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ON A GENERALIZED DOUBLY PARABOLIC

KELLER-SEGEL SYSTEM IN ONE SPATIAL DIMENSION

JAN BURCZAK AND RAFAEL GRANERO-BELINCHÓN

Abstract. We study a doubly parabolic Keller-Segel system in one
spatial dimension, with diffusions given by fractional laplacians. We
obtain several local and global well-posedness results for the subcritical
and critical cases (for the latter we need certain smallness assumptions).
We also study dynamical properties of the system with added logistic
term. Then, this model exhibits a spatio-temporal chaotic behavior,
where a number of peaks emerge. In particular, we prove the existence
of an attractor and provide an upper bound on the number of peaks
that the solution may develop. Finally, we perform a numerical analysis
suggesting that there is a finite time blow up if the diffusion is weak
enough, even in presence of a damping logistic term. Our results gener-
alize on one hand the results for local diffusions, on the other the results
for the parabolic-elliptic fractional case.

1. Introduction

This paper is devoted to studies of the following generalized, doubly par-
abolic (τ = 1) Keller-Segel-type system with a logistic term (r ≥ 0)

∂tu = −µΛαu+ ∂x(uΛ
β−1Hv) + ru(1− u),(1)

τ∂tv = −νΛβv − λv + u,(2)

on T, i.e. the one dimensional periodic torus, where Λ =
√
−∆ (for basic

notation and definitions, see Section 3). A similar model has been mentioned
by Biler & Wu, see [12], Section 5. In (1)-(2) we take parameters ν, µ, α, β >
0, λ, r ≥ 0 and nonnegative initial data u0 and v0. We will refer to (1)-(2)
with τ = 0 as to the parabolic-elliptic system and with τ = 1 as to the doubly
parabolic one. In order to clarify the terminology, let us simply define the
case α > 1 as subcritical, α = 1 as critical and α < 1 as supercritical.

The system (1)-(2) with τ = 0 and α = 1, β = 2 is the µ(u) ≡ µ
simplification of the one considered by us in [17], i.e.

∂tu = ∂x(−µ(u)Hu+ u∂xv) + ru(1− u),

0 = −∂2
xv + u− 〈u〉.

1.1. Motivation.

1.1.1. Mathematical biology. Our interest in the system (1)-(2) stems from
the mathematical studies of chemotaxis initiated by Keller & Segel in [39].
Chemotaxis is a chemically prompted motion of cells with density u towards
increasing concentrations of a chemical substance with density v. For in-
stance, in the case of the slime mold Dictyostelium Discoideum, the signal is
produced by the cells themselves and cell populations might form aggregates
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in finite time. Chemotaxis also takes place in certain bacterial populations,
such as of Escherichia coli and Salmonella typhimurium, and it results in
their arrangement into a variety of spatial patterns. During embryogene-
sis, chemotaxis plays a role in angiogenesis, pigmentation patterning and
neuronal development. It is also important in cancerogenesis, since cer-
tain tumors force the host organism to link them with its blood system via
chemical signals. Specifically, in presence of the logistic term, our model is of
particular importance in view of its relationship with the three-component
urokinase plasminogen invasion model (see Hillen, Painter & Winkler [35]).

Moreover, let us observe that the cell kinetics model M8 in Hillen &
Painter [34], that describes a bacterial pattern formation or cell movement
and growth during angiogenesis, reads

∂tu = µ∆u−∇(u∇v) + ru(1− u)(3)

∂tv = ν∆v − λv + u.(4)

System (3)-(4) in one dimension is especially close to our system (1)-(2),
since it is given by choosing α = β = 2 in (1)-(2) with τ = 1.

The parabolic-elliptic (τ = 0) version of the system (3)-(4) is close to
astrophysical models of a gravitational collapse. It is very similar in spirit
to the Zel’dovich approximation [61] used in cosmology to study the for-
mation of large-scale structures in the primordial universe, see also Ascasi-
bar, Granero-Belinchón & Moreno [1]. It is also connected with the Chan-
drasekhar equation for the gravitational equilibrium of polytropic stars, sta-
tistical mechanics and the Debye system for electrolytes, see Biler & Nadzieja
[11]. A more detailed presentation of some results on systems of type (3)-(4)
and (1)-(2) follows in Section 2.

1.1.2. Fractional diffusion. The importance of the fractional diffusion gen-
eralization (1)-(2) of (3)-(4) is twofold.

Primarily, there is a serious mathematical interest involved. To explain
this point, let us recall that chemotaxis systems model two opposite phe-
nomena: one is diffusion of cells due to their random movements, the other
is their tropism toward higher concentrations of a chemical that may result
in their aggregations. Hence it is mathematically interesting to establish the
minimal strength of diffusion that overweights the chemotactic forces, hence
giving, roughly speaking, the global existence of regular solutions or, equiv-
alently, to study the maximal strength of diffusion that does not prevent
blowup.

Let us recall that for the parabolic-elliptic in two space dimensions the
standard diffusion ∆ is critical; moreover the exact initial mass ‖u0‖L1 that
divides the regimes of global existence and of blowup has been computed,
compare for instance Bournavas & Calvez [15] and its references. Let us
remark here that the blowup phenomenon together with the mass threshold
was shown by Jäger & Luckhaus [37] and Nagai [44].

For the doubly parabolic case in two space dimensions the situation is
analogous, but here the available results are much later and less complete,
see Mizoguchi [45] and references therein. In this context one may argue that
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the doubly parabolic case is substantially more difficult than the parabolic-
elliptic one. We refer again to Section 2 for more detailed overview of the
known results.

In the one-dimensional case, the standard diffusion is strong enough to
give the global existence; on the other hand, for d > 2 it is too weak.
In this context it is mathematically interesting to find, for a fixed space
dimension d, a critical diffusive operator that sits on the borderline of the
blowup and global-in-time regimes. There are at least two approaches to
this problem, both justified from the point of view of applications. One is to
consider the semilinear diffusion ∇ · (µ(u)∇u), see for instance Bedrossian,
Rodriguez & Bertozzi [7], Blanchet, Carrillo & Laurençot [13], Cieślak &
Stinner [23], Burczak, Cieślak & Morales-Rodrigo [16], Cieślak & Laurençot
[22] ad Tao & Winkler [52]. Another one is to replace the standard diffusion
with the fractional one. In such a case there is a strong evidence that the
half-laplacian Λ =

√
−∆ is especially worth studying; for more on this, see

Subsection 2.3.
We focus on the latter approach and one dimension.
Let us mention here that the logistic term generally helps the global exis-

tence, see Tello & Winkler [53], Winkler [57], Burczak & Granero-Belinchón
[17]. However, in view of our interest in large-time behavior of solutions to
(1)-(2), we include the logistic term in our considerations here mainly due
to the context in which it appears in [48], namely the spatio-temporal chaos.

Apart from the outlined mathematical interest in fractional diffusion sys-
tems, it is also believed that they can be useful for modelling certain feeding
strategies. For studies on microzooplancton, compare Klafter, Lewandowsky
& White [49] and Bartumeus, Peters, Pueyo, Marrasé & Catalan [5]; on
amoebas – Lewandowsky, White & Schuster [50], flying ants – Shlesinger &
Klafter [51], fruit flies – Cole [24], and jackals – Atkinson, Rhodes, MacDon-
ald & Anderson [2].

Of course our system (1)-(2) is merely motivated by the applications in
biology and not directly applicable, since it concerns one space dimensions
and no boundary. Nevertheless, let us remark here that most of the analysis
in this paper can be carried out in the case where the domain is the real
line. In particular, Theorems 1, 2, 3, 4, 6, 7 and also part of Theorem 5
(when α > 1) can be adapted to the real line in a straightforward way.

1.2. Plan of the paper and overview of our results. In Section 2 we
present in more details the known results on Keller-Segel-type systems. Sec-
tion 3 introduces basic notation, function spaces and our notion of solution.
Next, we provide precise statements of our main results as well as some
additional remarks in Section 4.

The following sections contain proofs of our statements.
In particular, in Section 5 we prove local existence of solutions to (1)-(2),

while in Section 6 we show continuation criteria.
Next, in Sections 7 and 8, we study the global-in-time existence. More

precisely, we prove global existence of regular solutions in the hypoviscous
case α = 1, provided an explicit smallness condition for initial data holds
and µ > 1. This result holds for r = 0. Moreover, for arbitrary smooth
initial data, we show global existence of
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Figure 1. Evolution in the case α = β = 1.
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Figure 2. Scheme assuming µ, ν, r, λ > 0.

• weak solutions in the subcritical case α > 1 for r ≥ 0 and in both
critical and subcritical case α ≥ 1 for r > 0,

• strong solutions in the subcritical case α > 1 with either β ≥ α/2
and r ≥ 0 or with β ≥ 0 and r > 0.

Section 9 provides results on the absorbing set in the case β ≥ α > 1,
r > 0.

In Section 10 we study the smoothing properties of the systems (1)-(2),
including an instantaneous gain of analyticity of the solution to (1)-(2).

In Sections 11 and 12 we study existence of an attractor and the dynamical
properties of (1)-(2) (for parameters α, β large enough). The solution in a
neighborhood of this attractor develops a number of peaks that eventually
merge with each other while other peaks emerge, see Figure 1. We are able
to bound from above the number of these peaks analytically.

The aforementioned results are presented in Figure 2.
Finally, in Section 13, we perform a numerical study of (1)-(2) and provide

numerical evidence of the finite time blow up in the case α = 0.5, β = 1.
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1.3. Novelties. To the best of our knowledge, there are not many regularity
results for the doubly parabolic fractional Keller-Segel system. Hence the
generalization of the parabolic-elliptic global existence results of [14], [17],
[28] to the system (1)-(2), even with β = 2 (the standard chemotactic term)
and r = 0, appears to be new. In particular, we prove global existence
and boundedness of classical solutions with no restriction on size of initial
data in the subcritical regime α > 1 and with a restriction in the critical
case α = 1. The restriction of the latter result is explicit and of the same
order as the other parameters present in the system. In its proof we use
the Wiener’s algebra approach, which seems to be new in the Keller-Segel
context. Nevertheless, we must admit that our smallness condition is quite
stringent in the sense that it affects the entire Wiener’s algebra norm (as
opposed to merely the initial mass, for instance).

The dynamical properties of the system are only known when α = β = 2,
as far as we know. Moreover, the bound on the number of peaks seems new
even in the classical α = β = 2 case.

2. Some prior results

Let us now present some literature concerning the Keller-Segel-type sys-
tems, in addition to that mentioned in subsection 1.1.

2.1. Keller-Segel system with classical diffusion. There is a huge lit-
erature on the mathematical study of (3)-(4) and its parabolic-elliptic coun-
terpart (τ = 0). Consequently, the list below is far from being exhaustive.

The global existence of solutions to (3)-(4) have been proved (under cer-
tain conditions) by many authors. In particular, Kozono & Sugiyama [42]
showed the global existence and decay of solutions to (3)-(4), corresponding
to small initial data in d = 3 and with 1 < r < 1.5 (see also [41]). Biler,
Guerra & Karch [9] recently proved that for every finite Radon measure there
exist τ0 and a global in time mild solution for (3)-(4) with τ > τ0. Corrias,
Escobedo & Matos [27] proved that if the initial data (u0, v0) is small in

L1(R2) × Ḣ1(R2) there exists a global solution. This result was recently
generalized by Cao [20]. Osaki & Yagi [47] and Osaki, Tsujikawa, Yagi &
Mimura [46] obtained the existence of an exponential attractor while Hillen
& Potapov [36], using different techniques, also showed the global existence
of solutions.

Tello & Winkler [53] proved the global existence of weak solutions for
the parabolic-elliptic case with logistic term (τ = 0, r > 0) for arbitrary
0 ≤ u0 ∈ L∞; see also [54]. Winkler [57] showed that there exists a global
in time solution for the doubly parabolic case with a sufficiently strong
logistic parameter r. He also obtained global weak solutions and studied
the regularizing properties starting from merely u0 ∈ L1 initial data in [56].
Some finite time singularities results for solutions corresponding to certain
initial data can be found in [58], [59] by Winkler.

2.2. Spatio-temporal chaos. A remarkable feature of the model (1)-(2) is
its spatio-temporal chaotic behavior. In particular, the numerical solutions
reported Painter & Hillen [48] for the system (3)-(4) develop a number of
peaks that emerge and, eventually, mix with other peaks. These peaks are
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maxima of u, v that are very close to a region with their slope bigger than
one. This phenomenon materializes in the numerical study of the system
(1)-(2) with different values of α, β < 2 (see Figure 1 for the case α = β = 1
and Section 13.). As noted by Winkler in [57], the dynamical features of
Keller-Segel models in high dimensions, in particular the existence of global
attractors and bounded solutions, is an important topic.

2.3. Non-standard diffusions. The case of a nonlinear diffusion has been
studied by several authors. See for instance Bedrossian & Rodriguez [6],
Bedrossian, Rodriguez & Bertozzi [7], Blanchet, Carrillo & Laurençot [13]
and Burczak, Cieślak & Morales-Rodrigo [16].

The case of fractional powers of Laplacian instead of local derivatives in
the first equation (α ∈ (0, 2) and β = 2) has been addressed by several
authors.

