
This is a repository copy of Multi-Model Specifications and their application to 
Classification Systems.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/201271/

Version: Accepted Version

Proceedings Paper:
Burns, Alan orcid.org/0000-0001-5621-8816 and Baruah, S (2023) Multi-Model 
Specifications and their application to Classification Systems. In: 31st International 
Conference on Real-Time Networks and Systems, proceedings. 31st International 
Conference on Real-Time Networks and Systems, 06-08 Jun 2023 ACM , 155–165. 

https://doi.org/10.1145/3575757.3575760

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Multi-Model Specifications and their application to
Classification Systems

Alan Burns
The University of York

UK

alan.burns@york.ac.uk

Sanjoy Baruah
Washington University

USA

baruah@wustl.edu

ABSTRACT

Many safety-critical systems are required to have their correctness

validated prior to deployment. Such validation is typically performed

using models of the run-time behaviour that the system is expected

to exhibit and experience during run-time. However, these systems

may be subject to different requirements under different circum-

stances; also, there may be multiple stakeholders involved, each with

a somewhat different perspective on correctness. We examine the

use of a multi-model framework based on assumptions (Pre and Rely

conditions) and obligations (Post and Guarantee conditions) to repre-

sent the workload and resource related needs of complex AI system

components such as DNN classifiers. We identify three kinds of

multi-models that are of particular interest: Independent, Integrated

and Hierarchical. All the individual models comprising an indepen-

dent multi-model must remain valid at all times during run-time;

at least one of the models comprising an integrated multi-model

must always be valid. With hierarchical multi-models all models are

initially valid but the component’s behaviour may gracefully degrade

through a series of models with successively weaker assumptions

and commitments (we show that Mixed-Criticality Systems, widely

studied in the real-time computing community, are particularly well-

suited for representation via hierarchical multi-models). We explain

how this modelling framework is intended to be used, and present al-

gorithms for determining the worst-case timing behaviour of systems

that are specified using multi-models.

ACM Reference Format:

Alan Burns and Sanjoy Baruah. 2023. Multi-Model Specifications and their

application to Classification Systems. In The 31st International Conference

on Real-Time Networks and Systems (RTNS 2023), June 7–8, 2023, Dort-

mund, Germany. ACM, New York, NY, USA, 11 pages. https://doi.org/10.

1145/3575757.3575760

1 INTRODUCTION

The safety properties of many safety-critical systems must be verified

before they may be deployed out in the field. Since such verification

occurs prior to run-time, it is typically performed upon carefully-

constructed models of the run-time behaviour that the system is

expected to exhibit. Such models are designed to emphasize the

salient features of interest from the perspective of verification.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

RTNS 2023, June 7–8, 2023, Dortmund, Germany

© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9983-8/23/06.

https://doi.org/10.1145/3575757.3575760

The verification of timing correctness properties (e.g., that dead-

lines are met) is usually done by the application of results from

real-time scheduling theory. The models used in real-time schedul-

ing theory make assumptions regarding the form of the workload

that will need to be accomodated and the characteristics of the plat-

form upon which such executions will occur. The validity of the

verification depends upon the actual workload and platform being

compliant with these model assumptions. For instance, the widely

used Liu & Layland task model [20] assumes that the real-time work-

load comprises an a priori known number of recurrent processes that

are called tasks, each of which generates pieces of work (“jobs”)

a specified minimum duration (called the task period) apart, with

each job needing to execute for no more than a specified duration

of time (called the worst-case execution time or simply WCET); for

such a workload executing upon a single fully preemptive processor,

results in [20] a guarantee that any workload for which the sum of

the ratios of the WCET-to-period parameters of all the tasks does not

exceed ln 2 (≈ 0.69) is scheduled by the Rate-Monotonic scheduling

algorithm such that each job completes execution prior to the arrival

of the next job of the same task. However, this guarantee need not

hold if any of the assumptions are violated – if either the workload

or the processing platform is not compliant with the model, or if the

WCET-to-period ratios sum to more than the specified bound.

In this paper we model such workload and resource-usage specifi-

cations as a contract between assumptions (A) and obligations (O)

(or commitments) [10, 17, 18, 23]: if the system behaves according to

the assumptions then the obligations (including meeting deadlines)

shall be delivered1.

