(̟0)‖2 = (1 + Λ0
±(η))H. (5.19)

Based on the representation (5.12), (5.14), the estimates (5.15), (5.16), (5.17) and (5.18), and
the convergence (5.19), we arrive at (5.13).

5.4 Asymptotics of the eigenvalues

Considering the estimate (5.13), Lemma 5.3 gives us an eigenvalue Mε
±(η) of the operator Bε(η)

such that
|Mε

±(η)−M0
±(η)| ≤ cε (5.20)

where the factor c is independent of η. Recalling (5.6), we derive from (5.20) that

|Λε±(η)− Λ0
±(η)| ≤ cε(1 + Λ0

±(η))(1 + Λε±(η)), (5.21)
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and, hence
(1 + Λε±(η))(1− cε(1 + Λ0

±(η)) ≤ 1 + Λ0
±(η).

Let us set

ε0 :=
1

2c(1 + 4π2)
.

Then, for ε < ε0 and η ∈ [−π, π], we have (1− cε(1 + Λ0
±(η))>1/2 and therefore

|Λε±(η)− Λ0
±(η)| ≤ 2cε(1 + Λ0

±(η))
2 ≤ 2cε(1 + 9π2)2 =: C0ε. (5.22)

This ends the proof of (5.2).
In a similar way, replacing Λ0

±(η) and U
0
±(x1; η) by Λ0

1(η) = η2 and U0
1 (x1; η) = eiηx1 respectively

in (5.8) and (5.9), we obtain some constants ε0, C0 > 0 and certain eigenvalues Λε⋆(η) of (2.2)–(2.5)
which satisfy (5.1). Thus, the proof of Theorem 5.1 is completed.

Finally, on account of (2.29), there cannot be more than one eigenvalue Λεp(η) in the box
[−π + δ, π − δ] × [0, π2 +K1] for any δ > 0 and K1 defined by (2.31), and hence we can identify
the eigenvalue Λε⋆(η) given in Proposition 5.1 with the first eigenvalue Λε1(η) at a distance δ from
η� = ±π and Corollary 5.2 holds.

6 Asymptotic analysis near nodes

The main difference between the asymptotic analysis in the previous and the next sections is that
in what follows the limit eigenvalue under consideration is always multiple and gives rise to a
node of the dispersion curves in Figure 4 a)–b). Furthermore, examining the splitting of the band
edges and the opening of spectral gaps requires much more precise asymptotic formulas for the
eigenvalues in (2.7) which are valid in a neighborhood of a certain value of the Floquet parameter
η. This seriously complicates the asymptotic analysis as well as the justification procedure. In fact,
the asymptotic analysis is somehow double, since it takes into account the small parameter and the
small neighborhood of the nodes (η◦,Λ◦) = (0, 4π2) and (η�,Λ�) = (±π, π2). In Sections 6.1–6.3,
we perform all the computations for the node (0, 4π2) while, for the sake of brevity, we sketch
the main changes for the nodes (±π, π2), cf. Section 6.4. Section 6.1 contains the asymptotic
analysis based on asymptotic expansions while Sections 6.2–6.3 contain a justification scheme for
the abstract formulation in Section 5.1.

6.1 The node (η◦,Λ◦) = (0, 4π2) for H ∈ (0, 1/2)

This node marked with ◦ occurs in Figure 4 a) (cf. also Figure 3) under the assumptionH ∈ (0, 1/2)
as the intersection point of the two (plus and minus) limit dispersion curves

Λ0
±(η) = (η ± 2π)2, η ∈ [−π, π]. (6.1)

The problem (2.12)–(2.14) with η = 0 has the eigenvalue Λ0 := Λ0
2(0) = Λ0

3(0) = 4π2 of multiplicity
2 with the eigenfunctions

U0
±(x) = e±2πix1 . (6.2)
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To investigate the perturbed dispersion curves (2.8) with p = 2, 3 near the point (η◦,Λ◦) =
(0, 4π2), we use the idea in [27] by introducing the rapid Floquet variable

ψ = ε−1η (6.3)

in a neighborhood of η = 0, and perform the asymptotic ansatz for the eigenvalues

Λεp(η) = Λ0 + εΛ′(ψ) + ε2Λ′′(ψ) + . . . (6.4)

with p = 2, 3 as in Figure 5 a). To shorten the notation, we do not display the index p in the
terms of the anzätze.

We assume the outer expansion for the corresponding eigenfunction

Uε(x;η) = U0(x;ψ) + εU ′(x;ψ) + ε2U ′′(x;ψ) + . . . (6.5)

to be valid in ̟0 \ ς, where

U0(x;ψ) = a+(ψ)e
+2πix1 + a−(ψ)e

−2πix1 , (6.6)

ψ is a parameter, ψ = O(1), and a(ψ) = (a+(ψ), a−(ψ)) is a column vector in C2 to be determined
together with the correction terms Λ′(ψ) and U ′(·;ψ) in the ansätze (6.4) and (6.5), respectively.
We follow the technique developed in Sections 4.1–4.4 and we only outline the main differences.
As in Section 4, the terms Λ′′(ψ) in (6.4) and U ′′(x;ψ) in (6.5) are not of further use.

We look for an inner expansion in the vicinity of the transversal perforation string (3.2)

Uε(x; η) = w0(x2;ψ) + εw′(ξ;ψ) + ε2w′′(ξ;ψ) + . . . , (6.7)

where we have assumed that the main term w0 does not depend on ξ = ε−1x while the functions
arising in further terms, w′ and w′′ satisfy a periodicity condition in the ξ2-direction. Following
the scheme in Section 4, the immediate result of the matching procedure at the first order is

w0(x2;ψ) = U0(0;ψ) = (a+(ψ) + a−(ψ))W
0 = a+(ψ) + a−(ψ), (6.8)

cf. (4.7) and (3.19). Since the main term (6.7) is independent of the transversal variable, the
dependence on x2 (not on ξ2!) disappear in all terms and we will write the argument x1 instead
of x on the right-hand side of (6.5) and omit x2 on the right-hand side of (6.7).

We continue with the matching procedure at the second order taking into account the Taylor
expansion for (6.5), cf. (4.6). The Taylor formula applied to (6.6) gives

U0(x;ψ) = a+(ψ) + a−(ψ) + 2πix1(a+(ψ)− a−(ψ))− 2π2x21(a+(ψ) + a−(ψ)) +O(|x1|3), (6.9)

where O(|x1|3) depends on ψ, and, recalling the solution (3.20) of the problem (3.4), (3.6), (3.7),
cf. (4.10), we set

w′(ξ;ψ) = 2πi(a+(ψ)− a−(ψ))W
1(ξ) + a′(ψ)W 0 (6.10)

with some factor a′(ψ) which can be fixed arbitrarily at the present stage of our analysis. In
contrast to (4.10) the solution W 2 is absent in (6.10). Thus, the first jump condition for the
correction term in (6.5) is (cf. (4.6), (4.12) and (6.9)):

[U ′]0(ψ) = 2
∂U0

∂x1
(0;ψ)m1(Ξ) = 4πi(a+(ψ)− a−(ψ))m1(Ξ). (6.11)
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This formula coincides with (4.12) because ∂x2U
0=0, and it is independent of x2.

