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Abstract. In the sequel, we propose a new neighbourhood structure

for local search for the fuzzy job shop scheduling problem. This is

a variant of the well-known job shop problem, with uncertainty in

task durations modelled using fuzzy numbers and where the goal is

to minimise the expected makespan of the resulting schedule. The

new neighbourhood structure is based in changing the relative or-

der of subsequences of tasks within critical blocks. We study its the-

oretical properties and provide a makespan estimate which allows

to select only feasible neighbours while covering a greater portion

of the search space than a previous neighbourhood from the litera-

ture. Despite its larger search domain, experimental results show that

this new structure notably reduces the computational load of local

search with respect to the previous neighbourhood while maintain-

ing or even improving solution quality.

1 INTRODUCTION

Scheduling problems form an important body of research since the

late fifties, with multiple applications in industry, finance and science

[22]. To reduce the gap between theory and practice, thus enhancing

the range of applications, part of the research is devoted to model

the uncertainty and vagueness pervading real-world situations [12].

In particular, fuzzy sets have been used in different manners, ranging

from representing incomplete or vague states of information to us-

ing fuzzy priority rules with linguistic qualifiers or preference mod-

elling [5],[24]. They are also emerging as an interesting tool for im-

proving solution robustness, a much-desired property in real-life ap-

plications [29],[14].

In deterministic scheduling the complexity of problems such as

shop problems means that practical approaches to solving them usu-

ally involve heuristic strategies: simulated annealing, genetic algo-

rithms, local search, etc [1]. Some attempts have been made to ex-

tend these heuristic methods to the case where uncertain durations

are modelled via fuzzy intervals, most commonly and successfully

for the flow shop problem: among others, a genetic algorithm is used

in [2] and a genetic algorithm is hybridised with a local search pro-

cedure in [13]. For the job shop with different optimisation crite-

ria, we find a neural approach [26], genetic algorithms [23],[20],[9],

simulated annealing [7], genetic algorithms hybridised with local

search [10] or particle swarm optimisation [18],[15].

In this paper, we intend to advance in the study of local search

methods to solve the job shop problem with fuzzy durations

where the goal is to minimise the expected makespan, denoted

FuzJ ||E[Cmax]. We shall propose a new neighbourhood structure

and see how it allows for finding same-quality solutions considerably

faster than previous proposals.
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2 THE FUZZY JOB SHOP SCHEDULING
PROBLEM

The classical job shop scheduling problem, JSP in short, consists in

scheduling a set of jobs {J1, . . . , Jn} on a set {M1, . . . , Mm} of

physical resources or machines, subject to a set of constraints. There

are precedence constraints, so each job Ji, i = 1, . . . , n, consists

of m tasks {θi1, . . . , θim} to be sequentially scheduled. There are

also capacity constraints, whereby each task θij requires the unin-

terrupted and exclusive use of one of the machines for its whole pro-

cessing time. A feasible schedule is an allocation of starting times

for each task such that all constraints hold. The objective is to find

a schedule which is optimal according to some criterion, most com-

monly that the makespan is minimal.

2.1 Uncertain durations as fuzzy numbers

In real-life applications, it is often the case that the exact time it

takes to process a task is not known in advance. However, based

on previous experience, an expert may have some knowledge (al-

beit uncertain) about the duration. The crudest representation for un-

certain processing times would be a human-originated confidence

interval. If some values appear to be more plausible than others, a

natural extension is a fuzzy interval or fuzzy number. The simplest

model is a triangular fuzzy number or TFN, using an interval [a1, a3]
of possible values and a modal value a2 in it. A TFN A, denoted

A = (a1, a2, a3), has a membership function given by:

μA(x) =

⎧⎪⎨
⎪⎩

x−a1

a2
−a1 : a1 ≤ x ≤ a2

x−a3

a2
−a3 : a2 < x ≤ a3

0 : x < a1 or a3 < x

(1)

Triangular fuzzy numbers and more generally fuzzy intervals have

been extensively studied in the literature (cf. [6]). A fuzzy interval Q

is a fuzzy quantity (a fuzzy set on the reals) whose α-cuts Qα =
{r ∈ R : μQ(r) ≥ α}, α ∈ (0, 1], are intervals (bounded or not).

