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Abstract

In the reconciliation k-median problem we ask to

cluster a set of data points by picking k cluster

centers so as to minimize the sum of distances of

the data points to their cluster centers plus the sum

of pairwise distances between the centers. The

problem, which is a variant of classic k-median,

aims to find a set of cluster centers that are not

too far from each other, and it has applications,

for example, when selecting a committee to de-

liberate on a controversial topic. This problem

was introduced recently (Ordozgoiti and Gionis,

2019), and it was shown that a local-search-based

algorithm is always within a factor O(k) of an

optimum solution and performs well in practice.

In this paper, we demonstrate a close connection

of reconciliation k-median to a variant of the k-

facility location problem, in which each potential

cluster center has an individual opening cost and

we aim at minimizing the sum of client-center

distances and the opening costs. This connection

enables us to provide a new algorithm for recon-

ciliation k-median that yields a constant-factor

approximation (independent of k). We also pro-

vide a sparsification scheme that reduces the num-

ber of potential cluster centers to O(k) in order to

substantially speed up approximation algorithms.

We empirically compare our new algorithms with

the previous local-search approach, showing im-

proved performance and stability. In addition,

we show how our sparsification approach helps

to reduce computation time without significantly
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compromising the solution quality.

1 INTRODUCTION

In many applications of data clustering, we are interested

not only in partitioning the data into groups that contain

similar points, but also to select centers that represent clus-

ters in a meaningful way. The task of clustering a dataset

while selecting cluster representatives can be achieved with

formulations like k-median (Charikar et al., 2002; Jain and

Vazirani, 2001) or k-facility location (Jain and Vazirani,

2001). Oftentimes, selecting the median of a cluster as the

cluster center is not good enough for the application at hand,

and it is desirable to consider additional criteria, such as,

selecting cluster centers that have low cost or high qual-

ity, assuming that information to quantify these criteria is

provided.

One such criterion for selecting cluster centers was recently

introduced in the context of reconciliation k-median (Ordoz-

goiti and Gionis, 2019), where the goal is to find a clustering

solution so that the data points are faithfully represented by

the selected centers (or medians), while at the same time,

the selected centers are not too far apart from each other.

The reconciliation k-median problem is motivated by appli-

cations where it is desirable for the selected centers to form

a non-polarized set of representatives. A concrete applica-

tion scenario is exemplified by the task of selecting a set of

k articles to summarize a large collection of news articles

related to a controversial topic, and we want to minimize

disagreement among the selected articles (say, for encour-

aging constructive deliberation), while ensuring a faithful

representation of the news-articles collection.

More concretely, in the reconciliation k-median problem,

we consider a set of clients C, a set of facilities F (not nec-

essarily disjoint from C), a metric distance d : (C ∪ F )2 →
R≥0, a positive integer k, and a hyper-parameter λ ≥ 0. The

goal is to select a subset S of k facilities in F , so as to min-
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imize the objective
∑

j∈C d(j, S) + λ
∑

i,i′∈S,i<i′ d(i, i
′),

where d(j, S) = mini∈S d(j, i). The first term models the

cost of representing the clients in C by the set of selected

facilities S.1 We refer to this term as representation cost

or service cost. The second term models the disagreement

cost among the selected facilities in S. Notice that these

two terms are conflicting in the optimization problem, and

thus, the hyper-parameter λ is used to achieve a desirable

trade-off.

In addition to introducing the reconciliation k-median prob-

lem and demonstrating interesting use cases, Ordozgoiti

and Gionis (2019) analyzed the local-search algorithm pro-

posed by Arya et al. (2004) for the k-median problem. It

was shown that the local-search algorithm provides an O(k)
approximation guarantee, if C = F , while it provides a

constant-factor approximation if, in addition, the clusters

in the obtained solution have size Θ(λk). These results are

not optimal, and improving the approximation guarantee

was left open. Furthermore, while local search is a simple

method to implement, it has quadratic complexity in each

iteration, and thus, its practical applicability is limited.

Our Contributions. First, we obtain a constant-factor ap-

proximation for the reconciliation k-median problem in the

general case, that is, our approximation factor is indepen-

dent of k. Our analysis does not make any assumption on

the sets of client and facilities, nor on the size of the output

clusters. In particular, as we demonstrate in the Appendix,

eliminating the condition F = C may lead to the local

search having unbounded approximation ratio.

Second, we show a close connection between reconciliation

k-median and a variant of the previously studied k-facility

location problem (Jain and Vazirani, 2001). Indeed, our

algorithm relies on solving |F | many instances of k-facility

location and returning the solution that is best in terms

of the reconciliation objective. Thus, the constant-factor

approximation guarantee comes at the cost of increased run

time complexity.

Third, we propose a sparsification scheme to address the

increased complexity of the proposed method. Our sparsifi-

cation method allows us to reduce the number of potential

cluster centers to O(k), thus, providing significant speedup

in scenarios where k is significantly smaller than |F |. For

example, k is often considered to be a small constant. Our

sparsification scheme is of independent value and it can be

used in conjunction with other methods, for instance, to

speed up the local-search algorithm.

Our Techniques. The main technical challenge in tackling

reconciliation k-median (in comparison to classic k-median

problems) lies in bounding the disagreement cost. The

difficulty is that the contribution of a facility to the total

disagreement is dependent of the choice of the other facil-

1We interchangeably refer to cluster representatives as centers,
medians, or facilities.

ities. Our key idea is to identify an anchor facility i∗ that

can be thought of as a representative of the facilities in an

(unknown) optimum solution. This allows us to estimate

the contribution of any facility i to the total disagreement as

being proportional to the distance d(i, i∗) and hence making

it independent of the choice of the other facilities. More

specifically, we interpret this quantity as an individual open-

ing cost and we aim at minimizing the sum of client-center

distances and the opening costs thereby relating it to a vari-

ant of the k-facility location problem. Since the anchor i∗

is not known upfront we have to create |F | many candidate

instances of k-facility location.

Our sparsification scheme relies on the idea of adaptive

sampling (Arthur and Vassilvitskii, 2007) where clients are

sampled sequentially with probability proportional to their

distance to the previously sampled clients. Unfortunately,

there are instances where vanilla adaptive sampling creates

solutions of unbounded cost. This is due to the fact that the

sampling process is biased towards distant clients thereby

inherently tending to high disagreement cost. We observe

that, interestingly enough, the ball of k facilities centered

around the anchor i∗ is good enough to serve the distant

clients in configurations where these clients significantly

contribute to the service cost. This insight allows us to

create |F | many sparsified candidate sets of size O(k) by

augmenting an adaptively sampled set of facilities with balls

of size k. We show that one of these candidate sets contains

a constant-factor approximate solution.

Our experimental evaluation shows the improved perfor-

mance of the proposed methods, as well as the computa-

tional benefits of the sparsification approach.

Related Work. The k-median problem and its variants

have been studied extensively both in theoretical computer

science (Arya et al., 2004; Byrka et al., 2018; Charikar

et al., 2002) and machine-learning literature (Ben-David,

2007). The k-median problem is NP-hard (Garey and John-

son, 1979), and thus, many approximation algorithms and

heuristics have been proposed. The first constant-factor

approximation algorithm was obtained by Charikar et al.

(2002), followed by a series of improvements relying on

local search (Arya et al., 2004), LP rounding (Charikar and

Li, 2012), or primal-dual methods (Byrka et al., 2018; Jain

and Vazirani, 2001; Li and Svensson, 2016). Several vari-

ants of the problem have also been studied, for example,

capacitated k-median (Demirci and Li, 2016), k-median

with outliers (Chen, 2008), k-median with fairness con-

straints (Chierichetti et al., 2017), and connected facility

location (Eisenbrand et al., 2008; Han et al., 2021). The

problem we consider in this paper is similar in some ways

to the connected facility location setting in the sense that

in both, the objective is to minimize the connection cost of

the clients plus the cost of certain structure on the selected

facilities (a Steiner tree and a clique in the case of connected

facility location and reconciliation k-median, respectively.)
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The reconciliation k-median problem, which is the focus of

this paper, was proposed recently by Ordozgoiti and Gionis

(2019), motivated by scenarios for reducing polarization

for cluster representatives. They proposed a local-search

algorithm, inspired by the work of Arya et al. (2004), which

gives a O(k) approximation guarantee, in a special case,

and constant-factor approximation under a mild condition

on the cluster sizes. In this paper, we significantly improve

on the result of Ordozgoiti and Gionis (2019), by providing

a constant-factor approximation in the general case.

The technique of adaptive sampling has been introduced by

Arthur and Vassilvitskii (2007) as an initialization procedure

for k-means clustering, which has a provable quality of

solution in expectation but is still remarkably simple and fast.

Since then the method has proved useful in many aspects

of clustering such as bi-criteria algorithms (Aggarwal et al.,

2009), streaming algorithms (Ailon et al., 2009; Feldman

et al., 2007), and core sets (Feldman et al., 2007; Langberg

and Schulman, 2010).

2 CONSTANT-FACTOR

APPROXIMATION

In this section we present the constant-factor approximation

algorithm for the reconciliation k-median problem. The al-

gorithm relies on a reduction to the exact k-facility location

problem, a variant of k-facility location (Charikar and Li,

2012; Jain and Vazirani, 2001; Zhang, 2007).

Preliminaries and Problem Definitions

Definition 2.1. An instance of the RECONCILIATION k-

MEDIAN problem is specified by a tuple (C,F, k, d, λ),
where C and F are (possibly overlapping) finite sets, k is

a positive integer, d : (C ∪ F )2 → R≥0 is a metric, and

λ ≥ 0 is a parameter. The goal is to find a k-subset S of F
minimizing the objective value

costRC(S) :=
∑

j∈C

d(j, S) +
λ

2
·
∑

i,i′∈S

d(i, i′) .

We denote by ORC an optimal k-subset of facilities and its

objective value by OPTRC.

Definition 2.2. An instance of EXACT k-FACILITY LOCA-

TION is specified by a tuple (C,F, k, d, f), where C,F are

finite sets, k is a positive integer, d : (C ∪ F )2 → R≥0 is

a metric, and fi is an opening cost for every facility i ∈ F .

The goal is to find a k-subset S of F minimizing the ob-

jective value costk-FL(S) :=
∑

j∈C d(j, S) +
∑

i∈S fi. We

denote by Ok-FL an optimal k-subset of facilities and its

objective value by OPTk-FL.

We remark that the above definition of EXACT k-FACILITY

LOCATION is slightly different from the standard definition

of k-FACILITY LOCATION used in the literature (Charikar

and Li, 2012; Jain and Vazirani, 2001; Zhang, 2007). In

the standard version we only require for a feasible solution

to have at most, rather than exactly, k facilities. To the

best of our knowledge the exact version of k-FL has not

been considered in the literature. In the end of this section,

we describe how two known approximation algorithms for

standard k-FL can be modified for the exact version. Specif-

ically, we show that there is an approximation algorithm

with ratio α = 3.25+ ǫ for EXACT k-FACILITY LOCATION

for any constant ǫ > 0. To avoid cumbersome terminology

we use the terms k-FACILITY LOCATION or k-FL to refer

to the exact version of the problem.