In particular, for the parabolic-elliptic case, Escudero [28] proved the
boundedness of solutions in the one dimensional case with α > 1, while
Li, Rodrigo & Zhang [43] proved finite time singularities by constructing
a particular set of initial data showing this behaviour. These authors also
proved that any L1

tL
∞
x bounded solution is global (see also [1]). Bournaveas

& Calvez [14] studied the one-dimensional case with 0 < α < 1 and ob-
tained the finite time blowup of solutions corresponding to big initial data
and global solutions corresponding to small initial data. They also prove
global existence for small data in the case α = 1, but here the problem of
behavior of solutions emanating from large data remained an open ques-
tion. Recently it was addressed in [18] by the authors, where global-in-time
smoothness without any smallness assumptions is proved. In the context of
the parabolic-elliptic case and similar problems, see also Ascasibar, Granero-
Belinchón & Moreno [1], Granero-Belinchón & Orive [32], and [17] by the
authors.

For the parabolic-elliptic system with fractional diffusion in the equation
for v, compare Biler & Karch [10].

The doubly parabolic case with fractional operators has been addressed
by Biler & Wu [12] and Wu & Zheng [60]. In particular, these authors
proved local existence of solutions, global existence of solutions for initial
data satisfying some smallness requirements and ill-posedness in a variety
of Besov spaces.

3. Preliminaries

Here we gather some basic terms used in what follows. We define

〈f〉 = 1

|T|

∫

T

f(x)dx, T = [−π, π].

3.1. Singular integral operators and functional spaces. We write H
for the Hilbert transform and Λ =

√
−∆, i.e.

Ĥu(k) = −i sgn(k) û(k), and Λ̂su(k) = |k|sû(k),
where ·̂ denotes the usual Fourier transform. Notice that Λ = ∂xH in one

dimension and Ĥu(0) = 0. The differential operator Λs = (
√
−∂x

2
)s is
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defined by the action of the following kernels (see [25] and the references
therein):

(5) Λsf(x) = cs p.v.

∫

T

f(x)− f(y)

|x− y|1+s
dy + cs

∑

k∈Z\{0}

∫

T

f(x)− f(y)

|x− y + 2kπ|1+s
dy,

where cs > 0 is a normalization constant. In particular, in one dimension
for s = 1

Λf(x) =
1

2π
p.v.

∫

T

f(x)− f(y)

sin2 ((x− y)/2)
dy.

Remark 1. Notice that given v ∈ L2(T), since 〈Hv〉 = 0,

Λβ−1Hv ∈ L2(T)

even if β < 1.

We write Hs for the usual L2-based Sobolev spaces with the norm

‖f‖2Hs = ‖f‖2L2 + ‖f‖2
Ḣs , ‖f‖Ḣs = ‖Λsf‖L2 .

The Wiener’s algebra is defined as

(6) A(T) = {periodic functions f such that f̂ ∈ l1},
i.e., the set of functions with absolutely convergent Fourier series. For a
periodic function u, we define the Wiener’s algebra-based seminorms:

|u|s =
∑

k∈Z
|k|s|û(k)|.

3.2. Sobolev embeddings and their constants. Along the paper we are
going to use different forms of Sobolev embedding (all of them classical).
For the sake of clarity, we collect here these inequalities (and denote their
constants) that are more often used. Assuming α > 1, we have for a function
g and a zero-mean value function f

(7)

‖f‖L2/(α−1) ≤ C1
SE(α)‖Λ1−α/2f‖L2 ,

‖g‖L∞ ≤ C2
SE(α)‖g‖H α

2
,

‖f‖
L
2+ 2α−2

2−α
≤ C3

SE(α)‖Λ(α−1)/2f‖L2 ,

‖f‖
W

α
2 ,∞ ≤ C4

SE(α)‖f‖Ḣα .

3.3. Notation. We write Tmax for the maximum lifespan of the solution.
For a given initial data (u0, v0), we define

N = max{‖u0‖L1(T), 2π}.
3.4. A notion of solution. Let u0(x), v0(x) ≥ 0 be the initial data for the
system (1)-(2). Then we define its solution as follows

Definition 1. Let 0 < T < ∞ be a positive parameter. The couple

(u, v) ∈ L∞([0, T ], L2(T))× L∞([0, T ],Hβ/2(T))

is a solution of (1)-(2) if
∫ T

0

∫

T

[∂tφ−µΛαφ]u+∂xφ(uΛ
β−1Hv)+φru(1−u) dxdt−

∫

T

φ(x, 0)u0 dx = 0,
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∫ T

0

∫

T

[∂tϕ− νΛβϕ− λϕ]v + ϕudxdt−
∫

T

ϕ(x, 0)v0 dx = 0,

for all test functions φ,ϕ ∈ C∞
c ([0, T ) × T).

Definition 2. If a solution (u, v) verifies the previous definition for every
0 < T < ∞, this solution is called a global solution.

Observe, that our notion of a global solution does not involve T = ∞. In
particular, our global solution may a priori become arbitrarily large as time
tends to infinity.

4. Statement of results

4.1. Local-in-time existence, regularity and continuation criteria.
First, we have the following result

Theorem 1. Let s ≥ 3, µ, ν > 0 and 0 < β,α ≤ 2. If (u0, v0) ∈ Hs(T) ×
Hs+β/2(T) is the initial data for equation (1)-(2), then it admits a unique
solution

0 ≤ u ∈ C([0, Tmax(u0, v0)],H
s(T)) ∩ L2([0, Tmax(u0, v0)],H

s+α/2(T)),

0 ≤ v ∈ C([0, Tmax(u0, v0)],H
s+β/2(T)) ∩ L2([0, Tmax(u0, v0)],H

s+β(T)).

Next, we prove the following continuation criteria, slightly stronger than
the condition in Lemma 2.1 of [59]

Theorem 2. Assume that, for a finite time T and initial data (u0, v0) ∈
Hs(T)×Hs+β/2(T), s ≥ 3, the solution to (1)-(2) satisfies

∫ T

0
‖Λβv(s)‖L∞ + ‖∂xu(s)‖L∞ds < ∞,

then this solution can be continued up to time T + δ for a small enough
δ > 0. Moreover, if µ ≥ 1

2ν , α ≥ β, then, the previous condition may be
replaced by

∫ T

0
‖u(s)‖2L∞ + ‖Λβv(s)‖L∞ + ‖u(s)‖L∞‖Λβv(s)‖L∞ds < ∞.

Hence if (u, v) is a solution showing finite time existence with Tmax being
its maximum lifespan, then we have

lim sup
t→Tmax

‖Λβv(t)‖L∞ + ‖∂xu(t)‖L∞ = ∞.

And, if µ ≥ 1
2ν , α ≥ β, the previous equation is replaced by

lim sup
t→Tmax

‖u(t)‖L∞ + ‖Λβv(t)‖L∞ = ∞.

Let us emphasize that the above results do not involve any extra assump-
tions on the values of parameters α, β, r, λ. They should be compared with
Lemma 1.1 of [57].

4.2. Global-in-time solutions.
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4.2.1. Small data regularity result for α ≥ 1, r = 0. Using the Wiener’s
algebra approach we obtain a global solution for small, periodic initial data.
Recall that the Wiener’s algebra is defined as in (6).

Theorem 3. Let (u0, v0) ∈ H3(T) × H3+β/2(T) and assume 1 ≤ β ≤ 2 ≤
1+α as well as r = 0, µ > 1 in the system (1)-(2). Then, if the initial data
satisfy

|u0|1 + |v0|β < min{µ − 1, ν − 〈u0〉, λ/2},
the solution is global and

|u(t)|1 + |v(t)|β ≤ |u0|1 + |v0|β .
This result has the same flavor as [3], [42]. The case α = 1 is particularly

interesting, because for the case α > 1, we prove below the existence of
global solutions corresponding to arbitrary large initial data. Notice that
the constant in the smallness condition depends explicitly on the parameters
present in the problem and ‖u0‖L1 .

Theorem 3 is stated for the case r = 0. Let us recall, that in [17] we
prove result for a similar, parabolic-elliptic system that involves an interplay
between the admissible size of initial data and the logistic parameter r.

4.2.2. Large data regularity result for α > 1, r ≥ 0. We also have

Theorem 4. Let µ, ν > 0, 2 ≥ α > 1, r, λ ≥ 0, 2 ≥ β ≥ α/2 and the initial

data (u0, v0) ∈ L2(T) ×Hβ−α/2(T) be given. Then there exists at least one
global in time weak solution corresponding to (u0, v0) satisfying

u ∈ L∞([0, T ], L2(T)) ∩ L2([0, T ],Hα/2(T)) ∀ T < ∞,

v ∈ L∞([0, T ],Hβ−α/2(T)) ∩ L2([0, T ],H3β/2−α/2(T)) ∀ T < ∞.

If, in addition, the initial data (u0, v0) ∈ Hkα(T) × Hkα+β/2(T), k ∈ N,
kα ≥ 3, then there exists a unique global in time solution corresponding to
(u0, v0) that enjoys

u ∈ C([0, T ],Hkα(T)) ∀ T < ∞,

v ∈ C([0, T ],Hkα+β/2(T)) ∀ T < ∞.

4.2.3. Large data regularity result for α ≥ 1, β > 0, r > 0. The previous
two results did not use additional regularity provided by the logistic term.
It turns out that in presence of the logistic damping (r > 0), for any β >
0 one can obtain global solutions in both the critical case α = 1 (then
weak solutions) and subcritical case α > 1 (then regular solutions). More
precisely, we have

Theorem 5. Let µ, ν, r > 0, 2 ≥ α ≥ 1, λ ≥ 0, 2 ≥ β > 0 and the initial
data (u0, v0) ∈ L2(T) × Hβ/2(T) be given. Then there exists at least one
global in time weak solution corresponding to (u0, v0) satisfying

u ∈ L∞([0, T ], L2(T)) ∩ L2([0, T ],Hα/2(T)) ∀ T < ∞,

v ∈ L∞([0, T ],Hβ/2(T)) ∩ L2([0, T ],Hβ(T)) ∀ T < ∞.
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If, in addition, α > 1, β ≤ α and the initial data (u0, v0) ∈ Hkα(T) ×
Hkα+β/2(T), k ∈ N, kα ≥ 3, then there exists a unique global in time
solution corresponding to (u0, v0) that enjoys

u ∈ C([0, T ],Hkα(T)) ∀ T < ∞,

v ∈ C([0, T ],Hkα+β/2(T)) ∀ T < ∞.

4.2.4. Absorbing set for r > 0, β ≥ α > 1.

Theorem 6. Let µ, ν > 0, 2 ≥ β ≥ α > 1, λ ≥ 0, r > 0 and the initial data
(u0, v0) ∈ Hkα(T)×Hkα+β/2(T), k ∈ N, kα ≥ 3 be given. Then there exist
positive numbers T ∗, S(·) such that

‖u(t+ 1)‖2
Ḣkα/2 ≤ S(Ḣkα/2) ∀ t ≥ T ∗, 0 ≤ kα.

From Theorem 6 follows in particular that

lim sup
t→∞

‖u(t)‖2
Hα/2 ≤ S(Hα/2)

with S(Hα/2) given by (42). Furthermore, it implies that there exists C,
depending on the parameters present in the problem and on the initial data,
such that

max
0≤t<∞

{‖u(t)‖2
Hkα/2 + ‖v(t)‖2

Hβ+(k−1)α/2} ≤ C,

hence the solution is globally bounded.

Remark 2. We provide (and collect in B) an estimate for numbers S(·)
along the proof of Theorem 6. We provide them, since part of interest of
this paper is to study the dynamical properties of the attractor of (1)-(2).
In particular, we believe that an estimate on the radius of the absorbing set
and the number of peaks that may emerge is interesting (see below) and it
requires a formula for S(·). Let us also notice that the hypothesis β ≥ α is
not required to obtain the existence of S(L2).

4.3. Instantaneous analyticity. Before we state our result on the smooth-
ing effect, we need some additional notation and definitions.

4.3.1. Preliminaries. Let us define

(8) 0 < ω0 = min
{ν
3
,
µ

8

}
,

and let ω be a positive constant that will be fixed later, depending on the
parameters present in our problem and on the initial data. We define the
(time dependent) complex strip

Sω = {x+ iξ, x ∈ T, |ξ| ≤ ωt},
and

(9) T̃ =
1 + ‖u0‖2H3(T) + ‖v0‖2H4(T)

3K ,

where K is given in (45).
The Hardy-Sobolev space for the complex extension of a real function is

given by

(10) Hs(Sω) = {f(z, t), z ∈ Sω s.t. ‖f‖Hs(Sω) < ∞ and f(x, t) ∈ R},
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with norm

(11) ‖f‖2Hs(Sω)
=

∫

T

|f(x± iωt)|2dx+

∫

T

|∂s
xf(x± iωt)|2dx.

To motivate the use of these spaces, notice that if the H0(Sω) = L2(Sω)
norm of u is bounded, then u is analytic. In order to see this, we can use
the Fourier series of u:

u(x) =
∑

k∈Z
û(k)eikx.

Formally, evaluating it at x = α± iωt, we have

u(α± iωt) =
∑

k∈Z
û(k)eikαe∓kωt.

Then, since ∑

k∈Z
|û(k)|2e∓kωt =

∫

T

|u(α± iωt)|2dα < ∞,

we have that û(k) decays at least as e±kωt. Since exponential decay for the
Fourier series implies analyticity, we conclude the claim. For further details,
see [4, 8, 21, 26, 30, 31].