The support of Q is Q0 = {r ∈ R : μQ(r) > 0}. A fuzzy number

M is a fuzzy quantity whose α-cuts are closed intervals, denoted

Mα = [mα, mα], with compact support and unique modal value.

In the job shop, we essentially need two operations on fuzzy

quantities, the sum and the maximum. These are obtained by ex-

tending the corresponding operations on real numbers using the Ex-

tension Principle, in general cumbersome if not intractable. If f

is a bivariate continuous isotonic function and M and N are two

fuzzy numbers, F = f(M, N) is another fuzzy number such that

Fα = [f(mα, nα), f(mα, nα)]. Computing the function is then

equivalent to computing it on every α-cut. Both the addition and

the maximum are continuous isotonic functions, so this equality may

be applied to compute them. However, this still requires evaluating

two sums or two maxima for every value α ∈ [0, 1]. For the sake
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of simplicity and tractability of numerical calculations, the results

of these operations will be approximated by a linear interpolation,

evaluating only the operation on the three defining points of each

TFN; this is a usual approach in the literature, taken, for instance,

in [3],[7],[10],[18] or [21]. The approximated sum coincides with

the actual sum, so for any pair of TFNs M and N :

M + N = (m1 + n
1
, m

2 + n
2
, m

3 + n
3) (2)

Regarding the maximum, for any two TFNs M, N , if

F = max(M, N) denotes their maximum and G =
(max{m1, n1}, max{m2, n2}, max{m3, n3}) the approxi-

mated value, it holds that ∀α ∈ [0, 1], f
α
≤ g

α
, fα ≤ gα. The

approximated maximum G is thus a TFN which artificially increases

the value of the actual maximum F , but maintaining the support and

modal value, that is, F0 = G0 and F1 = G1. This approximation

can be trivially extended to the case of more than two TFNs.

The membership function μQ of a fuzzy quantity Q can be viewed

as a possibility distribution on the real numbers; this allows to define

the expected value of a fuzzy quantity [16], given for a TFN A by

E[A] =
1

4
(a1 + 2a

2 + a
3).

The expected value coincides with the neutral scalar substitute of a

fuzzy interval and can also be obtained as the centre of gravity of its

mean value or using the area compensation method [5]. It induces

a total ordering ≤E in the set of fuzzy intervals [7], where for any

two fuzzy intervals M, N M ≤E N if and only if E[M ] ≤ E[N ].
Clearly, for any two TFNs A and B, if ∀i, ai ≤ bi, then A ≤E B.

2.2 Disjunctive graph model

A job shop problem instance may be represented by a directed graph

G = (V, A ∪ D). Each node in the set V represents a task of

the problem, with the exception of the dummy nodes start or 0

and end or nm + 1, representing tasks with null processing times.

Task θij , 1 ≤ i ≤ n, 1 ≤ j ≤ m, is represented by node

x = m(i−1)+j. Arcs in A are called conjunctive arcs and represent

precedence constraints (including arcs from node 0 to the first task

of each job and arcs form the last task of each job to node nm + 1).

Arcs in D are called disjunctive arcs and represent capacity con-

straints; D = ∪i=1,...,mDi, where Di corresponds to machine Mi

and includes two arcs (x, y) and (y, x) for each pair x, y of tasks

requiring that machine. Each arc is weighted with the processing

time of the task at the source node (a TFN in our case). A feasi-

ble processing order of tasks π corresponds to an acyclic subgraph

G(π) = (V, A∪R(π)) of G, where R(π) = ∪i=1...mRi(π), Ri(π)
being a hamiltonian selection of Di. Using forward propagation in

G(π), we can obtain the starting and completion times for all tasks

and, therefore, the makespan Cmax(π).

Since task processing times are fuzzy intervals, the addition and

maximum operations used to propagate constraints are taken to be the

corresponding operations on fuzzy intervals, approximated for the

particular case of TFNs as explained above. The obtained schedule

will be a fuzzy schedule in the sense that the starting and completion

times of all tasks and the makespan are fuzzy intervals, interpreted as

possibility distributions on the values that the times may take. How-

ever, the task processing ordering σ that determines the schedule is

crisp; there is no uncertainty regarding the order in which tasks are

to be processed.

