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Abstract

Objectives—To identify genetic determinants of susceptibility to clinical vertebral fractures, 

which is an important complication of osteoporosis.

Methods—Here we conduct a genome-wide association study in 1553 postmenopausal women 

with clinical vertebral fractures and 4340 controls, with a two-stage replication involving 1028 

cases and 3762 controls. Potentially causal variants were identified using expression quantitative 

trait loci (eQTL) data from transiliac bone biopsies and bioinformatic studies.

Results—A locus tagged by rs10190845 was identified on chromosome 2q13, which was 

significantly associated with clinical vertebral fracture (P=1.04×10−9) with a large effect size (OR 

1.74, 95% CI 1.06 to 2.6). Bioinformatic analysis of this locus identified several potentially 

functional SNPs that are associated with expression of the positional candidate genes TTL (tubulin 

tyrosine ligase) and SLC20A1 (solute carrier family 20 member 1). Three other suggestive loci 

were identified on chromosomes 1p31, 11q12 and 15q11. All these loci were novel and had not 

previously been associated with bone mineral density or clinical fractures.

Conclusion—We have identified a novel genetic variant that is associated with clinical vertebral 

fractures by mechanisms that are independent of BMD. Further studies are now in progress to 

validate this association and evaluate the underlying mechanism.
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INTRODUCTION

Osteoporosis is a common disease with a strong genetic component. It is characterised by 

low bone mineral density (BMD), deterioration in the micro-structural architecture of bone 

and an increased risk of fragility fractures. Vertebral fractures are an important complication 

of osteoporosis.1 They are characterised by loss of height and deformity of the affected 

vertebrae and associated with increased risk of other fractures.2 It has been estimated that 

between 8% and 30% of patients with radiological evidence of vertebral fractures (so-called 

morphometric fractures) come to medical attention for reasons that are incompletely 

understood.34 In contrast, patients with vertebral fractures that come to medical attention 

because of symptoms such as back pain, kyphosis and height loss and are defined as having 

clinical vertebral fractures.5–7 Clinical vertebral fractures are associated with a markedly 

increased risk of future fractures and increased mortality.8 Major advances have been made 

in identifying genetic variants that regulate BMD, and some variants have also been 

identified that predispose to non-vertebral fractures.9–20 However, the genetic determinants 

of vertebral fractures are poorly understood. A previous genome-wide association study 

(GWAS) published by Oei and colleagues21 involving a discovery cohort of 8717 cases and 

21 793 controls failed to identify any significant genetic predictors of radiographic vertebral 

fracture at a genome-wide significant level. However, in this study, the vertebral fractures 

were defined simply on the basis of morphometric analysis of spinal radiographs. It is well 

recognised, however, that the morphometric techniques employed in this study may have 

identified vertebral deformities that were not fractures. The aim of the present study was to 

re-evaluate the predictors of clinical vertebral fractures by GWAS to try and gain new 

insights into this important and poorly understood clinical problem.

PATIENTS AND METHODS

The study involved a discovery phase with 1553 clinical vertebral fracture cases and 4340 

controls, a first replication phase of 694 cases and 2105 controls, and a second replication 

phase of 334 cases and 1657 controls, as summarised in online supplementary table 1. The 

GWAS was performed using standard methodology as detailed in the online supplementary 

text 1.

RESULTS

Characteristics of the study populations

The mean (±SD) age of the patients with clinical vertebral fractures was 71.3±9.3 years with 

a BMD T-score at the lumbar spine of −2.72±1.4 and at the femoral neck of −2.57±1.1. The 

controls were not matched with the cases by age and did not undergo phenotyping for 

vertebral fracture on the basis that clinical vertebral fractures are uncommon in the general 

population (estimated incidence of 9.8/1000 person-years in individuals aged 75–84 years).
23 While it is possible that clinical vertebral fractures may have occurred in some controls in 

later life, this is unlikely to have substantially affected the results of the analysis, other than 

to have potentially slightly reduced its power.24 This approach has been used previously for 

genome-wide studies in various common diseases including diabetes, Paget’s disease and 

rheumatoid arthritis.2526
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We identified 334 clinical vertebral fracture female cases from the UK Biobank cohort with 

a mean age (±SD) of 58.8±7.7 years, and they were age-matched with 1657 female controls 

from the same cohort.