The matching procedure at level ε2, in the same way as in Section 4.3, gives

w′′(ξ;ψ) = 4π2(a+(ψ) + a−(ψ))W
3(ξ) + a′′(ψ)W 0 + w̃ ′′(ξ;ψ)

where W 3 is the solution (3.30) of the problem (3.29), (3.6), (3.7), a′′(ψ) is some factor which can
be fixed arbitrarily at the present stage of our analysis and the remainder w̃ ′′ gets the exponential
decay as ξ1 → ±∞ (cf. (4.16), (4.18) and (4.21)). Besides, the second jump condition (4.23) now
takes the simplified form (cf. (4.23) and (6.9))

[∂U ′

∂x1

]
0
(ψ) = −|ω|

H

∂2U0

∂x21
(0;ψ) = 4π2(a+(ψ) + a−(ψ))

|ω|
H
. (6.12)

Other restrictions on U ′ are readily inherited from (2.2), (2.5) and (6.4), cf. Section 4.1:

−∆xU
′(x;ψ)− Λ0U ′(x;ψ) = Λ′(ψ)U0(x;ψ), x ∈ ̟0 \ ς,

∂U ′

∂x2
(x1, 0;ψ) =

∂U ′

∂x2
(x1, H ;ψ) = 0, x1 ∈

(
− 1

2
, 0
)
∪
(
0,

1

2

)
.

(6.13)

In the quasi-periodicity conditions it is also necessary to take into account the fast Floquet pa-
rameter (6.3) and the Taylor formula

eiη = eiεψ = 1 + iεψ +O(ε2). (6.14)

In this way, inserting (6.5) into (2.3), (2.4), collecting terms of order ε and using (6.6) yield

U ′
(1
2
, x2;ψ

)
−U ′

(
− 1

2
, x2;ψ

)
= iψU0

(
− 1

2
, x2;ψ

)
=−iψ(a+(ψ) + a−(ψ)),

∂U ′

∂x1

(1
2
, x2;ψ

)
−∂U ′

∂x1

(
− 1

2
, x2;ψ

)
= iψ

∂U0

∂x1

(
− 1

2
, x2;ψ

)
=2πψ(a+(ψ)−a−(ψ)).

(6.15)

The problem (6.11), (6.12), (6.13), (6.15) has two compatibility conditions which can be derived
by multiplying the partial differential equations in (6.13) by the eigenfunctions (6.2) and applying
the Green formula on ̟0 \ ς. Thus, we have

Λ′(ψ)Ha±(ψ) = −
∫

̟0

e±2πix1
(
∆xU

′(x;ψ) + Λ0U ′(x;ψ)
)
dx

=

∫ H

0

(∂U ′

∂x1
(x;ψ)± 2πiU ′(x;ψ)

)∣∣∣∣
1

2

x1=− 1

2

dx2 +

∫ H

0

[∂U ′

∂x1
(x;ψ)± 2πiU ′(x;ψ)

]
0
dx2.

(6.16)

Notice that the factor H on the left-hand side is due to the formula

‖e±2iπx1;L2(̟0)‖ = H1/2.

Using the inhomogeneous data in (6.11), (6.12) and (6.15), we observe that the integrands are
constants and reduce (6.16) to the system of two linear algebraic equations with the spectral
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parameter Λ′(ψ):

Λ′(ψ)a+(ψ) =

(
4π2 |ω|

H
− 8π2m1(Ξ) + 4πψ

)
a+(ψ) +

(
4π2 |ω|

H
+ 8π2m1(Ξ)

)
a−(ψ),

Λ′(ψ)a−(ψ) =

(
4π2 |ω|

H
+ 8π2m1(Ξ)

)
a+(ψ) +

(
4π2 |ω|

H
− 8π2m1(Ξ)− 4πψ

)
a−(ψ).

(6.17)

The two eigenvalues of this system are

Λ′
±(ψ) = 4π

(
2π
( |ω|
2H

−m1(Ξ)
)
±
√

4π2
(
m1(Ξ)+

|ω|
2H

)2
+ ψ2

)
. (6.18)

In particular, we have Λ′
−(ψ) < 0 and Λ′

+(ψ) > 0 because

Λ′
−(ψ) ≤ −16π2m1(Ξ) and Λ′

+(ψ) ≥ 8π2 |ω|
H
, (6.19)

and m1(Ξ) > 0, see (3.23) and Remark 4.1 to compare.
In addition, the corresponding eigenvectors a±(ψ) = (a±+(ψ), a

±
−(ψ)) can also be easily com-

puted. Finally, the compatibility conditions in the problem (6.13), (6.11), (6.12), (6.15) are satis-
fied and it has a solution U ′(x;ψ) which is defined up to a linear combination of the eigenfunctions
(6.2) but, in the sequel, it can be fixed orthogonal to them and therefore become unique. This
condition determines all the terms in the asymptotic ansätze (6.4), (6.5) and (6.7).

According to (6.19) we have Λ′
+(ψ) > Λ′

−(ψ), so that the eigenpair {Λ′
−(ψ), a

−(ψ)} can be
related to the eigenpair {Λε2(η), Uε

2(x;ψ)} of the problem (2.2)–(2.5) while {Λ′
+(ψ), a

+(ψ)} does
to {Λε3(η), Uε

3(x;ψ)}.
Now, we formulate our result on the splitting edges of the second and third limit spectral

bands giving rise to the open gap γε2 (cf. Figure 5 a)). Its proof is in Sections 6.2–6.3.

Theorem 6.1. Let H ∈ (0, 1/2) and ψ0 > 0. Then, there exist positive ε0 = ε0(H,ψ0) and
C = C(H,ψ0) such that, for ε ∈ (0, ε0], the entries Λε2(η) and Λε3(η) of the eigenvalue sequence
(2.7) with η = εψ, |ψ| ≤ ψ0, meet the estimates

|Λε3(εψ)− 4π2 − εΛ′
+(ψ)| ≤ Cε2,

|Λε2(εψ)− 4π2 − εΛ′
−(ψ)| ≤ Cε2,

where the quantities Λ′
±(ψ) are given by (6.18).

6.2 Approximate eigenvalues and eigenfunctions

Recalling Section 5.1, based on calculations in Section 6.1, we set

M1,ε
± (ψ) = (1 + 4π2 + εΛ′

±(ψ))
−1 (6.20)
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where Λ′
±(ψ) are taken from (6.18). Similarly to (5.9), based on the asymptotic formulas in

Section 6.1, we define the approximate eigenfunction

Uε
±(x;ψ) = Xε(x1)

(
U0
±(x1;ψ) + εU ′

±(x1;ψ)
)
+ εχ0(x1)

(
w̃′

±(
x

ε
;ψ) + εŵ ′′

±(
x

ε
;ψ)
)
+ ε2Rε

±(x;ψ)

+(1−Xε(x1))

(
U0
±(0;ψ)+x1

∂U0
±

∂x1
(0;ψ)+

x21
2

∂2U0
±

∂x21
(0;ψ)+

ε

2

∑

τ=±

(
U ′
±(τ0;ψ)+x1

∂U ′
±

∂x1
(τ0;ψ)

))
.