2.3 Expected makespan

We have stated the goal of the job shop problem as finding a schedule

which is optimal in the sense that the makespan is minimal. However,

neither the maximum nor its approximation define a total ordering in

the set of TFNs. In a similar approach to stochastic scheduling, it is

possible to use the concept of expected value for a fuzzy quantity

and the total ordering it provides, so the objective is to minimise

the expected makespan E[Cmax(σ)], a crisp objective function. The

resulting problem may be denoted FuzJ ||E[Cmax], following the

α|β|γ notation.

2.4 Criticality

In the crisp case, a critical path is defined as the longest path in

a solution graph from node start to node end and a critical arc or

critical activity is an arc or activity in a critical path. It is not trivial

to extend these concepts and related algorithms to the problem with

uncertain durations (cf. [5]). For the fuzzy job shop considered herein

it may even be the case that the makespan (a TFN) does not coincide

with the completion time of one job (unlike the crisp case).

In [11], a definition of criticality is proposed based on the fact

that all arithmetic operations used in the scheduling process are per-

formed on the three defining points or components of the TFNs. Let

G(π) = (V, A ∪ R(π)) be a solution graph, where the cost of any

arc (x, y) ∈ A∪R(π) is a TFN representing the processing time px

of task x. From G(π), we obtain the parallel solution graphs Gi(π),

i = 1, 2, 3, with identical structure to G(π) but where the cost of

any arc (x, y) is pi
x, the i-th component of px. Since durations in

each parallel graph Gi(π) are deterministic, a critical path in Gi(π)
is undoubtedly the longest path from node start to node end. Notice

that it is not necessarily unique.

Definition 1 A path P in G(π) is a critical path if and only if P is

critical in some Gi(π). Nodes and arcs in a critical path are termed

critical. A critical path is naturally decomposed into critical blocks

B1, . . . , Br , where a critical block is a maximal subsequence of tasks

of a critical path requiring the same machine.

Clearly, the sets of critical paths, arcs, tasks and blocks in G(π) are

respectively the union of critical paths, arcs, tasks and blocks in the

parallel solution graphs. The makespan of the schedule is not neces-

sarily the cost of a critical path, but each component Ci
max(π) is the

cost of a critical path in the solution parallel graph Gi(π).

For a solution graph G(π) and a task x, let Pνx and Sνx denote

the predecessor and successor nodes of x on the machine sequence

(in R(π)) and let PJx and SJx denote the predecessor and successor

nodes of x on the job sequence (in A). The head of task x is rx =
max{rPJx + pPJx , rPνx + pPνx}, the starting time of x, and the

tail of task x is qx = max{qSJx + pSJx , qSνx + pSνx}, the time

lag between x’s completion and the end of all tasks (TFNs in our

framework). The makespan coincides with the head of the last task

and the tail of the first task: Cmax = rnm+1 = q0. Also, for each

parallel graph Gi(π), ri
x is the length of the longest path from node

0 to node x, qi
x + pi

x is the length of the longest path from node x

to node nm + 1, and ri
x + pi

x + qi
x is the length of the longest path

from node 0 to node nm + 1 through node x: it is a lower bound for

Ci
max(π), being equal if node x belongs to a critical path in Gi(π).

3 FAST LOCAL SEARCH

Part of the interest of critical paths stems from the fact that they may

be used to define neighbourhood structures for local search. Roughly
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speaking, a typical local search schema starts from a given solution,

calculates its neighbourhood and then neighbours are evaluated in the

search of an improving solution. In simple hill-climbing, the first im-

proving neighbour found will replace the original solution, so local

search starts again from that improving neighbour. The procedure fin-

ishes when no neighbour satisfies the acceptation criterion. Clearly,

a central element in any local search procedure is the definition of

neighbourhood.

3.1 Previous approaches

A well-known neighbourhood for the deterministic job shop is that

proposed in [27]. Given a task processing order π, its neighbourhood

structure is obtained by reversing all the critical arcs in G(π). This

structure was first extended to the fuzzy case in [7], where an arc

(x, y) was taken to be critical in G(π) if exists i = 1, 2, 3 such

that ri
x + pi

x = qi
y , i.e, the completion time of x coincides with the

starting time of y in one component; the resulting neighbourhood

will be denoted N0 in the following.