4.3.2. Results. We have

Theorem 7. Given 2 ≥ α, β ≥ 1, µ, ν > 0, r ≥ 0 and the initial data
(u0, v0) ∈ H3(T)×H4(T), the solution (u, v) of (1)-(2) becomes real analytic

for every 0 < t < T̃ . Furthermore, the complex extension of (u, v) becomes
complex analytic in the growing in time, complex strip Sω with ω ≤ ω0 and
we have the bounds

‖u(t)‖L∞(Sω) ≤
√
2‖u0‖L∞(T), ‖v(t)‖L∞(Sω) ≤

√
2‖v0‖L∞(T).

Remark 3. If in addition min{α, β} > 1, the restriction ω ≤ ω0 can be
relaxed.

Theorem 7 is local in time. However, using a classical bootstrapping
argument, the analyticity of (u, v) in a complex strip around the real axis
(possible with a very small width of the strip) can be obtained for every
positive time t > 0.

More precisely, we have

Corollary 1. If α, β > 1, and min{µ, ν} > 0, r ≥ 0, the solutions (u, v) ∈
H3(T)×H4(T) to the problem (1)-(2) are real analytic for every 0 < t.

Moreover, it holds

Corollary 2. If α, β ≥ 1, and min{µ, ν} < 0, the problem is ill-posed, i.e.
there are solutions (u, v) to the problem (1)-(2) such that

‖u0‖H3(T) + ‖v0‖H4(T) < ǫ

and
lim sup
t→δ−

‖u(t)‖H3(T) + ‖v(t)‖H4(T) = ∞,

for every ǫ > 0 and small δ > 0.
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4.4. Large-time dynamics. We are interested in the existence of attrac-
tors for (1)-(2) and their dynamical properties.

4.4.1. Existence of attractor. We answer the question concerning the exis-
tence of a connected, compact attractor in the following theorem.

Theorem 8. Given r > 0, 2 ≥ β ≥ α ≥ 8/7, the system (1)-(2) has a

maximal, connected, compact attractor in the space H3α(T)×H3α+β/2(T).

4.4.2. Estimates of number of peaks. We can apply Theorem 7 to study
certain dynamical properties of the system (1)-(2). In particular, applying
Theorem 7 together with the complex analyticity of the solution (u, v), we
can obtain a bound on the number of peaks. Let us begin with

Theorem 9. Let N ≥ 3, N ∈ N, 2 ≥ α, β ≥ 1, µ, ν > 0, λ, r ≥ 0 and the
initial data (u0, v0) ∈ H3(T)×H4(T) be given and write

W =
ω0T̃

N
,

where ω0 and T̃ are defined in (8) and (9) respectively. Then, for any ǫ > 0,

0 < T̃/(N − 1) < t < T̃ ,

T = Iuǫ ∪Ru
ǫ = Ivǫ ∪Rv

ǫ ,

where Iuǫ , I
v
ǫ are the union of at most [4πW ] intervals open in T, and

• |∂xu(x)| ≤ ǫ, for all x ∈ Iuǫ ,

• #{x ∈ Ru
ǫ : ∂xu(x) = 0} ≤ 2

log 2
2π
W log

(√
2(N−1)‖u0‖L∞(T)

Wǫ

)
,

• |∂xv(x)| ≤ ǫ, for all x ∈ Iuǫ ,

• #{x ∈ Rv
ǫ : ∂xv(x) = 0} ≤ 2

log 2
2π
W log

(√
2(N−1)‖v0‖L∞(T)

Wǫ

)
.

Notice that Theorem 9 gives us an estimate of the number of peaks ap-
pearing in the evolution (and reported in the numerical simulations). Indeed,
we have the following corollary.

Corollary 3. Let r > 0, 2 ≥ β ≥ α ≥ 8/7 and (u, v) be a solution in the
attractor, then the number of peaks for u can be bounded as

#{peaks for u} ≤ 12πK1

log 2
log
(
6
√
2K1C

2
SE(α)S(H

α/2)
)
,

where S(Hα/2) and K1 are defined in (42) and (43), respectively.

In [48], the authors perform a numerical study of the case α = β = 2,
µ = ν, r = λ and different values of λ and ν. They take initial data satisfying

‖u0‖L∞ = 1, ‖v0‖L∞ ≤ 1.01.

We can use our previous results to give an analytical bound on the number
of peaks that the solutions in [48] develop:

Corollary 4. Let (u, v) be the solution corresponding to the initial data in
[48], then the number of peaks for u and v can be bounded as follows

#{peaks for u} ≤ 12πK1

log 2
log
(
6
√
2K1

)
,
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#{peaks for v} ≤ 12πK1

log 2
log
(
6
√
2K11.01

)
,

where K1 = K1(2, 2, ν, ν, λ, λ) is defined in (43).

Let us finally emphasize that presence of peaks is in no connection with
a possibility of a blow up of solution. Our bounds are provided in the
subcritical case, where global, regular solutions exist.

4.5. Numerical simulations. In the numerical part (Section 13), we present
first our simulations of emerging and merging peaks. The main conclusion
from our numerical study for further analysis is that, even in presence of a
damping logistic term, our system may develop finite time singularities for
certain parameters. In particular, our numerics suggest that for α = 0.5,
β = 1 and a sufficiently strong nonlinear term (measured by chemical sen-
sitivity χ there, compare the system (34) - (35)), the solution blows up in
a finite time. Furthermore, our numerical solutions agree with the contin-
uation criterion in Theorem 2 in the sense that the spatial norms of the
numerical solutions ‖∂xu‖L∞ are not integrable.

5. Proof of Theorem 1: Local existence

We prove now our local well-posedness result.
We prove the case s = 3, the other cases being similar.

Part 1. (a priori estimates) We have

1

2

d

dt
‖v‖2L2 ≤ −ν‖v‖2

Ḣβ/2 − λ‖v‖2L2 + ‖u‖L2‖v‖L2 ,

1

2

d

dt
‖Λβ/2∂3

xv‖2L2 =

∫

T

Λβ∂3
xv∂

3
x∂tv

= −ν‖v‖2
Ḣ3+β − λ‖v‖2

Ḣ3+β/2 + ‖u‖Ḣ3‖v‖Ḣ3+β

≤ −ν

2
‖v‖2

Ḣ3+β − λ‖v‖2
Ḣ3+β/2 +

2

ν
‖u‖2

Ḣ3 ,

1

2

d

dt
‖u‖2L2 = −µ‖u‖2

Ḣα/2 −
∫

T

∂xuuΛ
β−1Hvdx+ r

∫

T

u2(1− u)dx

= −µ‖u‖2
Ḣα/2 +

1

2

∫

T

u2Λβvdx+ r

∫

T

u2(1− u)dx

≤ ‖u(t)‖2L2‖Λβv‖L∞ + r‖u‖2L2 ,

and

1

2

d

dt
‖∂3

xu‖2L2 = −µ‖u‖2
Ḣ3+α/2 +

∫

T

∂3
xu∂

4
x(uΛ

β−1Hv)dx

+ r

∫

T

∂3
xu∂

3
x(u(1− u))dx,
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where the higher order terms are

J1 =

∫

T

∂3
xu∂

4
xuΛ

β−1Hvdx ≤ ‖Λβv‖L∞‖u‖2
Ḣ3 ,

J2 =

∫

T

∂3
xuuΛ

β∂3
xvdx ≤ ‖Λβ∂3

xv‖L2‖u‖Ḣ3‖u‖L∞ ,

J3 = r

∫

T

(∂3
xu)

2(1− 2u)dx ≤ r‖∂3
xu(t)‖2L2 .

Using ∫

T

(∂xf)
4dx = −3

∫
∂2
xf(∂xf)

2f,

together with Hölder’s inequality, we obtain the following Gagliardo-Niremberg
inequality

(12) ‖∂xf‖2L4 ≤ 3‖f‖L∞‖∂2
xf‖L2 .

Due to (12), the lower order terms can be bounded as

J4 =

∫

T

∂3
xu∂

3
xuΛ

βvdx ≤ ‖Λβv‖L∞‖u‖2
Ḣ3 ,

J5 =

∫

T

∂3
xu∂

2
xuΛ

β∂xvdx ≤ ‖Λβ∂xv‖L4‖u‖Ḣ3‖∂2
xu‖L4

≤ C‖Λβv‖0.5L∞‖Λβ∂2
xv‖0.5L2 ‖u‖1.5Ḣ3‖∂xu‖0.5L∞ ,

J6 =

∫

T

∂3
xu∂xuΛ

β∂2
xvdx ≤ ‖Λβ∂2

xv‖L2‖u‖Ḣ3‖∂xu‖L∞ ,

and

J7 = 6r

∫

T

∂3
xu∂xu∂

2
xudx ≤ 6r‖u‖Ḣ3‖∂xu‖L4‖∂2

xu‖L4 ≤ C‖u‖2H3‖u‖0.5L∞‖∂xu‖0.5L∞ .

We define the energy

E = ‖u‖2H3 + ‖v‖2
H3+β/2 .

We have

d

dt
E ≤ C(E + 1)3 + ‖Λβ∂3

xv‖L2‖u‖Ḣ3‖u‖L∞

− ν

2
‖v‖2

Ḣ3+β − λ‖v‖2
Ḣ3+β/2 +

2

ν
‖u‖2

Ḣ3 − µ‖u‖2
Ḣ3+α/2

≤ C(ν)(E + 1)4 − µ‖u‖2
Ḣ3+α/2 −

ν

4
‖v‖2

Ḣ3+β .(13)

Due to the previous inequality (13), we obtain the desired bound for the

energy. Moreover, from (13), we get that (u, v) ∈ L2
tH

3+α/2
x × L2

tH
3+β
x .

Part 2. (existence) Once we have the energy estimates, we consider a
family of Friedrichs mollifiers Jǫ and define the regularized initial data

uǫ(x, 0) = Jǫ ∗ u0(x) ≥ 0, vǫ(x, 0) = Jǫ ∗ v0(x) ≥ 0,

and the regularized problems

∂tu
ǫ = −µJǫ ∗ ΛαJǫ ∗ uǫ + Jǫ ∗ ∂x · (Jǫ ∗ uǫ(Λβ−1HJǫ ∗ vǫ)) + ruǫ(1− uǫ)

∂tv
ǫ = −Jǫ ∗ νΛβJǫ ∗ vǫ − λJǫ ∗ vǫ + Jǫ ∗ uǫ.



GENERALIZED KELLER-SEGEL 15

Applying Picard’s Theorem in H3×H3+β/2, we find a solution (uǫ, vǫ) to
these approximate problems. These solutions exists up to time T ǫ. Further-
more, as (uǫ, vǫ) verify the same energy estimates, we can take T = T (u0, v0)
independent of the regularizing parameter ǫ. This concludes the existence
part.
Part 3. (uniqueness) To prove the uniqueness we argue by contradiction.
Let us assume that there are two different solutions corresponding to the
same initial data (u0, v0) ∈ L2 ×Hβ/2. We write (ui, vi), i = 1, 2 for these
solutions and define ū = u1 − u2, v̄ = v1 − v2. Then we have the bounds

d

dt
‖v̄(t)‖2

Hβ/2 + ν‖v̄(t)‖2
Ḣβ ≤ c(ν)‖ū(t)‖2L2 ,

d

dt
‖ū(t)‖2L2 ≤ 2

∣∣∣∣
∫

T

∂xū[ūΛ
β−1Hv1 + u2Λ

β−1Hv̄]dx

∣∣∣∣
≤ ‖ū(t)‖2L2‖Λβv1(t)‖L∞ + ‖ū(t)‖L2‖∂xu2(t)‖L∞‖Λβ−1v̄(t)‖L2

+ ‖ū(t)‖L2‖u2(t)‖L∞‖Λβ v̄(t)‖L2 .

We use β − 1 ≤ β/2 and Young’s inequality to get

d

dt
(‖ū(t)‖2L2 + ‖v̄(t)‖2

Hβ/2) ≤ (‖ū(t)‖2L2 + ‖v̄(t)‖2
Hβ/2)

×
(
c(ν) + ‖Λβv1(t)‖L∞

+
1

2
‖∂xu2(t)‖L∞ + c(ν)‖u2(t)‖2L∞

)
.

Finally we get

‖ū(t)‖2L2 + ‖v̄(t)‖2
Hβ/2 ≤ (‖ū0‖2L2 + ‖v̄0‖2Hβ/2)

× e[c(ν)t+
∫ t
0
‖Λβv1(s)‖L∞+0.5‖∂xu2(s)‖L∞+c(ν)‖u2(s)‖2L∞ ]ds.

From the last inequality we obtain the uniqueness.
Part 4. (preservation of sign) To finish the proof of the entire Theorem
1, we need to show that for non-negative initial data the solution remains
non-negative as well.

To obtain pointwise bounds we apply the techniques developed in [17,
25, 26, 32, 30] and the references therein. Let u(x, t) be a classical solution
with a non-negative initial data and write xt ∈ T for a point such that
minx u(x, t) = u(xt, t). Evaluating the equation (1) at the point of minimum
and using the kernel expression for Λα, we have

d

dt
u(xt, t) ≥ u(xt, t)

[
Λβv(xt, t) + r(1− u(xt, t))

]
, t ≥ 0,

hence

u(xt, t) ≥ u0(x0)e
∫ t
0 Λβv(xy ,y)+r(1−u(xy ,y))dy.

Thus, u(xt, t) ≥ 0 since u0(x) ≥ 0 and we conclude the claim. For the
equation (2) we can proceed similarly and we get

v(xt, t) ≥ v0(x)e
−λt + e−λt

∫ t

0
u(xs, s)ds ≥ 0.