At runtime a system that has been verified according to the ap-

propriate schedulability test may depend upon the validity of the

assumptions regarding the characterisation of the work that must be

performed and the resources required for this work. And if these

assumptions hold then a verified implementation guarantees to meet

its obligations. (Note that the system does not need to check dur-

ing run-time that its assumptions are being met, although a more

resilient/robust implementation may choose to do so.)

And if the assumptions do turn out to be invalid at some time

during operation then the system is allowed to undertake any action,

including shut-down (although again a more resilient or robust im-

plementation may make an effort towards meeting its commitments

at least partially, invalid assumptions notwithstanding).

In 2007, Vestal [29] proposed a generalization to the Liu & Lay-

land task model [20], the distinctive feature of which is that the

WCET parameter of each task is no longer a single value. Instead,

1Assumptions are often described [8] as a combination of Pre-conditions (P) and

Rely conditions (R), while Obligations are a combination of Postconditions (Q) and

Guarantee conditions (G).

1



117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

RTNS 2023, June 7–8, 2023, Dortmund, Germany Alan Burns and Sanjoy Baruah

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

each task is characterized by multiple WCET parameter values rep-

resenting different estimates, that may be trusted to different levels

of assurance, of the actual (unknown) maximum duration for which

each job of the task may actually execute. Each task is assigned a

“criticality” level, informally denoting its importance to some stake-

holder in the system. The correctness criterion is that all tasks at or

above a particular criticality level commit to meet their deadlines

assuming that the actual execution durations of all jobs do not exceed

the WCET estimates made at the level of assurance corresponding

to that criticality level. MCS’s have been very widely studied in the

real-time scheduling literature (see, e.g., [6] for a survey); we will

see, in Section 2.1, that this Vestal model for MCS’s is essentially

what we are terming here a hierarchical multi-model.

For relatively simple components a single model, such as the

Liu & Layland characterization [20] of each task by a single period

parameter and a single WCET estimate, is adequate. In general,

however, it is the case that the work that each task in a component

has to undertake may vary according to ambient operating conditions

(for example, the number of planes in a radar image, the number

of faces in a recognition system, or the number of cars in a traffic

control system), and as a consequence the expectations upon the

system –the obligations that can reasonably be expected from it–

may vary. It may also be the case that different stakeholders have

somewhat different expectations of the system. We will show how

both these cases may be modelled by specifying multiple assumption-

obligation pairs for a single component. It is not always the case

that the worst-case load on the system is when these parameters are

at their maximum. What may maximise the load on one task may

reduce the load on other tasks; these relations must be taken into

account if overly pessimistic scheduling analysis is to be avoided.

The first contribution of this paper is therefore an extension of the

properties of a mixed-criticality system to a more general notion of a

multi-model specification. And rather than linking assumptions only

to execution times (the resources needed), in this paper we allow

them to also incorporate assumptions about the number of relevant

entities in the input space (the work that has to be done). We believe

that this framework is widely applicable to a range of systems, in

particularly those that incorporate AI algorithms and other forms of

Learning-Enabled components [21] such as classifiers.

The second contribution is to consider how the worst-case execu-

tion time of software components that are based on deep learning

and related AI technologies can be computed. Such components are

increasingly being deployed for classification problems in complex

autonomous resource-constrained cyber-physical systems. Many of

these systems are employed (or are being considered for employ-

ment) in safety-critical applications and require accurate predic-

tions to be delivered in real time using limited computing resources

(this is sometimes called “edge AI” where the efficient execution

of machine intelligence algorithms on embedded edge devices is

required [9, 31]).

A number of schemes have been produced that aim to determine

the worst-case path through a sequence (or cascade) of classifiers.

For example Razavi et al. [24] note “Deep learning (DL) inference

has become an essential building block in modern intelligent appli-

cations. Due to the high computational intensity of DL it is crucial

to scale DL inference serving systems in response to fluctuating

workloads to achieve resource efficiency.” They provide a heuris-

tic to reduce the typical execution time of an object recognition

system that is made up of a set of different classifier (including

face recognition, optical character recognition, and natural language

understanding). In this paper we demonstrate that a relative straight-

forward approach (compared with more general forms of WCET

analysis) based on Dynamic Programming can be used to derive

worst-case execution times for systems of classifiers whose temporal

behaviours are bounded by workload assumptions.

