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Abstract

Contactless photoplethysmography (cPPG) is a method of physiological monitoring. It differs
from conventional monitoringmethods (e.g., saturation probe) by ensuring no contact with the
subject by use of a camera. The majority of research on cPPG is conducted in a laboratory
setting or in healthy populations. This review aims to evaluate the current literature on
monitoring using cPPG in adults within a clinical setting. Adhering to the Preferred Items for
Systematic Reviews and Meta-analysis (PRISMA, 2020) guidelines, OVID, Webofscience,
Cochrane library, and clinicaltrials.org were systematically searched by two researchers.
Research articles using cPPG for monitoring purposes in adults within a clinical setting were
selected. Twelve studies with a total of 654 individuals were included. Heart rate (HR) was the
most investigated vital sign (n= 8) followed by respiratory rate ((n= 2), Sp02 (n= 2), and HR
variability (n= 2). Four studies were included in a meta-analysis of HR compared to ECG data
which demonstrated a mean bias of –0.13 (95% CI, –1.22–0.96). This study demonstrates cPPG
can be a useful tool in the remotemonitoring of patients and has demonstrated accuracy for HR.
However, further research is needed into the clinical applications of this method.

Background

Photoplethysmography (PPG) is an optical technique used to detect pulsatile blood volume
changes on the skin’s surface. These blood volume changes provide information on
physiological parameters such as heart rate (HR) and oxygen saturation levels (Sp02). Given
the noninvasive, cheap, and accurate qualities of PPG, it is currently used in a number ofmedical
and commercial devices [1]. One example of a PPG device is a pulse oximeter, where a probe is
applied to the fingertip or earlobe to provide information on HR and Sp02.

Contactless PPG (cPPG) is a relatively novel adaptation of PPGwhich uses a camera to detect
the pulsatile blood volume changes in the blood vessels of a person’s face. The technology was
developed based on the limitations of conventional PPG. These include the need to be in contact
with the skin and the measurements being restricted to the local blood flow over a few
millimeters [2]. The cPPG technique is a noncontact method of measuring physiological
parameters [3]. During times when remote consultations and physical distancing is beneficial,
this technology can provide a diagnostic benefit in a number of clinical settings. CPPG by be
beneficial in a number of clinical settings, especially whenmonitoring causes distress to patients,
for example in those with delirium, head injuries, or children. This technology is also ideally
suited for remote monitoring especially with the use of web cameras and smartphone
technology.

Since cPPG was first described, the focus of research has been on demonstrating the
technology’s feasibility and application in controlled laboratory settings [4]. Information on
how this technology functions in clinical settings is limited.

Primary Objective and Secondary Objectives

This systematic review aims to summarize the current literature on the clinical applications of
cPPG monitoring in adults. Clinical applications were defined as either set in a clinical
environment or the assessment of vital signs in patients with a particular clinical condition.

The secondary objectives include collating available data on accuracy and the limitations of
cPPG when used in clinical settings.

Methods

The search terms are available in supplementary material and this review adheres to the
Preferred Reporting Items for Systematic reviews and Meta-analyses (PRISMA) guidelines [5].
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Study Selection Criteria

Population: This study was limited to adults.
Intervention: Contactless vital signs monitoring using cPPG

methods.
Environments: Given the nature of the research question, only

studies conducted within a clinical setting or where the aim was to
assess a clinical question were included.

Comparator: All studies that met the inclusion criteria,
regardless of whether or not a comparator was described, were
included. Where a comparator was described, further analysis was
conducted.

Outcomes:Outcomes of interest included the detection rate and
accuracy of any physiological parameters (HR, respiratory rate
(RR), saturation level, and blood pressure). Where available,
further details regarding the acceptability, adverse events, and
limitations were included.

Exclusion criteria: Non-English studies, review articles, and
conference abstracts were excluded.

Search Strategy and Study Selection

An initial limited search was conducted to identify the appropriate
search terms and available synonyms. The initial search terms were
PPG and camera. The final search terms can be found in
supplementary material.

OVID (Medline, Embase), Web Of Science, Cochrane Library,
and clinicaltrials.org were systematically searched to include
abstracts, ongoing trials, and protocols.