This ends the proof of Theorem 1.
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Let us remark here that in the above proof and in the remainder of this
text, we reinterpret certain terms in language of duality pairs, where there
is no sufficient regularity to perform some intermediate computations. This
applies in particular to the time derivative of a single (spatial) Fourier mode.

6. Proof of Theorem 2: Continuation criterion

Part 1. Let us write

(14)

∫ T

0
‖Λβv(s)‖L∞ + ‖∂xu(s)‖L∞ds = M < ∞.

Now, assuming the finiteness of M , we need to obtain a bound for the energy

E(t) = ‖u(t)‖2H3 + ‖v(t)‖2
H3+β/2 .

First notice that
1

2

d

dt
‖u‖2L2 ≤ 1

2
‖Λβv‖L∞‖u‖2L2 + r‖u‖2L2 ,

1

2

d

dt
‖v‖2L2 ≤ 1

2
‖u‖2L2 .

Thus

sup
0≤t≤T

‖u(t)‖2L2 ≤ ‖u0‖2L2e
M+rT ,

sup
0≤t≤T

‖v(t)‖2L2 ≤ (‖u0‖2L2e
M + ‖v0‖2L2)e

T .

Let xut denote the point where u(t) reaches its maximum and let xvt denote
the point where v(t) reaches its maximum. Then, u(xut, t) and v(xvt, t) are
Lipschitz functions and, as a consequence, applying Rademacher Theorem,
are almost everywhere differentiable. Moreover, using the expressions for
the kernels Λs together with the positivity of u and v, we have

d

dt
u(xut, t) ≤ u(xut, t)Λ

βv(xut, t) + ru(xut, t),

d

dt
v(xvt, t) ≤ u(xvt, t).

As a consequence,

sup
0≤t≤T

‖u(t)‖L∞ ≤ ‖u0‖L∞eM+rT ,

sup
0≤t≤T

‖v(t)‖L∞ ≤ ‖v0‖L∞ + ‖u0‖L∞eMT.

Notice that to bound the lower order norms we have used merely
∫ T

0
‖Λβv(s)‖L∞ds < ∞.

For the higher seminorm,

y(t) = ‖u(t)‖2
Ḣ3 + ‖v(t)‖2

Ḣ3+β/2 ,

due to energy estimates, we have

dy

dt
≤ c(M,ν)(‖Λβv‖L∞ + ‖∂xu‖L∞ + ‖u0‖L∞eM+rT )y(t),
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and using Gronwall’s inequality we conclude the result in the case when M
of (14) is finite.

Part 2. To simplify notation we write
∫ T

0
‖u(s)‖2L∞ + ‖Λβv(s)‖L∞ + ‖u(s)‖L∞‖Λβv(s)‖L∞ds = M̃.

The idea for this second part is similar. Assuming the boundedness of M̃ ,
it suffices to obtain global bounds for M defined in (14). To this end, we

are going to use M̃ < ∞ to bound ‖u(t)‖H2 . Then we can use Sobolev’s
embedding to obtain the estimate for M . First we compute

1

2

d

dt
‖Λβ∂2

xv‖2L2+λ‖Λβ∂2
xv‖2L2 ≤ −ν‖Λ1.5β∂2

xv‖2L2+‖Λβ/2∂2
xu‖L2‖Λ1.5β∂2

xv‖L2 ,

thus
1

2

d

dt
‖Λβ∂2

xv‖2L2 + λ‖Λβ∂2
xv‖2L2 ≤ 1

2ν
‖Λβ/2∂2

xu‖2L2 .

Now we have
1

2

d

dt
‖∂2

xu‖2L2 ≤ −µ‖Λα/2∂2
xu‖2L2 + c‖Λβv‖L∞‖∂2

xu‖2L2

+ c‖∂2
xu‖L2

(
‖u‖0.5L∞‖∂2

xu‖0.5L2 ‖Λβv‖0.5L∞‖Λβ∂2
xv‖0.5L2

)

+ ‖u‖L∞‖Λβ∂2
xv‖L2‖∂2

xu‖L2 + r‖∂2
xu‖2L2 + 2r‖∂2

xu‖L2‖∂xu‖2L4 .

Using the previous bound and Young’s inequality, we get

1

2

d

dt

(
‖∂2

xu‖2L2 + ‖Λβ∂2
xv‖2L2

)
≤ −µ‖Λα/2∂2

xu‖2L2 +
1

2ν
‖Λβ/2∂2

xu‖2L2

+c‖Λβv‖L∞‖∂2
xu‖2L2 +

1

2λ
‖u‖2L∞‖∂2

xu‖2L2

+c‖∂2
xu‖2L2‖u‖0.5L∞‖Λβv‖0.5L∞

+c(λ)‖∂2
xu‖2L2‖u‖L∞‖Λβv‖L∞

+cr‖∂2
xu‖2L2 (‖u‖L∞ + 1) .

Hence we obtain a bound for the H2 seminorm. In the same way we get
a bound for the L2 norm. Since we have a bound for H2, using Sobolev
embedding, we arrive at

∫ T

0
‖∂xu(s)‖L∞ds ≤ c

∫ T

0
‖u(s)‖H2ds ≤ cT‖u0‖H2 exp

(
c(λ)M̃

)
.

Theorem 2 is showed.

7. Proof of Theorem 3: Global existence using the Wiener’s

algebra

Our aim here is to prove Theorem 3. We start this section with two
preliminary results concerning lower order norms. The behaviour is quite
different depending on the value of r. If r = 0, we have

Lemma 1. Let (u0, v0) be two non-negative, smooth initial data for equation
(1)-(2) with r = 0. Then, the solutions (u, v) are non-negative functions.
Moreover, if the initial data (u0, v0) are in L1(T), the solutions (u, v) verify

• ‖u(t)‖L1(T) = ‖u0‖L1(T) ∀ 0 ≤ t ≤ Tmax
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• ‖v(t)‖L1(T) =
‖u0‖L1(T)

λ +

(
‖v0‖L1(T) −

‖u0‖L1(T)

λ

)
e−λt ∀ 0 ≤ t ≤

Tmax.

For the sake of brevity we do not write the proof. For r > 0 the analogous
result reads (see also [35]).

Lemma 2. Let (u0, v0) be two non-negative, smooth initial data for equation
(1)-(2) with r > 0. Let us define

N = max{‖u0‖L1(T), 2π}.
Then the solutions (u, v) verify

• ‖u(t)‖L1(T) ≤ N , ∀ 0 ≤ t ≤ Tmax∫ t
0 ‖u(s)‖2L2(T)ds ≤ N t+ 2N , ∀ 0 ≤ t ≤ Tmax,

• ‖v(t)‖L1(T) ≤ max{‖v0‖L1 ,N/λ}, ∀ 0 ≤ t ≤ Tmax.

Proof. We take r = 1 without losing generality. The ODE for ‖u(t)‖L1 is

(15)
d

dt
‖u(t)‖L1 = ‖u(t)‖L1 − ‖u(t)‖2L2 .

Recalling Jensen’s inequality ‖u(t)‖2L1 ≤ 2π‖u(t)‖2L2 , we get

d

dt
‖u(t)‖L1 ≤ ‖u(t)‖L1

(
1− 1

2π
‖u(t)‖L1

)
.

From this inequality we conclude the first part of the result. Given t > 0,
we integrate (15) between 0 and t and obtain

‖u(t)‖L1 − ‖u0‖L1 =

∫ t

0
‖u(s)‖L1ds−

∫ t

0
‖u(s)‖2L2ds,

thus∫ t

0
‖u(s)‖2L2(T)ds ≤ ‖u0‖L1 − ‖u(t)‖L1 + sup

0≤s≤t
‖u(s)‖L1t ≤ N t+ 2N ,

and we conclude the second part. The bound for the L1 norm of v is straight-
forward and we get

‖v(t)‖L1(T) ≤
N
λ

+

(
‖v0‖L1(T) −

N
λ

)
e−λt, ∀ t ≥ 0, (λ > 0),

or
‖v(t)‖L1(T) ≤ N t+ ‖v0‖L1(T), ∀ t ≥ 0, (λ = 0).

�

Now we turn to the proof of Theorem 3. Recall that we assume there
1 ≤ β ≤ 2 ≤ 1 + α and µ > 1, r = 0.

Proof of Theorem 3. We denote by f̂(k) the k−th Fourier mode of a function
f . Then, as stated in Lemma 1, we have û(0, t) = 〈u0〉. We will study the
evolution of

E(t) = |u(t)|1 + |v(t)|β .
Our goal is to obtain (under appropriate assumptions) the maximum prin-
ciple

(16) E(t) ≤ E(0).
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Having this together with Fourier series that imply

∂xu =
∑

j

ijû(j)eijx ⇒ ‖∂xu‖L∞ ≤ |u|1,

Λβv =
∑

j

|j|β v̂(j)eijx ⇒ ‖Λβv‖L∞ ≤ |v|β ,

we arrive at
∫ T

0
‖∂xu(s)‖L∞ + ‖Λβv(s)‖L∞ds ≤ E(0)T.

Using the continuation argument in Theorem 2, we conclude the proof.
It remains to obtain the maximum principle (16). The system (1)-(2)

reads

d

dt
|û(k)||k| = −µ|k|1+α|û(k)| + |k|¯̂u(k)

|û(k)|
∑

j

jû(j)
k − j

|k − j| |k − j|β−1v̂(k − j)

+
|k|¯̂u(k)
|û(k)|

∑

j

û(k − j)|j|β v̂(j),

d

dt
|v̂(k)||k|β = −ν|k|2β |v̂(k)| − λ|v̂(k)||k|β +

¯̂v(k)

|v̂(k)| |k|
β û(k),

so, using Fubini-Tonelli Theorem

d

dt
|u(t)|1 ≤ −µ|u|1+α + 2|u|1|v|β + |u|2|v|β−1 + |u|0|v|β+1,

and

d

dt
E ≤ −µ|u|1+α + 2|u|1|v|β + |u|2|v|β−1 + |u|0|v|β+1 − ν|v|2β − λ|v|β + |u|β .

Using Young’s inequality and the assumptions we get

d

dt
E ≤ (|v|β + 1− µ)|u|2 + (|u|1 + 〈u0〉 − ν)|v|2β + (2|u|1 − λ)|v|β

≤ (E + 1− µ)|u|2 + (E + 〈u0〉 − ν)|v|2β + (2E − λ)|v|β ,
thus, if

E(0) < min{µ− 1, ν − 〈u0〉, λ/2},
we obtain a decay (consequently, a global bound) for E(t). �

8. Proof of Theorems 4 and 5: Global existence for α ≥ 1

Now we proceed with the proof of the global existence of solutions for
large data.

Proof of Theorem 4. Recall that T is an arbitrary fixed number such that
0 < T < ∞. We will consider times 0 ≤ t ≤ T . As α > 1, we can take
α−1
2 = δ > 0 as a fixed parameter.
Let us outline the proof: in the first three steps, we obtain a priori es-

timates. i.e. we assume there that we have a solution (u, v) as smooth as
required. In Step 4, we construct the solutions as the limit of approximate
problems satisfying the same a priori estimates as in Steps 1, 2 and 3.
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Step 1. (a priori estimates I) In this step we obtain estimates
showing

u ∈ L∞(0, T ;L2(T)) ∩ L2(0, T ;Hα/2(T))

v ∈ L∞(0, T ;Hβ−α/2(T)) ∩ L2(0, T ;H3β/2−α/2(T)).

Let us compute the evolution of the L2 norm of u in the case r > 0. For
r = 0 the proof is analogous. We get

1

2

d

dt
‖u(t)‖2L2 ≤ −µ‖u(t)‖2

Ḣα/2 +
1

2
‖Λα/2(u(t))2‖L2‖Λβ−α/2v(t)‖L2

+r‖u(t)‖2L2 − r‖u(t)‖3L3

≤ −µ‖u(t)‖2
Ḣα/2 + r‖u(t)‖2L2 − r‖u(t)‖3L3

+CKP (α)‖u‖L∞‖u‖Ḣα/2‖Λβ−α/2v‖L2

≤ −µ‖u(t)‖2
Ḣα/2 + r‖u(t)‖2L2 − r‖u(t)‖3L3

+CKP (α)〈u(t)〉‖u(t)‖Ḣα/2‖Λβ−α/2v(t)‖L2

+CKP (α)CGN (α)‖u(t) − 〈u(t)〉‖δ/(1+δ)
L1 ‖u(t)‖(2+δ)/(1+δ)

Ḣα/2

×‖Λβ−α/2v(t)‖L2 ,

where we have used Lemma 4 together with the following interpolation in-
equality

(17) |‖u‖L∞ − 〈u〉| ≤ ‖u− 〈u〉‖L∞ ≤ CGN (α)‖u − 〈u〉‖δ/(1+δ)
L1 ‖u‖1/(1+δ)

Ḣα/2
.

Using Young’s inequality and Lemmas 1 and 2, we obtain

d

dt
‖u(t)‖2L2 ≤ −µ‖u(t)‖2

Ḣα/2 + r‖u(t)‖2L2 − r‖u(t)‖3L3 +
µ

2
‖u(t)‖2

Ḣα/2

+
(CKP (α)CGN (α))

2+2δ
δ (2N )

2+2δ
1+δ ‖Λβ−α/2v(t)‖

2+2δ
δ

L2

µ

+
(CKP (α)N )2

µ
‖Λβ−α/2v(t)‖2L2 .(18)

Now, fix t > 0 and consider the equation for the k-th Fourier coefficient
of v

d

dt
v̂(k, t) = −ν|k|β v̂(k, t)− λv̂(k, t) + û(k, t).