Reduction. Our approximation algorithm for REC k-

MEDIAN is essentially a Turing-type reduction to k-FL

that produces |F | many instances of k-FL, applies any

β-approximation algorithm for k-FL with running time,

say, t to each of these instances, and outputs the solu-

tion with the smallest REC k-MEDIAN objective. More

specifically, given an instance (C,F, k, d, λ) for REC k-

MEDIAN, we create for every facility m ∈ F an instance

Rm = (C,F, k, d, fm) of k-FL where we set the opening

cost to fmi = (k − 1)λd(i,m) for every i ∈ F . We com-

pute an β-approximate solution Sm to each k-FL instance

Rm, for m ∈ F , under the k-FL objective. Finally, we

output the best of the solutions Sm, for m ∈ F , under the

REC k-MEDIAN objective. By analyzing the approximation

performance of this reduction in the rest of this section, we

prove the following result.

Theorem 2.3. Any β-approximation algorithm for EX-

ACT k-FACILITY LOCATION with running time t can be

turned into an 2β-approximation algorithm for REC k-

MEDIAN with running time O(|F |t). In particular, there

is an approximation algorithm for REC k-MEDIAN with

approximation ratio 2α = 6.5 + ǫ with running time

Õ
(

k3|F |(|F |2 + |C|2)/ǫ2
)

, for any constant ǫ > 0.

Analysis. To analyze the approximation performance of the

above reduction, let ORC be an optimal solution for the REC

k-MEDIAN instance and let the anchor i∗ be the 1-median

of the set ORC. That is, i∗ = argmini∈ORC

∑

i′∈ORC
d(i, i′)

minimizes the sum of distances to the other facilities in ORC.

Consider the iteration of the algorithm where m = i∗. We

argue below that in this iteration we get an 2β-approximate

solution Sm, which finishes the argument since we output

the best solution under the REC k-MEDIAN objective.

In this particular iteration we set the opening cost to fi :=
λ(k − 1)d(i, i∗), for each i ∈ F . Let Ok-FL denote an

optimal solution for this instance of cost OPTk-FL.

The following lemma bounds the cost of the algorithm

against the cost of an optimal solution to the k-FL instance.

Lemma 2.4. The cost costRC(Si∗) of the solution Si∗ is at

most β OPTk-FL.
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Proof. We have

costRC(Si∗) =
∑

j∈C

d(j, Si∗) +
1

2
λ
∑

i,i′∈Si∗

d(i, i′)

≤
∑

j∈C

d(j, Si∗) +
1

2
λ
∑

i,i′∈Si∗

(d(i, i∗) + d(i′, i∗))

=
∑

j∈C

d(j, Si∗) + λ(k − 1)
∑

i∈Si∗

d(i, i∗)

= costk-FL(Si∗) ≤ β OPTk-FL.

We complete the proof by bounding the cost of the optimal

k-facility location in that problem instance.

Lemma 2.5. Let OPTk-FL be cost of the optimal k-facility

location that corresponds to the instance Ri∗ , and let

OPTRC be the cost of the optimal reconciliation k-median.

It is OPTk-FL ≤ 2OPTRC.

Proof. For each i ∈ ORC let Ci =
∑

i′∈ORC\{i}
d(i, i′) de-

note the connection cost of i to all other facilities in ORC.

We have

OPTk-FL ≤ costk-FL(ORC)

=
∑

j∈C

d(j, ORC) + λ(k − 1)
∑

i∈ORC

d(i, i∗)

≤ 2
∑

j∈C

d(j, ORC) + λkCi∗

(*)

≤ 2
∑

j∈C

d(j, ORC) + λ
∑

i∈ORC

Ci

≤ 2
∑

j∈C

d(j, ORC) + λ
∑

i,i′∈ORC

d(i, i′)

= 2OPTRC,

where inequality (*) holds due to the fact that the anchor i∗

is the 1-median of the facilities in ORC.

Approximating Exact k-Facility Location. It remains to

provide a constant-factor approximation for EXACT k-FL.

Note that in the standard variant of k-FL there are input in-

stances where each optimum solution opens strictly less than

k facilities, for example, if the opening costs of the facili-

ties is sufficiently high as compared to the connection cost.

Hence, it is not obvious a priori how known algorithms for

the standard version can be leveraged for the exact version.

This is in contrast to the classic k-median problem where

without loss of generality exactly k facilities are opened by

some optimal solution. In the appendix, we demonstrate,

however, that two known algorithms for standard k-FL can

be modified to give the same ratio also the exact version.

The first algorithm has an approximation ratio α = 3.25+ ǫ
and is based on rounding a linear programming relaxation

for standard k-FL (Charikar and Li, 2012). In the appendix,

we show how to change the LP relaxation so that precisely

k fractional facilities are opened. We then combine the algo-

rithm by Charikar and Li (2012) with a dependent rounding

scheme by Gandhi et al. (2006) to ensure that also in the

resulting integral solution precisely k facilities are opened.

The second algorithm for k-FL is based on local search

by Zhang (2007). It uses three local neighborhood opera-

tions: one is based on swapping facilities preserving the

number of opened facilities and the others are based on

opening or closing facilities thereby changing the number of

facilities. We show that using only the swapping operation

(thereby keeping the number of opened facilities exactly k)

gives an approximation algorithm for EXACT k-FL.

Theorem 2.6. There is an approximation algorithm for EX-

ACT k-FACILITY LOCATION based on LP-rounding, which

has an approximation ratio of α = 3.25+ǫ for any constant

ǫ > 0 and running time Õ
(

k3(|F |2 + |C|2)/ǫ2
)

. Moreover,

there is an local-search based approximation algorithm for

EXACT k-FACILITY LOCATION that has an approximation

ratio of 7 + ǫ for any constant ǫ > 0 and running time

Õ
(

|F |5|C|/ǫ
)

.

3 SPEEDUP VIA SPARSIFICATION

In this section, we show how sparsification of the input

instance can speed up a class of approximation algorithms

for REC k-MEDIAN. Our scheme is based on the adaptive

sampling approach of Arthur and Vassilvitskii (2007). Our

main result is that we can efficiently compute a set S ⊆ F
of size O(k) with the guarantee that S contains a constant-

factor approximation to REC k-MEDIAN. Assume we are

given an arbitrary β-approximation algorithm for REC k-

MEDIAN, ALGRC. Our algorithm (see Algorithm 1) has two

phases. In the first phase (lines 1 to 8), it runs an adaptive

sampling procedure to select O(k) facilities from F . In the

second phase (line 9 to 13), it enumerates all the facilities

i ∈ F , augments the sampled set of the first phase with

a ball of k facilities centered at i, and then proceeds to

run ALGRC on the set of clients C and the sparsified set of

facilities F .

Throughout our algorithm and analysis, we make use of

parameters α, γ, ∆, µ, and ρ, all of which are constant real

values. With some hindsight, we set them as follows: ∆ =
10, α = 3, γ = 6∆+ 2 = 62, ρ = 1− 1/(γ − 1) ≈ 0.984,

and µ = 6. For the sake of readability, we will use the

parameters in our manuscript instead of their values. As in

the previous works, there is nothing special about the choice

of these constants. Specifically, As long as ∆ ≥ 2 + ε and

γ ≥ 1 + ε for a small ε, the proofs go through. However,

there exists a trade-off; while larger values of ∆ and γ
mean larger approximation factor, lower values for these

parameters dictate a larger number of points to be sampled.

One peculiar aspect of our algorithm is that we perform
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Algorithm 1: The Sparsifying Approximation Algo-

rithm

input Set of Clients C, set of facilities F , and parameter k.

output F ′ ⊆ F with |F | = k such that

costRC(F ) ≤ max{12∆ + 5, 2γ + 1} · OPTRC with

constant probability.

1: Initialize S0 := ∅;

2: Initialize T0 := ∅;

3: for t := 1 to µk do

4: Sample j ∈ C with probability ∝ d(j, Tt−1)
5: Tt := Tt−1 ∪ {j}
6: s := closest center in F to j
7: St := St−1 ∪ {s}
8: end for

9: for i ∈ F do

10: A := {k − 1 facilities from F closest to i}
11: S := Sµk ∪ {i} ∪A
12: F ′ := ALGRC(C, S, k)
13: end for

14: return the solution F ′ of minimum cost

the distance sampling on the set of clients (Line 1), and

then include the facility closest to the sampled client to our

output set S. The main theorem of this section can be stated

as follows (Due to space constraints, we defer all of the

proofs of this section to the Appendix):

Theorem 3.1. Any β-approximation algorithm for REC

k-MEDIAN with running time t(|F |, |C|) can be turned

via the above sparsification scheme into an O(β)-
approximation algorithm for REC k-MEDIAN with running

time O(|F |t(k, |C|)).

This theorem implies the following corollaries.

Corollary 3.2. Any γ-approximation algorithm for EXACT

k-FACILITY LOCATION with running time t′(|F |, |C|) can

be turned into an O(γ)-approximation algorithm for REC

k-MEDIAN with running time O(|F |t′(k, |C|)) thereby im-

proving the running times given in Theorem 2.3.

Corollary 3.3. There is an LP-based O(1)-approximation

algorithm for REC k-MEDIAN with running time

Õ
(

k3|F |(k2 + |C|2)/ǫ2
)

for any constant ǫ > 0 and a

local-search-basedO(1)-approximation algorithm with run-

ning time O
(

k5|F ||C|/ε
)

.

In order to show this theorem, we use the reduction to k-

FL we presented in Section 2. Assume that we guess the

anchor i∗, the actual 1-MEDIAN of the optimum set ORC of

facilities for REC k-MEDIAN in the for loop of the second

phase. Using this guess, we can then define an instance of

k-FL as explained in Section 2. We then prove the set of

facilities S that we sample and input into ALGRC contains

a feasible constant-factor solution to the k-FL instance.1

1Indeed, we show that S contains a set S′ with |S′| ≤ k. In

Consequently, we are also able to find a good approximation

for REC k-MEDIAN.

Lemma 3.4. Assuming that i = i∗ in line 1 of Algorithm

1, with a constant probability, it samples a set of facilities

S ⊆ F (in line 1) of size µk such that there exists S′ ⊆ S
with |S′| = k and costk-FL(S

′) ≤ max{12∆+ 5, 2γ +1} ·
OPTk-FL.

Proof of Theorem 3.1 follows from Lemma 3.4 in a straight-

forward manner.

To prove Lemma 3.4, we follow on a high level the strategy

of Aggarwal et al. (2009), in which the authors tackled

k-MEANS in a Euclidean metric.2 We should note that

the introduction of the disagreement cost in the objective

function makes the analysis more involved and technical.

To tackle the new technicalities, we introduce a couple of

new ideas, which we will highlight shortly.

We fix some iteration t ≥ 1 of the first phase of the algo-

rithm. We consider the clustering C = {C1, . . . , Ck} of

the clients into clusters Ci induced by an optimal set Ok-FL

of k facilities. We classify the cluster as follows. The set

of Good clusters that have a relatively low connection cost

with respect to the set of facilities sampled so far (or with

respect to the anchor), and the rest that we call Bad.