Having derived this modelling and analysis technique for classi-

fication systems we use it to illustrate the multi-model framework.

The remainder of the paper is therefore organised as follows. In the

next section we introduce the notion of a multi-model and define

three different forms: independent, integrated and hierarchical. In

Section 3 we then define a single-model specification scheme based

on Assumptions and Obligation for a SIMO-based classification

system, and illustrate how timing analysis can be performed upon

systems that are specified in this manner. Section 4 then describes

a Multi-Model classification system, building upon the modelling

framework for a single classification system from Section 3. Conclu-

sions are drawn, and directions for future work suggested, in Section

5.

In this initial paper on Multi-Models and their application to

classification systems we will keep the discussion informal and

focus more upon communicating insight and intuition rather than

formally defining our approach and providing rigorous correctness

proofs. In this spirit we introduce the salient aspects of our proposed

approach via a number of examples.

2 MULTI-MODEL SYSTEMS

Here we consider systems having more than one model to specify

their expected runtime behaviour. Such multi-models2 are particu-

larly relevant if (i) there are different modes of operation that give

rise to different models; or (ii) there are different stakeholders that

define different assumptions and obligations for the system.

We noted in the introduction that Mixed-Criticality Systems

(MCS’s) are a specific example of the Multi-Model approach. We

therefore start with a review of MCS. Although the use of contracts

(mappings from assumptions to obligations) are used extensively in

component engineering, they have not been widely applied to the

temporal properties of real-time systems. Notable exceptions are

works by Benveniste et al. [3] and Stoimenov et al. [28].

2.1 Related Work: Mixed-Criticality Systems

Mixed-criticality systems (MCS), widely studied in the real-time

scheduling literature, provide an illustrative example of the use of

multi-models for representing complex components. As stated in

Section 1, each task in the task model proposed by Vestal [29] is

characterized by multiple WCET parameter values representing dif-

ferent estimates, that may be trusted to different levels of assurance,

of the actual (unknown) maximum duration for which each job of

the task may actually execute. Each task is also assigned a criticality

level, which is, informally speaking, an indicator of the importance

2The term ‘multi-model’ is used in a number of different contexts, in particular with

regard to multi-model databases; there are also similar notions such as compositional

analysis – here we use the term to simply express that a single system is being specified

using more than one workload/resource model.

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Multi-Model Specifications and their application to Classification Systems RTNS 2023, June 7–8, 2023, Dortmund, Germany

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

of that task to overall system correctness. As stated in Section 1, the

Vestal [29] notion of correct system behavior is this: assuming that

the actual execution durations of all jobs of all tasks do not exceed

the WCET estimates made at the level of assurance corresponding

to a particular criticality level, the system commits to meet their

deadlines (i.e., complete execution prior to the arrival of the next job

of the same task) of all tasks with criticality level at or above that

criticality level.

From an analysis standpoint the important property of the Vestal

model is not the use of criticality but the fact that the task-set un-

der inspection has more than one model [4]. Vestal suggests that

different stakeholders would want to assign different values to one

of the parameters (the WCET) characterising each task: in effect

there is not one but a collection of models that are being applied to

the task-set, each modelling the system from a somewhat different

perspective. Since the 2007 publication of Vestal’s paper [29] there

have been over 500 papers produced that have extended and utilised

this notion of MCS [6, 7]. However, there have also been a number

of papers that have criticised the Vestal approach [13–16, 22]; much

of this criticism is based on different views as to the meaning of

“criticality.” But we point out that the rich body of results that have

appeared under the umbrella of MCS do not require or assign any

particular meaning to the term “criticality;” what they utilise and

exploit is the idea that there is more than one interpretation of the

temporal properties (i.e. parameters) of the tasks under considera-

tion. Testament to the usefulness of this multi-model extension is

the volume of applicable results that have been generated in under

15 years.