A second extension to the fuzzy case was proposed in [11], us-

ing the definition of criticality based on parallel solution graphs in-

stead. Let us denote the resulting neighbourhood by N1. As a con-

sequence of the criticality definitions, N1 ⊂ N0 and any neighbour

σ ∈ N0 −N1 can never improve the expected makespan of the orig-

inal solution. Additionally, all neighbours in N1 are feasible and the

connectivity property holds: starting from any solution, it is possi-

ble to reach a given global optimum in a finite number of steps using

this structure. The experimental results endorsed the good theoretical

behaviour, obtaining better expected makespan values than previous

approaches from the literature. However, the large size of the struc-

ture for the fuzzy case resulted in an extremely high computational

load.

To improve on efficiency, a reduced structure, denoted N2 in the

following, was proposed in [10], inspired in the proposal for the de-

terministic problem from [19]. The neighbourhood was based on

reversing only those critical arcs at the extreme of critical blocks

of a single path, so N2 ⊂ N1. Clearly, N2 contains only feasi-

ble neighbours, although connectivity fails to hold. It was proved

that the reversal of a critical arc (x, y) can only lead to an improve-

ment if (x, y) is at the extreme of a critical block, and therefore, all

neighbours from N1 −N2 are non-improving solutions. The exper-

imental results showed how N2 resulted in a much more efficient

search obtaining the same expected makespan values as with N1.

However, due to the fact that arcs may be critical on three different

components, the neighbourhood size is still quite large and there is

still room for improvement. It is also interesting to define different

structures which allow for searching in different areas of the solution

space.

3.2 New neighbourhood definition

All the neighbourhood structures proposed up to date are based on

reversing a single critical arc. In the following, we propose a new

neighbourhood structure obtained by “inverting more than one arc”,

that is, permuting the relative ordering of more than two consecu-

tive tasks within a critical block, a proposal inspired in the work for

deterministic job shop from [4].

Definition 2 Let π be a task processing order and let x, y) ∈ R(π)
be a critical arc in the associated graph G(π). The neighbourhood

structure N3(π) is obtained by considering all possible permutations

a

Pνx

x

y

Sνy

b

Figure 1. Representation of NR
3

of the sequences (Pνx, x, y) and (x, y, Sνy) where the relative order

between x and y is reversed.

For the aforementioned structures it is clear that N2 ⊂ N1 ⊂ N3.

Since connectivity holds for N1, we automatically obtain the follow-

ing result:

Theorem 1 N3 verifies the connectivity property: given a globally

optimal processing order π0, it is possible to build a finite sequence

of transitions of N3 starting from any non-optimal task processing

order π and leading to π0.

Notice however that the considerations reported in [17] for the de-

terministic job shop are applicable here, making it advisable that N3

be reduced. Indeed, the reversal of a critical arc (x, y) can only lead

to an improvement if at least one of Pνx and Sνy is non-critical, i.e.,

if (x, y) is at the extreme of a critical block [10]. Thus, depending

on the critical block structure, at most three permutations should be

taken into consideration for a neighbouring candidate. This motivates

the definition of the following reduced neighbourhood:

Definition 3 Let π be a task processing order and let v = (x, y) ∈
R(π) be an arc at the extreme of a critical block in the associated

graph G(π). Then, the reduced neighbourhood structure NR
3 (π) is

obtained as follows: if (x, y) is the only arc in the critical block,

then (x, y) is reversed; if Pνx is also critical (and Sνy is not), then

we consider all possible permutations of (Pνx, x, y) where (x, y) is

reversed; else, if Sνy is critical, then we consider all possible per-

mutations of (x, y, Sνy) where (x, y) is reversed.

It follows from the definition that N2 ⊂ NR
3 . Table 1 shows

the three cases that may be distinguished depending on the critical

block structure, referred to as “small block”, “begin block” and “end

block”. The notation used to refer to the resulting neighbours is in-

troduced in the last column of the table.

