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A B S T R A C T

The railways are a priority transport mode for the European Union given their safety record and environmental
sustainability. Therefore it is important to have quantitative models available which allow passenger demand for
rail travel to be simulated for planning purposes and to evaluate different policies. The aim of this article is to
specify and estimate trip distribution models between railway stations by considering the most influential demand
variables. Two types of models were estimated: Poisson regression and gravity. The input data were the ticket
sales and the prices between stations on a regional line in Cantabria (Spain) which were provided by the Spanish
railway infrastructure administrator (ADIF – RAM). The models have also considered the possible existence of
spatial effects between train stations. The results show that the models have a good fit to the available data,
especially the gravity models constrained by origins and destinations. Furthermore, the gravity models which
considered the existence of spatial effects between stations had a significantly better fit and provided a more
realistic journey pattern in a future scenario than the Poisson models and the gravity models that did not consider
these effects. The proposed models have therefore been shown to be good support tools for decision making in the
field of railway planning.
1. Introduction

The European Commission transport roadmap (European Commis-
sion, 2011) gives priority to the railways because of their proven safety
and environmental sustainability compared to road transport. One of the
Commission's stated future goals is the creation of a unique European
railway space, the introduction of new technological solutions and the
construction of new infrastructure financed and priced intelligently.

In order to reach these goals, the European Commission has high-
lighted the need to evaluate transport projects to guarantee their social
profitability and the added value they give to the EU. This evaluation
needs to be supported by the available evidence and transport demand
models which allow user behaviour to be accurately simulated.

Among the group of transport demand models are trip distribution
models which allow the interaction between origin and destination
points to be simulated. The most well-known and widely used distribu-
tion model has traditionally been the gravity model which, based on the
analogy with Newtonian physics, has later been theorized from a prob-
abilistic perspective as a maximum entropy model (Wilson and Bennett,
1985). The state of the art provides many calibration techniques for the
parameters of both origin and destination as well as for travel cost
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(Ortúzar and Willumsen, 2011). Other researchers have insisted on the
need to use Poisson type regression models given the discrete and
non-negative nature of the journeys (Flowerdew and Aitkin, 1982).

This article proposes the estimation of trip distribution models based
on the boarding and alighting data of passengers on a regional railway
line. The data used has been obtained from ticket sales on the line pro-
vided by the Spanish railway infrastructure administrator (ADIF – RAM).
The models were estimated based on two methods: a Poisson type
nonlinear regression without any kind of constraint and a Wilson type
gravity model doubly constrained to origins and destinations. Both types
of models are compared by considering their goodness of fit with the
data, in order to determine if the greater number of parameters estimated
in the gravity models really does provide greater significance. The
models have also been estimated with additional variables to consider
the existence of spatial effects between stations to determine if these
effects are significant and increase the explanatory capability of the
models. Finally, the models have been applied to a rising demand future
scenario to check their performance. The results show that gravity
models restricted to origins and destinations with additional variables
which consider spatial effects like contiguity between stations have a
significantly better goodness of fit to the data and provide a more realistic
er the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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journey pattern in the future scenario.
A brief review of the state of the art in the field of trip distribution

models and distribution models applied to the railways is presented in
the following section. The methodology followed is summarised in Sec-
tion 3 concentrating on Poisson type regression models and doubly
constrained gravity models. Section 4 provides a description of the study
area and presents and discusses the results obtained by the models.
Finally, the conclusions drawn are summarised in Section 5.