(6.21)

Let us describe the terms arising in (6.21).
The cut-off functions are defined in (5.11). The main term U0

± is the linear combination

U0
±(x;ψ) = a±+(ψ)e

+2πix1 + a±−(ψ)e
−2πix1 ,

where, for each sign ±, the coefficient column vector a±(ψ) = (a±+(ψ), a
±
−(ψ)) is the eigenvector of

the system (6.17) with Λ′(ψ) = Λ′
±(ψ) and U

′
± is a solution of the problem (6.13), (6.15), (6.11),

(6.12), the compatibility conditions of which are fulfilled due to (6.17). Both, U0
± and U ′

±, depend
on the variable x1 only. We fix the main term by prescribing the normalization condition

|a±(ψ)| = 1 which implies ‖U0
±;H

2(̟0)‖ = C0 > 0. (6.22)

Then, the solution of the problem (6.13), (6.15), (6.11), (6.12) meets the estimate

‖U ′
±;C

2(̟0 ∩ {x1 > 0}‖+ ‖U ′
±;C

2(̟0 ∩ {x1 < 0}‖ ≤ C1(1 + |ψ|) (6.23)

due to the factor ψ on the right-hand sides of (6.15) and (6.18).
The boundary layer terms w̃′

± and ŵ ′′
± take the form

w̃′
±(ξ;ψ) =

∂U0
±

∂x1
(0;ψ)W̃ 1

0 (ξ) = 2πi(a±+(ψ)− a±−(ψ))W̃
1
0 (ξ) (6.24)

and

ŵ ′′
±(ξ;ψ) = −∂

2U0
±

∂x21
(0;ψ)Ŵ 3(ξ) +

1

2

∑

τ=±

∂U ′
±

∂x1
(τ0;ψ)W̃ 1

0 (ξ) (6.25)

where W̃ 1
0 is the exponentially decaying remainder in the decomposition (3.24) while Ŵ 3 is a

bounded part of the solution (3.30) of the problem (3.29), (3.6), (3.7), that is,

Ŵ 3(ξ) = W 3(ξ) +
ξ21
2

−
∑

τ=±

τχτ (ξ1)
|ω|
2H

ξ1. (6.26)

Recalling Proposition 3.3 and the relation (6.22), we write

‖eσ|ξ1|w̃ ′
±;H

2(Ξ)‖ ≤ C3 with any σ ∈
(
0,

2π

H

)
. (6.27)

Finally in (6.21), we fix Rε
± to get Uε

± ∈ Hε(η) \ {0}. First, we take functions Rε
± ∈ H2(̟0)

such that they have support in [1/4, 1/2]× [0, H ] and satisfy the boundary conditions

∂Rε
±

∂x2
(x1, 0;ψ) =

∂Rε
±

∂x2
(x1, H ;ψ) = 0, x1 ∈

(
− 1

2
,
1

2

)
,

Rε
±

(1
2
, x2;ψ

)
= ε−2

(
eiεψ − 1− iεψ

)
U0
±

(
− 1

2
;ψ
)
− ε−1

(
eiεψ − 1

)
U ′
±

(
− 1

2
;ψ
)
, x2 ∈ (0, H),

∂Rε
±

∂x1

(1
2
, x2;ψ

)
= ε−2

(
eiεψ − 1− iεψ

)∂U0
±

∂x1

(
− 1

2
;ψ
)
− ε−1

(
eiεψ − 1

)∂U ′
±

∂x1

(
− 1

2
;ψ
)
, x2 ∈ (0, H).

(6.28)
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Applying the Taylor formula to eiεψ, and taking into account (6.22) and (6.23), we find a function
Rε

± such that, in addition to (6.28), satisfies

‖Rε
±;H

2(̟0)‖ ≤ C2|ψ|(1 + |ψ|). (6.29)

Owing to the relations (6.28), the approximate eigenfunction (6.21) meets the quasi-periodicity
conditions (2.3), (2.4) with η = εψ. Thus, Uε

± falls into Hε(η) \ {0}.
Note that the function (6.21) satisfies the Neumann boundary condition on the lateral sides

x2 = 0 and x2 = H of the periodicity cell because of (6.28) for Rε
± and (3.32) for (6.24) and (6.25).

At the boundaries of the holes ̟ε(0, k) with k = 0, . . . , N − 1, by definition (5.11) of the cut-off
functions, (6.24), (6.25) and (3.3), we obtain for x ∈ ∂̟ε(0, k):

∂ν(x)U
ε
±(x;ψ) =

(
∂U0

±

∂x1
(0;ψ) +

ε

2

∑

±

∂U ′
±

∂x1
(τ0;ψ)

)(
ν1(ξ) + ∂ν(ξ)W̃

1
0 (ξ)

)

+ ε
∂2U0

±

∂x21
(0;ψ)

(
ν1(ξ)ξ1 − ∂ν(ξ)Ŵ

3(ξ)
)
.

Now, by (3.21) and (3.24), we have that ∂ν(ξ)W̃
1
0 (ξ) = −ν1(ξ). Moreover, since Ŵ 3 is defined by

(6.26) with W 3 satisfying (3.7), we get ∂ν(ξ)Ŵ
3(ξ) = ξ1ν1(ξ). Therefore, for x ∈ ∂̟ε(0, k), we get

∂ν(x)U
ε
±(x;ψ) = 0.

6.3 Estimating the discrepancy

We take the value (6.20) and the function (6.21) to be the almost eigenvalue and eigenfunction
respectively and follow the analysis of Section 5.3. To make it easier the analysis, we also keep
the same notations.

Let us proceed to apply Lemma 5.3. Considering (6.20), we have

δε±(ψ) := ‖Uε
±;Hε(εψ)‖−1‖Bε(εψ)Uε

± −M1,ε
± (ψ)Uε

±;Hε(εψ)‖
= ‖Uε

±;Hε(εψ)‖−1M1,ε
± (ψ) sup |(∆xU

ε
±+(4π2+εΛ′

±(ψ))U
ε
±, V

ε)̟ε|.
(6.30)

The supreme is computed over all function V ε ∈ Hε(εψ) with unit norm and this calculation
takes into account definitions (5.3), (5.4) and the Green formula together with the Neumann and
quasi-periodicity conditions for Uε

±. For any fixed ψ0 > 0, let us show the estimate

δε±(ψ) ≤ c(ψ0)ε
2 for |ψ| < ψ0, ε ≤ ε0 (6.31)

with c(ψ0) and ε0 = ε0(ψ0) some constants independent of ψ but they depend on ψ0.
Indeed, we write

∆xU
ε
±(x;ψ) +

(
4π2 + εΛ′

±(ψ)
)
Uε
±(x;ψ) =:

10∑

j=1

Sεj,±(x;ψ), (6.32)
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where

Sε1,±(x;ψ) = Xε(x1)(∆xU
0
±(x1;ψ) + 4π2U0

±(x1;ψ)),

Sε2,±(x;ψ) = εXε(x1)
(
∆xU

′
±(x1;ψ) + 4π2U ′

±(x1;ψ) + Λ′
±(ψ)U

0
±(x1;ψ)

)
,

Sε3,±(x;ψ) = ε2
(
Xε(x1)Λ

′
±(ψ)U

′
±(x1;ψ) +

(
∆x + 4π2 + εΛ′

±(ψ)
)
Rε

±(x;ψ)
)
,

Sε4,±(x;ψ) =
(
4π2 + εΛ′

±(ψ)
)
(1−Xε(x1))

(
U0
±(0;ψ) + x1

∂U0
±

∂x1
(0;ψ) +

x21
2

∂2U0
±

∂x21
(0;ψ)

)

+(1−Xε(x1))
∂2U0

±

∂x21
(0;ψ),

Sε5,±(x;ψ) =
(
4π2 + εΛ′

±(ψ)
)
(1−Xε(x1))

ε

2

∑

τ=±

(
U ′
±(τ0;ψ) + x1

∂U ′
±

∂x1
(τ0;ψ)

)
,

Sε6,±(x;ψ) = [∆x, X
ε(x1)]

(
U0
±(x1;ψ)− U0

±(0;ψ)− x1
∂U0

±

∂x1
(0;ψ)− x21

2

∂2U0
±

∂x21
(0;ψ)

)
,

Sε7,±(x;ψ) = ε[∆x, X
ε(x1)]

(
U ′
±(x1;ψ)−

1

2

∑

τ=±

(
U ′
±(τ0;ψ) + x1

∂U ′
±

∂x1
(τ0;ψ)

))
,

Sε8,±(x;ψ) = χ0(x1)
(
ε−1∆ξw̃

′
±(ξ;ψ) + ∆ξŵ

′′
±(ξ;ψ)

)
,

Sε9,±(x;ψ) = ε[∆x, χ0(x1)]
(
w̃ ′

±(ξ;ψ) + εŵ ′′
±(ξ;ψ)

)
,

Sε10,±(x;ψ) = ε(4π2 + εΛ′
±(ψ))χ0(x1)

(
w̃′

±(ξ;ψ) + εŵ ′′
±(ξ;ψ)

)
.