Genome-wide association analysis of the discovery sample

Since different genotyping platforms were used in the analysis of the different cohorts that 

constitute the discovery sample, association analysis was conducted following imputation of 

all genotypes into the CEU (Utah Residents (CEPH) with Northern and Western European 

ancestry) panel of HapMap II reference (see Patients and Methods section). Following 

imputation, we analysed 2 366 456 SNPs and identified 31 with suggestive evidence of 

association with vertebral fracture (P≤10−4). Details are summarised in online 

supplementary table 2; the Manhattan and quantile–quantile plots are shown in online 

supplementary figures 2 and 3. Each study was corrected by genomic control; genomic 

inflation factors ranged between λ=1.001–1.046 for genotyped SNPs and λ=1.006–1.036 

after imputation.

Replication and combined analysis

We analysed the 31 suggestively associated SNPs identified in the discovery cohort (online 

supplementary table 4) and seven additional SNPs that had been significantly associated 

with clinical fractures in a previous GWAS (online supplementary table 5) in the replication 

sample. Four SNPs showed nominal association (P<0.05) with clinical vertebral fractures at 

replication (table 1). The combined discovery and replication analysis corrected for age 

identified one SNP (rs10190845) on chromosome 2q13 with genome-wide significant 

evidence of association with clinical vertebral fractures (P=1.27×10−8). The predisposing 

allele had a frequency of 0.034 in cases compared with 0.022 in controls and the OR for 

susceptibility to fracture was 1.75 (95% CI 1.44 to 2.12) (figure 1). The results were similar 

without age correction (P=4.9×10−8; OR 1.66 (95% CI 1.38 to 1.99)). Conditional analysis 

on rs10190845 did not reveal any secondary association signals at the locus (online 

supplementary figure 4). Three other SNPs on chromosomes 1p31, 11q12 and 15q11 were 

suggestively associated with vertebral fracture in the combined analysis (table 1 and online 

supplementary figures 5 and 6). None of these regions have been found to be associated with 

BMD or fracture in previous GWAS.1013

The top SNP (rs10190845) maps to a region that contains 11 potential candidate genes 

(figure 2). This region has previously been implicated as a genetic regulator of bone density 

by Estrada and colleagues,10 who reported that rs17040773 within ANAPC1 (anaphase 

promoting complex subunit 1) was associated with femoral neck BMD (P=1.5×10−9), but 

not with clinical fractures (P=0.79). rs17040773 is not in linkage disequilibrium with 

rs10190845 in our population (r2 = 0.006), and in keeping with this, when we performed 

conditional analysis on rs17040773, we confirmed that rs10190845 remained significantly 

associated with clinical vertebral fractures (P=2.09×10−8; OR 1.73 (95% CI 1.43 to 2.09)). 

In order to test whether the variants associated with clinical vertebral fractures played a role 

in BMD, we tested the rs10190845 variant for association with volumetric vertebral BMD in 

females on the dataset from Nielson and colleagues.27 We did not find any association for 

the variant and BMD (P=0.23). This suggests that rs10190845 constitutes an independent 
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signal that predisposes to clinical vertebral fracture by mechanisms that are independent of 

an effect on BMD.

A second replication for the significant hit on chromosome 2 and suggestive SNPs on 

chromosomes 1, 11 and 15 was performed in 334 clinical vertebral fracture cases and 1657 

controls from UK Biobank. The top hit (rs10190845) on chromosome 2 was found 

nominally associated with clinical vertebral fractures (P=0.027, OR=1.66 (95% CI 1.06 to 

2.60), minor allele frequency (MAF)=0.049). No association was found for the suggestive 

SNPs in this cohort (table 1).

Meta-analysis of the discovery and the two replication stages showed a combined p-value 

for rs10190845=1.04×10−9 (OR=1.74 (95% CI 1.06–2.6)) with no evidence of heterogeneity 

between cohorts (I2=0.0, P=0.48) (table 1).