Solving this ODE, we get

(19) e(ν|k|
β+λ)tv̂(k, t) = v̂0(k) +

∫ t

0
e(ν|k|

β+λ)sû(k, s)ds.

As v0 ∈ Hγ with γ = β − α/2 < β − 0.5, using (19), we get

|k|β−α/2e(ν|k|
β+λ)t|v̂(k, t)| ≤ |k|β−α/2|v̂0(k)|

+

∫ t

0
|k|β−α/2e(ν|k|

β+λ)s|û(k, s)|ds

≤ |k|β−α/2|v̂0(k)| +
|k|β−α/2

ν|k|β + λ
N e(ν|k|

β+λ)t,(20)
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hence
∫ t

0
‖Λβ−α/2v(s)‖p

L2ds ≤ tC(α, β, λ, ‖u0‖L1(T), ‖v0‖Hβ−α/2(T), ν, p).

Consequently, using Lemma 2, we have that

‖u(t)‖2L2 +
µ

2

∫ t

0
‖u(s)‖2

Ḣα/2 + r‖u(s)‖3L3ds

≤ ‖u0‖2L2 +N t+ 2N + tC(α, β, ν, λ, ‖u0‖L1(T), ‖v0‖Hβ−α/2(T)).

In the case λ > 0 we obtain simply

‖v(t)‖2L2 + 2ν

∫ t

0
‖v(s)‖2

Ḣβ/2ds ≤ ‖v0‖2L2 + c(λ)

∫ t

0
‖u(s)‖2L2ds.

Testing the equation for v against Λ2β−αv and using self-adjointness we
get

1

2

d

dt
‖v(t)‖2

Ḣβ−α/2+λ‖v(t)‖2
Ḣβ−α/2+ν‖v(t)‖2

Ḣ3β/2−α/2 ≤ ‖u‖Ḣα/2‖v(t)‖Ḣ2β−α−α/2 .

As β ≤ 2 < 2α, we get 2β − α− α/2 ≤ 1.5β − α/2 and we can use Young’s
and Poincaré’s inequalities to conclude this step.

Step 2. (a priori estimates II) In this part we obtain estimates
showing

u ∈ L∞(0, T ;Hα/2(T)) ∩ L2(0, T ;Hα(T)),

v ∈ L∞(0, T ;Hβ/2+α/2(T)) ∩ L2(0, T ;Hβ+α/2(T)).

Testing the equation for v against Λα+βv, we get

1

2

d

dt
‖v(t)‖2

Ḣβ/2+α/2 + ν‖v(t)‖2
Ḣβ+α/2 ≤ ‖u(t)‖Ḣα/2‖v(t)‖Ḣβ+α/2 .

The previous inequality implies

‖v(t)‖2
Ḣβ/2+α/2 + ν

∫ t

0
‖v(s)‖2

Ḣβ+α/2ds

≤ ‖v0‖2Ḣβ/2+α/2 + c(ν)

∫ t

0
‖Λα/2u(s)‖2L2 ≤ ‖v0‖2Ḣβ/2+α/2 + C

with constant

C = C(α, β, µ, ν, λ, ‖u0‖L1(T), ‖u0‖L2(T), ‖v0‖Hβ−α/2(T), T ).

We compute

d

dt
‖u(t)‖2

Ḣα/2 = −µ

∫

T

|Λαu|2dx+

∫

T

uΛβvΛαudx+ r

∫

T

|Λα/2u|2dx

+

∫

T

∂xuΛ
β−1HvΛαudx− r

∫

T

Λα/2(u2)Λα/2udx

≤ −3µ

4
‖u(t)‖2

Ḣα + c(µ)‖u(t)‖2L2‖Λβv(t)‖2L∞

+r‖u(t)‖2
Ḣα/2 + ‖u‖Ḣ1‖Λβ−1Hv‖L∞‖u‖Ḣα

+c(r)‖Λα/2u(t)‖L∞‖u‖L2‖u(t)‖Ḣα/2 .
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Using the interpolation inequalities

‖u‖Ḣ1 ≤ c‖u‖1/α
Ḣα

‖u‖(α−1)/α
L2 ,

‖Λα/2u‖L∞ ≤ c‖u‖Ḣα ,

‖Λβv(t)‖2L∞ ≤ c‖v(t)‖2
Ḣβ+α/2 ,

‖Λβ−1Hv‖L∞ ≤ c‖v‖Ḣβ−1+α/2 ≤ c‖v‖Ḣβ/2+α/2 ,

we obtain

‖u(t)‖2
Ḣα/2 +

µ

2

∫ t

0
‖u(t)‖2

Ḣα ≤ ‖u0‖2Ḣα/2 + C,

where the constant depends on

C = C(α, β, µ, ν, λ, ‖u0‖L1(T), ‖u0‖L2(T), ‖v0‖Hβ−α/2(T), ‖v0‖Hβ/2+α/2(T), T ).

Notice that, in the case α > 1.5, we have
∫ T

0
‖∂xu(t)‖L∞ + ‖Λv(t)‖L∞dt ≤ c

∫ T

0
‖u(t)‖Hα + ‖v(t)‖Hβ+α/2dt ≤ C,

so, in this case, we are done with the entire proof.
Step 3. (a priori estimates III) In this step we obtain that

u ∈ L∞(0, T ;Hα(T)) ∩ L2(0, T ;H3α/2(T)),

v ∈ L∞(0, T ;Hβ/2+α(T)) ∩ L2(0, T ;Hβ+α(T)).

Testing the equation for v against Λβ+2αv, we obtain

‖v(t)‖2
Ḣβ/2+α + ν

∫ t

0
‖v(s)‖2

Ḣβ+αds ≤ ‖v0‖2Ḣβ/2+α + C.

We compute

d

dt
‖u(t)‖2

Ḣα = −µ

∫

T

|Λ3α/2u|2dx+

∫

T

uΛβvΛ2αudx+ r

∫

T

|Λαu|2dx

+

∫

T

∂xuΛ
β−1HvΛ2αudx− r

∫

T

Λα(u2)Λαudx

≤ −µ‖u(t)‖2
Ḣ3α/2 + ‖Λα/2(uΛβv)‖L2‖u(t)‖Ḣ3α/2

+r‖u(t)‖2
Ḣα + ‖Λα/2(∂xuΛ

β−1Hv)‖L2‖u(t)‖Ḣ3α/2

+c‖u(t)‖L∞‖u(t)‖2
Ḣα

≤ −µ

2
‖u(t)‖2

Ḣ3α/2 + c(µ)[‖u(t)‖2
Ḣα/2‖Λβv‖2L∞

+‖u(t)‖2L∞‖Λβ+α/2v‖2L2 ] + r‖u(t)‖2
Ḣα

+c(µ)[‖u(t)‖2
Ḣ1+α/2‖Λβ−1Hv‖2L∞ + ‖∂xu‖2L2‖Λβ−1+α/2v‖2L∞ ]

+c‖u(t)‖L∞‖u(t)‖2
Ḣα .

Step 4. (construction of a solution) If the initial data (u0, v0) ∈
Hkα(T) × Hkα+β/2(T), k ∈ N, kα ≥ 3 we have local existence of regular
solutions from Theorem 1. Additionally, Step 3 gives us bounds

u ∈ L∞(0, T ;Hα(T)) ∩ L2(0, T ;H3α/2(T)),

v ∈ L∞(0, T ;Hβ/2+α(T)) ∩ L2(0, T ;Hβ+α(T))
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that are independent from the local time of existence; let us call them global-
in-time bounds. In fact, to obtain the global-in-time bounds rigorously,
using regularity given by Theorem 1, we need at step 3 to reinterpret some
intermediate steps in terms of duality pairing. A similar remark applies to
obtaining the evolutionary norms in all steps 1-3, including the notion of
the time derivative of a single (spatial) Fourier mode. This point has been
already raised by the end of Section 5. Our global-in-time bounds give

∫ T

0
‖∂xu(s)‖L∞ds ≤ C(T ).

To conclude with the continuation criterion given by Theorem 2, we need
also ∫ T

0
‖Λβv(s)‖L∞ds ≤ C(T ).

In fact, using β − 1 + α/2 ≤ β/2 + α/2 we obtain

‖Λβ−1+α/2v(t)‖2L∞ , ‖Λβ−1Hv(t)‖2L∞ ∈ L∞,

‖Λβ+α/2v(t)‖2L2 , ‖Λβv(t)‖2L∞ ∈ L1

Next, let us consider the case where the initial data is not that smooth,
but merely (u0, v0) ∈ L2 × Hβ−α/2. After mollification, we have an initial
data (uǫ0, v

ǫ
0) with the desired regularity. Applying the previous reasoning,

we have a global smooth regularized solution (uǫ, vǫ). Due to Step 1, these
functions are uniformly bounded in

uǫ ∈ L∞([0, T ], L2(T)) ∩ L2([0, T ],Hα/2(T)),

vǫ ∈ L∞([0, T ],Hβ−α/2(T)) ∩ L2([0, T ],H3β/2−α/2(T)).

Testing ∂tu
ǫ, ∂tv

ǫ against φ ∈ H2 and using the duality pairing, we obtain
a uniform bound

∂tu
ǫ, ∂tv

ǫ ∈ L∞([0, T ],H−2(T)).

Applying Aubin-Lions’s Theorem (with Hα/2 ⊂⊂ L2 ⊂ H−2 for uǫ and

H3β/2−α/2 ⊂⊂ L2 ⊂ H−2 for vǫ), we take a subsequence (denoted again by
ǫ) such that

uǫ(t) → u(t) in L2
tL

2
x, uǫ(t) ⇀ u(t) in L2

tH
α/2
x ,

vǫ(t) → v(t) in L2
tL

2
x, vǫ(t) ⇀ v(t) in L2

tH
3β/2−α/2
x .

Using the properties of the mollifier, we have

uǫ(0) → u0 in L2, vǫ(0) → v0 in L2.

With the previous strong convergence, we can pass to the limit in the weak
formulations of Definition 1. �

We deal now with the existence of a global solution in the critical and
subcritical cases α ≥ 1, where the logistic term is arbitrarily weak but
positive (r > 0).
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Proof of Theorem 5. We begin the proof with a new first a priori estimate,
that provides global weak solutions for α ≥ 1. Next we follow the proof of
previous theorem to show existence of strong solutions in the case α > 1.
Step 1. (a priori estimates I and weak solutions)

Let us consider times 0 ≤ t ≤ T where T is an arbitrary fixed number.
Let α ≥ 1, β > 0. Testing the equation for v with Λβv, one obtains

1

2

d

dt
‖v(t)‖2

Ḣβ/2 + λ‖v(t)‖2
Ḣβ/2 ≤ −ν

2

∫

T

|Λβv|2dx+
1

2ν
‖u‖2L2 .

This inequality, together with Lemma 2 implies
∫ t

0
‖v‖2Hβds ≤ C(T,N , r, ν).

Testing now the equation for u with u, we have

1

2

d

dt
‖u(t)‖2L2 = −µ

∫

T

|Λα/2u|2dx+
1

2

∫

T

u2Λβvdx+ r‖u(t)‖2L2 − r‖u(t)‖3L3

≤ −µ‖u‖2
Ḣα/2 +

1

2

(
‖u− 〈u〉‖2L4 +

√
2π〈u〉‖u‖L2

)
‖v‖Ḣβ + r‖u(t)‖2L2

≤ −µ‖u‖2
Ḣα/2 + C

(
‖u− 〈u〉‖L2‖u‖Ḣ0.5 + 〈u〉‖u‖L2

)
‖v‖Ḣβ

+ r‖u(t)‖2L2

≤ −µ‖u‖2
Ḣα/2 + C

(
‖u‖L2‖u‖Ḣ0.5 + 〈u〉‖u‖L2

)
‖v‖Ḣβ + r‖u(t)‖2L2 ,

where we have used the inequality

‖u− 〈u〉‖2L4 ≤ C‖u− 〈u〉‖L2‖u‖Ḣ0.5 ≤ C‖u‖L2‖u‖Ḣ0.5 .

Young’s inequality implies

d

dt
‖u(t)‖2L2 ≤ −µ

2
‖u‖2

Ḣα/2 + C(r,N )‖u‖2L2(‖v‖2Ḣβ + 1),

thus

u ∈ L∞(0, T ;L2(T)) ∩ L2(0, T ;Hα/2(T))(21)

v ∈ L∞(0, T ;Hβ/2(T)) ∩ L2(0, T ;Hβ(T)).(22)

After mollification, we have a smooth initial data (uǫ0, v
ǫ
0). Let us consider

the approximate problems

∂tu
ǫ = −µΛαuǫ + ∂x(u

ǫΛβ−1Hvǫ) + ruǫ(1− uǫ) + ǫ∂2
xu

ǫ,

∂tv
ǫ = −νΛβvǫ − λvǫ + uǫ + ǫ∂2

xv
ǫ.

We have local existence of regular solutions from Theorem 1. Furthermore,
due to Theorem 4, we have a global-in-time, smooth regularized solution
(uǫ, vǫ). Due to (21) and (22), these functions are uniformly bounded in

uǫ ∈ L∞([0, T ], L2(T)) ∩ L2([0, T ],Hα/2(T)),

vǫ ∈ L∞([0, T ],Hβ/2(T)) ∩ L2([0, T ],Hβ(T)).