Let us estimate the scalar products

Iεj (V
ε;ψ) = (Sεj,±, V

ε)̟ε for j = 1, 2, . . . , 10 and V ε ∈ Hε(εψ).

First of all, according the definitions of U0
± and U ′

± (cf. (2.12) and (6.13)) there holds Sε1 = 0
and Sε2 = 0 so that

Iε1(V
ε;ψ) = 0 and Iε2(V

ε;ψ) = 0. (6.33)

Furthermore, by (6.18), (6.23) and (6.29) we readily derive the estimate

|Iε3(V ε;ψ)| ≤ c1ε
2(1 + |ψ|)3‖V ε;L2(̟ε)‖.

Now, using the definition of U0
±, we write

Sε4,±(x;ψ) =εΛ
′
±(ψ)(1−Xε(x1))U

0
±(0;ψ)

+
(
4π2 + εΛ′

±(ψ)
)
(1−Xε(x1))

(
x1
∂U0

±

∂x1
(0;ψ) +

x21
2

∂2U0
±

∂x21
(0;ψ)

)
.

Thus, by construction of the test functionXε, the support of Sε4,± is included in Θε = [−2εR, 2εR]×
[0, H ] and we easily obtain the estimate

|Iε4(V ε;ψ)| ≤ c2ε(1 + |ψ|)|Θε|1/2‖V ε;L2(Θε)‖ ≤ c3ε
2(1 + |ψ|)‖V ε;Hε(εψ)‖.

Similarly, we obtain
|Iε5(V ε;ψ)| ≤ c4ε

2(1 + |ψ|)2‖V ε;Hε(εψ)‖.
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In a similar way to (5.17), using the Taylor formula for U0
± yields the inequality

|Iε6(V ε;ψ)| ≤ c5
∑

±

|Υε
±|1/2εmax

x∈Υε
±

∣∣∣∣
∂3U0

±

∂x31
(x1;ψ)

∣∣∣∣ ‖V ε;L2(Υε
±)‖ ≤ c6ε

2‖V ε;Hε(εψ)‖. (6.34)

As regards Sε7,± and Sε8,± or equivalently, first we note that

1

2

∑

τ=±

(
U ′
±(τ0;ψ) + x1

∂U ′
±

∂x1
(τ0;ψ)

)
= U ′

±(σ0;ψ) + x1
∂U ′

±

∂x1
(σ0;ψ)−σ

2
[U ′

±]0(ψ)−
σ

2
x1

[∂U ′
±

∂x1

]
0
(ψ),

for σx1 > 0, σ ∈ {−1,+1}.

Besides, [∆x, X
ε(x1)] = −[∆x, χ+(x1/ε)]− [∆x, χ−(x1/ε)], and we get

Sε7,±(x;ψ) =− ε
∑

σ=±

[∆x, χσ(x1/ε)]

(
U ′
±(x1;ψ)− U ′

±(σ0;ψ)− x1
∂U ′

±

∂x1
(σ0;ψ)

)

+
1

2
[U ′

±]0(ψ)ε
−1
∑

τ=±

τ∆ξχτ (ξ1) +
1

2

[∂U ′
±

∂x1

]
0
(ψ)
∑

τ=±

τ∆ξ(ξ1χτ (ξ1)).

The first term can be estimated and the others will be when they are joined into Sε8,±. Indeed, let
us write

Sε7,±(x;ψ) + Sε8,±(x;ψ) =:

4∑

j=1

T εj,±(x;ψ), (6.35)

where

T ε1,±(x;ψ) = −ε
∑

σ=±

[∆x, χσ(x1/ε)]
(
U ′
±(x1;ψ)− U ′

±(σ0;ψ)− x1
∂U ′

±

∂x1
(σ0;ψ)

)
,

T ε2,±(x;ψ) = ε−1χ0(x1)
(
∆ξw̃

′
±(ξ;ψ) +

1

2
[U ′

±]0(ψ)
∑

τ=±

τ∆ξχτ (ξ1)
)
,

T ε3,±(x;ψ) = χ0(x1)
(
∆ξŵ

′′
±(ξ;ψ) +

1

2

[∂U ′
±

∂x1

]
0
(ψ)

∑

τ=±

τ∆ξ(ξ1χτ (ξ1))
)
,

T ε4,±(x;ψ) =
(
1− χ0(x1)

)( 1

2ε
[U ′

±]0(ψ)
∑

τ=±

τ∆ξχτ (ξ1) +
1

2

[∂U ′
±

∂x1

]
0
(ψ)

∑

τ=±

τ∆ξ(ξ1χτ (ξ1))
)
.

Similarly to (5.17) and (6.34), using the Taylor formula for U ′
± yields the inequality

|(T ε1,±, V ε)̟ε| ≤ c7ε
∑

±

|Υε
±|1/2 max

x∈Υε
±

∣∣∣∣
∂2U ′

±

∂x21
(x1;ψ)

∣∣∣∣ ‖V ε;L2(Υε
±)‖ ≤ c7ε

2(1 + |ψ|)‖V ε;Hε(εψ)‖.

(6.36)
Now, by formulas (6.24), (3.24), (6.11), (6.25), (6.26) and (6.12), and the fact that ∆ξW

1
0 = 0,

−∆ξW
3 = 1 and

∂U ′
±

∂x1
(+0;ψ) = −∂U ′

±

∂x1
(−0;ψ) (cf. (4.22)), it follows that

T ε2,±(x;ψ) = T ε3,±(x;ψ) = 0.
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On the other hand, since the support of
(
1 − χ0(x1)

)
is contained in {|x1|≥ 1/6} (see (5.11))

and the support of the derivatives of χ± is in {±ξ1 ∈ [R, 2R]} (see (3.12)), under the condition
ε < 1

12R
, we have that T ε4,±(x;ψ) = 0. Thus, by (6.35) and (6.36), we get

|Iε7(V ε;ψ) + Iε8(V
ε;ψ)| ≤ c7ε

2(1 + |ψ|)‖V ε;Hε(εψ)‖.
Now, we consider Sε9,±. In a similar way to (5.16), since the coefficients of the commutator

[∆x, χ0] do not depend on ε and have their supports in the union of the rectangles Υ0
±, while

w̃ ′
±(ξ;ψ), ∇ξw̃

′
±(ξ;ψ) and ∇ξw̃

′′
±(ξ;ψ) are exponentially decaying functions and w̃ ′′

±(ξ;ψ) is a
bounded function (see (6.24)–(6.26)), we have

|Iε9(V ε;ψ)| ≤ c ε2 sup
ξ∈Ξ

(|ξ1||w̃ ′
±(ξ)|+ |ξ1|2|∇ξ1w̃

′
±(ξ)|+|ŵ ′′

±(ξ)|+|ξ1||∇ξ1ŵ
′′
±(ξ)|)‖V ε;L2(̟ε)‖

≤ C ε2(1 + |ψ|) ‖V ε;L2(̟ε)‖.