Burns et al. have illustrated [5, 8, 19] how the run-time behaviour

of a simple MCS may be specified by using Rely Conditions (As-

sumptions) and Guarantee Conditions (Obligations). In the Mixed-

Criticality framework there is a “degraded” mode with weaker Rely

and Guarantee conditions into which the system may transition. In

this degraded mode only the higher-criticality jobs are guaranteed to

meet their deadlines. This is therefore an example of a hierarchical

multi-model. In the following section we will argue that this is one

of three possible kinds of multi-model.

2.2 Types of Multi-Model

It is sometimes convenient to interpret assumption-obligation spec-

ifications in terms of mappings. Under such an interpretation, the

assumptions specify the set of all behaviors of the environment for

which the system is expected to behave correctly; the obligations

specify the corresponding correct system behaviors. Then correct

system execution maps each assumed behavior of the environment

to some correct system behavior – see the top diagram of Figure 1.

The middle diagram in this Figure depicts a MCS with a hierarchical

relationship between the assumptions and obligations. The bottom

diagram generalises this relationship; there are overlapping sets of

assumptions leading to overlapping obligations. In both of these

situations, correct behaviour of the system requires at least one of

the set of assumptions to remain true.

As stated above, our objective is to develop efficient algorithms

that satisfy multiple models – multiple assumption-obligation spec-

ifications. We consider such a multi-model framework to be very

general, and applicable to modelling a variety of different situations,

A OSystem

A OSystem

A OSystem

Figure 1: The top diagram depicts system execution as a map-

ping from a set A of assumed behaviors of its environment

to a set O of system behaviors that fulfils its obligations. The

middle diagram depicts a mixed-criticality system in which the

sets of assumptions and obligations satisfy a subset/ superset

relationship. And the bottom diagram depicts the execution of

multi-model systems with overlapping integrated assumptions

and obligations.

with the different models accorded different interpretations. For

example:

Different Environmental Conditions (‘Modes’). A system that

is intended to operate in several different environmental conditions

may be expected to behave very differently under these different

conditions. For such systems, the expected behaviors under the

different environmental conditions may be represented as different

models. (For instance, the expected number and type of objects in

an image may vary significant depending upon the time of day.)

Different Stakeholders. It may sometimes be the case that rather

than developing individual bespoke systems for several different

stakeholders, it is more efficient to develop a single system that is

capable of meeting all their needs.

Generalising from the representation of MCS’s as multi-models we

identify three forms of relationship between the individual models

within a Multi-Model framework:

(1) independent multi-models,

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

RTNS 2023, June 7–8, 2023, Dortmund, Germany Alan Burns and Sanjoy Baruah

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

(2) integrated multi-models, and

(3) hierarchical multi-models.

We shall look at each of these relationships assuming, for ease of

presentation, that there are just two individual models, a and b, in

each case. Recall that each model (e.g., a) is defined by a set of

assumptions (Aa ).

Independent Multi-Models. For independent multi-models, an

implementation must assume that both sets of assumptions remain

true at all times. It follows that all obligations are met. The multi-

model is violated if, for example, Aa or Ab fails at run-time. It

follows that there is just one mode of behaviour: (i) Aa ∧ Ab .

Integrated multi-models. Here an implementation may assume

that one, or both, sets of assumptions hold. It follows that one set of

assumptions may fail as long as the other set remain valid. Hence

there are three modes of behaviour that are determined by these

assumptions: (i) Aa ∧ Ab , (ii) ¬Aa ∧ Ab and (iii) Aa ∧ ¬Ab .

Hierarchical Multi-Models. This is a special case of integrated

multi-models that additionally satisfy a hierarchical relationship

(mixed criticality systems are examples). Where a system degrades,

from a model with Aa to one with Ab satisfying Aa ⇒ Ab (and

Oa ⇒ Ob ) the assumptions and obligations are said to be weakened.

Consequently one of the modes of behaviour (Aa ∧ ¬Ab ) cannot

arise, and hence we just have: (i) Aa ∧ Ab and (ii) ¬Aa ∧ Ab .

Indeed as Aa ⇒ Ab , (i) can be written simply as Aa .

Figure 2 illustrates the constraints associated with these three model

types.