As in the proof of Theorem 4,

∂tu
ǫ, ∂tv

ǫ ∈ L∞([0, T ],H−2(T)).
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Applying Aubin-Lions’s Theorem (with Hα/2 ⊂⊂ L2 ⊂ H−2 for uǫ and
Hβ ⊂⊂ L2 ⊂ H−2 for vǫ), we take a subsequence (denoted again by ǫ) such
that

uǫ(t) → u(t) in L2
tL

2
x, uǫ(t) ⇀ u(t) in L2

tH
α/2
x ,

vǫ(t) → v(t) in L2
tL

2
x, vǫ(t) ⇀ v(t) in L2

tH
β
x .

Using the properties of the mollifier, we can pass to the limit in the weak
formulations of Definition 1.
Step 2. (Further a priori estimates and strong solutions) The
weak regularity of the previous step implies for β ≤ α that u, v enjoy weak
regularity of Step 1 of Theorem 4. Therefore we can rewrite Steps 2. - 4. of
Theorem 4 and obtain

u ∈ C([0, T ],Hkα(T)) ∀ T < ∞,

v ∈ C([0, T ],Hkα+β/2(T)) ∀ T < ∞.

Let us observe that we need α > 1 for the interpolations and embeddings at
the beginning of Step 2 of Theorem 4. �

9. Proof of Theorem 6: absorbing set.

The proof uses the estimates from the proof of Theorem 4. Let us write

(23) CFS(β, α, λ, ν) =
∑

k∈Z

(
|k|β−α/2

ν|k|β + λ

)2

According to (20), for every t ≥ 0, we have

‖v(t)‖2
Ḣβ−α/2 ≤ ‖v0‖2Ḣβ−α/2e

−λt +NCFS(β, α, λ, ν),

so
∫ t+1

t
‖v(s)‖2

Ḣβ−α/2ds ≤
‖v0‖2Ḣβ−α/2

λ
(1− e−λ)e−λt +NCFS(β, α, λ, ν)

≤
‖v0‖2Ḣβ−α/2

λ
+NCFS(β, α, λ, ν),

∫ t+1

t
‖v(s)‖

2+2δ
δ

Ḣβ−α/2
ds ≤

(
‖v0‖2Ḣβ−α/2 +NCFS(β, α, λ, ν)

) 2+2δ
2δ

.

Notice that if

t ≥ t0 = max



0,

1

−λ
log


 NCFS(β, α, λ, ν)

‖v0‖2
Ḣβ−α/2

λ (1− e−λ)





 ,

we have an inequality that is independent of v0:

‖v(t)‖2
Ḣβ−α/2 ≤ 2NCFS(β, α, λ, ν).

Then, from (18), we obtain

d

dt
‖u(t)‖2L2 +

µ

2
‖u(t)‖2

Ḣα/2 ≤ r‖u(t)‖2L2 +
(CKP (α)N )2

µ
‖v(t)‖2

Ḣβ−α/2

+
(CKP (α)CGN (α))

2+2δ
δ 4N 2‖v(t)‖

2+2δ
δ

Ḣβ−α/2

µ
.
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Due to Lemma 2, we obtain
∫ t+1

t
‖u(s)‖2L2 ≤ 3N .

Using Uniform Gronwall estimate (Lemma 5) and the previous inequality,
we have that

‖u(t+ 1)‖2L2 ≤ S(L2) ∀ t ≥ t0,

where S(L2) is defined in (40). Using the previous inequality we also obtain
∫ t+1

t
‖u(s)‖2

Ḣα/2ds ≤
2(S(L2) + S(L2)e−r)

µ
, ∀ t ≥ t0 + 1.

Let us consider α < 2 (the case α = 2 can be done straightforwardly). We
look for a commutator-type structure in the nonlinearity:

1

2

d

dt
‖u(t)‖2

Ḣα/2 = −µ

∫

T

|Λαu|2dx+

∫

T

uΛβvΛαudx

+r

∫

T

|Λα/2u|2dx− r

∫

T

u2Λαudx

+

∫

T

[
Λα/2,Λβ−1Hv

]
∂xuΛ

α/2udx

+

∫

T

Λβ−1Hv
∂x(Λ

α/2u)2

2
dx.

We estimate

I1 =

∫

T

uΛβvΛαudx ≤ 2

µ
‖u‖2L∞‖v‖2

Ḣβ +
µ

8
‖u‖2

Ḣα ,

I2 = r

∫

T

u2Λαudx ≤ 2r2

µ
‖u‖2L∞‖u‖2L2 +

µ

8
‖u‖2

Ḣα ,

I3 =

∫

T

Λβ−1Hv
∂x(Λ

α/2u)2

2
dx ≤ CI(α)‖v‖Ḣβ‖u‖Ḣα/2‖u‖Ḣα ,

where we used that, for a zero-mean value f = Λα/2u, the following inequal-
ity holds

(24) ‖f‖2L4 ≤ CI(α)‖f‖L2‖f‖Ḣα/2 .

The yet untouched term is

I4 =

∫

T

[
Λα/2,Λβ−1Hv

]
∂xuΛ

α/2udx ≤
∥∥∥
[
Λα/2,Λβ−1Hv

]
∂xu

∥∥∥
L2

‖u‖Ḣα/2 .

The Kenig-Ponce-Vega estimate (see Lemma 4) gives

‖[Λα/2,Λβ−1Hv]∂xu‖L2 ≤ CKPV (α)
(
‖∂xu‖

L
2+ 2α−2

2−α
‖Λβ−1Hv‖

W
α
2 , 2

α−1

+‖∂xu‖W α
2 −1,∞‖v‖Ḣβ

)
.(25)

Since both ∂xu and Hv have zero-mean, inequalities (7) yield

I4 ≤ CKPV (α)‖u‖Ḣα/2‖u‖Ḣα‖v‖Ḣβ

(
C3
SE(α)C

1
SE(α) + C4

SE(α)
)
.
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Young’s inequality implies

I4 ≤ ‖v‖2
Ḣβ‖u‖2Ḣα/2

[
CKPV (α)(C

3
SE(α)C

1
SE(α) +C4

SE(α))
]2

µ
+

µ

4
‖u‖2

Ḣα .

Collecting every estimate, we have eventually that

(26)
d

dt
‖u‖2

Ḣα/2 + µ‖u‖2
Ḣα ≤ 2‖u‖2

Hα/2g(t),

with

g(t) = r +
2C2

SE(α)r
2

µ
‖u‖2L2 +

‖v‖Ḣβ

2

+
2C2

SE(α) + (CI(α))
2

µ
‖v‖2

Ḣβ

+

[
CKPV (α)(C

3
SE(α)C

1
SE(α) +C4

SE(α))
]2

µ
‖v‖2

Ḣβ .

We get control over the full Hα/2 norm by testing equation for u with u. A
straightforward computation there together with (26) gives

d

dt
‖u‖2

Hα/2 + µ‖u‖2
Ḣα ≤ 2‖u‖2

Hα/2

(
g(t) +

1

2
+ r

)
.

Testing the equation for v with Λβv and using β ≥ α, we have
∫ t+1

t
‖v(s)‖2

Ḣβds ≤
N
ν

(
3

ν
+ 2CFS(β, α, λ, ν)

)
∀ t ≥ t0,

so, if t ≥ t0,

∫ t+1

t
g(s)ds ≤ r +

r2C2
SE(α)

µ
6N +

N
ν

(
3

ν
+ 2CFS(β, α, λ, ν)

)

×
(
1

2
+

2C2
SE(α) + (CI(α))

2

µ

[
CKPV (α)(C

3
SE(α)C

1
SE(α) + C4

SE(α))
]2

µ

)
.

Using Lemma 5, we obtain

‖u(t+ 1)‖2
Ḣα/2 ≤ S(Ḣα/2) ∀ t ≥ t0 + 1,

∫ t+1

t
‖u(s)‖2

Ḣαds ≤ 2

µ
S(Ḣα/2)

(
1

2
+

∫ t+1

t
g(s)ds

)
∀ t ≥ t0 + 2,

with

S(Ḣα/2) =
2(S(L2) + S(L2)e−r)

µ
e2

∫ t+1
t g(s)ds.

Hence we have obtained the absorbing set in Hkα with k = 1.
Due to the linear character of the equation for v, we have that

‖v(t)‖2
Ḣβ ≤ ‖v0‖2Ḣβe

−λt +M(Ḣα/2)CFS(β, α, λ, ν),

where, for a given space X, we set

M(X) =
√
2πmax

{
max

0≤s≤T ∗
‖u(s)‖X , S(X)

}
,
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for a T ∗ >> 1 that will be fixed later. We remark that ‖Λα/2u(t)‖L1 ≤
M(Ḣα/2).

Now we can continue in the same way using induction. Once we have
the absorbing set for u in L∞([0,∞],Hkα/2(T)) (k ≥ 1) and the bound u ∈
L2([t, t+1],H(k+1)α/2(T)), we can ensure that v ∈ L∞([0,∞],Hβ+(k−1)α/2(T))

and v ∈ L2([t, t + 1],Hβ+kα/2(T)). Now we test the equation for u against

Λ(k+1)αu to get

1

2

d

dt
‖u(t)‖2

Ḣ(k+1)α/2 = −µ

∫

T

|Λ( k
2
+1)αu|2dx+ r

∫

T

|Λ(k+1)α/2u|2dx

+

∫

T

Λkα/2(uΛβv)Λ(k/2+1)αudx

−r

∫

T

Λkα/2(u2)Λ(k/2+1)αudx

+

∫

T

[
Λ(k+1)α/2,Λβ−1Hv

]
∂xuΛ

(k+1)α/2udx

+

∫

T

Λβ−1Hv
∂x(Λ

(k+1)α/2u)2

2
dx.

To conclude the existence of S
(
(k+1)α

2

)
we use Lemma 4 and the same

ideas. Finally, notice that at each iteration step we have to add 1 to the
initial value t0. Consequently, we need to take T ∗ = T ∗(k) large enough to
reach Hkα(T). For instance, to reach H3, T ∗ = t0 + 10 suffices.

10. Proofs concerning the smoothing effect

We begin with proving our main result concerning the smoothing effect
of the system (1)-(2)

Proof of Theorem 7. Recall that for t > 0 the finiteness of the Hardy-
Sobolev norm (11) implies the analyticity on the real line. We define
z = x± iωt. In this complex strip the extended system reads

∂tu(z) = −µΛαu(z) + ∂x · (u(z)Λβ−1Hv(z))(27)

+ru(z)(1 − u(z)),

∂tv(z) = −νΛβv(z) − λv(z) + u(z).(28)

We are going to perform new energy estimates in the Hardy-Sobolev space
(10) for an appropriate value of ω. Notice that, as the functions u and v
are complex for complex arguments, the integration by parts is a delicate
matter for some terms. Consequently, there are several new terms appearing
that are not present in the real case.

We deal first with the case α, β > 1. At the end of the proof we will
explain how to cover the extreme case α = β = 1. We restrict here to
formal estimates, as their rigorization is analogous to that for the real case.

Let us start with the estimates for the equation (28). Using
∫
f ḡ =

∫
f̄g,

we have
d

dt
‖v‖2L2(Sω)

= 2Re

∫

T

v̄(z) (∂tv(z) ± iω∂xv(z)) dx.
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Using Plancherel’s Theorem, we have

Re

∫

T

v̄(z)(−νΛβv(z)− λv(z))dx = −ν‖v‖2
Ḣβ/2(Sω)

− λ‖v‖2L2(Sω)
≤ 0.

Consequently, using (28),

1

2

d

dt
‖v‖2L2(Sω)

≤ ‖v‖L2(Sω)

(
ω‖v‖H1(Sω) + ‖u‖L2(Sω)

)
.

Taking 4 derivatives of the equation (28) and testing against ∂4
xv, we obtain

1

2

d

dt
‖v‖2

Ḣ4(Sω)
= Re

∫

T

∂4
xv̄(z)

(
∂t∂

4
xv(z) ± iω∂5

xv(z)
)
dx,

1

2

d

dt
‖v‖2H4(Sω)

≤ −ν‖v‖2
Ḣ4+β/2(Sω)

+ 3ω‖v‖2
Ḣ4+1/2(Sω)

+
µ

4
‖u‖2

Ḣ3+α/2(Sω)

+
(CSI(α))

2

ω

α− 1

α

( µ
4ωα

(CSI(α))2

)−1/(α−1)

‖u‖2
Ḣ3(Sω)

+

(
ω +

1

2

)
‖v‖2H4(Sω)

+
‖u‖2H3(Sω)

2
.

Now we proceed with the equation for u. The lower order term can be
bounded easily as follows

1

2

d

dt
‖u‖2L2(Sω)

= Re

∫

T

ū(z) (∂tu(z)± iω∂xu(z)) dx

≤ ‖u‖L2(Sω)

(
ω‖u‖H1(Sω) + ‖u‖L∞(Sω)‖v‖Ḣβ (Sω)

+ r‖u‖L2(Sω) + r‖u‖L2(Sω)‖u‖L∞(Sω)

+‖u‖H1(Sω)‖Λβ−1Hv‖L∞(Sω)

)
.

The higher order seminorm contributes with

1

2

d

dt
‖u‖2

Ḣ3(Sω)
= Re

∫

T

∂3
xū(z)

(
∂t∂

3
xu(z)± iω∂4

xu(z)
)
dx.