Goodt :=
{

Cℓ ∈ C :
∑

j∈Cℓ
d(j, Tt−1 ∪ {i∗})

≤ ∆ ·∑j∈Cℓ
d(j, Ok-FL)

}

Badt := C \Goodt

The general framework is as follows: we first identify a sub-

set of every cluster of clients Cℓ that we call core(Cℓ), with

the property that if a point from this core is sampled, then

the total connection cost of Cℓ would drop below a constant

factor of what it would incur in the optimum solution (see

Definition 3.7). We then show that as long as the connection

cost induced by the facility subset Tt−1 sampled so far is

larger than a constant factor times OPTk-FL, we sample a

point from the core of a Bad cluster in each iteration with

constant probability. This in turn is enough to show that in

O(k) iterations, all Bad clusters are turned into Good.

Compared to the work of Aggarwal et al. (2009), two tech-

nical challenges need to be addressed:

1. Disagreement cost. In center-based clustering problems

such as k-MEDIAN or k-MEANS, it is sufficient to argue

that the connection cost of the sampled solution is within a

constant factor of optimal with constant probability. The key

challenge in Lemma 3 is to upper bound the disagreement

cost. By a more careful argument we prove the existence of

order to turn S′ into a feasible solution for the EXACT k-FACILITY

LOCATION, we may need to add some more facilities to it. This is
done in Lemma 3.14.

2By losing a constant factor in approximation factor, we show
how similar results can be applied to our k-FL instance while
using only the metric property.
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a k-subset of facilities that has simultaneously low connec-

tion and low disagreement cost. Here, we crucially exploit

that the ball A centered at the anchor i∗ is suitable to serve

remote clients at low enough connection cost while simulta-

neously keeping the disagreement minimal.

2. Far core points. For the framework of Aggarwal et al.

(2009), it is enough to show that, conditioned on sampling

from a Bad cluster, we pick something in the core of the

cluster. We need to expand this argument and show that

what we pick is a client j from a core, but at the same

time that j is not too far from the anchor i∗ to keep the

disagreement low.

To tackle the first challenge, we show in Lemma 3.5 how to

(existentially) select at most k facilities from the sampled set

such that the total reconciliation (connection plus disagree-

ment) cost remains within a constant factor of OPTk-FL, if

at an iteration t of the sampling we have a relatively low

connection cost. To address the second issue, for every clus-

ter of clients Cℓ induced by the optimal solution, we split

core(Cℓ) into two parts, near core(Cℓ) and far core(Cℓ),
with the property that every point in the near core(Cℓ) has

a low disagreement cost. We further prove that, conditioned

on sampling from a Bad cluster Cℓ, we pick a facility from

near core(Cℓ) with constant probability (see Corollary 3.11

and Lemma 3.12).

3.1 Sparsification via Adaptive Sampling

The first observation about our sampling procedure ad-

dresses the disagreement cost issue mentioned above.

Lemma 3.5. If
∑

j∈C d(j, Tt) ≤ 2∆ ·∑j∈C d(j, Ok-FL)
at any round t ∈ [µk] of the algorithm, then there exists a

set S′ ⊆ St ∪ {i∗} with |S′| ≤ k such that costRC(S
′) ≤

(12∆ + 5)
∑

j∈C d(j, Ok-FL) + 2λk
∑

i∈Ok-FL
d(i, i∗).

In the remainder of this section, we can assume that
∑

j∈C d(j, Tt) > 2∆ ·∑j∈C d(j, Ok-FL). We show that

in this case, Algorithm 1 chooses a client from a Bad cluster

in each iteration with constant probability.

Lemma 3.6. If the connection cost to the sampled clients

in Tt is large for an iteration t, namely if
∑

j∈C d(j, Tt) >
2∆ ·∑j∈C d(j, Ok-FL), then we sample a client from a Bad

cluster in Line 1 of Algorithm 1 with probability at least 1
2 .

Hereinafter, we condition on the event that a client from a

Bad cluster Cℓ is sampled. First, let us precisely define the

concept of core.

Definition 3.7. For a cluster of clients Cℓ centered around

a facility iℓ ∈ Ok-FL and a positive real α < ∆ − 1, the

core is defined as core(Cℓ) := {j ∈ Cℓ : d(j, iℓ) ≤ α · rℓ},

where rℓ is the average connection cost of the clients of Cℓ

in the optimal solution, namely rℓ :=
∑

j∈Cℓ
d(j,iℓ)

|Cℓ|
.

We observe that if, in an iteration t, first a client from

core(Cℓ) is chosen for Cℓ ∈ Badt and next the closest

facility to this client, say i′ℓ, is added to St, then we get:

Observation 1.
∑

j∈Cℓ
d(j, i′ℓ) ≤ (2α +

1)
∑

j∈Cℓ
d(j, iℓ).

In other words, sampling from core of Cℓ will turn it from

Bad to Good. We also will make use of the following obser-

vation for a Bad cluster Cℓ during iteration t:

Observation 2. Let δℓ,t := d(iℓ, y), where y :=
argminj∈Tt−1

{d(iℓ, j)} is the closest sampled client to iℓ
before iteration t. Then, δℓ,t ≥ (∆− 1)rℓ.

The next two lemmas show that, in any iteration t of the

sampling algorithm, a good fraction of the connection cost

of every Bad cluster Cℓ (with respect to Tt) comes from

core(Cℓ). Therefore, with a constant probability, we sam-

ple a client from the core of a Bad cluster, conditioned on

sampling from Bad. First, we show that the size of the core

is considerably large.

Lemma 3.8. For all Cℓ ∈ C, |core(Cℓ)| ≥
(

1− 1
α

)

|Cℓ| .
Lemma 3.9.

P [sample j ∈ core(Cℓ) | j ∈ Cℓ and Cℓ ∈ Badt]
≥ (1− 1

α)(1− α+1
∆ ).

At this point, we guarantee that as long as we are sampling

clients from Bad clusters, we hit their core with a constant

probability. Here is when we face the second issue, which

is how to also guarantee that the clients we hit from the core

are not too far from the anchor i∗. We need this property

to keep the disagreement cost within constant factor of that

of the optimum solution. To tackle this, we introduce the

notions of far and near core.

Definition 3.10. For a cluster Cℓ of clients, we define

far core(Cℓ) := {j ∈ core(Cℓ) : d(j, i∗) > γ · d(iℓ, i∗)},

where iℓ is the optimum facility for the cluster Cℓ. We also

define near core(Cℓ) := core(Cℓ) \ far core(Cℓ).

Next, we observe that for a cluster Cℓ ∈ Badt where the

near core is large enough, we hit this core with constant

probability. It is straightforward to see this statement as a

corollary of Lemma 3.9:

Corollary 3.11. For a cluster of clients Cℓ ∈ Badt,

if |near core(Cℓ)| ≥ ρ · |core(Cℓ)|, then

P [j ∈ core(Cℓ) | j ∈ Cℓ and Cℓ ∈ Badt]
≥ ρ ·

(

1− 1
α

) (

1− α+1
∆

)

.

Note that if we sample a client from the near core in Tt,
we then proceed to pick the closest facility to this client

and add it to St. Let i′ denote this facility. We show that

the disagreement cost incurred by this facility is within a

constant factor of the disagreement cost of iℓ, the optimum

facility for Cℓ.

Observation 3. d(i′, i∗) ≤ (2γ + 1) · d(iℓ, i∗).

So, it remains to argue for the case where |far core(Cℓ)| ≥
(1 − ρ) · |core(Cℓ)| for a cluster Cℓ. In such a scenario,
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we prove that Cℓ ∈ Goodt by showing that the anchor i∗

already lies within the radius of the near core of Cℓ. This

implies that if we redirect all the clients in Cℓ to i∗, we

incur a connection cost of at most α ·∑j∈Cℓ
d(j, iℓ) and a

disagreement cost of 0 = d(i∗, i∗).

Lemma 3.12. If |far core(Cℓ)| ≥ (1 − ρ) · |core(Cℓ)| for

a cluster Cℓ then d(i∗, iℓ) ≤ α · rℓ.

Putting everything together, we get the following lemma.

Lemma 3.13. Suppose Algorithm 1 samples a client j′ from

the cluster Cℓ at iteration t. Then

P

[

∑

j∈Cℓ
d(j, j′) ≤ (2α+ 1)

∑

j∈Cℓ
d(j, σ∗(j))

]

≥ ρ
2 ·
(

1− 1
α

) (

1− α+1
∆

)

.

At this point, we can use the proof of Theorem 1 from

Aggarwal et al. (2009) in a black-box manner (although

with different constants) to prove Lemma 3.4 via modeling

the evolution of the clusters from Bad to Good as a super-

martingale sequence of random variables.

3.2 Padding the Sampled Set

In this section, we show how to compensate for the deficit

in cardinality of the sampled set without increasing the total

cost by much:

Lemma 3.14. If for the sampled set of facilities S we

have that |S| < k, then we have that costRC(S ∪ A) ≤
∑

j∈C d(j, S)+
∑

i∈S λk·d(i, i∗)+γ·
∑

i∈Ok-FL
λk·d(i, i∗),

where A = {max{0, k − |S|} facilities from F closest to

i∗}.

Note that, if the cost of S is a constant approximation of

OPTk-FL, then the cost of the padded set S ∪ A is also

withing a constant factor of OPTk-FL.

3.3 Unbounded Gap for the Vanilla Sampling

In this section, we justify our sampling procedure by show-

ing that the sampling procedure of Arthur and Vassilvitskii

renders insufficient in our setting.

Claim 1. The adaptive sampling of Arthur and Vassilvit-

skii can produce a sample set S of O(k) clients such that

any subset S′ ⊆ S with |S′| = k would incur a cost

costk-FLS
′ = Ω(λk · OPTk-FL) where λ and k are part of

the input.

Proof. Consider the instance in Figure 1. In this instance,

we assume C = F , with |C| = n. As a result, we refer to

the clients/facilities as simply points in the following. There

are µk points on the outer ring, k − 1 points in the middle

ring, and n− (µ+ 1)k + 1 points in the inner circle, where

the anchor point i∗ is located. Let the distance between

every pair of points in the circle be a negligible ε. Also,

for an arbitrarily large M allow the distance between every

1M

Figure 1: Instance with unbounded cost for the vanilla adap-

tive sampling

point in the outer ring to a point in the middle ring be M ,

and let the distance between any point in the middle ring to a

point in the inner circle be 1. It is straightforward to see that

for large enough values of M , the sampling procedure only

picks from the outer ring in the sample set S in addition to

the anchor i∗. As a result, the disagreement cost incurred by

any subset S′ ⊆ S with cardinality k is roughly ≈ λk2 ·M
while the connection cost would be O(µk ·M). On the

other hand, the optimum solution to the k-FL instance will

choose the anchor together with the k − 1 points from the

middle ring, incurring disagreement and connection costs

of O
(

λk2
)

and O(µk ·M), respectively. More precisely,

costk-FLS
′

OPTk-FL

=
[

λk2 · (M + 1 + ε) + (k − 1)(1− ε)

+ (µ− 1)k · (M + 1 + ε)
]

/
[

λk2 + (k − 1) · (M + 1 + ε)
]

,

which tends to λk as M grows towards infinity.