Note that independent multi-models, in which all assumptions

must always be satisfied, are really just a partitioning of the system’s

behavior and hence do not add to the expressive power of the mod-

elling approach. It is the integrated and hierarchical multi-models

that are novel constructs. Note also that it is possible for an integrated

multi-model to include hierarchical elements, and this is discussed

further in Section 4.4.

Aa ∧ Ab ; (O ≡ Oa ∧ Ob )

¬Aa ∧ Ab ; (O ≡ Ob ) Aa ∧ ¬Ab ; (O ≡ Oa )

¬Aa ∧ ¬Ab ; (no O)

Figure 2: “Mode” changes in Multi-Models. Independent: no guaran-

tees upon any transition out of the initial (blue) mode. Integrated: guar-

antees as shown. (Hierarchical: Aa ⇒ Ab , and hence the right-most

path is impossible.)

The use of integrated multi-models will be illustrated in Section 4

by applying it to models of a typical classification system. The single

model version of which is introduced in the next section.

3 A SINGLE-MODEL CLASSIFICATION

SYSTEM

In this section we present a single-model specification scheme based

upon Assumptions and Obligations for a classification system, and

illustrate how timing analysis can be performed upon systems so

specified. We will use the example of Single Input, Multiple Output

(SIMO) classifiers to provide an application context for the purposes

of illustrating our ideas. In systems such as Faster R-CNN [27],

SIMO classifiers break down a complex image into a number of

‘boxes’ (RoIs – Regions of Interest) and then the content of each

RoI is classified. (Note, the approach described in this paper is also

applicable to YOLO (You Only Look Once) classifiers [25, 26].) To

make things concrete, in Sec. 3.1 we introduce a toy example of the

use of such a specification.

For software components such as classifiers it is necessary to

define a workload and resource-usage model that will allow the

worst-case input sequence to be derived and the worst-case execution

time for this sequence to be computed. We assume that a single

execution of the classifier involves analysing a sequence of RoIs that

are required to be placed into one of a finite set of classes. There

must be a bound on the number of RoIs and there may also be bounds

on the number of entries in each class. In addition, there may be

further (arbitrary) constraints over the mix of classes in the input

sequence.

The proposed workload model uses Assumptions to capture the

above constraints. We allow the cost (required execution time on

the available computing resource) for each RoI to be class specific.

Moreover, we allow these costs to be sensitive to knowledge that

the classifier may have obtained from the input sequence that it has

already processed. For example, if the applicable Assumptions imply

that there can be at most one RoI of class Cx in any sequence of

RoI’s, then once such a RoI has been identified in a sequence the

classifier may be able to reduce its execution time by simplifying

the processing of subsequent RoI’s – the Assumptions can be relied

upon.

Below (Sec. 3.1) we first illustrate this modelling approach via

a simple contrived example. We then show (Sec. 3.2) how the max-

imum execution duration for our example can be derived for a se-

quence of RoI’s satisfying a given set of assumptions; this maximum

execution duration immediately yields an obligation (guarantee) on

whether the processing of the sequence of RoI’s can meet a speci-

fied deadline or a predefined bound on the total execution time. In

Section 4 this single model approach will be generalised so that a

classifier can be subject to the requirements of more than one model.

3.1 An Example Classifier - CADIS

Our illustrative toy example3 concerns a CADIS (for Cat And Dog

Identification System), a software component that is tasked with

identifying the breeds of all the cats and dogs that appear in an input

3This toy example is very loosely based on an Identify Friend or Foe (IFF) application

system that uses DNN-based image processing to distinguish between friendly and

hostile aircraft, and may further classify each kind.

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Multi-Model Specifications and their application to Classification Systems RTNS 2023, June 7–8, 2023, Dortmund, Germany

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

image – see Fig. 3. Given such an image, an Initial component first

breaks it down into a number of “boxes” (RoIs – Regions of Interest),

each of which contains an image of interest (i.e., an image of either

a cat or a dog) – we assume this takes an execution duration of one

time unit per identified RoI. Each RoI is then passed on to a Cat

Breed Classifier (CBC).