Finally, to estimate Iε10(V
ε;ψ), we introduce the following lemma:

Lemma 6.2. Let χ1 ∈ C∞(R), χ1(x1) = 1 for |x1| ≤ 1/3, χ1(x1) = 0 for |x1| ≥ 2/3. There is
ε0 > 0 such that, for ε < ε0, the inequality

‖e−σ|x1|/εχ1V
ε;L2(̟ε)‖ ≤ cσε

1/2‖V ε;H1(̟ε)‖ (6.37)

is valid for all V ε ∈ H1(̟ε) with any σ > 0 and a factor cσ independent of ε.

Proof. Without loss of generality we assume that V ε is a real function. We consider the extended
function V̂ ε constructed in such a way that satisfies (2.17). We have

1/2∫

−1/2

e−2σ|x1|/ε|χ1(x1)V̂
ε(x1, x2)|2dx1 =

1/2∫

−1/2

e−2σ|x1|/ε

∣∣∣∣

1/2∫

x1

∂

∂t
(χ1(t)V̂

ε(t, x2))
2 dt

∣∣∣∣dx1

≤ C

1/2∫

−1/2

e−2σ|x1|/εdx1

1/2∫

x1

(∣∣∣∂V̂
ε

∂t
(t, x2)

∣∣∣
2

+ |V̂ ε(t, x2)|2
)
dt

≤ εCσ

1/2∫

x1

(∣∣∣∂V̂
ε

∂t
(t, x2)

∣∣∣
2

+ |V̂ ε(t, x2)|2
)
dt.

Integrating the above formula in x2 ∈ (0, H), cf. (2.17), we get (6.37).

In addition, using the periodicity of w̃ ′
±(ξ;ψ) in ξ2, cf. (3.3) and (6.24), we have

‖eσ
ε
|x1|w̃ ′

±

(x
ε
;ψ
)
;L2(̟ε)‖≤cε 1

2‖eσ|ξ1|w̃′
±(ξ;ψ);L

2(Ξ)‖, σ∈
(
0,

2π

H

)
. (6.38)

Thus, gathering (6.37), (6.38), (6.27) and the boundedness of w̃ ′′
±(ξ;ψ), we conclude that

|Iε10(V ε;ψ)|≤ε|4π2+εΛ′
±(ψ)|

(
‖eσ

ε
|x1|w̃ ′

±;L
2(̟ε)‖ ‖e−σ

ε
|x1|V ε;L2(̟ε)‖+ cε sup

ξ∈Ξ
|ŵ ′′

±|‖V ε;L2(̟ε)‖
)

≤cε(1+ε(1 + |ψ|))
(
ε1/2‖eσ|ξ1|w̃′

±;L
2(Ξ)‖ ε1/2‖V ε;H1(̟ε)‖+ cε(1+|ψ|)‖V ε;L2(̟ε)‖

)

≤c10 ε2(1+|ψ|)2 ‖V ε;H1(̟ε)‖.
(6.39)
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Also, fixed ψ0 > 0, by definition of Uε
± (see (6.21)–(6.22)), it can be proved that

‖Uε
±;Hε(εψ)‖2 ε→0−−−−−→‖U0

±;L
2(̟0)‖2 + ‖∇xU

0
±;L

2(̟0)‖2 = (1 + 4π2)H (6.40)

for |ψ| ≤ ψ0. Finally, on account of (6.30), (6.32), the estimates (6.33)–(6.39), and the convergence
(6.40), we arrive at (6.31).

We are ready to apply Lemma 5.3 ending the proof of Theorem 6.1.
For any fixed ψ0 > 0, we consider (6.30) and (6.31). Lemma 5.3 gives eigenvalues Mε

±(εψ) of
the operator Bε(η) admitting the estimates

|Mε
±(εψ)−M1,ε

± (ψ)| ≤ c(ψ0)ε
2 (6.41)

where c(ψ0) is independent of ε. Similarly to (5.21)–(5.22) we derive from (6.41) that under
the restriction ε ≤ ε(ψ0), the corresponding eigenvalues Λε±(εψ) in the sequence (2.7) satisfy the
relations

|Λε+(εψ)− 4π2 − εΛ′
+(ψ)| ≤ C(ψ0)ε

2,

|Λε−(εψ)− 4π2 − εΛ′
−(ψ)| ≤ C(ψ0)ε

2,
(6.42)

where Λ′
±(ψ) are given by (6.18).

Now, to identify Λε−(εψ) and Λε+(εψ) we use that

Λ′
+(ψ)− Λ′

−(ψ) = 8π

√
4π2
(
m1(Ξ) +

|ω|
2H

)2
+ ψ2

and hence Λε−(εψ) < Λε+(εψ) for |ψ| < ψ0. Besides, from (6.42) and (6.18), we can check that
Λε+(εψ) < 4π2 +K4 for |ψ| < ψ0 and ε > 0 small enough, and consequently, by (2.34), Λε+(εψ) ≤
Λε3(εψ) under the assumption H ∈ (0, 1/2). Finally, since Λε1(0) = 0 6= Λε−(0), we can identify
Λε−(εψ) = Λε2(εψ) and Λε+(εψ) = Λε3(εψ) for |ψ| ≤ ψ0. This ends the proof of Theorem 6.1.

6.4 The node (η�,Λ�) = (±π, π2) for H ∈ (0, 1)

Following the scheme in Sections 6.1–6.3 for the node (η◦,Λ◦) = (0, 4π2), we consider the node
(η�,Λ�) = (±π, π2) under the assumption H ∈ (0, 1); cf. Figure 4 a) and b). For the sake of
brevity, here we only outline the main changes.

Thanks to the 2π-periodicity in η, we consider the node (η�,Λ�) = (±π, π2) as the intersection
point of the dispersion curves

Λ = η2 and Λ = (2π − η)2 with η ∈ [0, 2π].

In other words, we extend by periodicity the truss in Figure 4 a) as it is depicted in Figure 7
a). Correspondingly, the dispersion curves in Figure 5 a) are extended periodically as well, cf.,
Figure 7 b).

Let us list the changes with respect to Section 6.1 which are necessary to support the asymptotic
ansätze (6.4) and (6.5), (6.7) for the eigenpairs {Λεp(η), Uε

p (x;ψ)}, p = 1, 2, of the problem (2.2)–
(2.5) with the fast Floquet variable

ψ = ε−1(η − π) (6.43)
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b)a)

2 2

Figure 7: Duplication of the dispersion curves, limit a) and perturbed b).

instead of (6.3).
To the eigenvalue Λ0 := Λ0

1(π) = Λ0
2(π) = π2 of the problem (2.12)–(2.14), there corresponds

the eigenfunctions U0
±(x) = e±iπx1. Now, the main term in the outer expansion (6.5) becomes the

linear combination of these eigenfunctions

U0(x1;ψ) = a+(ψ)e
+πix1 + a−(ψ)e

−πix1.

Notice that again no dependence on x2 occurs. The main term in the inner expansion (6.7) keeps
the form (6.8) but the correction terms look as follows:

w′(ξ;ψ) = πi(a+(ψ)− a−(ψ))W
1(ξ) + a′(ψ)W 0

and
w′′(ξ;ψ) = π2(a+(ψ) + a−(ψ))W

3(ξ) + a′′(ψ)W 0 + w̃ ′′(ξ;ψ).