2. State of the art about trip distribution models

Spatial interaction models were applied very early on in multiple
fields of study for simulating the effects of spatial interaction such as the
movement of people between urban areas (Ravenstein, 1885) or com-
mercial flows (Huff, 1959). The first models proposed were based on an
analogy with Newtonian gravity theory with the sizes of origins and
destinations and the distances between them as explanatory variables.
This type of model has a reasonably good fit to the data although they
lacked theoretical justification. The theoretical base was provided by
Wilson (1970) who showed the possibility of deriving a great number of
models from the principle of maximum entropy by which the most
probable distribution matrix is the one which maximises the microstates
of a given macrostate (Fotheringham et al., 2000). Cochrane (1975) later
proposed a derivation of the gravity model from the principle of utility
maximization. Exponential gravity models, as derived by Wilson, have
proven to be particularly useful for precisely representing the macro level
behaviour of a wide variety of micro level interactions (Sen and Smith,
2012). Other authors have later insisted on the convenience of using
Poisson type non-linear regression models given their greater adapt-
ability to the trip generation and distribution phenomena (Flowerdew
and Aitkin, 1982; Winkelmann and Zimmermann, 1995).

The currently available trip distribution models can be classified into
two large groups depending on the data used: models based on aggregate
data which uses, for example, ticket sales information and models based
on surveys which use disaggregate data on an individual level. Cascetta
et al. (2007) also differentiated mixed distribution models which incor-
porated characteristics of both aggregate and disaggregate models.

The specification of the travel cost function plays a key role in the
distribution models so that the predictions fit as closely as possible with
the distribution of the observed journeys (Tiefelsdorf, 2003). The most
commonly used functional forms in practise are the potential, the expo-
nential and the combined (also known as the Tanner deterrence function)
(Cascetta, 2009). While the combined travel cost function is the most
appropriate for urban environments where an increase in journeys may
occur for small travel costs, in more extensive environments the potential
and exponential functions should give a better fit. Travel cost is usually
represented through a generalised cost which may include variables like
journey time and fare. In the case where the generalised cost is expressed
in terms of money, the journey time parameter can be interpreted as the
value of time for users (Ortúzar and Willumsen, 2011).

Distribution models have been widely applied in the field of transport
planning. Wang et al. (2016) applied a distribution model based on linear
regression to the journeys obtained from the entrance and exit valida-
tions of contactless tickets at stations on the Beijing metro (China). The
model allowed the authors to provide estimations about how journey
distance and land use distribution affected journey patterns without
having to estimate a complete four stage transport model. However, the
authors did not consider the possible existence of spatial effects in the
data, which is something that could affect the estimated parameters. In
contrast, de Grange et al. (2011) estimated a gravity type distribution
model considering spatial correlation. The model was estimated with
data from the bus service of the city of Santiago (Chile). The authors
concluded that explicitly considering spatial effects in a gravity model
could significantly increase its explanatory and predictive capabilities.

In the field of trip distributionmodels relating specifically to railways,
these models allow different planning alternatives to be evaluated.
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Among the aggregate models based on ticket sales, Wardman (2006)
proposed an unrestricted generation-distribution model using time series
data for the United Kingdom in the 1990s. The estimated model pre-
sented variables corresponding to the characteristics of the origin such as
the population, GDP and the rate of motorisation, as well as to the
journey such as the overall cost. The author found that GDP was the most
important factor in explaining the growth of journeys, even though in a
complete four stage model these types of variables are usually introduced
into trip generation models. In a similar work applied to railway journeys
to and from airports, Lythgoe and Wardman (2002) estimated a demand
model based on linear regression which calculated elasticities for
different variables like GDP, the fare or journey time.

Where disaggregate data is available, models based on user surveys
allow researchers to simulate individual choices considering personal
characteristics (age, gender, income, etc.) and transport service charac-
teristics as well as origins and destinations (Ben-Akiva and Lerman,
1985). However, this type of disaggregate model based on random utility
theory require greater effort during the data collection phase because
they are generally estimated using fewer data than models based on
ticket sales.