The SNPs rs7121756 on chromosome 11 and rs2290492 on chromosome 15 showed 

significant heterogeneity among cohorts (Cochrane’s Q<0.05), and a random effect analysis 

was performed. rs7121756 remained suggestively associated with clinical vertebral fractures 

(P=1.01×10−6), while rs2290492 showed a marginal association (P=0.004).

Functional evaluation of chromosome 2q13 locus

This analysis focused on a linkage disequilibrium block of approximately 700 kb 

surrounding the top hit rs10190845. We identified a total of 936 SNPs within the region that 

were analysed in the GWAS (n=376) or that were in linkage disequilibrium (r2 value of 

>0.7) with rs10190845 or that showed suggestive association to clinical vertebral fractures 

(P<5×10−3). We imputed the genotypes for the SNPs within the region of interest using the 

1000 Genomes phase 3 panel as reference and tested the SNPs for association with clinical 

vertebral fractures. We removed 878 of the SNPs since they showed no association with 

clinical vertebral fractures in our dataset (P>0.05). The remaining 58 candidate SNPs were 

tested for association with the level of expression of genes within the candidate locus using a 

bone-derived gene expression dataset (eQTLs)28 (tables 2 and 3 and online supplementary 

figure 7). This resulted in the identification of nine SNPs that were eQTLs for genes within 

the region. In order to gain insight into the functional basis of the association at 2q13, we 

used SuRFR,29 which integrates functional annotation and prior biological knowledge to 

identify potentially causal genetic variants to assess these nine SNPs along with the top hit 

rs10190845 (table 2 and online supplementary figure 7).

The top ranking variant identified by SuRFR, rs35586251, located within exon 3 of FBLN7, 

is a non-synonymous substitution (p.Val119Met). However, analysis using various in silico 

software tools yielded inconsistent results with regard to functionality of this SNP at the 

protein level (online supplementary table 6). The other nine SNPs are associated with 

expression of TTL, SCL20A or both genes. The variant that ranked top by SuRFR, 

rs35586251, was associated with increased expression of TTL (P=6.6×10−6). Four other 

variants were also associated with both increased expression of TTL and reduced expression 

of SLC20A1 (P values ranging from 2.1×10–6 to 10−5). The second ranking variant, 

rs77172864, in strong linkage disequilibrium (LD) with the GWAS top hit (r2=0.79), was 

associated with reduced expression of SLC20A1 (P=10−4) (tables 2 and 3).
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The variants listed on table 2 were tested in the UK Biobank cohort for further association 

with clinical vertebral fractures (online supplementary table 7). Although none of them was 

significantly associated with the trait, a trend of significance was found for SNPs 

rs72943913, rs77172864 and rs113428223 (P=0.06, OR=1.66), and all of them were 

identified as eQTLs for SLC20A1 gene in bone. These variants showed a lower frequency 

(MAF=0.03) than the top hit (MAF=0.05), which could require a greater sample size to 

detect associations with the trait.

Association between clinical vertebral fractures and other osteoporosis-related 
phenotypes

In order to determine if there is overlap between the SNPs identified as associated with 

lumbar spine BMD in previous GWAS with those associated with clinical vertebral fracture 

in this study, we evaluated 50 SNPs that have been associated with lumbar spine BMD at a 

genome-wide significant level in previous studies in our dataset.1011133031 Four variants 

were nominally associated with clinical vertebral fracture after Bonferroni correction (table 

4). We also analysed 15 variants previously associated with clinical fracture,13 of which 

three were associated with clinical vertebral fractures in this study. We also analysed the 

SNPs identified by Nielson and colleagues27 as genome-wide significant predictors of 

volumetric vertebral BMD for association with clinical vertebral fractures in our dataset. Of 

the six genome-wide significant SNPs identified by Nielson et al, we found that one was 

significantly associated with clinical vertebral fractures after Bonferroni correction 

(rs12742784, P=6.24×10−5). The BMD-increasing variants in table 4 conferred a reduced 

risk of clinical vertebral fractures in our study, while the variants associated with appearance 

of clinical fractures in previous studies were also associated with a higher risk of developing 

a clinical vertebral fracture in our data.