For the sake of brevity, let us focus now on the most singular terms. They
are

L1 =
1

2
Re

∫

T

Λβ−1Hv(z)∂x|∂3
xu(z)|2dx ≤ 1

2
‖u‖2

Ḣ3(Sω)
‖Λβv‖L∞(Sω),

L2 =

∫

T

ImΛβ−1Hv(z)∂3
xRe u(z)∂

4
xImu(z)dx,

L3 = −
∫

T

ImΛβ−1Hv(z)∂3
xImu(z)∂4

xReu(z)dx ≤ L2+‖u‖2
Ḣ3(Sω)

‖Λβv‖L∞(Sω).

Using ΛH = −∂x and the self-adjointness of Λs, we find a commutator and
estimate

L2 ≤
∥∥∥
[
Λ0.5, ImΛβ−1Hv

]
∂3
xReu

∥∥∥
L2(Sω)

‖u‖Ḣ3.5(Sω)

+ ‖ImΛβ−1Hv‖L∞(Sω)‖u‖2Ḣ3.5(Sω)
.
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We use Lemma 4 to obtain the commutator estimate
∥∥∥
[
Λ0.5, ImΛβ−1Hv

]
∂3
xReu

∥∥∥
L2(Sω)

≤ C2
KPV ‖Λβv‖L∞(Sω)‖u‖Ḣ3(Sω)

.

Putting all the estimates together and using Sobolev embedding together
with 3 + β ≤ 4 + β/2, we have that

d

dt
‖u‖2H3(Sω)

≤ 2‖u‖2H3(Sω)

(
ω + 17.5C2

SE(α)‖v‖Ḣ4(Sω)
+ 2r

+2C2
SE(α)‖v‖Ḣ4+β/2(Sω)

)
+ ‖u‖3H3(Sω)

9rC2
SE(α)

−2µ‖u‖2
Ḣ3+α/2(Sω)

+ 4ω‖u‖2
Ḣ3.5(Sω)

+2‖ImΛβ−1Hv‖L∞(Sω)‖u‖2Ḣ3.5(Sω)

+2‖u‖Ḣ3.5(Sω)
‖u‖Ḣ3(Sω)

C2
KPVC

2
SE(α)‖v‖H4(Sω).

Notice that via Poincaré inequality holds

‖ImΛβ−1Hv‖L∞ ≤
√
2‖Im v‖Ḣβ ≤

√
2‖Im v‖Ḣ2 .

Let us define the energy

E(t) = 1 + ‖u‖2H3(Sω)
+ ‖v‖2H4(Sω)

+
1

µ
4 −

√
2‖Im v‖Ḣ2

+

∥∥∥∥
1

2‖u0‖L∞(T) − |u(z)|2
∥∥∥∥
L∞

+

∥∥∥∥
1

2‖v0‖L∞(T) − |v(z)|2
∥∥∥∥
L∞

.

We obtain (see [26, 30, 31] for further details)

d

dt

∥∥∥∥
1

2‖u0‖L∞(T) − |u(z)|2
∥∥∥∥
L∞

≤ (µ+ 2 + 2r)C2
SE(α)(E(t))4.

In the same way

d

dt

∥∥∥∥
1

2‖v0‖L∞(T) − |v(z)|2
∥∥∥∥
L∞

≤ (ν + λ+ 1)C2
SE(α)(E(t))3.

Thus, putting all the estimates together, we get

d

dt
E(t) ≤ −2ν‖v‖2

Ḣ4+β/2(Sω)
+ 6ω‖v‖2

Ḣ4+1/2(Sω)
+ 2

(µ
4
− µ

)
‖u‖2

Ḣ3+α/2(Sω)

+2

[
(CSI(α))

2

ω

α− 1

α

(
ω2α

(CSI(α))2

)−1/(α−1)

+ 2ω

+1.25 + 2r + (17.5C2
SE(α))

2 +
(9rC2

SE(α))
2

2

]
E(t)

+(E(t))2
(
1.5 +

2(C2
KPVC

2
SE(α))

2

µ

)

+(1 + (µ + 2 + 2r + ν + λ+ 1)C2
SE(α))(E(t))4

+
(µ
2
+ (

√
2)3‖Im v‖Ḣ2 + 4ω

)
‖u‖2

Ḣ3.5(Sω)
.
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Now observe that, as long as E(t) < ∞, we have µ
4 −

√
2‖Im v‖Ḣ2 > 0 and,

using Poincaré inequality if needed, we obtain

d

dt
E(t) ≤ −2ν‖v‖2

Ḣ4+β/2(Sω)
+ 6ω‖v‖2

Ḣ4+1/2(Sω)
− µ

2
‖u‖2

Ḣ3+α/2(Sω)

+2

[
(CSI(α))

2

ω

α− 1

α

(
ω2α

(CSI(α))2

)−1/(α−1)

+ 2ω

+1.25 + 2r + (17.5C2
SE(α))

2 +
(9rC2

SE(α))
2

2

]
E(t)

+(E(t))2
(
1.5 +

2(C2
KPVC

2
SE(α))

2

µ

)

+(1 + (µ + 2 + 2r + ν + λ+ 1)C2
SE(α))(E(t))4

+4ω‖u‖2
Ḣ3.5(Sω)

.

For α, β > 1 we have by Plancharel Theorem

4ω‖u‖2
Ḣ3.5(Sω)

− µ

2
‖u‖2

Ḣ3+α/2(Sω)
≤ C1‖u‖2Ḣ3(Sω)

,

3ω‖v‖2
Ḣ4.5(Sω)

− ν‖v‖2
Ḣ4+β/2(Sω)

≤ C2‖v‖2Ḣ4(Sω)
,

with C1, C2 given by (46),(47). Consequently, we can choose any positive
value for ω > 0 and we have the inequality

d

dt
E(t) ≤ K1(E(t))4,

with K1, Ci defined in (46),(47) and (43). Solving this ODI, we obtain

E(t) ≤ 1

3

√
1

1+‖u0‖2
H3(T)

+‖v0‖2
H4(T)

− 3tK1

,

and, using (43), we conclude that (u, v) are analytic functions at least for
time

T̃ =
1

3K1(1 + ‖u0‖2H3(T)
+ ‖v0‖2H4(T)

)

Notice that in the extreme cases min{α, β} = 1, we can take

0 < ω ≤ ω0,

(with ω0 defined in (8)) to obtain the inequality

(29)
d

dt
E(t) ≤ K2(E(t))4,

with K2 given by (44). From the inequality (29) we obtain

E(t) ≤ 1

3

√
1

1+‖u0‖2
H3(T)

+‖v0‖2
H4(T)

− 3tK2

,

and we again conclude that the solution (u, v) is analytic for time t < T̃
with

T̃ =
1

3K2(1 + ‖u0‖2H3(T)
+ ‖v0‖2H4(T)

)
.

�
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Remark 4. A similar Theorem holds for the parabolic-elliptic system ( (1)-
(2) with τ = 0). We refer the reader to [1] for details on how to adapt the
proof.

Proof of Corollary 1. The proof of Corollary 1 is obtained by a standard
continuation argument. First notice that the solution (u(t), v(t)) ∈ H3(T)×
H4(T) globally and it is unique. In particular, at t = T̃ , we can restart

the evolution with initial data (u10, v
1
0) = (u(T̃ ), v(T̃ )). The initial data

may not be analytic, but there exists a δ small enough so (u1(t), v1(t)) =

(u(T̃ + t), v(T̃ + t)) is analytic for 0 < t < δ. As we can find such a positive
δ for every initial data, we conclude. In other words, if we can not find
such a positive δ, it is because (un0 , v

n
0 ) /∈ H3(T) × H4(T), and this is a

contradiction. �

For the proof of Corollary 2 we refer to [1], [26], [30].

11. Proof of Theorem 8: Existence of the attractor

Here we prove the existence and some properties of the attractor. First
we need a definition coming from dynamical systems (see Temam [55]).

Definition 3. The solution operator S(t)(u0, v0) = (u(t, x), v(t, x)) defines

a compact semiflow in H3α(T)×Hβ/2+3α(T) if, for every (u0, v0) ∈ H3α(T)×
Hβ/2+3α(T), the following statements hold:

• S(0)(u0, v0) = (u0, v0).
• for all t, s, u0, v0, the semigroup property hold, i.e.

S(t+ s)(u0, v0) = S(t)S(s)(u0, v0) = S(s)S(t)(u0, v0).

• For every t > 0

S(t)(·, ·) : H3α(T)×Hβ/2+3α(T) 7→ H3α(T)×Hβ/2+3α(T)

is continuous.
• There exists T ∗ > 0 such that S(T ∗) is a compact operator, i.e. for

every bounded set B ⊂ H3α(T)×Hβ/2+3α(T), S(T ∗)B ⊂ H3α(T)×
Hβ/2+3α(T) is a compact set.

We have

Lemma 3. Let T > 0, 8/7 ≤ α ≤ β ≤ 2, µ, ν, λ, r > 0, (u0, v0) ∈
H3α × Hβ/2+3α. Then S(·)(u0, v0) = (u(·)), v(·))) ∈ C([0, T ],H3α(T) ×
Hβ/2+3α(T)) for every initial data and it defines a compact semiflow in

H3α ×Hβ/2+3α.

Proof. As in Theorem 4 we have

(30) Λ3αu ∈ L∞([0, T ], L2) ∩ L2([0, T ],Hα/2),

(31) Λ3α+β/2v ∈ L∞([0, T ], L2) ∩ L2([0, T ],Hβ/2).

We have to prove that

∂tΛ
3αu ∈ L2([0, T ],H−α/2), ∂tΛ

3α+β/2v ∈ L2([0, T ],H−β/2).
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By duality and the Kato-Ponce inequality, we have

‖∂tΛ3αu‖Ḣ−α/2 = sup
‖φ‖

Hα/2≤1

∣∣∣∣
∫

T

∂tΛ
3αuφdx

∣∣∣∣

≤ µ‖Λ3.5αu‖L2 + ‖Λ2.5α(uΛβv)‖L2 + ‖Λ2.5α(∂xuΛ
β−1Hv)‖L2

+r‖Λ2.5αu‖L2 + r‖Λ2.5α(u2)‖L2

≤ C
(
‖Λ3.5αu‖L2 + ‖Λ2.5αu‖L2‖Λβv‖L∞ + ‖Λβ+2.5αv‖L2‖u‖L∞

+‖Λ2.5α∂xu‖L2‖Λβ−1Hv‖L∞ + ‖∂xu‖L∞‖Λβ+2.5α−1v‖L2

+‖Λ2.5αu‖L2 + ‖u‖L∞‖Λ2.5αu‖L2

)

≤ C
(
‖u‖Ḣ3.5α + ‖u‖H3α‖v‖H3α+β/2 + ‖v‖Ḣβ+3α‖u‖H3α

+‖u‖Ḣ3.5α‖v‖Hβ/2+3α + ‖u‖H3α‖v‖Hβ+3α

+‖u‖H3α + ‖u‖H3α‖u‖H3α) ,

and we conclude the bound for ∂tΛ
3αu:

(32)

∫ T

0
‖∂tΛ3αu(s)‖2

Ḣ−α/2ds ≤ C.

We proceed in the same way to get

(33)

∫ T

0
‖∂tΛ3α+β/2v(s)‖2

Ḣ−α/2ds ≤ C

The bounds (32) and (33) together with (30) and (31) imply

u ∈ C([0, T ], Ḣ3α), v ∈ C([0, T ], Ḣ3α+β/2).

To get the full norm we use

u ∈ L∞([0, T ], L2) ∩ L2([0, T ],Hα/2), v ∈ L∞([0, T ], L2) ∩ L2([0, T ],Hβ/2).

and repeat the argument for

∂tu ∈ L2([0, T ],H−α/2), ∂tv ∈ L2([0, T ],H−β/2).

This implies

S(·)(u0, v0) ∈ C([0, T ],H3α ×Hβ/2+3α).

The semigroup property follows from the uniqueness of the classical solution.
Having fixed s0, the continuity of

S(s0)(·, ·) : H3α ×Hβ/2+3α 7→ H3α ×Hβ/2+3α,

can be obtained with the energy estimates. Finally, we use Theorem 7 to
get that S(t)(u0, v0) ∈ H3.5α × Hβ+3α if t ≥ δ, for every initial data and
δ > 0. As in Theorem 6, we obtain the existence of T ∗ and a constant C
such that

max
t≥T ∗

{‖u(t)‖H3.5α + ‖v(t)‖Hβ+3α} ≤ C.

Using the compactness of the embeddings Hǫ →֒ L2, we conclude the result.
�
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Remark 5. The restriction α ≤ β is to get the existence of the absorbing
sets when applying Theorem 6. The restriction 8/7 ≤ α is to get

3α+ β/2 ≥ 3.5α ≥ 4,

to invoke Theorem 7.

Proof of Theorem 8. We can use the previous Lemma together with Theo-
rem 6 and Theorem 1.1 in [55] to conclude Theorem 8. �

12. Proof of Theorem 9: The number of relative maxima

Finally, let us provide the proof of Theorem 9:

Proof of Theorem 9. Using Theorem 7 for T̃ /(N − 1) < t < T̃ , N ≥ 3 and
ω = ω0 defined in (8), we have that the solutions become analytic in a strip
with width at least

W =
ωT̃

N
=

ω

N

1 + ‖u0‖2H3(T) + ‖v0‖2H4(T)

3K ,

and K given by (45). We have

ωT̃

(
1

N − 1
− 1

N

)
≤ ωt−W

and using Cauchy’s formula and Hadamard’s three lines theorem

‖∂xu‖L∞({|ℑz|≤W}) ≤
N(N − 1)‖u‖L∞({|ℑz|≤ωt})

ωT̃
≤

√
2(N − 1)‖u0‖L∞(T)

W ,

‖∂xv‖L∞({|ℑz|≤W}) ≤
N(N − 1)‖v‖L∞({|ℑz|≤ωt})

ωT̃
≤

√
2(N − 1)‖v0‖L∞(T)

W .