3. Methodology

Different authors have highlighted the specification problems
involved in using a multiple linear regression model (MLR) to estimate
the generation and distribution of journeys in a study area (Flowerdew
and Lovett, 1988; Thill and Kim, 2005). The dependent variable in dis-
tribution models is of a discrete nature, whereas the MLR model assumes
a continuous distribution. Therefore, it is desirable to use a model
specified with a qualitative dependent variable such as the Poisson
regression model (Gujarati and Porter, 2009). This model takes the form:

PðYiÞ ¼ μYe�μ

Y !
(1)

The Poisson regression assumes that each dependent variable Yi is
extracted from a Poisson type discrete distribution with the distribution
parameter μi of (1), logarithmically linked to a linear combination of
explanatory variables:

lnðuiÞ ¼ β1 þ β2X2i þ β3X3i þ βkXki (2)

Where:

βk are parameters to be estimated
Xki are the independent variables

The Poisson model cannot be made linear, meaning that the param-
eters cannot be estimated using Ordinary Least Squares (OLS). Alterna-
tive estimation methods such as maximum likelihood implemented
through algorithms as reweighted least squares have been proposed,
producing good results (Green, 1984).

A particular case of the Poisson model appears when all the inde-
pendent variables are specified as dummy variables. In this case the
Poisson model is equivalent to a log-linear model as both the dependent
variable and the independent are qualitative. Log-linear models are more
frequently used for modelling contingency tables (Agresti and Kateri,
2011). This type of model can be specified as totally saturated, in other
words, with a perfect fit to the data as a parameter is specified for each
observation. Willekens (1983) has shown how log-linear models are
equivalent to the gravity models if they are conveniently scaled, usually
by equalling the equilibrium factors of the first origin and destination to
1.

The fit of a Poisson model can be evaluated through different in-
dicators as the Akaike information criteria (AIC), the log–likelihood or
through the difference in the log-likelihood of the model estimated with
respect to the totally saturated model, in other words, using a likelihood
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ratio test (LR) of the following kind:

LR ¼ �2
�
L
�bθ0

�� L
�bθs

��
(3)

Where:

Lðbθ0Þ is the log – likelihood of the estimated model

LðbθsÞ is the log – likelihood of the saturated model

This type of test asymptotically distributes χ2 with r degrees of
freedom. In this case r is the difference between the number of estimated
parameters in the not saturated model and the number of parameters
estimated for the saturated model. The LR test can only be used to
compare the fit between general models and their constrained versions
with fewer parameters which is the case of the Poisson models estimated
without and with constraints on origins and destinations.

The variables to be introduced into the model will vary according to
the problem being addressed. A trip distribution model estimated using a
Poisson regression is usually specified with three variables: a variable of
the trips produced by the origin, a variable of trips attracted by the
destination and a travel cost variable between both zones, where the
variables of the produced and attracted trips are usually extracted from a
trip generation model (Hall, 2012). Therefore, this type of model would
not present any kind of constraint although it could have problems of
spatial autocorrelation in the origins or destinations which would be
convenient to address to guarantee the reliability of the estimated pa-
rameters (Griffith, 2007). One of the techniques which is available for
addressing this spatial autocorrelation in nonlinear models is Spatial
Filtering (Tiefelsdorf and Griffith, 2007) where the spatial effects are
separated from the rest of the non-spatial effects, thereby eliminating the
possible correlation present in a neighbourhood matrix.

The Poisson regression can also be specified with constraints on the
origins or destinations by estimating a different parameter for each zone.
The case of a doubly constrained model with a travel cost variable leads
to the well-known gravity distribution model derived from the principle
of maximum entropy (Wilson, 1970):

Tij ¼ AiOiBjDj exp
�� βCij

�
(4)

Where:

Tij are the trips between zones i and j
Oi are the trips produced by zone i
Dj are the trips attracted by zone j
Cij are the costs between zone i and zone j
β is an parameter to be estimated

The travel cost parameter β can be estimated using different pro-
cedures like the method proposed by Hyman (1969) or using a log linear
model (Dennett, 2012). There is also the possibility of estimating the
model with a combined travel cost function with two parameters which
would offer a better fit in urban areas. The balancing factors Ai and Bj are
codependent, meaning they need to be estimated iteratively using, for
example, the method proposed by Furness (1965):

Ai ¼ 1P
j
BjDj exp

�� βCij

� Bj ¼ 1P
i
AiOi exp

�� βCij

�

Given the constraints on the origins and destinations of the model, the
resulting fits are usually high. However, it is possible to introduce new
variables into the model in order to consider other spatial effects.
Flowerdew (2010) has proposed inserting dummy variables into the
model to consider zonal contiguity, as depending on the type of trip being
modelled, the contiguous zones may be a more or less likely destination
than the rest of the areas. This type of spatial effect may help in
improving the fit of the models by adapting them to the peculiarities of
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each study area.