DISCUSSION

Many advances have been made in defining the genetic determinants of BMD and fractures 

through large-scale GWAS, genome sequencing studies and linkage studies in rare bone 

diseases.32 For example, linkage studies have shown that loss-of-function and gain-of-

function variants in LRP5 cause early onset osteoporosis33 and high bone mass,34 

respectively, whereas loss of function mutations affecting SOST and LRP4 have been 

identified as causes of high bone mass and osteosclerosis.3536 GWAS and genome 

sequencing studies have also been successful in identifying multiple loci that regulate 

BMD9–113037 and a smaller number that predispose to clinical fractures.1030

Although vertebral fractures are one of the most common and important complications of 

osteoporosis, relatively little is known about the genetic determinants of this type of fracture.
38 In a previous study of 8717 cases and 21 793 controls, Oei and colleagues failed to 

identify any locus with significant evidence of association with morphometric vertebral 

fractures.21 In the present study, however, we were successful in identifying one genome-

wide significant variant that predisposed to clinical vertebral fractures, which was replicated 

in several populations. We also detected loci that might play a role in clinical vertebral 

fractures (showing suggestive association at the genome-wide level), but further studies need 
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to be performed in further cohorts to confirm or refute these associations. A likely reason for 

the difference between our findings and those of Oei et al is varying case definition. Here, 

we studied patients with clinical vertebral fractures as opposed to morphometric vertebral 

deformities, many of which may not be true fractures.22 The genome-wide significant SNP 

identified in the present study, rs10190845, shows one of the largest effect sizes so far 

detected in the field of osteoporosis genetics (OR=1.75 (95% 1.45 to 2.12)). Most of the 

signals associated with BMD or fracture to date showed a very low effect (ORs between 

0.90 and 1.10),1213 with a few exceptions.20 rs10190845 maps to chromosome 2q13, a 

region previously associated with low femoral neck bone density.10 However, when 

conditioning on rs17040773, the previously reported top SNP at the locus,10 the association 

with rs10190845 remained significant, indicating that rs10190845 represents a novel signal.

In order to determine if there was an overlap between the results of this study and those 

previously reported, we analysed 71 SNPs that have previously been associated with either 

spine BMD or clinical fractures and identified seven variants that were significantly 

associated with clinical vertebral fracture in this study, after Bonferroni correction (threshold 

for significance 0.0009 for BMD and 0.003 for clinical fractures). However, the association 

for these variants did not reach genome-wide significance; therefore, they were not selected 

in the GWAS analysis. The SNPs associated with low BMD as well as increased risk of 

clinical fractures in previous studies were associated with an increased risk of clinical 

vertebral fractures in this study and those associated with an increased risk of clinical 

fractures in previous studies were associated with an increased risk of clinical vertebral 

fractures in this study.

Furthermore, when we analysed six SNPs that were significantly associated with vertebral 

BMD on quantitative CT analysis,27 one locus on chromosome 1p36, close to ZBTB40, was 

identified and significantly associated with clinical vertebral fracture in this study. These 

results support the importance of ZBTB40 as a predictor of clinical fractures and suggest 

that the mechanism of association is most probably mediated by changes in BMD. The 

observations in this study, when taken together with the findings of Nielson and Estrada,1027 

indicate that there is a partial overlap between loci that regulate lumbar spine BMD and 

clinical vertebral fractures. However, there are some genetic determinants of clinical 

vertebral fracture that are unique and that operate independently of BMD.

In order to identify the mechanisms by which 2q13 predisposes to vertebral fracture, we 

conducted bioinformatic analyses to determine if rs10190845 or other SNPs nearby were 

likely to be functional variants. These studies identified several potentially functional SNPs 

in the same LD block as rs10190845, which might account for the association we observed. 

The top ranking SNP from SuRFR analysis was rs35586251, which was strongly associated 

with expression of the TTL gene within the candidate locus (online supplementary figure 8). 

However, the second ranking SNP, rs77172864 (online supplementary figure 9), in strong 

LD with the GWAS top hit, was significantly associated with the expression of SLC20A1. 