Similarly to (6.11), (6.12), the jump conditions now read

[U ′]0(ψ) = 2πi(a+(ψ)− a−(ψ))m1(Ξ), x2 ∈ (0, H),

[∂U ′

∂x1

]
0
(ψ) = π2(a+(ψ) + a−(ψ))

|ω|
H
, x2 ∈ (0, H).

(6.44)

Moreover, instead of (6.14), we have

eiη = ei(π+εψ) = eiπ(1 + iεψ +O(ε2)) = −1 − iεψ +O(ε2),

so that the somehow quasi-periodicity conditions of the type (6.15) turn into

U ′
(1
2
, x2;ψ

)
+ U ′

(
− 1

2
, x2;ψ

)
= −iψU0

(
− 1

2
, x2;ψ

)
= −ψ(a+(ψ)− a−(ψ)),

∂U ′

∂x1

(1
2
, x2;ψ

)
+
∂U ′

∂x1

(
− 1

2
, x2;ψ

)
= −iψ∂U

0

∂x1

(
− 1

2
, x2;ψ

)
= −iπψ

(
a+(ψ)+a−(ψ)

)
.

(6.45)

It is worth mentioning that the relations (6.15) are nothing but inhomogeneous pure periodic-
ity conditions while the relations (6.45) imply inhomogeneous anti-periodicity conditions of the
function U ′.
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The problem (6.13), (6.44), (6.45) with Λ0 = π2 has two compatibility conditions which can
be obtained by inserting the data of (6.45) and (6.44) into the Green formula as follows:

Λ′(ψ)Ha±(ψ) = −
∫

̟0

e±πix1
(
∆U ′(x;ψ) + Λ0U ′(x;ψ)

)
dx

= −
H∫

0

e∓πix1
(∂U ′

∂x1
(x;ψ)± πiU ′(x;ψ)

)∣∣∣∣
x1=

1

2

− 1

2

dx2 +

H∫

0

[∂U ′

∂x1
(x;ψ)± πiU ′(x;ψ)

]
0
dx2.

They convert into the system of two algebraic equations

Λ′(ψ)a+(ψ) =

(
π2 |ω|
H

− 2π2m1(Ξ) + 2πψ

)
a+(ψ) +

(
π2 |ω|
H

+ 2π2m1(Ξ)

)
a−(ψ),

Λ′(ψ)a−(ψ) =

(
π2 |ω|
H

+ 2π2m1(Ξ)

)
a+(ψ) +

(
π2 |ω|
H

− 2π2m1(Ξ)− 2πψ

)
a−(ψ),

(6.46)

with the eigenvalues

Λ′
±(ψ) = 2π

(
π
( |ω|
2H

−m1(Ξ)
)
±
√
π2
(
m1(Ξ)+

|ω|
2H

)2
+ ψ2

)
, (6.47)

where

Λ′
−(ψ) ≤ −4π2m1(Ξ) and Λ′

+(ψ) ≥ 2π2 |ω|
H
. (6.48)

The corresponding a±(ψ) = (a±+(ψ), a
±
−(ψ)) can be easily computed from the algebraic equations

(6.46). We again have Λ′
+(ψ) > Λ′

−(ψ) and therefore, we establish the relation of the eigen-
pairs {Λ′

−(ψ), a
−(ψ)} and {Λ′

+(ψ), a
+(ψ)}, respectively, with the eigenpairs {Λε1(η), Uε

1(x;ψ)} and
{Λε2(η), Uε

2 (x;ψ)} of the problem (2.2)–(2.5) with η defined by (6.43).
Now, we formulate our result on splitting edges of the first and second limit spectral bands

giving rise to the open gap γε1 (cf. Figure 5 a) and b)); here, we take into account the 2π−periodicity
in η of the functions Λεp(η).

Theorem 6.3. Let H ∈ (0, 1) and ψ1 > 0. Then, there exist positive ε0 = ε0(H,ψ1) and
C = C(H,ψ1) such that, for ε ∈ (0, ε0], the entries Λε1(η) and Λε2(η) of the eigenvalue sequence
(2.7) with η = π + εψ, |ψ| ≤ ψ1, meet the estimates

|Λε2(π+εψ)− π2 − εΛ′
+(ψ)| ≤ Cε2,

|Λε1(π+εψ)− π2 − εΛ′
−(ψ)| ≤ Cε2,

where the quantities Λ′
±(ψ) are given by (6.47).

7 Opening the spectral gaps

In this section, we show that, under the mirror symmetry condition of the holes, cf. (1.9), there
are open spectral gaps for the spectrum (1.7) of the original problem (1.4)–(1.5) in the perforated
waveguide Πε, cf. (1.3); see also Figures 1 and 2. Further specifying, for the values H ∈ (0, 1)
we show that there is at least one open gap while for H ∈ (0, 1/2) there are at least two open
gaps. We provide asymptotic formulas for their localization and width, cf. Figure 5 b) and a)
respectively and formulas (7.1)–(7.3), (7.6) and (7.7). In Sections 7.1 and 7.2, respectively, we
broach the cases where H ∈ (0, 1) and H ∈ (0, 1/2).
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7.1 Opening spectral gap near the node (η�,Λ�)

Recall (η�,Λ�) = (±π, π2). Based on asymptotic formulas in Theorems 5.1 and 6.3, we prove in
this section that

max
η∈[−π,π]

Λε1(η) ≤ π2 − 4π2εm1(Ξ) +O(ε2),

min
η∈[−π,π]

Λε2(η) ≥ π2 + 2π2ε
|ω|
H

+O(ε2).
(7.1)

In this way, since m1(Ξ)± (2H)−1|ω| > 0 (see Proposition 3.3), the spectral gap

γεp = (max
η

Λεp(η),min
η

Λεp+1(η)) (7.2)

with p = 1 stays open and has the width

|γε1| ≥ 4π2ε
(
m1(Ξ) +

|ω|
2H

)
+O(ε2). (7.3)

Let us prove (7.1) for H ∈ (0, 1). We divide the proof in two parts depending on whether
η ∈ I1 or η ∈ I2 where the sets I1 = [−π+ δ1, π−δ1] and I2 = [−π,−π+ δ1]∪ [π−δ1, π] for certain
δ1 ∈ (0, π), cf. Figure 8. For simplicity, we choose δ1 such that Λ0

−(π − δ1) = (π + δ1)
2 < π2 +K2

whereK2 is defined by (2.31). Thus, by Proposition 2.3, we have that there exists ε1 = ε(H, δ1) > 0
such that

Λε2(η) > π2 +K1 for η ∈ I1, ε < ε1, (7.4)

Λε3(η) > π2 +K2 for η ∈ I2, ε < ε1, (7.5)

where K1 and K2 are defined by (2.31) and K1 may depend on δ1. In addition, when η ∈ I2, we
separate again into two parts η ∈ I2 ∩ {η : π − |η| ≤ εψ1} and η ∈ I2 ∩ {η : π − |η| ≥ εψ1} for a
certain constant ψ1 > 0 that we will determine below.

Figure 8: The different boxes Rp for p = 1, 2, 3, 4.