4. Study area and results

4.1. Available data and the study area

The trip distribution models have been estimated using data provided
by the Spanish railway organisation ADIF – RAM about ticket sales on a
narrow gauge regional line in Cantabria (Spain). The ticket sales provide
information on both the origins and destinations of the passengers
meaning the trip matrix gives an exact representation of travel on the
line. ADIF – RAM also provided the prices of tickets needed to travel
between each pair of stations.

The studied line has a total of 23 stations being the two terminals
located at Santander and Cabez�on de la Sal (see Fig. 1). The data obtained
corresponds to the week from 19th to 25th January 2015 and counted
26,371 passengers. The stations with the highest production and
attraction trips were the two largest towns in the region, Santander and
Torrelavega, which accumulated more than 50% of the passengers given
their higher demographic weight.

The variables contained in the database can be seen in Table 1. Be-
tween all the O-D pairs there is an average of 52.5 trips with a maximum
of 2,900 trips corresponding to the Santander – Torrelavega pair. The
travel cost between the pairs has been specified through a generalised
cost (Cij) measured in Euros which combines the journey time between
the stations (in minutes) with the fare variable between the stations. The
value of time was provided by a previous study based on surveys asked to
regional train users with a final weight of 0.25 € per minute of journey
time (Grupo de Investigaci�on de Sistemas de Transporte, 2008). This case
assumes a fixed value of time because the line is of limited length (about
45 km). In cases where the lines weremuch longer it would be reasonable
to assume a variable value of time which increased as a function of dis-
tance (Wardman, 1998).

Two dummy variables were also included in the database to consider
the possible presence of spatial effects. A variable of contiguity between
stations taking a value of 1 if the stations are adjacent, and a variable
which takes a value of 1 in the Santander – Torrelavega and Torrelavega –
Santander pairs. This latter variable could be important because, as can
be seen in Fig. 2, the number of trips in the cost interval of 10–15 euros
increases with respect to the interval 5–10 Euros due largely to the
journeys produced between the two towns.

The possibility of estimating the model with a combined travel cost
function was tested, but in this case the results were no better in terms of
the fit to the observed journeys. This fact is certainly due to the inter-
urban nature of the modelled journeys, without an increase in their
number for low travel costs.
4.2. Results and discussion of the models

The parameters estimated for the seven models are summarised in
Table 2. The first four (P-1 a P-4) correspond to Poisson type regression
models, while the three latter are Wilson type gravity models.

The P-1 model was specified with the totals produced and attracted by
the origin and destination stations, using the generalised cost between
them as independent variables. The production and attraction parame-
ters were identical and had a positive sign, whereas the travel cost
parameter was, as expected, negative. Furthermore, all the parameters
were clearly significant. The parameters show, using the transformation
100*ðeβ � 1Þ, that one unit change in production and attraction gener-
ates, ceteris paribus, 0.05%more trips. However, an increase of one euro
in the generalised cost implies about a 9% reduction in the number of
trips being made. According to the AIC index the model had a fit of
20,279 and an R2 of 0.85 for the estimated journeys compared with the
observed journeys. The P-2 model adds to the variables of the P-1 model,
the dummy variable of contiguity between stations, which showed a



Fig. 1. Stations on the narrow gauge line Santander – Cabez�on de la Sal.

Table 1
Descriptive statistics of the variables contained in the database.