Several other SNPs were also significantly associated with expression of TTL and/ or 

SLC20A1, raising the possibility that alterations in expression of one or both genes might 

account for the predisposition to clinical vertebral fractures. Association analysis performed 

using UK Biobank cohort for these SNPs showed a trend of association for markers 
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regulating SLC20A1 gene, which also showed some degree of linkage disequilibrium, with 

the GWAS top hit. The lack of significant association might be due to their low allele 

frequency (MAF=0.03), which means that a larger sample size may be required to detect a 

strong association. The tubulin tyrosine ligase encoded by TTL is involved in regulation of 

the cytoskeleton. Previous studies have shown that TTL is involved in neuronal 

development39 and injury signalling,40 raising the possibility that variants that regulate TTL 
might be involved in regulating pain perception, which could account for the fact that 

predisposing variants have not previously been associated with BMD. Other mechanisms are 

also possible and further studies need to be performed in order to address the role of TTL in 

clinical vertebral fracture. The other main candidate gene, SLC20A1, encodes Pit1, which 

facilitates the entry of inorganic phosphate into the cytoplasm.41 Previous studies have 

shown that SLC20A1 is involved in mineralisation.42–45 Altered expression of this gene 

could convey risk for vertebral fractures through an effect on bone mineralisation. Although 

SLC20A1 presents as the candidate gene for association with clinical vertebral fractures in 

this study, it has not been identified previously as a predictor of BMD or fractures. This 

opens the possibility that alternative mechanisms may be operative for SLC20A1 or that 

TTL rather than SLC20A1 is the candidate gene within the 2q13 locus.

Limitations of the study include the fact that the total sample size was relatively small and 

the power to detect alleles of modest effect size was limited. It is possible that we may have 

missed associations between rare variants and clinical vertebral fractures since the 

imputation we performed was against HapMap reference panel rather than larger panels that 

increase imputation power particularly against low frequency variants. Although the case 

definition was clinically based, there was no significant heterogeneity in the associations we 

observed across centres.

Strengths of the present study are that it has provided important new information on the 

genetic determinants of clinical vertebral fracture and that results, despite the sample size, 

have been validated in two independent replication stages.

CONCLUSION

Genome wide association analysis identified a significant association between a marker on 

chromosome 2 and clinical vertebral fractures in postmenopausal women, a finding 

validated in several independent populations.

It is of interest that the top hit and other suggestive hits identified acted independently of 

BMD, bringing to attention other bone microarchitectural modalities that determine fracture 

susceptibility. This suggests that the variants identified might be acting as markers for 

perception of pain or other factors that are associated with the clinical presentation of 

vertebral fractures. We also found that some of the variants previously identified as 

regulators of spine BMD were associated with clinical vertebral fractures but with effects 

that were weaker than the top hit and other suggestive hits. Taken together, the data suggest 

that the genetic basis of clinical vertebral fracture is complex involving variants that act 

independently of BMD as well as those that are associated with spine BMD. Further 

research is now warranted to fully investigate the mechanisms involved.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Cohort specific association between rs10190845 and clinical vertebral fracture. The point 

estimates (squares) and 95% CIs (horizontal lines) for individual studies are shown with the 

summary indicated by the diamond using a fixed effect model. Summaries are shown for 

meta-analysis with discovery cohorts only (Summary_discovery), with the first replication 

cohorts only (Summary_replication), and for the whole three-stage meta-analysis 

(Summary_meta-analysis). ‘BRITISH-WTCCC’ shows the results for the combined cohorts 

CAIFOS, AOGC, DOES and EPIC and the control cohort WTCCC2. ‘Scottish replication’ 

corresponds to EDOS-ORCADES cohorts, ‘Italian_replication_1’ study corresponds to 

Alonso et al. Page 13

Ann Rheum Dis. Author manuscript; available in PMC 2018 April 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Florence-InCHIANTI cohorts and ‘Italian_replication_2’ study comprises the Turin and 

Siena cohorts. Cohort sizes are reflected by square dimensions.
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Figure 2. 
Regional association plots of susceptibility locus for clinical vertebral fracture. The figure 

shows the results after imputation using 1000G v3 as reference panel. The SNPs are colour 

coded according to the extent of linkage disequilibrium with the SNP showing the highest 

association signal from the combined analysis (represented as a purple diamond). The 

estimated recombination rates (cM/Mb) from HapMap CEU release 22 are shown as light 

blue lines, and the blue arrows represent known genes in the region. The red line shows the 

threshold for genome-wide significance (P=5×10−8).
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