Finally, we make a relatively straightforward comment re-

garding the reason for sampling from the client set and not

from the facility set. The main intuition behind the sampling

procedure is that as long as the connection cost is large, it

is reasonable to randomly pick a client from far groups of

clients, and hopefully open a facility near them in order to

reduce the cost. If one chooses to sample directly from the

facilities, an adversary can easily design an instance where

there are large groups of facilities very far from any client.

This would trick the sampling algorithm to open a facility

from such “useless” groups which can lead to unbounded

connection and total cost.

4 EMPIRICAL EVALUATION

We conduct experiments to evaluate the performance of the

proposed methods. We seek to answer the two following

questions: (1) is the proposed constant-factor approximation

algorithm superior to the local-search heuristic in practice?

(2) does the proposed sparsification scheme allow us to sig-

nificantly reduce computation times without compromising

the quality of the obtained solution?
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Table 1: Characteristics of the datasets.

Name Number of clients Number of facilities

CONGRESS 420 420
WIKIELECTIONS 7 115 200

We evaluate the following three methods: (1) LO-

CALSEARCH: the known local-search heuristic (Ordozgoiti

and Gionis, 2019). (2) k-UFL+LP: our proposed reduction

to k-FL, using our adaptation of the LP rounding algorithm

of (Charikar and Li, 2012) to solve each of the resulting

k-FL instances. (3) k-UFL+LS: our proposed reduction

to k-FL, using our adapted local-search heuristic to solve

each of the resulting k-FL instances. We use our own C++

implementation of all algorithms. Our setup is described in

the supplement.

We consider two datasets, corresponding to use cases suited

to the REC k-MEDIAN problem.

CONGRESS:3 voting records of the 115th US Congress.

Each data point corresponds to a congressperson, and each

variable represents whether they voted positively or nega-

tively for a particular bill. For details, see (Ordozgoiti and

Gionis, 2019). We consider all congresspeople to be clients

and candidate facilities, i.e., F = C.

WIKIELECTIONS:4 Signed graph data representing Wiki-

pedia moderator elections (Leskovec et al., 2010). Each

vertex corresponds to a user. An edge from user i to user j
exists if the former voted for the latter in a moderator elec-

tion. The sign of the edge indicates whether the vote was

positive or not. We ignore edge directions. For each ver-

tex we compute the spectral embedding corresponding to

the bottom 25 eigenvectors of the normalized signed Lapla-

cian (Kunegis et al., 2010).5 The facility set F is comprised

of the 200 users with largest degree. We compute Euclidean

distances between the resulting embedded vertices.

Performance Evaluation. We evaluate the performance

of the methods on the CONGRESS and WIKIELECTIONS

datasets, for different choices of k and λ. We limit k-

UFL+LP to CONGRESS dataset, given the computational

cost of solving the linear program. We measure the average

cost of the solution found by each of them over 20 runs,

and report the ratio of the cost achieved by LOCALSEARCH

to the cost achieved by k-UFL+LP and k-UFL+LS. The

results are shown in Figure 2. Even though all methods find

solutions of similar quality, LOCALSEARCH does so less re-

liably than k-UFL+LS and k-UFL+LS for larger values of

k and λ. Even when these parameters grow, k-UFL+LP and

k-UFL+LS consistently find the same solution, whereas

3https://zenodo.org/record/2573954
4https://snap.stanford.edu/data/wiki-Vote.

html
5The dimensionality of the embedding was chosen by visual

inspection of the spectrum.

Figure 2: Performance of the different algorithms on the

CONGRESS (top) and WIKIELECTIONS (bottom) datasets.

We report the ratio of the cost yielded by LOCALSEARCH

to that achieved by k-UFL+LP and k-UFL+LS. Since the

latter two consistently yield the same solution, we plot a

single line.

LOCALSEARCH is sensitive to the initial set and occasion-

ally produces solutions of poorer quality. This is reflected

by the growing ratios.

We report average running times in Table 2. We omit k-

UFL+LP due to its impractical running times. This shows

that the improvements in quality come at a noticeable cost

in running times.

Sparsification. We assess the effectiveness of the proposed

sparsification approach as a method for speeding up algo-

rithms for REC k-MEDIAN. We consider the WIKIELEC-

TIONS dataset. We fix k = 8, λ = 1.6, and vary the value of

µ (see Algorithm 1) so that the number of sampled clients

is in {3, 6, 12, 25, 50, 100, 200}. Note that each of these

values will result in a certain number of sampled facilities,

among which the algorithms will choose the final set. The

results show how the method allows us to significantly re-

duce computation time without sacrificing quality. Due to

the space limitations, the corresponding figures are in the

supplement.

4.1 Experiments on Synthetic Data

In order to improve our understanding of the behaviour of

the methods under scrutiny, we conduct experiments on

synthetic datasets. Our goal is to test the robustness of the

methods proposed in this paper — k-UFL+LS in particular

— compared to LOCALSEARCH.

For both methods, we will vary one parameter which allows

us to trade computation time for solution quality. In the
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Table 2: Running times of LOCALSEARCH and k-UFL+LS on the different datasets.

CONGRESS WIKIELECTIONS

k = 4 k = 8 k = 16 k = 32 k = 4 k = 8 k = 16 k = 32

LOCALSEARCH 0.10 0.26 0.65 2.14 3.68 9.55 22.45 56.35
k-UFL+LS 13.22 35.44 94.46 245.80 64.98 165.48 322.72 741.58

case of LOCALSEARCH, we will allow more or less initial

solutions, sampled uniformly at random. For k-UFL+LS,

we will consider more or less facilities in the “guessing”

phase, where we consider different facilities as the candidate

1-median of the optimal set. In the plots, we will refer to

both these parameters as Sample size.

We generate two datasets containing 100 facilities in R
2. In

the first one, all clients located within a ball of small radius

rA centered at the origin, along with a small cluster of 5

facilities within a ball of slightly larger radius rC . We place

the remaining 95 facilities roughly at a distance of rB ≫
rA from the origin. The performance of LOCALSEARCH

will be determined entirely by whether or not the starting

solution contains enough of the 5 well-situated facilities.

When the solution is mostly comprised of far-away facilities,

the “reconciliation” term of the objective will prevent the

algorithm from exploring the ones near the clients. For k-

UFL+LS, on the contrary, it will be sufficient to sample

one candidate 1-median in this set. We choose the values

rA = 1, rC = 2, and rB = 100. We set k = 5 and λ = 1.

In Figure 3 (left), we show the estimated probabilities that

these events will take place. For each Sample size we run

both algorithms 200 times and count the fraction of times

that a favourable event occurs. While k-UFL+LS requires

sampling about 40 facilities to provide a reasonable chance

of success, LOCALSEARCH struggles to sample a good

initial subset even with an allowance of 100 attempts. We

note that the running time both methods is roughly equal

when the Sample size is the same.

We emphasize that this is not always the case in datasets

presenting similar structure. We modify the previously de-

scribed dataset by placing the 95 far-away facilities along the

circle of radius rB . In this case, the reconciliation term no

longer incurs a disproportionate penalty for sensible swaps.

As expected, k-UFL+LS performs just like before, but the

structure of these data clearly benefits LOCALSEARCH.

5 CONCLUSION, LIMITATIONS, AND

FUTURE WORK

In this paper, we proposed a constant-factor approximation

algorithm for reconciliation k-median, improving signifi-

cantly the previous results on this problem. Our algorithm

relies on a connection between reconciliation k-median and

a variant of the k-facility location problem. In addition,

Figure 3: Experiments on synthetic data.

we develop a sparsification scheme based on adaptive sam-

pling, which allows to reduce the number of potential cluster

centers to O(k) and providing significant speedup.

Our empirical evaluation illustrates the improved perfor-

mance and stability of the proposed approach, albeit at an

increased cost in computational cost. Nevertheless, we have

illustrated how our sparsification scheme can be leveraged

to significantly decrease running times.

Despite the significant speedup obtained with our sparsi-

fication procedure, our method relies on repeated calls to

k-facility location instances, and thus, its practical perfor-

mance is limited by the available methods for the latter

problem. Developing truly scalable methods that go beyond

this limitation is a challenge left for future work. Another

future direction is to design improved methods for special

metrics, e.g., the Euclidean distance.
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A APPROXIMATING EXACT k-FACILITY LOCATION

A.1 LP-Based Approximation Algorithm

We modify the algorithm by Charikar and Li (2012) for the standard version of k-FL to give an algorithm with the same

ratio also for EXACT k-FL. There are three adjustments (described below in detail) to algorithm or analysis. First, we

modify the LP relaxation so that precisely k fractional facilities are opened (rather than ≤ k facilities). Second, we employ

the dependent rounding scheme by Gandhi et al. (2006) (rather than the one by Srinivasan (2001) as in the original algorithm

by Charikar and Li). This is done in a way so that precisely k (integral) facilities are opened in the rounded solution and so

that essential properties (preservation of marginals, negative correlation) needed in the analysis are still preserved. The third

adjustment is that the algorithm by Charikar and Li creates multiple copies of the initial facilities to achieve certain nice

properties in the fractional solution. We need to ensure that in the dependent rounding at most one copy of each facility is

opened. While this was irrelevant for the standard version, it becomes necessary for the exact version of k-FL.

A.1.1 The k-UFL Algorithm by Charikar and Li

First, we recap the algorithm by Charikar and Li (2012) for the standard version of k-FL. Later, we modify it to return

exactly k facilities. The algorithm gives a 3.25-approximation for k-FL in expectation and is subdivided into the following

steps, which we outline here:

1. Linear program (LP): First, the below standard linear programming relaxation for k-FL is solved. For each facility i
we introduce a (fractional) indicator variable yi representing the extent to which i is opened. For any client j, variable

xi,j indicates how much of the demand of client j is served by i.

minimize
∑

i∈F,j∈C

d(i, j)xj,i +
∑

i∈F

fiyi

subject to
∑

i∈F

xi,j = 1, ∀j ∈ C,

∑

i∈F

yi ≤ k,

xi,j ≤ yi, ∀i ∈ F, j ∈ C,

xi,j , yi ∈ [0, 1],∀i ∈ F, j ∈ C

2. Splitting phase: In this phase, we modify the input instance and the LP solution so that xi,j = yi for every client j ∈ C
and every facility i ∈ F . We achieve this by splitting some of the facilities into multiple identical copies of that facility.

If i ∈ F is split into t ≥ 2 many facilities then it is called a split facility and the t many facilities {i.1, i.2, . . . , i.t} that

were created by this split, are called fractional facilities. After the split, yi = yi.1 + yi.2 + · · ·+ yi.t, which means that

the total volume
∑

i yi of opened facilities is preserved. From now on we call the original set of facilities Fold and the

new set of facilities Fnew.

3. Filtering phase: In this phase a subset C ′ ⊆ C is determined, where j, j′ ∈ C ′ are sufficiently far apart from each

other. (We do not need the precise requirement on C ′ for our below argument.)