Variable Description Units Average Standard Deviation Minimum Maximum

Vij Trips between origin i and destination j No. Trips 52.47 255.40 1 2,900
Oi Trips produced by origin i No. Trips 1,146.57 2,083.57 43 8,842
Dj Trips attracted by destination j No. Trips 1,146.57 2,066.93 43 8,913
Cij Generalised cost between i and j Euros 8.59 4.80 1.90 21.05
Cont Dummy variable if the stations are contiguous 1/0 0.09 0.28 0 1
SantTorre Dummy variable if the O-D pair ij corresponds to Santander and Torrelavega 1/0 0 0.06 0 1

Fig. 2. Histogram of journeys according to generalised cost.
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negative sign. This sign provides evidence that, if a greater number of
journeys are made between points with low generalised costs (see Fig.
2), these are not normally made between adjacent stations given that the
parameter implies a reduction of around 72% in the number of journeys.
The P-2model had a slightly better fit than P-1 according to the AIC index
as well as a superior R2 comparing the estimated with the observed
journeys. The Poisson P-3 model included an additional dummy variable
corresponding to whether the O-D pair was Santander – Torrelavega or
Torrelavega – Santander. The sign of the parameter was negative with a
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reduction of 10% in the number of expected trips which is almost
certainly due to the fact that the O and D factors overestimate the po-
tential for interaction between the two locations. This model had a
slightly better fit than P-2 with all the estimated parameters being clearly
significantly different from 0. The specification of P-3 is therefore:

ln
�
uij
� ¼ β1 þ β2Oi þ β3Dj þ β4Cij þ β5Contij þ β6SantTorreij þ εij (5)

Finally, the P-4 model was estimated using the Spatial Filtering
technique to eliminate the possible presence of spatial correlation in the
origins and destinations (Griffith, 2007). All the pairs with identical or-
igins or identical destinations were considered to have neighbourhood
relationships. The spatial filtering selected two eigenvectors, one at ori-
gins (EvO) and another at destinations (EvD), which were introduced
into the Poisson regression. The fit of the model increased and reduced
the AIC to 16,880, the Root Mean Squared Error (RMSE) to 76.59 and the
Standardized Root Mean Squared Error (SRMSE) to 0.96. This latter in-
dicator is recommended by Fotheringham and Knudsen (1987) because it
is less sensitive to the magnitude of the data.

TheWilson gravity typemodels are summarised in columnsW-1 toW-
3 in Table 2. Rows Ai and Bj show the average of the 23 balancing factors
estimated for origins and destinations respectively, using the Furness
method with a stop criterion of a 0.1% maximum change in the factors
between one iteration and the next. The rest of the parameters are the
same as those specified in the Poisson type models, having been esti-
mated using a log-linear model which also allows their statistical



Table 2
Estimated Distribution Models (in brackets the p – value with the statistical significance of the parameters).

Variable P-1 P-2 P-3 P-4 W-1 W-2 W-3

(Intercept) 1.9490
(.000)

2.2190
(.000)

2.1460
(.000)

1.7180
(.000)

– – –

O/Ai 0.0005
(.000)

0.0005
(.000)

0.0005
(.000)

0.0005
(.000)

0.0001 0.0002 0.0002

D/Bj 0.0005
(.000)

0.0005
(.000)

0.0005
(.000)

0.0006
(.000)

0.8846 0.9690 0.9307

Cij �0.0969
(.000)

�0.1187
(.000)

�0.1156
(.000)

�0.1092
(.000)

�0.1102
(.000)

�0.1690
(.000)

�0.1652
(.000)

Cont – �1.2890
(.000)

�1.2800
(.000)

�1.2460
(.000)

– �2.3657
(.000)

�2.4135
(.000)

SantTorre – – �0.1097
(.000)

�0.5648
(.000)

– – �0.2789
(.000)

EvO – – – �8.9470
(.000)

– – –

EvD – – – 4.4020
(.000)

– – –

AIC 20,279 18,614 18,591 16,880 10,295 6,998 6,910
R2 0.85 0.88 0.89 0.91 0.94 0.98 0.99
RMSE 98.84 85.64 83.78 76.59 55.12 32.56 28.41
SRMSE 1.24 1.07 1.05 0.96 0.69 0.41 0.36

Residual Deviation 18,531 16,864 16,839 15,124 8,463 5,164 5,074

Fig. 3. Histogram of the observed trips compared to estimated trips for the
unrestricted Poisson regression models.