Initial CBC DBCImage

< {Cat, Dog} Breed of Cat Breed of Dog

RoI

Figure 3: CADIS – A Cat And Dog Identification System

(1) The CBC first determines whether the image contained in this

RoI is of a cat – we assume this operation takes at most two

time units. If the answer is “no” (hence it must be a “dog”)

then this RoI is immediately passed on to the Dog Breed

Classifier (DBC). If however the answer is “yes,” the CBC

processes the RoI further (taking up to an additional six time

units to do so) to identify the actual breed of the cat.

(2) However if it is known (because it follows from the current

state of the system and its assumptions) that the RoI passed

on to the CBC cannot possibly contain the image of a dog,

it follows that it must contain the image of a cat. In this

event, the CBC can skip the first step and immediately begin

processing the RoI to identify the cat breed (with at most six

time units of processing).

(3) In a similar vein, if it is known that the RoI passed on to the

CBC cannot possibly contain the image of a cat, the CBC

immediately passes this RoI through to the DBC.

The DBC processes any RoI passed on to it to identify the breed of

the dog in the RoI; we assume that such processing takes up to five

time units.

To summarise the execution durations (or worst-case execution

times – WCET’s) of the three classifiers in Figure 3:

• Initial: The WCET is 1 on any RoI determined to contain an

image of interest.

• CBC: If a RoI passed to it is known to contain a cat image,

then its WCET is 6. If it is known to contain a dog image,

then its WCET is 0 (since it can directly pass this RoI through

to the DBC). If it is a priori unknown whether it contains a

dog or a cat image, then its WCET is 8 (2+6) if it contains a

cat image and 2 (2+0) if it contains a dog image.

• DBC: Any RoI passed on to it must contain a dog image;

processing such a RoI has WCET of 5.

In the remainder of this section, we will seek to determine the

tightest guarantees that can be made on the maximum duration taken

to complete the processing of an unknown sequence of RoI’s. We

emphasize that the above description of both the functional behavior

and the WCET numbers of the three components – Initial, CBC, and

DBC – comprise a part of the assume conditions: they are part of

the assumptions upon which our analysis may rely.

In the absence of any further assumptions, it is evident that the

“worst” sequence (the one that requires the maximum duration to

process) is one in which each RoI contains the image of a cat: for

such a sequence, each RoI would experience a WCET of 1 in the

Initial classifier, and 2 + 6 = 8 in the CBC, for a total bound of 9N

for N RoIs. So if N is bounded to be, for example, no greater than 4:

A
def
= N ≤ 4

(i.e. no input image will contain more than 4 RoI’s) then the maxi-

mum duration cannot exceed (9 × 4) = 36.

In this Assumption, which can be looked upon as a predicate that

holds true throughout the execution of the classifiers, N denotes

the number of RoIs that have been passed from Initial to CBC. The

Assumption predicate A is assumed to be true whenever CBC or

DBC undertakes an action (i.e. executes an operation). So N can be

thought of as a state variable that counts the number of RoIs seen

thus far. Similar state variables, Nc and Nd , may denote the number

of cat images and dog images that have been forwarded from Initial.

Bounds on these values may also form part of the specification.

The role of the Assumption predicate is to bound the work that the

classifiers may be required to do. The simplest way of doing this is

to bound N as the above example illustrates.

For a more interesting example, let us suppose that our assump-

tions additionally asserts that there will be at most two dogs and at

most two cats in the sequence:

A
def
= N ≤ 4 ∧ Nc ≤ 2 ∧ Nd ≤ 2

Each RoI will have a WCET=1 in the Initial classifier (for a total

WCET of 4 for this classifier); let us compute the execution duration

upon the other two classifiers for particular sequences.

• If the four animal images were to appear in the order ⟨D, D,

C, C⟩ within the sequence, each would have a WCET of 1

in Initial. The first two would each have a WCET of 2 in the

CBC followed by 5 in the DBC; hence, each would have a

WCET of 1 + 2 + 5 = 8. However, it will subsequently follow

(from A) that there are no more dog images in the sequence,

and hence the remaining animal images do not need to be

pre-processed in the CBC; each would consequently only

experience a WCET of (1 + 6). Summing over all four RoI’s

we have a duration equal to 8 + 8 + 7 + 7 = 30.