4. Bundling phase: Here we assign to every client j ∈ C ′ a set of facilities Uj ⊆ Fnew, where i ∈ Uj is close enough

to j and i serves j. This leads to 1
2 ≤ vol(Uj) ≤ 1, with vol(Uj) =

∑

i∈Uj
yi. In this procedure facilities can stay

unbundled.

5. Matching phase: We match the closest pair j, j′ ∈ C ′ of clients, add the pair to the set M , and iterate with the

remaining clients in C ′. In doing so, one b ∈ C ′ can stay unmatched.

6. Sampling phase: Finally, we open a subset of the facilities using a dependent rounding procedure described below.

We remark that we specify the above steps only to the extent needed for our below arguments.

We introduce the following set of operations.
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1. Opening/closing a facility i: Opening a facility i means to add i to the solution. Closing a facility i means that it will

never be added to the solution.

2. Opening/closing a bundle j: To open a bundle Uj , j ∈ C ′ means to randomly open exactly one facility i ∈ Uj , with

the probability yi/vol(Uj). Closing a bundle j means that every facility in Uj is closed.

3. Opening/closing a matched pair (j, j′): Opening a pair (j, j′) ∈M means to open both bundles j and j′. Closing a

pair (j, j′) is equivalent to open either bundle j or j′. When the matched pair is closed, j is opened with probability

1− vol(Uj′) and j′ is opened with probability 1− vol(Uj).

If a facility, bundle or pair is not opened, then it is closed.

In a naive implementation of the sampling phase every (j, j′) ∈ M would be opened independently with probability

vol(Uj) + vol(Uj′)− 1, the unmatched bundle b would be opened randomly with probability vol(Ub) and every unbundled

facility i with probability yi. Notice that this results in:

∀j ∈ C ′ : P [“Uj is open”] = vol(Uj)

∀i ∈ Fnew : P [“i is open”] = yi .

As a result the expected number of opened facilities from Fnew would be at most k. Of course, this is not sufficient to

guarantee feasibility. The authors argue, that the naive implementation satisfies

E [costk-FL(S)] ≤ 3.25





∑

i∈F,j∈C

d(i, j)xj,i +
∑

i∈F

fiyi





and hence gives a 3.25-approximate pseudo-solution in expectation.

To additionally ensure feasibility, that is, opening at most k facilities, Charikar and Li resort to a dependent rounding

procedure to always return at most k facilities from Fnew. Let Funbundled, Funmatched and A be defined as follows:

Funbundled = {i : i is an unbundled facility}
Funmatched = {b : Ub is an unmatched bundle}
A = Funbundled ∪ Funmatched ∪M

First the authors define a random variable Xa and a variable xa for every a ∈ A.

Xa =

{

1, if a is open

0, if a is not open

xa =







ya, if a is an unbundled facility

vol(Ua), if a is an unmatched bundle

vol(Uj) + vol(Uj′)− 1, if a = (j, j′) ∈M

This implies
∑

a∈A xa ≤ k − |M |. Hence, if the rounding preserves the volume, that is,
∑

a∈AXa = ⌈∑a∈A xa⌉, then

there are at most k open facilities of Fnew.

To achieve volume preservation, the tree-based dependent rounding procedure of Srinivasan (2001) is employed. It

guarantees the following properties:

1. P [Xa = 1] = xa.

2. P
[
∑

a∈AXa ≤ ⌈∑a∈A xa⌉
]

= 1

3. The following negative correlation properties hold for all S ⊆ A:

P

[

∧

a∈S

Xa = 0

]

≤
∏

a∈S

P [Xa = 0]

P

[

∧

a∈S

Xa = 1

]

≤
∏

a∈S

P [Xa = 1]
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(a) LP solution before the split pro-
cess

(b) LP solution after the split process

Figure 4: An example with F = {1, 2, 3, 4}, C = {a, b, c}, k = 3 and the opening cost f for each facility is 1. The

distances that are not drawn, are the minimal paths through this graph, e.g. d(b, a) = 3, hence the triangle inequality still

holds. The x’s represent how connected a client is to a facility in the LP solution. The y of a facility in the LP solution is the

maximum x adjacent to the facility, e.g. y1 = 0.75.

Note that Property 2 implies that the procedure opens at most k facilities. Charikar and Li argue that in their analysis of

the above-described naive, independent rounding scheme only Property (1) and negative correlation is used. Hence also

the dependent rounding scheme gives a 3.25-approximate solution in expectation. The dependent rounding scheme can be

derandomized with the method of conditional expectations.

A.1.2 Adjustments for EXACT k-FL

We now describe three adjustments we make to the above algorithm by Charikar and Li to also give a 3.25-approximation

for EXACT k-FL.

First, we replace the inequality constraint
∑

i∈F yi ≤ k in the LP relaxation by an equality constraint
∑

i∈F yi = k. Note

that, when we solve the resulting LP relaxation for the exact version, we obtain a feasible solution to the original relaxation

in particular. This allows us to apply some of the existing arguments in a black box fashion.

Suppose that we run the vanilla rounding algorithm by Charikar and Li on an optimum solution to the modified LP relaxation

for Exact k-FL. By the volume preservation property (1) this algorithms opens precisely k facilities. Unfortunately, in their

procedures two copies of the same split facility may be picked, which would result in effectively strictly less than k facilities

from Fold to be opened. Figure A.1.2 shows an example, where this actually happens. Since C ′ = {a}, Ua = {1.1, 2} and

the set of unbundled facilities is {1.2, 3, 4} this demonstrated that the vanilla rounding can open less than k facilities of Fold.

We ensure that the rounding opens precisely k facilities of Fold by guaranteeing that for each split facility their copies are

in the same bundle. This results in only one fractional facility of a split facility to be opened at most. To achieve this,

we leverage the rounding procedure for bipartite graphs of Gandhi et al. (2006) rather than the tree-based rounding by

Srinivasan (2001).

The algorithm by Gandhi et al. (2006) receives a bipartite graph (B,C,E) and a list of values xv,u for each edge (v, u) ∈ E
as input. It rounds every xv,u to a random variable Xv,u ∈ {0, 1} and returns the resulting set of all Xv,u. We define the

quantities

dv =
∑

(v,u)∈E

xv,u and Dv =
∑

(v,u)∈E

Xv,u,

where dv denotes the fractional degree of the vertex v andDv denotes the integral degree. The dependent rounding procedure

by Ghandi et al. ensures the following properties.
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(a) P [Xv,u = 1] = xv,u.

(b) Degree-preservation. P [Dv ∈ {⌊dv⌋, ⌈dv⌉}]. Notice, if dv ∈ N, then Dv = dv

(c) Negative correlation holds for any v ∈ B ∪ C and for any S ⊆ {X(v,i) : (v, i) ∈ E}:

P

[

∧

X∈S

X = 0

]

≤
∏

X∈S

P [X = 0]

P

[

∧

X∈S

X = 1

]

≤
∏

X∈S

P [X = 1]

Notice that the bipartite graph procedure can simulate tree-based rounding by using a star graph as follows. We set B = {r}
where r is the root of the star, C = A, and xa,r = xa where A and xa are defined as in Section A.1.1.

To ensure that we open exactly k facilities from the original set Fold we define a bipartite graph appropriately.

First, a root r has to be added to the graph. Every unbundled facility, unmatched bundle and matched pair is then connected

to r with the gadgets described below. See Figure A.1.2 for an illustration of the gadgets.

Unbundled facility: See Figure 5(c). An unbundled facility i is simply attached to r, with xr,i = yi. Therefore it is opened

with the probability yi.

Unmatched bundle: See Figure 5(a). The unmatched bundle b is attached to the root via a vertex µ, with xr,µ = vol(Ub).
Furthermore a vertex ϕ is connected to µ, with xµ,ϕ = 1− vol(Ub). Therefore

dµ = Dµ = Xr,µ +Xµ,ϕ = 1 .

The edge (µ, ϕ) can be seen as a negation to (r, µ), since either Xr,µ or Xµ,ϕ is 1, and the other is 0. Attached to ϕ are all

the facilities bi ∈ Ub, with xϕ,bi = ybi . Thus

dϕ = Dϕ = 1

and at most one Xϕ,bi with bi ∈ Ub can be equal to 1. Summarizing, our gadget ensures that precisely one facility bi ∈ Ub
is opened if Xr,µ = 1. If Xr,µ = 0 then no facility in Ub is opened.

Matched pair: See Figure 5(b). The matched pair (j, j′) is represented via a vertex γ connected to the root r. The bundle j
is represented by a vertex α connected to γ. Bundle j′ is represented by node β connected to γ as well. The edges have the

following weights

xr,γ = vol(Uj) + vol(Uj′)− 1

xγ,α = 1− vol(Uj′)

xγ,β = 1− vol(Uj) .

Similar to the unmatched bundle, every facility ∈ Uj is attached to α with xα,i = yi and every facility i′ ∈ Uj′ is attached

to β with xβ,i′ = yi′ . Since Dγ = 1, only one of the edges (r, γ), (γ, α) and (γ, β) will be rounded to 1. Here X(r,γ) = 1
means that both bundles j, j′ are opened. The event X(γ,α) = 1 means that j is closed while j′ is opened. Analogously,

X(γ,β) = 1 means that j is opened while j′ remains closed. Hence the gadget ensure that our modified dependent rounding

treats the pair (j, j′) as the tree-based rounding.

Buffer vertices: For each copy i of some split facility we introduce two buffer vertices ωi and ψi. Node ωi is connected to

i and ψi is connected to ωi where

xi,ωi
= 1− yi

xωi,ψi
= yi

The edge (ωi, ψi) indicates if facility i is open or not.
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(a) Unmatched bundle b (b) Matched bundles (j, j′)

(c) Unbundled facility i (d) Split facility i and it’s fractional facilities
i.1, . . . , i.t. There are noψ’s, since they fused
into i.

Figure 5: The different structures for the bipartite graph.

Split facilities: See Figure 5(d) If i ∈ Fold is split into copies {i.1, i.2, . . . , i.t} then we merge buffer vertices

ψi.1, ψi.2, . . . , ψi.t into one super node i. This results in

di =
∑

h∈[t]

dψi.h
=
∑

h∈[t]

yi.h = yi ≤ 1

This ensures that at most one copy of any split facility in Fold is opened.

Since the fractional degree of the root is k− |M | exactly k facilities are opened. This holds in particular because our gadgets

for the split vertices ensures that at most one copy of each split vertex is opened. The remaining above-described gadgets

ensure that the properties of the original tree-based rounding used in the analysis by Charikar and Li continue to hold. In

particular notice that the negative correlation properties continue to hold because all nodes representing elements a ∈ A are

connected to the root r.

Figure 6 shows the resulting bipartite graph for the instance in Figure A.1.2.
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Figure 6: Bipartite graph of the example in A.1.2

A.2 Local Search Approximation Algorithm

In this section we we show that a single-swap local search achieves a constant factor approximation for EXACT-k-FL. To

prove a constant factor approximation, we follow the proof of Zhang (2007) and slightly modify it by extending some

Lemmas to match the case of Exact-k-UFL. First, we define the following notations. Let Ok-FL = {o1, o2, . . . , ok} be the

global optimum and let S = {i1, i2, . . . , ik} be a local optimum. For the sake of notation, we write Ok-FL and costk-FL

as simply O and cost respectively when the meaning is clear from the context. Let U be any solution, then the following

notations can be introduced:

1. Uj = d(j, φU (j)) denotes the service cost for j in U .

2. NU (i) = {j ∈ C : φU (j) = i}, i.e. NU (i) is the set of clients, which are connected to the facility i in solution U .