Fig. 4. Histogram of the observed trips compared with the estimated trips for
the gravity models.
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significance to be estimated. The fit of the constrained gravity models
was better than that of the Poisson regression models with R2 superior to
0.9 in all cases, up to a fit of 0.99 for the observed data in model W-3
considering the contiguity of the stations and the specific interaction
between Santander and Torrelavega. The W-3 model was specified as:

Vij ¼ AiOiBjDj exp
�
β4Cij þ β5Contij þ β6SantTorreij

�
(6)

The parameter of the W-3 travel cost variable highlights a journey
reduction of 15% for each additional euro in cost. The Cont (β5)
parameter clearly had one magnitude greater than it did in the Poisson
models, estimating a reduction of 91% in the journeys between adjacent
stations compared with what would be obtained by only considering the
row, column and travel cost factors. The SantTorre (β6) parameter also
had a greater magnitude than in the P-3 model estimating a reduction,
ceteris paribus, of 24% in the number of journeys.

If an LR test is conducted between the gravity and Poisson regression
models, the former show a test value which is clearly superior to the
critical value even considering the greater number of parameters used by
the constraints on the origins and destinations. This is the case, for
example, with the W-3 model compared with P-3, where the test pre-
sented a value greater than 11,000 for a critical value of 95% of the
confidence level of 55.8.

If the residual deviation between the estimated models and the
completely saturated model is considered, the test value was always su-
perior to the critical value of the distribution, although the Wilson type
models clearly got closer to the maximum fit provided by the saturated
model. The RMSE and the SRMSE between the modelled and observed
values showed similar results with the best fit in the W-3 model.

An examination of the fit of the models with respect to the observed
data by cost ranges (see Fig. 3 and Fig. 4) shows how the Poisson models
have a worse fit for the intermediate cost ranges (5–10 and 10–15 euros).
On the other hand, the gravity models and especially the W-2 and W-3
models with dummy variables considering spatial effects showed a better
fit over all the cost ranges. The fit provided by these models was signif-
icantly better than that of the W–1 model using the LR test with one
(W–2) or two degrees of liberty (W–3).

An analysis of the highest residuals of the P-1 model shows how (see
Fig. 5) the W-1 and W-3 models reduced both the positive errors and the
negative errors thanks to the constraints on the origins and destinations.
The P-4 and W-3 models also enabled a reduction in the negative re-
siduals caused by the over prediction of trips between contiguous stations
(see the 1–2 and 2-1 pairs in Fig. 5) which represented 11% of the overall
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errors in the P-1 model. So, while the P-1 model showed a quotient of
0.33 between the observed trips and the modelled trips between
contiguous stations, the P-4 model's quotient was 0.98. Similar values
were also found with theW-1 (0.32) andW-3 (0.98) models, respectively.
In the cases of the Santander – Torrelavega (1–13), Torrelavega –

Santander (13-1) pairs, the errors of the model represented 2% of the
total errors and the quotient between the observed trips and themodelled
trips changed from 0.94 in the P-1 model to 0.99 in the W-3 model.



Fig. 5. Residuals of the P-1, P-4, W-1 and W-3 models in the 30 origin – destination pairs with the highest absolute residuals in the P-1 model.

Table 3
Changing trip production and attraction scenario at stations.

Station Growth in trip production Growth in trip attraction

1-Santander þ5% þ4%
13-Torrelavega þ3% þ4%
23-Cabez�on de la Sal þ1% þ4%
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4.3. Application of the distribution models to the prediction of journey
patterns

The simpler P-1 and W-1 models will be applied along with those
models estimated with more parameters, P-4 and W-3, for predicting
journey patterns resulting from changes in the production and attraction
of trips from stations on the studied railway line. These models could also
be applied, as suggested by Raymer (2007), to the estimation of new
origin-destination trip pairs (e.g. a new train station) by applying the
ratio between the observed and the predicted trips between existing
origin-destination pairs. In this example, however, only changes in the
number of trips produced and attracted at stations along the current line
will be simulated.