Firstly, we estimate Λε1(η) and Λε2(η) for η ∈ I1 where (7.4) holds, namely, the case where, for
ε small enough, there cannot be more than one eigenvalue Λεp(η) in the box R1 := I1× [0, π2+K1].
Thus, it is evident that

Λε2(η) ≥ π2 + 2π2ε
|ω|
H

+O(ε2) for η ∈ I1.
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Besides, by Corollary 5.2, we have

Λε1(η) ≤ Λ0
1(η) + C0ε ≤ (π − δ1)

2 + C0ε ≤ π2 − 4π2m1(Ξ)ε for η ∈ I1

and ε small enough, which concludes the proof in I1.
Secondly, we estimate Λε1(η) and Λε2(η) for η ∈ I2 where (7.5) holds, namely, the case where, for

ε small enough, there cannot be more than two eigenvalues Λεp(η) in the boxes R2 := I2×[0, π2+K2].
Now, for any ψ1 > 0, Theorem 6.3 and (6.48) allow us to obtain, for ε small enough, the extremum
in (7.1) restricted to η ∈ I2 ∩ {η : π − |η| ≤ εψ1}. Moreover, for C0 the constant arising in (5.1)
and (5.2), fixing

ψ1 > C0/2π,

we observe that the eigenvalues Λε⋆(η), Λ
ε
−(η) defined by Theorem 5.1 satisfy

Λε−(η)− Λε⋆(η)≥Λ0
−(η)− Λ0

1(η)− 2C0ε=4π(π − η)− 2C0ε > 0

for η > 0, π− η ≥ εψ1, and Λε−(η) ≤ Λ0
−(η)+C0ε ≤ Λ0

−(π− δ1)+C0ε ≤ π2+K2 for η ∈ [π− δ1, π]
and ε small enough. As a consequence, we can identify Λε1(η) = Λε⋆(η) and Λε2(η) = Λε−(η) for
η ∈ [π − δ1, π − εψ1], cf. (7.5). Thus, using Theorem 5.1 and taking

ψ1 = max

{
4π2m1(Ξ) + C0

π
,
C0H + 2π2|ω|

2πH

}
,

for ε small enough, we have

Λε1(η) ≤ Λ0
1(η) + C0ε = π2 − (π + η)(π − η) + C0ε

≤ π2 − π(π − η) + C0ε ≤ π2 − 4π2m1(Ξ)ε for η ∈ [π − δ1, π − εψ1],

Λε2(η) ≥ Λ0
−(η)− C0ε = π2 + (3π − η)(π − η)− C0ε

≥ π2 + 2π(π − η)− C0ε ≥ π2 + 2π2 |ω|
H
ε for η ∈ [π − δ1, π − εψ1].

In a similar way, we can estimate Λε1(η) and Λε2(η) for η ∈ [−π + εψ1,−π + δ1], where now
Λε1(η) = Λε⋆(η) and Λε2(η) = Λε+(η). This concludes the proof for η ∈ I2.

Now we formulate our result on opening spectral gap γε1 (see Figure 5 a)–b)):

Theorem 7.1. Let H ∈ (0, 1). Then, there exists a positive constant ε0 = ε0(H) such that, for
ε ∈ (0, ε0], the asymptotic formulas (7.1) are valid and the gap (7.2) with p = 1 has positive length
(7.3).

7.2 Opening spectral gap near the node (η◦,Λ◦)

Recall (η◦,Λ◦) = (0, 4π2). Similar computations on the base of Theorems 5.1, 6.1 and 6.3 prove
that

max
η∈[−π,π]

Λε2(η) ≤ 4π2 − 16π2εm1(Ξ) +O(ε2),

min
η∈[−π,π]

Λε3(η) ≥ 4π2 + 8π2ε
|ω|
H

+O(ε2),
(7.6)

so that the gap (7.2) with p = 2 opens and gets the width

|γε2| ≥ 16π2ε
(
m1(Ξ) +

|ω|
2H

)
+O(ε2). (7.7)
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Let us prove (7.6) for H ∈ (0, 1/2). Now, we divide the proof in two parts depending on
whether η ∈ I3 or η ∈ I4 where the sets I3 = [−π,−δ3] ∪ [δ3, π] and I4 = [−δ3, δ3] for certain
δ3 ∈ (0, π), cf. Figure 8. For simplicity, we choose δ3 such that Λ0

+(δ3) = (2π + δ3)
2 < 4π2 +K4

whereK4 is defined by (2.35). Thus, by Proposition 2.4 we have that there exists ε1 = ε(H, δ3) > 0
such that

Λε3(η) > 4π2 +K3 for η ∈ I3, ε < ε1, (7.8)

Λε4(η) > 4π2 +K4 for η ∈ I4, ε < ε1, (7.9)

where K3 and K4 are defined by (2.35) and K3 may depend on δ3. In addition, when η ∈ I3 or
η ∈ I4, we separate again into two parts, namely, we distinguish the four cases η ∈ I3 ∩ {η :
π − |η| ≤ εψ1}, η ∈ I3 ∩ {η : π − |η| ≥ εψ1}, η ∈ [−εψ0, εψ0] ⊂ I4 and η ∈ I4 ∩ {η : |η| ≥ εψ0}
for a certain ψ0, ψ1 > 0.

Firstly, we estimate Λε2(η) and Λε3(η) for η ∈ I3 where (7.8) holds, namely, the case where, for ε
small enough, there cannot be more than two eigenvalues Λεp(η) in the boxes R3 := I3×[0, 4π2+K3].
Thus, it is evident that

Λε3(η) ≥ 4π2 + 8π2ε
|ω|
H

+O(ε2) for η ∈ I3 = [−π,−δ3] ∪ [δ3, π].

Besides, for any ψ1 > 0, by virtue of Theorem 6.3 and (6.47), we get that

Λε2(η) ≤ π2 +K(ψ1)ε < 2π2 for η ∈ I3 ∩ {η : π − |η| ≤ εψ1}

and ε small enough. Now, fixing ψ1 > C0/2 and repeating the arguments in the previous
Section 7.1 related with the set I2, we can identify Λε2(η) = Λε−(η) for η ∈ [δ3, π − εψ1] and
Λε2(η) = Λε+(η) for η ∈ [−π + εψ1,−δ3]. Thus, by virtue of Theorem 5.1, we can check that

Λε2(η) ≤ 4π2 − 16π2εm1(Ξ) +O(ε2) for η ∈ I3 ∩ {η : π − |η| ≥ εψ1}.

and ε small enough. This concludes the proof on the interval I3.
Secondly, we estimate Λε2(η) and Λε3(η) when η ∈ I4 where (7.9) holds, namely, the case

where, for ε small enough, there cannot be more than three eigenvalues Λεp(η) in the box R4 :=
I4 × [0, 4π2 + K4]. Now, for any ψ0 > 0, Theorem 6.1 and (6.19) allow us to obtain, for ε small
enough, the extremum in (7.6) restricted to {η = εψ : |ψ| ≤ ψ0}. Moreover, fixing ψ0 > C0/4π,
we observe that the eigenvalues Λε±(η) defined by Theorem 5.1 satisfy

Λε+(η)− Λε−(η) ≥ Λ0
+(η)− Λ0

−(η)− 2C0ε = 8πη − 2C0ε > 0 for η ≥ εψ0,

and Λε+(η) ≤ Λ0
+(η) + C0ε ≤ Λ0

+(δ3) + C0ε ≤ 4π2 +K4, for η ∈ [0, δ3] and ε small enough. As a
consequence, we can identify Λε2(η) = Λε−(η) and Λε3(η) = Λε+(η) for η ∈ [εψ0, δ3]. Note that, by
Corollary 5.2, Λε1(η) = Λε⋆(η) for η ∈ [−δ3, δ3] and there cannot be more than three eigenvalues
Λεp(η) in the box I4 × [0, 4π2 +K4]. Thus, using again Theorem 5.1 and taking

ψ0 = max

{
16π2m1(Ξ) + C0

3π
,
C0H + 8π2|ω|

4πH

}
,
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for ε small enough, we have

Λε2(η) ≤ Λ0
−(η) + C0ε = 4π2 − (4π − η)η + C0ε ≤ 4π2 − 3πη + C0ε

≤ 4π2 − 16π2m1(Ξ)ε for η ∈ [εψ0, δ3],

Λε3(η) ≥ Λ0
+(η)− C0ε = 4π2 + (4π + η)η − C0ε ≥ 4π2 + 4πη − C0ε

≥ 4π2 + 8π2 |ω|
H
ε for η ∈ [εψ0, δ3].