The search was applied from database inception to February
2022. All abstracts were screened against the predetermined
inclusion and exclusion criteria. The relevant abstracts were then
reviewed to determine relevance. References of relevant articles
were screened for possible eligible studies. The final research
articles were then screened against the protocol by a second
reviewer (MK).

Data Extraction

Data extraction was completed by two independent researchers
(MB and MK) using a pre-determined data extraction tool on
Microsoft Excel (Microsoft corporations, 2018). Extracted param-
eters included number of participants, participant demographics,
vitals sign/s recorded, comparators, details of the technology used
and the findings of the study. The findings of the studies included
data on accuracy, failure rates, limitations and important clinical
considerations.

Quality Assessment

Quality assessment was conducted using the QUADAS-2 tool for
assessing the quality of diagnostic accuracy studies [6]. This was
completed independently by two researchers (MB and DC), and
discrepancies were resolved by discussion.

Data Analysis

Where the research topics were conceptually very broad and where
studies addressed noncomparable research questions and vital
signs, a narrative review was conducted. Studies describing results
using Bland–Altman analysis were included in a meta-analysis
using Stata MP17 software (Stata Statistical Software: Release 17.
College Station, TX: StataCorp LLC). Where studies did not report
Bland–Altman analysis, values of mean bias, and 95% limits of

agreement were derived from available data, where possible. Forest
plots for mean bias and 95% limits of agreement demonstrate the
results of the pooled analysis.

A p value of less than 0.1 was considered to be statistically
significant for heterogeneity between studies. I2< 40 was consid-
ered low heterogeneity, I2 > 40%–75% as intermediate hetero-
geneity, and I2> 75% as substantial heterogeneity.

Results

Out of the 894 of papers obtained in the initial search, 12 were
eligible for inclusion in the review (Fig. 1). These included a total of
654 patients. HR was the most investigated vital sign (n= 10)
followed by RR (n= 2), Sp02 (n= 2) and HR variability (n= 2)
(Table 1). Six studies measured a single physiological parameter
and the remainder measured more than one.

Seven studies measured vital signs within a ward setting; two of
these studies were conducted within an intensive care unit, and two
studies documented PPG intraoperatively [7,8].

Two studies assessed patients undergoing a particular pro-
cedure (cardioversion and hemodialysis) [9,10], and two studies
used the technology to aid in the diagnosis of a particular medical
condition (obstructive sleep apnea (OSA) and major depressive
disorder) [11,12].

Ten studies used a camera to detect skin PPG; one study used
retinal blood flow to detect HR, RR, and Sp02 [13]. One further
study measured PPG waveform differences of the brain before and
after surgery [8].

Quality Assessment

Following application of the QUADAS-2 tool for the quality
assessment of diagnostic accuracy studies, the majority of the
studies demonstrated an overall acceptable quality. The results are
displayed below (Fig. 2).

Heart Rate

HRwas the most studied physiological parameter, with a total of
ten studies measuring cPPG HR. Six compared cPPG signals to
ECG, three compared to pulse oximetry, one compared HR to
polysomnography (PSG) data, and one did not have a
comparator.

Trumpp et al. (2018) was the only study which attempted to
measure intra-operative HR [7]. The authors recorded 30 minutes
of intra-operative video feed of patients undergoing surgery to the
limb or torso. The authors did not report a comparator method or
accuracy of the data, however, reportedHRwas detectable from the
acquired data 96% of the time. Van Gastel et al. (2021) measured
HR and compared this to PSG data for individuals undergoing
assessment for OSA [11]. They used threemonochrome cameras to
capture the full width of the bed of the 8 people being assessed.
They demonstrated cPPG was able to detect HR within 2 beats per
minute, 92% of the time.