The possible permutations are further illustrated in Figure 1: the

first graph represents the machine sequence as it appears in π and the

remaining graphs represent the five possible neighbours σ1 to σ5,

where a and b represent tasks before and after the considered block

in the machine sequence and the nodes in gray represent those tasks

whose relative order is modified by NR
3 . For the sake of simplicity,

job arcs are omitted, as well as possible alternative paths generating

cycles. It is nevertheless important to remark that such cycles may

exist in neighbours σ2 to σ5 (this is not the case for σ1, which is

always feasible [11]). We shall see in the following how to select

only feasible neighbours using an expected makespan estimate.
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Table 1. Permutations considered in NR
3 and resulting neighbours

initial block permutations neighbour

small block (x, y) (y, x) σ1 = π(y,x)

begin block (Pνx, x, y) (Pνx, y, x) σ1 = π(y,x)

(y, Pνx, x) σ2 = π(y,Pνx,x)

(y, x, Pνx) σ3 = π(y,x,Pνx)

end block (x, y, Sνy) (y, x, Sνy) σ1 = π(y,x)

(y, Sνy , x) σ4 = π(y,Sνy,x)

(y, x, Sνy) σ5 = π(y,x,Sνy)

3.3 Makespan estimate and feasibility

In the local search procedure, only those neighbours with improv-

ing makespan are of interest. Thus, a makespan lower bound may

help reduce the computational cost of local search by discarding un-

interesting neighbours without actually evaluating them. For the case

when only one arc (x, y) is reversed, σ1 = π(y,x), a lower bound of

the neighbour’s makespan may be obtained by computing the length

of the longest path in G(σ1) containing either x or y [25]. This can be

done quickly (in time O(nm)) using heads and tails. We now extend

this idea to every neighbour σ in NR
3 (π), by computing the length of

a longest path in G(σ) containing at least one of the nodes involved

in the move.

Let X = {x1, . . . , xs} be the set of tasks whose relative order

has been permuted to obtain σ from a feasible processing order π,

i.e., σ = π(x1,...,xs) and let us assume that σ is feasible. Let r and q

denote the heads and tails in G(π) (before the move) and let r′ and q′

denote the heads and tails in G(σ) (after the move). If σ is feasible,

then r′x = r′x for all predecessors of x1 in σ and q′x = q′x for all

successors of xs in σ. This suggests the following method lpath for

computing the length of the longest path containing at least one task

from X:

METHOD lpath(s, X)
a = x1;

r′a = max{rPJa + pPJa , rPν′

a
+ pPν′

a
};

for i = 2 to s do

b = xi;

r′b = max{rPJb
+ pPJb

, r′a + pa};

a = b;

b = xs;

q′b = max{qSJb
+ pSJb

, rSν′

b
+ pSν′

b
};

for i = s − 1 to 1 do

a = xi;

q′a = max{qPJa + pPJa , q′b + pb};

b = a;

return maxi=1,...,s{E[r′xi
+ pxi

+ q′xi
]};

Method lpath(s, X) provides an inexpensive lower bound for the

expected makespan of a feasible neighbour σ = π(X). If σ is unfea-

sible, the method is still applicable even if in this case it makes no

sense to talk about makespan nor lower bounds thereof. Additionally,

this method may be used to select the most promising neighbour as

follows:

METHOD estim(x, y)
e1 = lpath(2, (y, x));

if Pνx is critical then

e2 = lpath(3, (y, Pνx, x));

e3 = lpath(3, (y, x, Pνx));

else if Sνy is critical then

e4 = lpath(3, (y, Sνy, x));

e4 = lpath(3, (Sνy, y, x));

return σi such that i = min{i : ei ≤ ej : i, j = 1, . . . , 5};

Method estim not only allows selecting the most promising neigh-

bour in an inexpensive manner, but also the produced neighbour will

always be feasible.

Theorem 2 Let π be a feasible task processing order and let (x, y)
be an arbitrary critical arc. Then, the method estim(x, y) always

returns a feasible processing order.

Proof 1 If π and (x, y) are such that the small block case holds, then

the only resulting neighbour σ1 = π(y,x) is known to be feasible, as

desired.

Let us now suppose that the begin block case holds, i.e.,

(Pνx, x, y) is at the beginning of a critical block; to simplify nota-

tion, let Pνx be denoted by z in the following. There are three possi-

ble neighbours: σ1 = π(y, x), σ2 = π(y, z, x) and σ3 = π(y, x, z).