• If, however, they were to appear in the order ⟨C, D, C, D⟩

within the sequence, it may be verified that only the last pet-

image RoI (the last “D”) would skip the first step in the CBC,

for a total duration bound of (1 + 2 + 6) + (1 + 2 + 5) + (1 +

2 + 6) + (1 + 5), or 32.

It may be verified by exhaustive enumeration (in Sec. 3.2 below, we

obtain a more efficient means of doing so) over all possible orderings

of the two dogs and the two cats in the RoI sequence that ⟨C, D, C,

D⟩ represents the worst case and that 32 is consequently the duration

bound under the assumption that there are at most two cat images

and at most two dog images in the sequence of 4 RoI’s.

Another, less intuitive, example is where the Assumption pred-

icate asserts that there may be a maximum of 2 dogs and 3 cats in

our 4-RoI sequence:

A
def
= N ≤ 4 ∧ Nc ≤ 3 ∧ Nd ≤ 2

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

RTNS 2023, June 7–8, 2023, Dortmund, Germany Alan Burns and Sanjoy Baruah

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

The above cases all still apply but there are additional sequences

where there are 3 cats and 1 dog. For example, ⟨C, C, D, C⟩ gives

9+9+8+9 (=35). The same result occurs wherever the single dog

appears in the first three RoIs.

The specification of the classifier is completed by asserting that

the Obligation on the classifier, expressed as a Postcondition, Q, is

that all pets have their species (type) and breed identified:

Q
def
= ∀i • Species(RoIi ) ∧ Breed(RoIi )

The index i is bounded by A (in effect i ≤ 4 in the example).

The predicates Species and Breed simply return TRUE when that

attribute has been identified. This Postcondition is required to be true

when the classifier completes. The other aspect of the component’s

obligations is that the execution time (e) of the classification system

(Initial, CBC and DBC) is bounded to a known acceptable value, V .

This is best expressed as a Guarantee condition (G) [8]:

G
def
= e ≤ V

In the above example if V is equal or greater than 35 then this

obligation can be satisfied.

3.2 Determining the Maximum Execution

Duration

We now generalize from the examples above, and devise a general

procedure for determining the maximum duration needed to process

an image, given an assumption asserting that there are at most Nmax

RoI’s in the input image of pets (cats or dogs), of which at most

Nmax
c will be of cats and Nmax

d
of dogs. We will show below that we

can guarantee to process this entire sequence of RoI’s in an interval

of duration not exceeding the value F (Nmax
,Nmax

c ,Nmax

d
) obtained

by solving the recurrence defined in Fig 4 for F (N ,Nc ,Nd ). This

recurrence may be understood as follows:

(1) If N equals zero or if Nc and Nd both equal zero, then there

can be no RoI of a pet; hence no RoI will be passed on from

the Initial classifier to CBC (and subsequently to DBC). This

is the base case. The cost of processing zero pets is of course

0.

(2) Else, if (Nd = = 0) the CBC may assume that each RoI

passed on to it must be of a cat, and hence skip the pre-

processing and immediately move on to identifying the cat’s

breed, at a WCET of 6. Furthermore, it is evident that at most

min(N ,Nc ) RoI’s will be passed on from the Initial classifier

to CBC.

(3) Analogously to the above case, if (Nc = = 0) the CBC may

assume that each RoI passed on to it cannot be of a cat and

must hence be of a dog. It therefore immediately passes it on

to the DBC, which will process it with a WCET of 5.

(4) It remains to consider when both Nc ≥ 1 and Nd ≥ 1. Ob-

serve that the maximum time required to process the entire

sequence is the larger of the maximum processing time if

(i) the first RoI in the sequence is of a cat, or (ii) it is of a dog:

(i) In the former case, the CBC would take a total of up to 8

time units to process the first pet-containing RoI, (since

the pre-processing WCET on the CBC is 2, followed by a

further WCET of 6 for the actual breed identification), after

which the remainder of the sequence has at most (N − 1)

pet-containing RoI’s of which at most Nc − 1 are of cats

and at most Nd of dogs.

(ii) In the latter case, the CBC would pre-process the RoI

(WCET of 2) and pass it on to the DBC (WCET of 5

for identifying the dog-breed), after which the remainder

of the sequence has at most (N − 1) pet-containing RoI’s of

which at most Nc are of cats and at most Nd − 1 of dogs.