Tarassenko et al. (2014) measured cPPG signals from 46
patients undergoing hemodialysis [9]. They used a high-quality
5 M pixel camera positioned approximately 1 m away from the
patient. With post data acquisition processing, they used
algorithms to measure RR, HR, and Sp02. They demonstrated
the HR values obtained from cPPG were very similar to the
reference HR obtained from a pulse oximeter/ear lobe probe.
They represented their results in a graph showing a 10-minute
recording of the cPPG superimposed over the reference index
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finger pulse oximeter which appears to show very close
similarities between the two waveforms. The mean absolute
error (MAE) was approximately 3 beats per minute due a period
of stillness which is reflective of the MAE of a pulse oximeter.

Coppetti et al. (2018) aimed to assess the accuracy of multiple
smart phone applications which used contact and contactless PPG
methods [15]. They assessed the accuracy of two cPPG down-
loadable applications, “What’s My Heart Rate” (WMHR) and
“Cardiio.” These applications use the front camera of a smart
phone to obtain cPPG signals from the face of the user. They
compared the applications to pulse oximetry with ECG reference
values. The cPPG applications had an inferior performance when
compared to contact cPPG methods. Cardiio had an MAE of 8.11
andWMHRhad anMAE of 7.08; this was compared to theMAE of
the pulse oximeter which was 2.0. The contact methods performed
worse than pulse oximetry but were superior to the cPPGmethods.
Explanations as to why the contact and contactless applications
preformed differently could include camera quality, uncontrolled
lighting and increased noise.

Heart Rate and Atrial Fibrillation

Yan et al. (2018) and Couderc et al. (2015) focused their studies on
the detection of atrial fibrillation (AF) using cPPG methods
[10,17]. They compared the cPPG results to reference ECG data in
patients admitted to a cardiology unit.

Couderc et al. (2015) assessed cPPG in 11 AF patients who
underwent electrical cardioversion in a single center [10]. They
used a Red Green Blue (RGB) web camera placed 1 m above the
heads of patient’s whist they were still and supine. They recorded
the patient’s face as they underwent cardioversion and compared
this information to a reference ECG which was taken simulta-
neously. They found this technology was associated with a 20%
error rate but concluded that cPPG, despite itrs limitations, may be
a possible method of contactless cardiovascular monitoring.

Yan et al. (2018) studied the Cardiio Rhythm smart phone
application that was used in Coppetto et al.’s 2018 study. They used
this application to assess the rate of AF detection in 217 patients. An
iPhone 6s front camera was mounted on a holder approximately
30 cm away from a patient’s face. They recorded three consecutive

Figure 1. PRISMA flow diagram of the studies included.
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20 s recordings, and the data were sent to a secure cloud server
where the signal was analyzed for the likelihood of a regular or
irregular pulse. They found the Cardiio Rhythm application
produced an accuracy of 95.4% with a sensitivity of 94.7% (95%
confidence interval 87.1%–97.9%) and specificity of 95.8% (95%
confidence interval 91.1% –98.1%) for the detection of AF.

Heart Rate Meta-analysis

Out of the studies measuring HR cPPG, four provided results as
mean difference and were considered comparable; these were
included in a meta-analysis (Fig. 3). The studies included in the
meta-analysis compared cPPGHR toHR obtained from ECG data.
This included a total of 148 patients in various clinical settings
(Table 2.) The studies reported their results using mean difference
or represented this data as a Bland–Altman plot, and the relevant
data were extracted.

Rasche et al. (2016) compared cPPG HR to ECG data in 70
patients admitted to a cardiac intensive care unit following elective
cardiac surgery [14]. They recorded a mean time of 28 minutes per
patients but 5% of their data was discarded due to motion or
illumination artefacts. They demonstrated a HR detection of 92.6%

per patient and the cPPG data matched their reference (cHR ±
5 bpm) in 83% of the recordings. They demonstrated a mean
difference of -3.7 ± 16.1 bpm and measurement error was 87.3%.
Both measurement errors decreased as signal to noise (SNR) ratio
increased.

Hassan et al. (2018) attempted to measure vital signs including
HR, RR, and Sp02 using a retinal video feed which detected a PPG
waveform from retinal vessels [13]. The authors expressed
difficulty when comparing the HR data due to the inability to
capture the same time points for contact and retinal data. They
found amean difference of -10 with 95% limits of agreements being
-50–30 beats per minute. They found a similar PPG waveform
pattern between contact and camera Sp02 and a slightly variable
RR around a mean of 20 breaths per minute.