Without loss of generality, let us suppose that σ2 is unfeasible,

i.e., the sequence (y, z, x) generates a cycle in G(σ2), and let us

prove that, in that case, lpath(2, (y, x)) ≤ lpath(3, (y, z, x)). The

changes produced to transform G(π) into G(σ2) are the following:

the processing order (z, x, y) changes to (y, z, x) and, therefore arcs

(a, z), (x, y), (y, s) disappear, having (a, y), (y, p), (x, s) instead.

Since the reversal of (x, y) cannot produce a cycle, unfeasibility can

only be produced by the existence of an alternative path both in G(π)
and G(σ2) going from z to y through SJz and PJy .

Let r′ and q′ denote the heads and tails computed by

lpath(2, (y, x)) in G(σ1) and let r′′ and q′′ denote the heads and

tails computed by lpath(3, (y, z, x)) in G(σ1). Clearly, q′x = q′′x .

Let us now see that it also holds r′y = r′′y .

Indeed, since there exists an alternative path in G(π) from SJz to

PJy , then

rPJy ≥ rSJz + pSJz ≥ rz + pz + pSJz > rz + pz

and therefore

r
′

y = max{rPJy + pPJy , rz + pz} = rPJy + pPJy

On the other hand, in G(π) it holds that:

Therefore, if σ2 is unfeasible, lpath(2, (y, x)) ≤
lpath(3, (y, z, x)), and in consequence estim will never return σ2.

The end block case is analogous.

The new neighbourhood using estim does therefore preserver fea-

sibility; notice however that this is not the case for connectivity.

4 EXPERIMENTAL RESULTS

The purpose of this section is to provide an experimental evaluation

of the proposed neighbourhood structure. To this end, we shall use a

set of 120 problem instances proposed in [10], which result from

fuzzifying 12 benchmark problems for job shop: the well-known

FT10 (size 10 × 10) and FT20 (20 × 5), and La21, La24, La25

(15× 10), La27, La29 (20× 10), La38, La40 (15× 15), and ABZ7,

ABZ8, ABZ9 (20 × 15), a set of 10 problems considered to be hard

to solve for classical job shop. There are ten fuzzy versions of each

benchmark, generated following [7], so task durations become sym-

metric TFNs where the modal value is the original duration, thus en-

suring that the optimal solution to the crisp problem provides a lower

bound for the fuzzified version.
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Plain hill-climbing algorithms cannot be expected to perform very

well on complex problems. However, hybrid methods combining a

genetic algorithm (GA) with local search (LS) generally improve the

quality of results obtained when these methods are used indepen-

dently (cf. [13], [8], [28]). The usual approach is to apply local search

to every chromosome right after this chromosome has been gener-

ated, resulting in a so-called memetic algorithm (MA). We shall then

test N3 by incorporating it to a MA from the literature, allowing for

comparisons with previous neighbourhood structures. In [11], a MA

was presented which used N1; this algorithm, denoted MA-1 in the

following, compared favourably with previous approaches from the

literature in terms of expected makespan optimisation (among oth-

ers, it improved a simulated annealing algorithm using N0 from [7]

and a memetic algorithm using a refinement of N0 from [8]). The

results reported in [10] correspond to a variant of this memetic al-

gorithm, using N2 as neighbourhood structure and incorporating a

makespan lower bound to discard non-improving neighbours. The re-

sulting algorithm, denoted MA-2 in the following, obtained expected

makespan values identical to those from MA-1 (and therefore, bet-

ter than previous approaches), but greatly improving on efficiency,

with an average CPU time reduction of 76.49% w.r.t. MA-1. We

shall therefore use MA-2 as baseline algorithm, substituting N2 and

the used makespan estimate by NR
3 with the makespan estimate and

pre-selection method given in estime.

Table 2. Results of MA-2 (200 generations) and MA-3 (140 generations)

Problem MA
E[Cmax]