Using Lemma 6, we have that for any ǫ > 0, 0 < T̃/(N − 1) < t < T̃ ,
T = Iuǫ ∪Ru

ǫ = Ivǫ ∪Rv
ǫ , where Iuǫ , I

v
ǫ are the union of at most [4πW ] intervals

open in T, and

• |∂xu(x)| ≤ ǫ, for all x ∈ Iuǫ ,

• card{x ∈ Ru
ǫ : ∂xu(x) = 0} ≤ 2

log 2
2π
W log

(√
2(N−1)‖u0‖L∞(T)

Wǫ

)
,

• |∂xv(x)| ≤ ǫ, for all x ∈ Iuǫ ,

• card{x ∈ Rv
ǫ : ∂xv(x) = 0} ≤ 2

log 2
2π
W log

(√
2(N−1)‖v0‖L∞(T)

Wǫ

)
.

�

Proof of Corollary 3. Notice that in the case min{α, β} > 1, we are free to
choose

ω =
N

1 + ‖u0‖2H3(T)
+ ‖v0‖2H4(T)

,

and we can improve the statement in Theorem 9. Applying Lemma 6, we
have that for any ǫ > 0, T = Iuǫ ∪ Ru

ǫ = Ivǫ ∪ Rv
ǫ , with Iuǫ , I

v
ǫ are the union

of at most [12πK1] intervals open in T, and

• |∂xu(x)| ≤ ǫ, for all x ∈ Iuǫ ,

• card{x ∈ Ru
ǫ : ∂xu(x) = 0} ≤ 12πK1

log 2 log

(√
18K1(N−1)‖u0‖L∞(T)

ǫ

)
,

• |∂xv(x)| ≤ ǫ, for all x ∈ Iuǫ ,
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• card{x ∈ Rv
ǫ : ∂xv(x) = 0} ≤ 12πK1

log 2 log

(√
18K1(N−1)‖v0‖L∞(T)

ǫ

)
.

We are interested in the points of maximum such that they are close to
regions with derivative bigger than one (the so-called peaks). Consequently,
we take ǫ = 1 and N = 3. Finally, notice that, in the attractor, we have

‖u(t)‖L∞ ≤ C2
SE(α)S(H

α/2)

to conclude the result. �

The proof of Corollary 4 follows from the same ideas as before.

13. Numerical simulations

13.1. Algorithm. The dynamics differs substantially depending on the value
of the parameters presents in the problem. Hence, in order to reduce the
number of parameters, let us consider the one-parameter problem

∂tu = −Λαu+ χ∂x · (uΛβ−1Hv) + u(1− u)(34)

∂tv = −Λβv − v + u,(35)

with χ > 0.
To simulate this problem we use the well-known Fourier-collocation method.

First we discretize the spatial domain using N uniformly distributed points.
Notice that the numerical solution (uN , vN ) will have N points for uN and
N points for vN .

We use the Fast Fourier Transform (FFT) to change to the frequency
space. There the differential operators and the Hilbert transform act as
multipliers. Indeed, if we denote the FFT using FFT(·), we have

FFT(ΛγuN ) = |ξ|γFFT(uN ),FFT(Λβ−1HuN ) = −iξ|ξ|β−2FFT(uN ).

To compute the nonlinear term we use the Inverse Fast Fourier Transform
(IFFT) to change back to the physical space. We multiply there appropri-
ately and then we go back to the frequency space using FFT. In particular,
writing IFFT(·) for the IFFT we have that the nonlinearity can be written
as

iξFFT
(
uN IFFT(−iξ|ξ|β−2ûN )

)
.

In this way we can write our problem as a ordinary differential equation
in the frequency space. Now we can advance up to time T using our favorite
numerical integrator. In particular, we choose the function ode45 in Matlab.

13.2. Results.

13.2.1. α = 1, β = 1. First, we study the case α = 1 and β = 1. For
high values of χ, we observe the same chaotic behavior as in [48]. The
homogeneous steady state is unstable and a number of peaks eventually
emerge and merge with other peaks (see Figures 3, 4 and 5). We take
N = 213, T = 30 and the initial data

(36) u0(x) = 1, v0(x) = 0.1 sin(8x) + 1.

In order to better understand the role of χ, we approximate the solution for
different values χi ∈ [5, 20]. The step between our values is

χi+1 − χi = 0.5.
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Figure 3. Emerging peak.
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Figure 4. Merging peaks.

The outcome is plotted in Figure 6. In the part a of the figure, we plot
the solutions corresponding to different values of χ and times 20 ≤ t ≤ 30.
Notice that every line corresponds to a fixed time t. We see that for lower
values of χ the solution tends to the homogeneous steady state, while for
large values of χ the solution develops chaotic behavior. In particular, we
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Figure 5. Tracking the peaks for the case α = β = 1, χ =
20 up to time T = 100.
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Figure 6. Transition to chaos

can see how a small change in χ has a substancial impact on the solution
at a fixed time ti. We can see also that, for a fixed value χi, the solution at
different times take very different values.

In part b of the same figure, we plot ‖uN (t)‖L∞ for χ = 5 (solid line) and
χ = 20 (dotted line).

13.2.2. α = 1.5, β = 2. Now let us study the case α = 1.5 and β = 2.
Here we take N = 211. There are two different cases. One corresponds to
T = 100 and χ = 20 and the other to T = 150 and χ = 30. The initial data
in both cases is

u0(x) = 1, v0(x) = 2 + random(x),

where random(x) is a uniformly distributed in [−0.1, 0.1] random sample.
We recover the same chaotic behaviour with merging and emerging peaks.
If we track the peaks, we get the results in Figure 7.
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Figure 7. Tracking the peaks for α = 1.5, β = 2 and differ-
ent values of χ.
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Figure 8. a) ‖uN (t)‖L∞ and b) uN (ti) for some 11 < ti < 20
and α = 1.5, β = 1 and χ = 20.

13.2.3. α = 1.5, β = 1. Now, we consider the case α = 1.5 and β = 1.
Here we take N = 213. We simulate the evolution for different values of
χ ∈ [16, 20] up to time T = 20. The initial data is given by (36). In this
hyperviscous case, the solutions tend to the homogeneous steady state before
the instability appears. Then for time 10 < t < 20, ‖uN (t)‖L∞ grows and
several peaks emerge (see Figure 8).

13.2.4. α = 0.5, β = 1. In the case α = 0.5 and β = 1 we take N = 214.
In this hypoviscous case, we simulate the solution corresponding to two
different initial data and two different values of the parameter χ

(37) u0(x) = 1, v0(x) = 0.1 sin(10x) + 1 and χ = 20,
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Figure 9. ‖∂xuN (t)‖L∞ for some 0 < ti < 0.11 and α = 0.5,
β = 1 and χ = 20. The red points are in the fitted curve. In
the box, the points that have been used in the fitting process.

(38) u0(x) = 1, v0(x) = 0.1 cos(x) exp(−x2) + 1 and χ = 10.

First, we compute the solution corresponding to (37) with χ = 20 up to
time T = 0.11. This solution appears to have a finite time singularity (see
Figure 9), i.e.

lim sup
t→Tmax

‖∂xu(t)‖L∞ = ∞.

Furthermore, if we use least squares to fit a curve with expression

(39) y(t) =
a1

(a2 − t)a3
,

to the numerical solution ‖∂xuN (t)‖L∞ , we obtain the parameters

a1 = 0.03389, a2 = 0.11244, a3 = 2.14248.

Notice that this evidence of singularity agrees with Theorem 2. On the other
hand, if χ = 10, the solution u(t) corresponding to (38) grows in C1 (see
Figure 10) but a curve like (39) does not approximate the numerical solution
uN (t) well. As a consequence, the value of χ in the formation of a finite time
singularity seems to be crucial. Notice that χ is, roughly speaking, 1/r.
Consequently, the case r small presents evidence of singularity while the
case r big appears to remain smooth for finite time. This is in accordance
with [57], see also our recent study [19].

Appendix A. Auxiliary Lemmas

We state the Kato-Ponce inequality and the Kenig-Ponce-Vega commu-
tator estimate for [Λs, F ]G = Λs(FG) − FΛsG and where Λ =

√
−∆ (see

[29], [38], [40]).

Lemma 4. Let F,G be two smooth functions on T
d. Then we have the

following inequalities:

‖[Λs, F ]G‖Lp ≤ C(s, p, pi) (‖F‖W s,p1‖G‖Lp2 + ‖G‖W s−1,p3‖∇F‖Lp4 ) ,
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Figure 10. a) u(x, t), b) ∂xuN (t) for some 0 < ti < 0.9 and
α = 0.5, β = 1 and χ = 10.

with
1

p
=

1

p1
+

1

p2
=

1

p3
+

1

p4
, p, p1, p3 ∈ (1,∞), p2, p4 ∈ [0,∞], s > 0.

and

‖Λs(FG)‖Lp ≤ CKP (s, p, pi)

2
(‖ΛsF‖Lp1‖G‖Lp2 +‖ΛsG‖Lp3‖F‖Lp4 ) ,

with

1

p
=

1

p1
+

1

p2
=

1

p3
+

1

p4
,
1

2
< p < ∞, 1 < pi ≤ ∞, s > max{0, d/p − d}.

Remark 6. In particular, we are using the notation

CKPV (α) = C

(
α

2
, 2,

2

α− 1
, 2 +

2α − 2

2− α
,∞, 2

)
.

We require the following uniform Gronwall lemma (see [55]).

Lemma 5. Suppose that g, h, y are non-negative, locally integrable functions
on (0,∞) and dy/dt is locally integrable. If there are positive constants a1,
a2, a3, b such that

dy

dt
≤ gy + h,

∫ t+b

t
g(s)ds ≤ a1,

∫ t+b

t
h(s)ds ≤ a2,

∫ t+b

t
y(s)ds ≤ a3

for t ≥ 0, then

y(t+ b) ≤
(a3
b

+ a2

)
ea1 .

The last Lemma studies the number of critical points of an analytic func-
tion (compare Grujić [33]).

Lemma 6. Let w > 0, and let u be analytic in the neighbourhood of {z :
|ℑz| ≤ w} and 2π-periodic in the x-direction. Then, for any ǫ > 0 holds
T = Iǫ ∪Rǫ, where Iǫ is an union of at most [4πw ] intervals open in T, and

• |∂xu(x)| ≤ ǫ, for all x ∈ Iǫ,

• card{x ∈ Rǫ : ∂xu(x) = 0} ≤ 2
log 2

2π
w log

(
max|ℑz|≤w |∂xu(z)|

ǫ

)
.
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Appendix B. Explicit expressions for the constants

Here we collect explicit expressions for the constants that we use in The-
orem 6 and Corollaries 3, 4. We define the radius of the absorbing set in L2

as

(40) S(L2) = er
[
3N +

CKP (α)
2N 3

µ
2CFS(β, α, λ, ν)

+
(CKP (α)CGN (α))

2α+2
α−1 4N 2

µ
(2NCFS(β, α, λ, ν))

α+1
α−1

]
.

Let

(41) I = r +
r2C2

SE(α)

µ
6N +

N
ν

(
3

ν
+ 2CFS(β, α, λ, ν)

)

×
(
1

2
+

2C2
SE(α) + (CI(α))

2

µ

×
[
CKPV (α)(C

3
SE(α)C

1
SE(α) + C4

SE(α))
]2

µ

)
,

the radius of the absorbing set in higher norms is given by

(42) S(Hα/2) ≤ S(L2) + S(Ḣα/2) = S(L2)

(
1 +

2(1 + e−r)

µ
e2I
)
.

We denote

(43) K1(α, β, µ, ν, r, λ) = 1+(µ+2+2r+ν+λ+1)C2
SE(α)+C1+2C2+C3+C4,

(44) K2(α, β, µ, ν, r, λ) = 1+(1+µ+2+2r+ν+λ+1)C2
SE(1.1)+C5+C6,

(45) K(α, β, µ, ν, r, λ) =

{
K1 if α, β > 1,
K2 if min{α, β} = 1,

where

(46) C1 = max
ξ∈R+

4ωξ − µ

2
ξα = 4ω

(
8ω

µα

) 1
α−1

− µ

2

(
8ω

µα

) α
α−1

,

(47) C2 = max
ξ∈R+

3ωξ − νξβ = 3ω

(
3ω

νβ

) 1
β−1

− ν

(
3ω

νβ

) β
β−1

,

(48) C3 = 2

[
(CSI(α))

2

ω

α− 1

α

(
ω2α

(CSI(α))2

)−1/(α−1)

+ 2ω

+ 1.25 + 2r + (17.5C2
SE(α))

2 +
(9rC2

SE(α))
2

2

]
,

(49) C4 = 1.5 +
2(C2

KPV C
2
SE(α))

2

µ
,

(50) C5 = 2

[
µ

4
+ 1.25 + 2r + (17.5C2

SE(1.1))
2 +

(9rC2
SE(1.1))

2

2

]
,
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(51) C6 = 1.5 +
2(C2

KPV C
2
SE(1.1))

2

µ
.
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