Yu et al. (2021) used cPPG to compare HR and HRV between
10 healthy patients and 10 geriatric patients (over 70 years old),
admitted to hospital [16]. They used three cameras placed at the
end of the patient’s bed at approximately 1.8 m from the subject
and compared their cPPG results to reference ECG data. They
recorded two sets of recordings: one before and one after a
physiotherapy session. They asked the patients to lie supine and
remain still for the recordings. The cPPG data provided the most

Table 1. Summary table of the twelve studies included in the systematic review

First Author
Participants

(n) Clinical setting Vital sign Camera type Reference test

Rasche et al.
2016 [14]

70 Post cardiac surgery
within cardiac ICU

HR x2 CMOS cameras ECG

Coppetti
et al. 2017
[15]

108 Adults requiring
monitoring on a chest
pain unit

HR iPhone 4/5 ECG and pulse oximetry

Tarassenko
et al. 2014 [9]

46 Patients undergoing
haemodialysis

HR
RR
RR
Sp02

5 MP Camera EQ-02 belt (RR), pulse oximetry (HR and
Sp02), oscillometric blood pressure
monitor

Trumpp et al.
2018 [7]

41 Intraoperative
monitoring of patients

HR x4 cameras N/A

Mamontov
et al. 2020 [8]

5 Patients undergoing
brain surgery

ACP and PAT CMOS camera Paired data before and after surgery

Van Gastel
2021 [11]

8 Patients with OSA HR, RR, Sp02
Desaturation events
Desaturation events

X3 Monochrome
Cameras

PSG

Unursaikhan
et al. 2021
[12]

53 26 patients with major
depressive disorder

HRV, HR,
parasympathetic
activation

Web camera ECG

Yu et al. 2021
[16]

20 10 geriatric patients 10
healthy controls

HR
HRV
HRV

x3 cameras ECG

Couderc et al.
2015 [10]

11 Patients with AF
undergoing DC
cardioversion

HR Web camera ECG

Yan et al.
2018 [17]

217 Patients admitted to
cardiology wards

HR iPhone 4S ECG

Rasche et al.
2019 [18]

70 Post cardiac surgery Optical pulse power
of cardiac ejection

CMOS camera ECG

Hassan et al.
2018 [13]

5 Retinal imaging HR, SP02, RR, and
blood vessel
diameter

Visuscount 100 fundus
camera on a slit lamp

Pulse oximetry

ACP, amplitude of the pulsatile component; AF, atrial fibrillation; CMOS, complimentary metal-oxide semiconductor; DC cardioversion, direct current cardioversion; EQ-02 belt, equivital sensor
belt; HR, heart rate; HRV, heart rate variability; MP, mega pixel; OSA, obstructive sleep apnea; PAT, pulse arrival time; PSG, polysomnography; RR, respiratory rate; Sp02, oxygen saturations.
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accurate HR values which, when compared to the reference ECG,
produced a mean difference of 0.00 bpm with 95% limits of
agreement of –1.22–1.29 bpm.

Unursaikhan et al. (2021) measured HR, HRV, and para-
sympathetic activation in a set of healthy volunteers and compared
these values to individuals with major depressive disorder (MDD)
[12]. The authors developed a remote, contactless screening

method for MDD during the COVID-19 pandemic. They recorded
several components of sympathetic and parasympathetic nervous
activity in participants before, during, and after a mental task,
using a webcam device located on a desktop computer. They used
inter-beat interval (IBI) and demonstrated a strong correlation
(r= 0.97, p< 0.0001) when compared to reference ECG data.

Oxygen Saturations and Respiratory Rate

Three studies measured RR and Sp02 using contactless cPPG
[9,11,13]. These studies compared the cPPG results to an EQ-02
belt, pulse oximetry, and PSG data. An EQ-02 belt is often strapped
to the thorax and includes a belt with an integrated sensor as a
contact method of assessing physiological parameters. PSG data
are the gold standard method of data during sleep studies, it uses
multiple measurements including brain waves, eye movement,
oxygen levels, HR, and RR. These parameters were measured in
patients undergoing hemodialysis and during assessment for OSA.