No. Neigh. CPUBest Avg Worst

ft10
MA-2 934 938 953 1.20E+05 5.55
MA-3 934 938 952 9.47E+04 4.55

ft20
MA-2 1165 1175 1181 1.72E+05 7.03
MA-3 1165 1174 1179 1.37E+05 5.67

la21
MA-2 1056 1059 1063 1.92E+05 9.74
MA-3 1056 1059 1061 1.48E+05 7.85

la24
MA-2 942 948 958 1.86E+05 9.47
MA-3 942 947 958 1.42E+05 7.59

la25
MA-2 980 986 991 1.92E+05 9.65
MA-3 980 985 990 1.47E+05 7.69

la27
MA-2 1254 1265 1270 3.26E+05 17.05
MA-3 1252 1264 1269 2.55E+05 13.58

la29
MA-2 1182 1200 1220 2.97E+05 16.19
MA-3 1180 1196 1211 2.33E+05 12.81

la38
MA-2 1214 1226 1248 2.67E+05 17.13
MA-3 1213 1226 1249 2.06E+05 13.61

la40
MA-2 1234 1241 1253 2.81E+05 17.72
MA-3 1233 1239 1246 2.19E+05 14.26

abz7
MA-2 677 685 693 4.33E+05 29.95
MA-3 677 685 692 3.47E+05 24.10

abz8
MA-2 690 700 708 4.93E+05 32.51
MA-3 687 698 706 3.93E+05 26.35

abz9
MA-2 703 715 726 4.43E+05 30.86
MA-3 701 713 724 3.53E+05 24.87

A first set of results illustrates how MA-3, using N3, obtains equal

or even better results in a faster way than MA-2, using N2. To this

end, both algorithms are run with a different number of generations:

200 for MA-2 and 140 (30% less) for MA-3. Table 2 shows a sum-

mary of the obtained results. For each family of fuzzy instances ob-

tained from the same deterministic problem and for each neighbour-

hood structure, it shows average values across 30 runs of the cor-

responding MA: best, average and worse expected makespan value,

average number of evaluated neighbours and CPU time in seconds

per run. The expected makespan values obtained using NR
3 is al-

ways slightly better than the values obtained with NR
3 in all cases,

using approximately 20% less neighbours and CPU time.

To compare the behaviour of both neighbourhood structures when

MA-3 is run with the same number of generations as MA-2, we have

selected one of the largest problems: abz9-01, the first fuzzy instance

of abz9. Table 3 shows how the better behaviour of NR
3 is maintained

with a larger number of generations (200 and 500). Since NR
3 is

larger N2, MA-3 should be expected to require more CPU time than

MA-2 for the same number of generations. However, this increase is

not linear in the number of generations. While for 200 generations

MA-3 takes 13.5% more CPU time than MA-2, for 500 generations

this increase is less 10%. This, together with the fact that MA-3 was

reaching better solutions earlier, suggests that NR
3 drives the search

to better areas in the solution space where the effort needed by the

LS with NR
3 decreases at a greater pace than the effort needed when

using N2.

Table 3. Results of MA-2 and MA-3 for 200 and 500 generations on
instance abz9-01.

NoGen LS
E[Cmax]

CPUBest Avg Worst

200
MA-2 704.75 715.43 729.75 30.03
MA-3 697.00 708.46 718.75 34.07

500
MA-2 698.25 708.42 719.75 70.50
MA-3 690.00 701.58 710.25 77.50

5 CONCLUSIONS

We have tackled a variant of the job shop scheduling problem where

uncertainty in durations is modelled using triangular fuzzy numbers

and where the objective is to minimise the expected makespan. We

have proposed a new neighbourhood structure for local search, based

on permuting the relative order of critical tasks, denoted NR
3 , cover-

ing a greater portion of promising areas in the search space than pre-

vious proposals from the literature. We have also provided a method,

lpath, to obtain a lower bound of the expected makespan of fea-

sible neighbours, which is later used in a procedure estim in or-

der to always select feasible neighbours. To obtain experimental re-

sults, the structure and selection method are incorporated to a simple

hill-climbing local search and combined with a genetic algorithm.

Thanks to its ability to explore alternative areas of the solution space,

the resulting algorithm reaches the best solutions obtained by previ-

ous approaches much faster: in 30% less generations and 20% less

CPU time than the best approach so far. In the future, this fast lo-

cal search may be used in alternative meta-heuristics, such as taboo

search, which have proved successful for other variants of the job

shop and which were not fit for the less efficient neighbourhood

structures previously proposed for fuzzy job shop.
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[9] I. González Rodrı́guez, J. Puente, C. R. Vela, and R. Varela, ‘Semantics
of schedules for the fuzzy job shop problem’, IEEE Transactions on

Systems, Man and Cybernetics, Part A, 38(3), 655–666, (2008).
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