3. No
i = NS(i) ∩NO(o) contains all clients that are served by i and o.

4. We say i captures o, if |No
i | > 1

2 |NO(o)|. In addition, i is called good if it does not capture any o, and bad if it does.

5. We also use a bijective mapping π : NO(o) → NO(o). For every i ∈ {i : No
i 6= ∅} that does not capture o, we have

that every j ∈ No
i is mapped outside of No

i , i.e., π(j) /∈ No
i . If i captures o, then for each j, π(j) ∈ No

i , we have

π(j) is mapped back onto j, i.e., π(π(j)) = j. When constructing π as described by Zhang (2007), it also yields the

property that if i captures o, then j = π(π(j)) for every j ∈ NO(o).

Abusing the notation, for a set of facilities F ′ and a client j, we let F ′
j be the shorthand for mini∈F ′{d(i, j)}. We first show

the following lemma.

Lemma A.1. Let j ∈ NS(i) and π(j) /∈ NS(i). After a swap(i, o), the new service cost for the client j can be bounded by

Sπ(j) +Oπ(j) +Oj .

Proof. We consider the cases j ∈ No
i and j /∈ No

i separately:

1. j ∈ No
i : Let i′ be the nearest facility serving the client π(j). After o is swapped in for i, each j ∈ No

i will be served

by its new nearest facility î. By triangle inequality, we have

d(j, î) ≤ d(j, i′) ≤ d(π(j), i′) + d(j, π(j))

≤ d(π(j), i′) + d(π(j), o) + d(j, o)

= Sπ(j) +Oπ(j) +Oj
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2. j /∈ No
i : Let o′ be the facility, with j ∈ No′

i and therefore π(j) ∈ No′

i . Furthermore, let i′ be the nearest facility

serving the client π(j). After o is swapped in for i, each j /∈ No
i will be served by its new nearest facility î. Again, we

can use triangle inequality to obtain the following:

d(j, î) ≤ d(j, i′) ≤ d(π(j), i′) + d(j, π(j))

≤ d(π(j), i′) + d(π(j), o′) + d(j, o′)

= Sπ(j) +Oπ(j) +Oj

Lemma A.2. Sj ≤ Sπ(j) +Oπ(j) +Oj for each j ∈ C.

Proof. Let i′ be the nearest facility serving the client π(j) and o be the facility for which j ∈ No
i . Because π is a mapping

from NO(o) to NO(o), we know that π(j) ∈ No
i . Therefore,

Sj = d(i, j) ≤ d(i′, j) ≤ d(π(j), i′) + d(j, π(j))

≤ d(π(j), i′) + d(π(j), o) + d(j, o)

= Sπ(j) +Oπ(j) +Oj

Lemma A.3. If o is the nearest facility that i captures and i also captures o′ 6= o, then after a swap(i, o), the new service

cost for each j ∈ No′

i with π(j) ∈ NS(i) can be bounded by 2Sj +Oj .

Proof. Let î be the new nearest facility to j. Because of triangle inequality and the fact that o is the nearest facility that i
captures, the following holds

d(j, î) ≤ d(j, o) ≤ d(j, i) + d(i, o) ≤ d(j, i) + d(i, o′) ≤ d(j, i) + d(j, i) + d(j, o′) = 2Sj +Oj .

For sake of completeness, we also show the following:

Lemma A.4. After a swap(i, o), the new service cost for a client j ∈ NO(o) with π(j) ∈ NS(i) can be bounded by Oj .

Proof. Let î be the new nearest facility to j. Since j ∈ NO(o) is served by o in the solution O, we obtain d(j, î) ≤ d(j, o) =
Oj

Let costs and costf denote the service and facility opening cost (or facility cost, for short) of the given k-FL instance. We

next bound the facility cost of the local optimal solution.

Lemma A.5. The facility cost costf (S) is bounded by costf (O) + 2costs(O).

Proof. First, partition S into subsets (A1, A2, . . . , Am) and O into subsets (B1, B2, . . . , Bm) to get pairs

(Ai, Bi) with |A| = |B| ∀i ∈ [m]. To do this, we pick any bad facility b ∈ S and add it to A. Afterwards, add ev-

ery facility o ∈ O that i captures to B and fill A with arbitrary good facilities in S until |A| = |B|. Repeat this for every bad

facility in A. Let Am be the set of good facilities left in S and Bm the set of facilities left in O. Denote with e ∈ B the

facility closest to b. Note that this method of partitioning is sound since no two i ∈ S can capture the same o and therefore

the number of bad facilities in S are ≤ |A|. We can now apply Lemmas A.4, A.3 and A.1 to bound the cost after swap(b, e)
by:

− fb + fe +
∑

j∈Ne
b

π(j)∈NS(b)

(Oj − Sj) +
∑

j∈NS(b)−NO(e)
π(j)∈NS(b)

(2Sj +Oj − Sj)

+
∑

j∈NS(b)
π(j)/∈NS(b)

(Sπ(j) +Oπ(j) +Oj − Sj) ≥ 0,
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which implies,

− fb + fe +
∑

j∈Ne
b

π(j)∈NS(b)

2Oj +
∑

j∈NS(b)−NO(e)
π(j)∈NS(b)

(Sj +Oj)

+
∑

j∈NS(b)
π(j)/∈NS(b)

(Sπ(j) +Oπ(j) +Oj − Sj) ≥ 0

Note that this cost is non-negative due to the local optimality of S. Moreover, the cost of a solution after one swap(i, o) with

i ∈ A− b and o ∈ B − e can be bounded via Lemmas A.4 and A.1 as:

−fi + fo +
∑

j∈No
b

π(j)∈NS(b)

(Oj − Sj) +
∑

j∈No
i

π(j)/∈NS(i)

(Sπ(j) +Oπ(j) +Oj − Sj) ≥ 0

Since Oj − Sj ≤ 2Oj and {j ∈ No
b : o ∈ B − e∧ π(j) ∈ NS(b)} = {j ∈ NS(b)−NO(e) : π(j) ∈ NS(b)}, summing all

of the different swaps between A and B gives the following bound:

−
∑

i∈A

fi +
∑

o∈B

fo +
∑

j∈Ne
b

π(j)∈NS(b)

2Oj +
∑

j∈NS(b)−NO(e)
π(j)∈NS(b)

(Sj +Oj)

+
∑

o∈B−e

∑

j∈No
b

π(j)∈NS(b)

(Oj − Sj) +
∑

i∈A

∑

j∈NS(b)
π(j)/∈NS(b)

(Sπ(j) +Oπ(j) +Oj − Sj) ≥ 0.

This implies

−
∑

i∈A

fi +
∑

o∈B

fo +
∑

j∈NS(b)
π(j)∈NS(b)

2Oj +
∑

i∈A

∑

j∈NS(i)
π(j)/∈NS(i)

(Sπ(j) +Oπ(j) +Oj − Sj) ≥ 0.

Because every facility i ∈ Am is good, we have that for all i ∈ Am, and for all j ∈ NS(i), π(j) /∈ NS(i). Therefore, the

cost of any swap between Am and Bm can be bounded using Lemma A.1 by:

−
∑

i∈A

fi +
∑

o∈B

fo +
∑

i∈A

∑

j∈NS(i)
π(j)/∈NS(i)

(Sπ(j) +Oπ(j) +Oj − Sj) ≥ 0
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Finally adding all swaps between A and B results in the following bound:

−
∑

i∈A

fi +
∑

o∈B

fo + 2

m
∑

t=1

∑

j∈NS(bt)
π(j)∈NS(bt)

Oj

+
∑

i∈A

∑

j∈NS(i)
π(j)/∈NS(i)

(Sπ(j) +Oπ(j) +Oj − Sj) ≥ 0

=⇒ −
∑

i∈A

fi +
∑

o∈B

fo + 2
m
∑

t=1

∑

j∈NS(bt)
π(j)∈NS(bt)

Oj

+
∑

j∈C
π(j)/∈NS(φS(i))

(Sπ(j) +Oπ(j) +Oj − Sj)) ≥ 0

=⇒ −
∑

i∈A

fi +
∑

o∈B

fo + 2
m
∑

t=1

∑

j∈NS(bt)
π(j)∈NS(bt)

Oj + 2
∑

j∈C
π(j)/∈NS(φS(i))

Oj ≥ 0

=⇒ −
∑

i∈A

fi +
∑

o∈B

fo + 2
∑

j∈C

Oj ≥ 0

=⇒ − costf (S) + costf (O) + 2costs(O) ≥ 0

=⇒ costf (S) ≤ costf (O) + 2costs(O).

Lemma A.6. If only one swap at a time is allowed, the service cost for the local optimum S can be bounded by costs(S) ≤
costf (O) + 5costs(O).

Proof. First, partition S into subsets (A1, A2, . . . , Am) and O into subsets (B1, B2, . . . , Bm) with the same method

presented in Lemma A.5. Now, we again bound the cost after a swap(i, o) with the key difference that i ∈ A− b, o ∈ B.

To obtain a term that sums up all Sj’s for j ∈ C, which is the service cost costs(S), we bound the cost after a swap(i, o)
slightly looser than in Lemma A.5. Since no i ∈ A− b captures an o ∈ O, we know that π(j) /∈ NS(i) for each j ∈ NS(i).
Therefore, we can bound a swap(i, o) using Lemmas A.1 and A.2 by:

− fi + fo +
∑

j∈NO(o)

(Oj − Sj) +
∑

j∈NS(i)−NO(o)

(Sπ(j) +Oπ(j) +Oj − Sj) ≥ 0

=⇒ − fi + fo +
∑

j∈NO(o)

(Oj − Sj) +
∑

j∈NS(i)

(Sπ(j) +Oπ(j) +Oj − Sj) ≥ 0.

Summing up swap(i, o) for i ∈ A − b, o ∈ B − e and one swap(i′, e) for some i′ ∈ A − b and again using Lemma A.2

results in

−
∑

i∈A−b

fi +
∑

o∈B

fo +
∑

o∈B

∑

j∈NO(o)

(Oj − Sj)

+
∑

i∈A−b

∑

j∈NS(i)

(Sπ(j) +Oπ(j) +Oj − Sj) +
∑

j∈NS(i′)

(Sπ(j) +Oπ(j) +Oj − Sj) ≥ 0

=⇒ −
∑

i∈A−b

fi +
∑

o∈B

fo +
∑

o∈B

∑

j∈NO(o)

(Oj − Sj)

+ 2
∑

i∈A

∑

j∈NS(b)

(Sπ(j) +Oπ(j) +Oj − Sj) ≥ 0

=⇒
∑

o∈B

fo + 5
∑

j∈C

Oj −
∑

j∈C

Sj ≥ 0.
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By rearranging the terms we get

∑

j∈C

Sj ≤
∑

o∈B

fo + 5
∑

j∈C

Oj .

implying the claim of the lemma costs(S) ≤ costf (O) + 5costs(O).