Tarassenko et al. (2014) measured Sp02 and RR in patients
undergoing haemodialysis using an EQ-02 belt and a pulse
oximeter compared to a 5-mega pixel camera placed 1 m away
from the patient [9]. This study does not report accuracy data, but
provides a statement to suggest the camera-based technique is
comparable to their reference range. Van Gastel et al. (2021) used
three monochrome cameras to obtain HR, RR, Sp02, and
desaturation events in 8 patients undergoing assessment for
OSA [11]. They demonstrated the ability to detect pulse and RR
within 2 beats and breaths perminute accuracy 92% and 91% of the
time, respectively. They were also able to estimate blood oxygen
values within 4 percentage points when compared to the finger
oximeter, 89% of the time. Hassan et al. (2018) measured cPPG,
RR, and Sp02 using a fundus camera to measure PPG signals from
the retina. They compared their data to pulse oximetry, but
accuracy data were not reported [13].

Other Physiological Parameters

Other physiological parameters measured using cPPG include
amplitude of the pulsatile component (ACP), pulse arrival time
(PAT), heart rate variability (HRV), parasympathetic activation
(MT), blood vessel diamete, and the optical pulse power of cardiac
ejection. These measurements were used in different clinical
contexts and patient groups.

Mamontov et al. (2020) aimed to measure brain blood flow
components and any differences noted before and after brain
surgery [8]. They measured ACP and PAT in the exposed cerebral
cortex before and after five patients underwent open brain surgery
for varying pathologies. The authors used a dark theater room and
a green light directed over the cerebrum to elicit the PPGwaveform
of the surrounding area of brain involved in the surgery. They
successfully visualized cerebral cortex blood flow in all patients and
in 98% of the open brains. They demonstrated changes in blood
flow characteristics as a response to surgery. The ACP decreased
within the area resected but increased in surrounding areas, but the
PPG waveform shape remained stable; the PAT was increased at
the area of resection but decreased in surrounding areas. The
authors conclude that contactless PPG could be a cheap and
effective way of measuring cerebral blood flow intraoperatively.

Unursaikhan et al. (2021) measured HRV and parasympathetic
activation for the assessment of MDD [12]. They calculated a
Pearson correlation between a single lead ECG and the contactless
PPG signal and demonstrated a strong relationship (r= 0.97).
Their web camera-based non-contact MDD screening tool had a

Study Risk of bias 

(QUADAS-2) 

Figure 2. Results using the QUADAS-2 tool for assessment of the quality of each of the
selected studies.
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sensitivity of 73% and specificity of 85% but also correlated with
the self-rating depression scale scores. The authors thereby
conclude contactless PPG can be useful in screening for not only
MDD but also high-risk patients.

Yu et al. (2021) attempted to measure HRV in a set of geriatric
patients using cPPG methods [16]. They were able to estimate
HRV in 50% of the data acquired, and these data demonstrated a
mean absolute error of 2.4 bpm. The criteria for calculating a
meaningful HRV included a data collection time of 2–5 minutes
and the heartbeat having originated form the sinoatrial node. This
meant exclusion of patients with AF. The data series lacked the
appropriate temporal quality.

Data Acquisition Methods

A wide variety of data acquisition methods were demonstrated
in this review. The most common method (n = 7) involved more
than one camera placed at varying distances from patients
(0.5–1.8 m), either above the patient or at the end of the bed
[7–9,11,16,18]. There was a wide range of camera resolutions
(420 x 320–2592 x 1944 pixels) and number of frames per
second (12–100). The number of cameras used ranged from one
to a maximum of three. Some studies used a built unit
containing the cameras and necessary lighting in attempt to
avoid disruption to the clinical setting [7,14]. These camera
units remained in place throughout the recording of a patient,
and the set up was unique for each study.

Alternative methods of data acquisition included web cameras
(n= 2), iPhones 4, 5, and 6S (n= 2) with the use of a downloadable
application (WMHR and Cardiio) [15]. One study used a fundus
camera attached to a slit lamp to record PPG from the retina [13].