It is assumed that stations 1, 13 and 23 along the studied line expe-
rience increased trip production and attraction, as shown in Table 3.
These increases could be obtained from a trip generation model and be
due to various factors like population or economic growth in the catch-
ment areas or an increase in the number of available services, among
others.

Fig. 6 describes trips estimated by the P-1, P-4, W-1 and W-3 models
for the 30 Origin-Destination pairs with the greatest average journey
demand in all the models. The journeys produced in the current situation
have also been represented (without increases in the produced/attracted
journeys) to provide a reference pattern. It can be seen how the P-1 and P-
4 models estimated much more trips than the W-1 andW-3 models or the
current situation for the pairs where the origin or the destination is the
station at Santander (1) and particularly for the Santander – Torrelavega
(1–13) or the Torrelavega – Santander (13-1) pairs. This is because the P-
1 and P-4 models had no constraints on the origins and destinations
allowing them to overestimate the number of journeys produced between
origin-destination pairs with high overall rates of trip production and
attraction, as is the case of the station at Santander. However, on the
contrary, between stations with a lower capacity for producing and
attracting journeys, such as is the case of Cabez�on de la Sal (23), the effect
is the opposite and the W-1 and W-3 models estimate more journeys than
the P-1 and P-4 models. It is also worth noting how between adjacent
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stations (pairs 1–2 and 2-1) the P-4 and W-3 models, which consider this
spatial effect, estimate a considerably lower number of journeys than the
P-1 and W-1 models, at closer magnitudes to the current situation.

The journey patterns obtained by the W-1 model and above all by the
W-3 model, therefore seem to be more realistic and consistent with an
increase in the capacity of certain stations to produce and attract jour-
neys, when compared with the current situation.

5. Conclusions

This article has presented the estimation of trip distribution models
using two methods: nonlinear Poisson regression and gravity models
with constraints on origins and destinations. The goal was to assess
whether or not the gravity models fit to the data significantly better
considering they require a greater number of parameters. Additional
variables have also been introduced to account for the spatial effect of
contiguity between stations controlled by the effect of spatial correlation
which may be present in the trip distribution data. The estimated models
could be useful tools for simulating changes that passengers make in their
choice of destination as a result of new policies such as the opening and
closing of stations or changes in the service conditions.

The results confirm that the gravity model with constraints on origins
and destinations had a significantly better fit to the data, according to the
LR test, than the Poisson regression models without constraints. This fact
was true even considering that the gravity models were estimated with
40–42 more parameters and that in a Poisson model the presence of
spatial correlation was controlled. The models that considered contiguity
between stations and the specific effects of interaction also showed a



Fig. 6. Number of journeys in the current and simulated situations for the 30 origin – destination pairs with the highest average number of journeys.
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significantly better fit with only one or two more parameters than the
models that did not consider these effects. It would therefore seem
recommendable to estimate gravity models constrained by production
and attraction data obtained from a trip generation model when creating
a trip distribution model. Even more so when to estimate a gravity model
using a log-linear model does not imply any additional costs other than
those involved in the iterations needed to obtain the balancing factors.
The possibility of specifying addition spatial variables also gives the
model an extra capacity of adaptation to the study area.

The prediction exercise performed on a future scenario also showed
how the constrained gravity models and in particular the more complex
model considering contiguity between stations produced a more realistic
journey pattern in accordance with the current situation. This kind of
distribution model combined with the trip generation models could
therefore be easily applied to the simulation of different events and
policies occurring to the railways, such as the changing demand at sta-
tions, the creation of new stations and changes in journey travel cost,
among others. A realistic journey pattern between stations for future
scenarios would be a very useful support tool for operators in order to
correctly plan the supply of railway services.

A future line of research would be the estimation of gravity models
which consider the presence of spatial autocorrelation at origins, desti-
nations and at points of interaction between O-D pairs. The estimation of
this type of model currently requires considerable computing power
which makes necessary additional research (Griffith, 2009).
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