Theorem A.7. A local search algorithm for Exact-k-UFL with a single swap operation, has a locality gap of at most 7.

Proof.

cost(S) = costf (S) + costs(S)

≤ costf (O) + 2costs(O) + costf (O) + 5costs(O)

≤ 7(costf (O) + costs(O))

= 7cost(O).

B OMITTED PROOFS OF SECTION 3

We delay the proofs of Lemma 3.4 and Theorem 3.1 to the end of this section as they heavily depend on the technical

lemmas that proceed them in the main body. Once we prove these lemmas, we can move on to present how to derive the

proof of Lemma 3.4 from these technical lemmas and standard techniques in the literature. Finally, Theorem 3.1 can be

shown directly as a consequence of Lemmas 2.4, 2.5, and 3.4.

Proof of Lemma 3.5. For a client j ∈ C, let σ(j) and σ∗(j) denote the closest facility to j in St and Ok-FL, respectively.

First, we bound
∑

j∈C d(j, St). Moreover, let j′ denote the client in Tt that is closest to j and let i′ be the facility that j′

places in St.

d(j, St) = d(j, σ(j)) ≤ d(j, i′)

≤ d(j, j′) + d(j′, i′) ( ⇐ by triangle inequality)

≤ d(j, j′) + d(j′, σ∗(j)) ( ⇐ by the way i∗ is added to St)

≤ d(j, j′) + d(j, j′) + d(j, σ∗(j)) ( ⇐ by triangle inequality)

Summing over all clients,

∑

j∈C

d(j, St) ≤
∑

j∈C

(

2d(j, Tt) + d(j, Ok-FL)
)

≤ (4∆ + 1)
∑

j∈C

d(j, Ok-FL). (1)

Next, by triangle inequality, we have that

∑

j∈C

d(j, St) =
∑

j∈C

d(j, σ(j))

≥
∑

j∈C

(d(σ(j), σ∗(j))− d(j, σ∗(j))) . (2)

Combining Inequalities 1 and 2, we get:

∑

j∈C

d(σ(j), σ∗(j)) ≤ (4∆ + 2)
∑

j∈C

d(j, σ∗(j)). (3)
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We now construct a set S′ ⊆ St of cardinality at most k with a good connection cost. For every facility i ∈ Ok-FL, let s(i)
be the facility in St ∪ {i∗} that is closest to i. Define S′ := {s(i) : i ∈ Ok-FL}. Using the triangle inequality one more time,

we get

∑

j∈C

d(j, s(σ(j))) ≤
∑

j∈C

(

d(j, σ(j)) + d(σ(j), σ∗(j)) + d(σ∗(j), s(σ∗(j)))
)

≤
∑

j∈C

(

d(j, σ(j)) + 2d(σ(j), σ∗(j))
)

≤ (12∆ + 5)
∑

j∈C

d(j, σ∗(j)), (4)

where in the second inequality, we used the definition of s(σ∗(j)), and in the last inequality, we used the bound in Inequalities

1 and 3. As a result, S′ has the desired connection cost. It remains to show it also has a relatively small disagreement cost.

To see this, take any facility i ∈ S′, and let s−1(i) ∈ Ok-FL be the facility in the optimum set that was responsible for

adding i to S′, breaking ties arbitrarily. Note that d(s−1(i), i) ≤ d(s−1(i), i∗) because the anchor i∗ is a candidate for the

minimizer in the definition of s(i). So, for the opening cost of i, we can use triangle inequality and get

d(i, i∗) ≤ d(i, s−1(i)) + d(s−1(i), i∗)

≤ 2d(s−1(i), i∗).

Summing over all i ∈ S′ and noting that every facility in Ok-FL is accounted for in the sum at most once, we get

λk
∑

i∈S′

d(i, i∗) ≤ 2λk
∑

i∈Ok-FL

d(i, i∗). (5)

Inequalities 4 and 5 together complete the proof of the lemma.

Proof of Lemma 3.6.

P [j is sampled from Cℓ where Cℓ ∈ Badt] =

∑

Cℓ∈Badt

∑

j∈Cℓ
d(j, Tt−1)

∑

j∈C d(j, Tt−1)

= 1−
∑

Cℓ∈Goodt

∑

j∈Cℓ
d(j, Tt−1)

∑

j∈C d(j, Tt−1)

≥ 1−
∑

Cℓ∈Goodt

∑

j∈Cℓ
d(j, Tt−1 ∪ {i∗})

∑

j∈C d(j, Tt−1)

≥ 1−
∆ ·∑Cℓ∈Goodt

∑

j∈Cℓ
d(j, Ok-FL)}

2∆ ·∑j∈C d(j, Ok-FL)

≥ 1/2.

Proof of Observation 1. Assume jℓ ∈ core(Cℓ) is the sampled client. Then

∑

j∈Cℓ

d(j, i′ℓ) ≤
∑

j∈Cℓ

d(j, jℓ) + d(jℓ, i
′
ℓ)

≤
∑

j∈Cℓ

(

d(j, jℓ) + d(jℓ, iℓ)
)

≤
∑

j∈Cℓ

(

d(j, iℓ) + 2d(jℓ, iℓ)
)

≤
∑

j∈Cℓ

(

d(j, iℓ) + 2α · rℓ
)

≤ (2α+ 1)
∑

j∈Cℓ

d(j, iℓ) = (2α+ 1)
∑

j∈Cℓ

d(j, σ∗(j)),
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where in the second inequality, we used the fact that i′ℓ is closer to jℓ than iℓ by definition, in the third inequality we used the

metric property d(j, jℓ) ≤ d(j, iℓ) + d(jℓ, iℓ), in the fourth inequality we used the fact that jℓ ∈ core(Cℓ), and in the fifth

inequality we used the definition of rℓ.

Proof of Observation 2. Since Cℓ ∈ Badt, we have

∆ · |Cℓ| · rℓ = ∆ ·
∑

j∈Cℓ

d(j, σ∗(j))

<
∑

j∈Cℓ

d(j, Tt−1)

≤
∑

j∈Cℓ

(

d(j, iℓ) + d(iℓ, Tt−1)
)

=
∑

j∈Cℓ

(

d(j, iℓ) + δℓ,t
)

= |Cℓ| · rℓ + |Cℓ| · δℓ,t.

We get the claim of the observation by rearranging the terms.

Proof of Lemma 3.8.

∑

j∈Cℓ

d(j, σ∗(j)) ≥
∑

j∈Cℓ\core(Cℓ)

d(j, σ∗(j))

>
∑

j∈Cℓ\core(Cℓ)

α · rℓ

= |Cℓ\core(Cℓ)| · α · rℓ

= (|Cℓ| − |core(Cℓ)|) · α ·
∑

j∈Cℓ
d(j, σ∗(j))

|Cℓ|
.

Rearranging the terms will give us the claimed statement.

Proof of Lemma 3.9. Assume we are sampling a client from a cluster Cℓ ∈ Badt. The probability of this client being in

core(Cℓ) is
(

∑

j∈core(Cℓ)
d(j, Tt−1)

)

/
(

∑

j∈Cℓ
d(j, Tt−1)

)

. We prov the lemma by lower-bounding the numerator and

upper-bounding the denominator.Using the triangle inequality and assuming that s(j) denotes the closest client in Tt−1 to j
we have

∑

j∈core(Cℓ)

d(j, Tt−1) =
∑

j∈core(Cℓ)

d(j, s(j))

≥
∑

j∈core(Cℓ)

(

d(s(j), σ∗(j))− d(j, σ∗(j))
)

≥
∑

j∈core(Cℓ)

(

δℓ,t − α · rℓ
)

= |core(Cℓ)| ·
(

δℓ,t − α · rℓ
)

=

(

1− 1

α

)

|Cℓ|
(

δℓ,t − α · rℓ
)

, (6)

where in the first inequality, we used the definition of δℓ,t, and in the last equality, we applied Lemma 3.8 to |core(Cℓ)|. For

the denominator, we have

∑

j∈Cℓ

d(j, Tt−1) ≤
∑

j∈Cℓ

(

d(j, σ∗(j)) + d(σ∗(j), Tt−1)
)

= |Cℓ| (rℓ + δℓ,t) . (7)
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Dividing (6) by (7), we get

P [sample j ∈ core(Cℓ) | j ∈ Cℓ and Cℓ ∈ Badt] =

∑

j∈core(Cℓ)
d(j, Tt−1)

∑

j∈Cℓ
d(j, Tt−1)

≥
(

1− 1
α

)

|Cℓ|
(

δℓ,t − α · rℓ
)

|Cℓ| (rℓ + δℓ,t)
. (8)

From Observation 2 and the choice of α, we know that δℓ,t ≥ (∆ − 1) · rℓ ≥ α · rℓ. As a result, the right-hand-side of

Inequality 8 is an increasing function in δℓ,t, and therefore we can lower-bound it by setting δℓ,t to its minimum possible

value, namely, (∆− 1) · rℓ:

P [j ∈ core(Cℓ) | j ∈ Cℓ and Cℓ ∈ Badt] ≥
(

1− 1

α

)

∆− 1− α

∆
.

Proof of Observation 3. Let jℓ denote the facility that we have sampled from near core(Cℓ) for a Bad cluster Cℓ. Then

d(i′, i∗) ≤ d(i′, jℓ) + d(jℓ, i
∗) ( ⇐ by triangle inequality)

≤ d(i′, jℓ) + γ · d(iℓ, i∗) ( ⇐ since j ∈ near core(Cℓ))

≤ d(iℓ, jℓ) + γ · d(iℓ, i∗) ( ⇐ by the choice of i′)

≤ d(iℓ, i
∗) + d(i∗, jℓ) + γ · d(iℓ, i∗) ( ⇐ by triangle inequality)

≤ (2γ + 1) · d(iℓ, i∗). ( ⇐ by using the fact that j ∈ near core(Cℓ) again)

Proof of Lemma 3.12. To show this lemma, we provide a lower bound as well as an upper bound on the connection cost of

the clients in the far core(Cℓ) in an optimum solution. First, note that by the definition of the far core we have

∑

j∈far core(Cℓ)

d(j, iℓ) ≤
∑

j∈far core(Cℓ)

α · rℓ ≤ |far core(Cℓ)| (α · rℓ) ≤ α · |core(Cℓ)| · rℓ. (9)

Next, by using the triangle inequality and definition of far core, we can write

∑

j∈far core(Cℓ)

d(j, iℓ) ≥
∑

j∈far core(Cℓ)

(

d(j, i∗)− d(iℓ, i
∗)
)

≥
∑

j∈far core(Cℓ)

(

γ · d(iℓ, i∗)− d(iℓ, i
∗)
)

≥ |far core(Cℓ)| · (γ − 1) · d(iℓ, i∗)
≥ (1− ρ) · |core(Cℓ)| · (γ − 1) · d(iℓ, i∗). (10)

Putting Inequalities 9 and 10 together, we arrive at:

d(iℓ, i
∗) ≤ α

(1− ρ) · (γ − 1)
· rℓ ≤ α · rℓ,

when we set the parameter γ and ρ in a way that (1− ρ) · (γ − 1) ≥ 1.