Most studies used hospital lighting which included ambient
lighting and florescent lights within wards and theater environ-
ments (n= 9). The remaining studies used LED lighting to
supplement the luminosity of the environment and one study used
green light in a dark environment.

Limitations Encountered and Influencing Factors

Limitations were usually attributed to patient or environmental
factors. Quality of the camera appears to be a factor noticeably
responsible for the quality of cPPG signals in studies which
compared more than one camera type [15].

Movement artefact is a reason for data loss in almost all studies
included in this systematic review. Some studies captured patients
while they were sedated or deliberately asked patients to remain
still to reduce the effect of motion artefact on their data. An
alternative method of reducing motion artefact is the use of
prolonged periods of monitoring to capture episodes of stillness
which can be used for analysis. In the study conducted by Rasche
et al. 2016, 5.1% of video recording segments were discarded due to
movement and illumination artefact [14]. They also obtained a
17%measurement failure rate but were unable to isolate the causes
for these failures. Several other patient factors such as lower blood
pressures, use of medications, lower body temperatures, and
increasing HRs were found to moderately reduce the performance
of cPPG [14,15].

Couderc et al. (2015) recruited 11 out of the possible 21
participants available. Four participants were excluded due to the
nature of the technology [10]. One participant had a continuous
positive airway pressure mask in situ that reduced the performance
of cPPG. A participant was wearing make-up during the study, and
this obscured the blood volume changes and therefore the PPG
signal. Two participants were also excluded due to movement
artefact produced by restlessness and inadequate sedation.

Lower light intensity and uncontrolled ambient light source
have been attributed to poorer cPPG signal in several studies
[14,15]. When cPPG was completed in a theater environment,
patient movement, adjustments of the patient’s bed, and cares that
obscured the camera were described as difficulties to overcome.

Data on patient demographics such as age, race, and skin color
are demonstrated in Table 3. The majority of studies did not report
the skin color and ethnicity of the participants therefore drawing
conclusions regarding the use of cPPG in different ethnic groups
and those with different skin tones are limited.

Discussion

Contactless methods of vital signs monitoring have gained
academic interest and have demonstrated some promising results
in both laboratory and clinical settings. The aim of this review was
to determine where cPPG has been tested in a clinical setting and
what the findings of these studies were. This was achieved by using
a systematic review approach to screen the relevant research
articles to determine those where cPPG have been tested in a
clinical environment or to assess a particular clinical condition.

Figure 3. Random effects model forest plot demonstrating the combined heart rate mean difference and 95% confidence intervals, when compared to contact methods of heart
rate detection. Overall mean bias is -0.13 (95% CI, -1.22 - 0.96), demonstrated no difference between contact and contactless methods of heart rate monitoring.
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The review demonstrates several challenges which need to be
overcome before consideration of its implementation in clinical
practice. One of the main limitations includes the lack of robust
research in the form of randomized controlled trials or studies with
large populations. Given the majority of the studies are laboratory-
based and in healthy volunteers, the current stage of research is
focused on assessing the accuracy of cPPG and the adjustments of
algorithms in an attempt to provide cPPG results close to the
reference values. There is a wide spread of patient populations,
methodologies, and conditions studied in the 12 studies included
in this systematic review. Although difficult to compare, this
review has achieved the aim of demonstrating the clinical contexts
where cPPG has been assessed. It also reflects the broad possible
application of cPPG and how a relatively cheap and accessible
technology can be used in multiple clinical settings for the
assessment of several medical conditions.