In a similar way, we can estimate Λε2(η) and Λε3(η) for η ∈ [−δ3,−εψ0], where now Λε2(η) = Λε+(η)
and Λε3(η) = Λε−(η). This concludes the proof for η ∈ I4.

Now we formulate our result on opening spectral gap γε2 (see Figure 5 a)):

Theorem 7.2. Let H ∈ (0, 1/2). Then, there exists a positive constant ε0 = ε0(H) such that, for
ε ∈ (0, ε0], the asymptotic formulas (7.6) are valid and the gap (7.2) with p = 2 has positive length
(7.7).

8 Concluding remarks and open problems

We comment on other possible spectral gaps arising from other nodes of the limit dispersion curves
which are not considered in previous sections.

8.1 Closed and shaded gaps

We note that the nodes marked with • and � in Figure 4 a)–c), can separate when dealing with
the perturbed problem, but do not give rise to spectral gaps because they are shaded by other
dispersion curves in Figure 5 a)–c). More precisely, the node (0, 4π2) marked with ◦ in Figure 4 a)
gets the symbol • in Figure 4 b) and c) because the spectral gap described in Theorem 7.2 is
shaded by a small perturbation, see Section 4, of the limit dispersion curves

Λ =
π2

H2
+ η2, η ∈ [−π, π], for H ∈

(1
2
,
1√
3

)
,

Λ =
π2

H2
+ (η ∓ 2π)2, ±η ∈ [0, π], for H >

1√
3
.

In a similar way, after perturbation, the node (±π, π2), marked with � in Figure 4 a) and b)
provides an open spectral gap when H ∈ (0, 1) but the same node in Figure 4 c) is marked with
� because the gap around it is shaded by a small perturbation of the dispersion curve

Λ =
π2

H2
+ η2, η ∈ [−π, π], for H > 1.

Other nodes such as (η•,Λ•) = (0, π2H−2) and (η�,Λ�) = (±π, π2(1 + H−2)), also detected
in Figure 4 a)–c), do not give rise to open spectral gaps with some possible exceptions: H = 1,
H = 1/

√
3, H = 1/2, H = 1/

√
5, H = 1/

√
8 and others (cf. Figures 3 and 9). To examine these

nodes in these exceptional cases, important modifications of our calculations in Section 6.1 and
6.4 are needed and we postpone their study.

The nodes marked with ◭ and ◮ in Figure 4 a), do not give rise to open gaps due to another
reason as depicted schematically in Figure 10: both cases of perturbed curves do not provide a
gap. A rigorous justification of the absence of spectral gaps around nodes generated by similar,
either ascending, or descending, dispersion curves can be found in [31].
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g)

?

d) e)

b)a) c)

?

Figure 9: The exceptional cases H = 1, H = 1/
√
3 and H = 1/2.

Figure 10: The perturbation of ascending curves.

8.2 On the symmetry assumption and possible generalizations

Under the symmetry assumption (1.9) we reduce the problem (2.2)–(2.5) to the lower half of the
periodicity cell (1.8)

−∆Uε(x; η) = Λε(η)Uε(x; η), x ∈ {x ∈ ̟ε : x2 < H/2},

Uε
(1
2
, x2; η

)
= eiηUε

(
− 1

2
, x2; η

)
, x2 ∈

(
0,
H

2

)
,

∂Uε

∂x1

(1
2
, x2; η

)
= eiη

∂Uε

∂x1

(
− 1

2
, x2; η

)
, x2 ∈

(
0,
H

2

)
,

∂νU
ε(x) = 0, x ∈ {x ∈ ∂̟ε : |x1| < 1/2, x2 < H/2}.

(8.1)

On the truncation line Σε = {x ∈ ̟ε : x2 = H/2}, we impose an artificial boundary condition,
either the Neumann condition

∂Uε

∂x2
(x; η) = 0, x ∈ Σε, (8.2)
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or the Dirichlet one
Uε(x; η) = 0, x ∈ Σε. (8.3)

Clearly, in view of the geometrical symmetry the even (in the variable x2 −H/2) extension above
Σε of an eigenfunction of the problem (8.1), (8.2) becomes an eigenfunction of the problem (2.2)–
(2.5) with the same eigenvalue while the odd extension does the same with an eigenfunction of
the problem (8.1), (8.3)

A similar reduction of the limit problem (2.12)–(2.14) divides the family (2.15) of eigenpairs
into two groups containing even (q = 2j) and odd (q = 1+2j) in the variable x2−H/2 eigenfunc-
tions (2.15). Hence, the eigenfunctions in the first and second groups satisfy the Neumann and
Dirichlet artificial boundary conditions on the horizontal mid-line {x ∈ Πε : x2 = H/2} of the
perforated strip Πε. The limit dispersion curves are drawn in Figure 11 a) and b), respectively.
The previous asymptotic analysis applied to problems (8.1), (8.3) and (8.1), (8.2) independently
leads to the dispersion curves in Figure 11 c) and d), respectively. Furthermore, the common
graph in Figure 5 b) is obtained by uniting the latter graphs after perturbations so that the nodes
♦ in Figure 4 b) do not separate in contrast to the nodes marked with � and ◦ (see Figure 12). We
recognize this fact as the lack of interaction between the intersecting curves (6.1) with the index
couples (j, k) = (±1, 0) and (j, k) = (0, 1) in (2.15).

d)c)a) b)

Figure 11: Disjoint trusses under the symmetry condition.

Figure 12: The perturbation of similar and dissimilar curves.

As depicted in Figure 5 b)–c), all nodes marked with ♦ in Figure 4 do not split due to the
geometrical symmetry (1.9). One may hope that denying the symmetry assumption (1.9) provides
separation of the nodes ♦ to open many gaps in Figure 6 a)–c)2. However, we cannot confirm such
a splitting of band edges by our present asymptotic analysis.

2Actually these dispersion graphs are taken from the paper [31] which analyze a quantum waveguides with
regularly perturbed walls.
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Another way to conclude on splitting by analyzing the first correction term in the eigenvalue
asymptotics only is to treat either inclined perforation springs, Figure 13 a) or holes of varying
size, Figure 13 b). Again both modifications require a serious complication of calculations.

c)a) b) d)

Figure 13: The distorted periodicity cells.

a) b)

Figure 14: The waveguide with periodic strata.

A similar spectral problem in a stratified strip in Figure 14 a) with foreign acoustic material
in shaded thin rectangles can be solved explicitly by separating variables. However, in the case of
straight and homogeneous strata as in Figure 14 b), we again cannot conclude on the splitting of
the nodes ♦ while dealing with the first correction term only. To clarify the possibility of opening
corresponding spectral gaps, one can disturb the strata as depicted in Figure 13 c) and d), or even
deal with curved stratum in the periodicity cell, namely

ςε = {x : x2 ∈ (0, H), −εh−(x2) < x1 − j < εh+(x2)},

where h± ∈ C∞[0, H ] are profile functions such that

h(x2) = h+(x2) + h−(x2) > 0, x2 ∈ [0, H ].

However, this perturbation on the thin strips and those outlined in Figure 13 stay as open prob-
lems. A study of the corresponding spectrum will be undertaken in the forthcoming paper of the
authors.
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