Proof of Lemma 3.13. The proof follows from Corollary 3.11, Lemmas 3.6 and 3.12, and the fact that that P [A] ≥
P [A | B]× P [B].

Before presenting the proof of the main result of the sparsification procedure, we first prove our padding lemma, which

roughly says that in case our sampling procedure fails to pick at least k facilities in the end, we can pad it with some facilities

in the ball near the anchor i∗ and compensate for the cardinality without increasing the cost too mush.
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Proof of Lemma 3.14. Let S′ = S∪A be the padded sample set, whereA = {max{0, k−|S|} facilities fromF to i∗}. We

propose an assignment of the clients to S′ whose cost satisfies the statement of the lemma. Obviously, the best assignment of

clients to facilities could only have identical or smaller cost. This would imply the claim of the lemma. The trick is that we

do not assign any clients to the auxiliary facilities in A. As a result,
∑

j∈C d(j, S
′) =

∑

j∈C d(j, S), meaning that we have

not increased the connection cost. Regarding the disagreement cost,
∑

i∈A d(i, i
∗) ≤∑i∈Ok-FL

d(i, i∗) since the facilities

in A are the closest ones to i∗. Adding the reconciliation cost coming from the facilities in S will complete the proof.

We are now ready to prove Lemma 3.4, and consequently, our main result about the sampling procedure, Theorem 3.1.

Proof of Lemma 3.4. Let p := ρ
2 ·
(

1− 1
α

) (

1− α+1
∆

)

≈ 0.393. Following the steps of the proof of Theorem 1 by

Aggarwal et al. (2009), we can show that of we keep sampling clients for µk rounds for a constant value of µ satisfying

µk ≥ (k +
√
k)/p, we will have that P [|Badµk| ≥ 0] ≤ 1− exp(−p/4).

Proof of Theorem 3.1. Let Si∗ denote the result of the sampling for an iteration of the second phase where i = i∗. By

Lemma 3.4, with constant probability there exists S′ ⊆ S with |S′| = k and costk-FL(S
′) = O(OPTk-FL), so S′ is a

constant-factor approximation for k-FL. Conditioned on this event, we then get costRC(S
′) = O(OPTk-FL) by Lemma 2.4.

Next, by applying Lemma 2.5, we have that costRC(S
′) = O(OPTRC) with constant probability. Since such a solution exists

among the facilities of Si∗ , ALGRC must be able to find a solution S′′ with costRC(S
′′) = O(costRC(S

′)) = O(OPTRC).
Finally, the constant probability can be boosted to any arbitrary large probabilities by repeating the algorithm polynomially

many times and returning the best output at the end.

C UNBOUNDED LOCALITY GAP FOR THE CASE C 6= F

In the following we will show that a multi-swap local search algorithm cannot provide a bound on locality gap. Multi-swap

local search works considers p-swaps at each iteration, Here, p is constant indicating the number of facilities that can be

swapped at a single iteration.

Theorem C.1. There exist instances of REC k-MEDIAN problem for which there is a locally optimal solution S with respect

to p-swaps for any constant p with costRC(S) ≥ z · OPTRC for an arbitrarily large z.

Proof. Let F = A ∪ B, A = {a1, a2, . . . , ak}, B = {b1, b2, . . . , bk}, C = {1, 2}, k > p and z ∈ R. Let the distance

function d be as follows:

1. ∀i, j, h ∈ [k], i 6= h : d(ai, ai) = d(bi, bi) = 0, d(ai, ah) = d(bi, bh) = 1
and d(ai, bj) = z

2. ∀i ∈ [k] ∧ j ∈ C : d(ai, j) = 1 and d(bi, j) = z

Again, having distance 1 between facilities in the same set (A or B) and the distance z between facilities in different sets.

Clients and facilities in A have a distance of 1 and Clients and facilities in B have a distance of z (see 7). Then, the global

optimum O = A and the goal is for B to be a local optimum S.

costRC(O) = λ
k2 − k

2
+ 2 < λ

k2 − k

2
+ 2z = costRC(S)

Note that costRC(S)/costRC(O) tends to z for large enough values of z. Let Ai ⊆ A and Bi ⊆ B, with |Ai| = |Bi| = i.
Due to the symmetry of the facilities in A and in B, it does not matter which a ∈ A is included in Ai and which b ∈ B
is included in Bi. For q ∈ N and q ≤ p, we consider the neighbourhood of S, consisting of the neighbours that are

one swap(Aq, Bq) away. Due to the symmetry between a’s and the symmetry between b’s, all neighbours obtained by a

swap(Aq, Bq) have the same cost. Since S +Aq −Bq has exactly q many a’s and k − q many b’s, the edges are as follows:

•
(k2−k)

2 many edges in total.

• q(k − q) = qk − q2 many edges between a ∈ Aq and b ∈ S −Bq .

•
(k2−k−2qk+2q2)

2 many edges between facilities in the same set.
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Thus, we obtain:

costRC(S +Aq −Bq) = λ

(

z(qk − q2) +
k2 − k − 2qk + 2q2

2

)

+ 2

To ensure S being a local optimum, the following has to hold for all q ∈ [p]:

cost(S +Aq −Bq) > cost(S)

λz(qk − q2) + λ
k2 − k − 2qk + 2q2

2
+ 2 > λ

k2 − k

2
+ 2z

z(λ(qk − q2)− 2) > λ(
2qk − 2q2

2
)− 2

z(λ(qk − q2)− 2) > λ(qk − q2)− 2

z > 1, for λ >
2

qk − q2

The function fk(q) = qk − q2 is a parabola, with fk(q) = 0 for q = 0 and q = k, and fk(q) > 0 for 0 < q < k. The

parabola’s only turning point, which is a maximum, is at k/2, therefore maximizing 2/(qk − q2) for q = 1. Hence, λ has to

be greater than 2
k−1 . However, as k → ∞, λ→ 0, enabling the gap between S and O to approach infinity, even for small

λ’s.

Figure 7: This figure depicts, the distances between the clients C and the facilities F . A red line indicates a distance of z
and a green line indicates a distance of 1

D AN AGNOSTIC APPROXIMATION FOR REC k-MEDIAN

We consider the case C = F .

Consider an arbitrary solution S = {s1, . . . , sk} and an optimal solution O = {o1, . . . , ok}. We define c(s) ∈ O to be the

facility serving s in the optimal solution, or s if s ∈ O. We denote the service and reconciliation cost of solution S as f(S)
and g(S) respectively, the total cost being f(S) + λ

2 g(S). We assume λ to be constant.

We consider the reconciliation cost g(S) =
∑

i

∑

j d(si, sj) and bound each term as follows:

d(si, sj) ≤ d(si, c(si)) + d(c(si), oi) + d(oi, oj) + d(oj , c(sj)) + d(c(sj), sj).

We thus have

g(S) ≤
∑

i

∑

j

d(si, c(si)) + d(c(si), oi) + d(oi, oj) + d(oj , c(sj)) + d(c(sj), sj)

=
∑

i

∑

j

d(si, c(si)) + d(c(si), oi) +
∑

i

∑

j

d(oi, oj) +
∑

i

∑

j

d(oj , c(sj)) + d(c(sj), sj)

= k

(

∑

i

d(si, c(si)) + d(c(si), oi)

)

+
∑

i

∑

j

d(oi, oj) + k





∑

j

d(oj , c(sj)) + d(c(sj), sj)





≤ k (f(O) + g(O)) + g(O) + k (f(O) + g(O))

= 2kf(O) + (2k + 1)g(O).
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Figure 8: Effects of the sparsification method on the WIKIELECTIONS dataset. On the left, we report the cost yielded by

k-UFL+LS, for different amounts of sampled clients. In this experiment, the costs achieved by LOCALSEARCH were

similar. On the right, we report the running times.

Table 3: Characteristics of the TWITTER dataset.

Name Number of clients Number of facilities

TWITTER 3 302 362 500

Assume now that S was found by using an α-approximation algorithm for f(S), where α = O(k). The cost achieved by S
is

f(S) +
λ

2
g(S) ≤ αf(O) +

λ

2
(2kf(O) + (2k + 1)g(O))

≤ αf(O) + λ(kf(O) + (k + 1/2)g(O))

= (α+ λk)f(O) + λ(k + 1/2)g(O)

= O(k)OPT.

Thus, a reconciliation-agnostic O(k)-approximation algorithm for k-median achieves an O(k)-approximation of REC

k-MEDIAN.

E EXPERIMENTAL SETUP

We run our experiments on a machine equipped with an Intel(R) Xeon(R) Gold 6248 CPU at 2.50GHz. The CPU has 80

cores, although we limit all our executions to 16 parallel threads. The machine has 784GB of main memory.

F ADDITIONAL RESULTS ON THE EFFECTS OF SPARSIFICATION

In Figure 8 we plot the results of the sparsification method on the WIKIELECTIONS dataset. We report the costs and running

times, as we sample increasing numbers of clients. It can be seen that a few sampled clients suffice to bring the cost down

significantly, to a level close to the one obtained when employing the entire dataset.

G ADDITIONAL EXPERIMENTS

In order to further test the benefits of our sparsification approach, we perform additional experiments on a large dataset.

In particular, we employ the TWITTER dataset made available by Ordozgoiti and Gionis (2019). It consists of graph data

representing a snapshot of the follower network of Twitter. For details, see (Ordozgoiti and Gionis, 2019).

As before, We fix k = 8, and vary the value of µ (see Algorithm 1) so that the number of sampled clients is in

{3, 6, 12, 25, 50, 100}. This time, we set λ = 2n
k(k−1) , where n is the number of clients, so that both terms in the objective

function are comparable in magnitude. We plot the results in Figure 9. As shown in the plot, the cost for LOCALSEARCH
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Figure 9: Effects of the sparsification method on the TWITTER dataset.

drops sharply as the number of sampled clients increases. Interestingly, k-UFL+LS fails to attain results of the same quality.

While we are unsure of the reason, we speculate that this might be a consequence of the fact that this algorithm optimizes a

proxy of the second term of the objective. While this strategy enables the derivation of a constant-factor approximation

guarantee, in practical settings where this term is large it might introduce significant distortions. Thus, in this scenario, we

advocate for the choice of the LOCALSEARCH heuristic as a cautious rule of thumb.

The running times, shown as well in Figure 9, illustrate how the sparsification method offers an effective way to trade-off

between computational costs and solution quality. We emphasize that in these experiments we limited the processing power

to 16 cores. Nevertheless, since the method involves running an instance of the problem for each facility in the dataset, it

stands to reason that additional parallel processors would yield significant benefits. Even though we did not have time to

systematically test this claim before submission, we did execute several runs, using 25, 50 and 100 sampled clients, using 64

cores. We observed running times of around 200, 400 and 750 seconds respectively, which are comparable or superior to

those taken by running the vanilla LOCALSEARCH algorithm on the entire dataset. This reinforces the conclusion that our

approach makes it possible to improve running times with moderate sacrifices in quality.
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