HR appears to be the most commonly and robustly researched
vital sign in all contexts of PPG application. HR has produced the
majority of high-quality research, especially in the context of
contact methods. There have been several experimental studies and
randomized controlled trials measuring HR and cardiac arrhyth-
mias in large populations using other methods of PPG [19,20]. The
advantage of contactless HR monitoring in the clinical context
includes scenarios where covert observations may be beneficial; for
example, in individuals with delirium, dementia, and pediatric
populations or where remote monitoring is required, such as
remote consultations. As demonstrated by this meta-analysis,
cPPG appears to produce relatively accurate results but lacks the
quality of evidence when compared to its contact counterparts.
This review also demonstrates the variable methods of HR
extraction, and the literature demonstrates a move from large
bulky cameras to smart phone cameras. With rapidly developing
smart phone technology, including the quality of the embedded
cameras, there are now several applications available (What’s my
HR, Cardiio, FaceBEAT, facereader), which claim to accurately
measure HR, but are not yet validated [21,22]. Currently, there are
a number of downloadable applications which use index finger
PPG data for HR andHRVmeasurements and these appear to have
been more robustly assessed in clinical settings [23,24]. This
demonstrates promising results for the improved accessibility and
costs of remote HR monitoring.

There has been extensive research demonstrating autonomic
dysfunction and its relationship with outcomes in several groups of
patients [25,26]. There is a strong correlation between autonomic
dysfunction and the risks of complications including cardiorespi-
ratory compromise, which represent over one-third of post-
operative complications [27]. HRV as a bedside measurement of

autonomic function can be a relatively noninvasive and cheap
method of further assessing patients. The European Society of
Cardiology and the North American Society of Pacing and
Electrophysiology suggest an ECG measurement of around 24
hours to accurately assess the intervals between adjacent QRS
complexes [28]. More recent studies have indicated that five-
minute recordings produce comparable results [29]. The cPPG
method of recording HRV using 5-minute recordings with a smart
phone has been explored and demonstrated promising results,
when compared to reference ECG data [30]. This supports the use
of cPPG from smart devices to calculate HRV in a quick, cheap,
and non-invasive manner. A limited number of studies have used
this cPPG method of measuring HRV in clinical practice.

Other physiological measurements such as Sp02 have been
thoroughly assessed in the controlled settings, and there is a large
amount of data available on contact methods formeasuring oxygen
levels. Here we have only demonstrated two studies that explore
the potential of cPPG to measure Sp02 in a clinical context [31].
This is similar for the measurement of blood pressure, where cPPG
algorithms have been developed in a laboratory setting but have
not yet been tested in a clinical environment [32,33]. Other
measurements such as hemoglobin levels [34] and blood glucose
levels [35] have been explored in contact PPG methods but not yet
evidenced for cPPG methods.

This review was limited to the adult population; however,
cPPG has been a topic of interest in the pediatric population
owing to the less invasive nature of contactless vital signs
monitoring. The value of cPPG has been demonstrated in
neonates, particularly pre-term neonates, where contact
methods of monitoring can cause distress and skin injury
[36]. cPPG has shown promising results in neonates within the
neonatal intensive care unit (NICU) [37].

Limitations

Meta-analyses were conducted where results were deemed
comparable. Some studies reported alternative statistical methods
or lacked the appropriate details, excluding them form any possible
pooled assessment. Out of the ten studies whichmeasured HRwith
an appropriate comparator, only four were deemed comparable.
This highlights the lack of standardization of reporting for these
particular research articles. There was also a wide range of data
acquisition methods which cannot be accounted for in the meta-
analysis.

Suggestions for Future Research

Given the above limitations, a future direction for cPPG research
should include randomized controlled trials or cohort studies with
large populations. Further research validating other vital signs
(bloods pressure, HRV) in clinical settings should be explored. The
development of a protocol for standardizing the reporting of
studies can ensure interstudy comparability.

Conclusion

In this study, we summarized where cPPG has been assessed in
real-life clinical settings. Although there is a large body of research
on cPPG in the laboratory setting, there remains minimal high-
quality studies in the clinical setting. HR remains the most robustly
studied vital sign with promise for use in the clinical setting.

Table 2. Information about the setting, technology, and patients within each
study included in the meta-analysis

Author
Patients

(n)
Clinical
Setting Technology

Rasche et al. 2016 [14] 70 Cardiac ICU Camera

Hassan et al. 2018 [13] 5 Retinal
screening

Fundus
camera

Yu et al. 2021 [16] 20 Geriatric
patients

Camera

Unursaikhan et al. 2021
[12]

53 MDD
screening

Web camera

MDD, major depressive disorder.
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