A Dynamic Program. The recurrence in Figure 4 clearly demon-

strates that the problem of computing F (N ,Nc ,Nd ) possesses the

optimal substructure property (see, e.g., [11, p. 379]), and is hence

amenable to solution as a Dynamic Program [2]. Notice that the

recursive calls made in computing F (N ,Nc ,Nd ) are to F (N −1,Nc −

1,Nd ) and F (N − 1,Nc ,Nd − 1) – in both cases, two of the three

arguments are strictly smaller integers. Hence computing the values

F (x,y, z) in order and storing them in a table:

for x = 1 to Nmax

for y = 1 to min(x,Nmax
c )

for z = 1 to min(x,Nmax

d
)

Compute and store F (x,y, z)

// Using previously computed-and-stored F values

clearly has running time no worse that O(Nmax × Nmax
c × Nmax

d
),

implying an asymptotic complexity no worse than O((Nmax)3), for

computing f (Nmax
,Nmax

c ,Nmax

d
).

This straightforward derivation of a dynamic program contrasts

with more complex optimal solutions such as model checking, con-

troller synthesis, or two-player strategies. Moreover, the use of sim-

ple assumption predicates contrasts favourable with more compre-

hensive specification approaches such as guarded command lan-

guages, state diagrams etc. Nevertheless, the expressive power of

the approach does seem to be sufficient to allow a wide range of

constraints to be managed without recall to the use of these methods

or heuristic (non-optimal) solutions.

3.3 A Bottom-up Implementation

Although it may seem more natural to solve the dynamic program

obtained in Section 3.2 above in a top-down manner, here we apply

a bottom-up approach since that more easily generalises to the multi-

model case we will discuss in Section 4. Accordingly, let us first

reformulate the recurrence to facilitate bottom-up implementation:

let Fc(T ,TC,TD) denote the maximum cost of processing an image

with T pets (RoIs), TC cats and TD dogs. It is readily seen that the

bottom-up recurrence is

Fc(T ,TC,TD) = max

(
Cc + Fc

(
T + 1,TC + 1,TD

)
,

Dc + Fc
(
T + 1,TC,TD + 1

) )

where Cc is the cost of processing an extra cat (i.e. TC + 1), and Dc

is the processing cost of a further dog (i.e. TD + 1). The iteration

stops when Fc(T + 1,TC + 1,TD) and Fc(T + 1,TC,TD + 1) are both

invalid; i.e. not sanctioned by the model. If both are valid then the

maximum must be taken, with the cat costing Cc (8 in our running

example) and the dog Dc ((2+5)=7). If only the cat possibility is

valid then

Fc(T ,TC,TD) = Cck + Fc(T + 1,TC + 1,TD)

6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Multi-Model Specifications and their application to Classification Systems RTNS 2023, June 7–8, 2023, Dortmund, Germany

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

F (N ,Nc ,Nd ) =




0, if (N = = 0) or ((Nc = = 0) ∧ (Nd = = 0))

6 ×min(N ,Nc ), if (Nd = = 0)

5 ×min(N ,Nd ), if (Nc = = 0)

max

(
8 + F (N − 1,Nc − 1,Nd )

7 + F (N − 1,Nc ,Nd − 1)

)
otherwise

Figure 4: Computing the worst-case cost of processing N RoI’s, under the assumption that there are ≤ Nc cat images and ≤ Nd dog images.

type SoFar is array(0..MaxN, 0..MaxN) of integer

with Default_Component_Value => -1

S : Sofar

function Fc(TC, TD : integer) return integer is

X,Y : integer := 0

VD, VC : boolean

begin

if S(TC,TD) > -1 then return S(TC,TD); end if

VD := Valid(TC, TD+1)

VC := Valid(TC+1, TD)

if VD and VC then

X := Cc + Fc(TC, TD+1)

Y := Dc + Fc(TC+1, TD)

X := max(X,Y)

S(TC,TD) := X

return X

end if

if VC then return Cck + Fc(TC+1, TD); end if

if VD then return Dck + Fc(TC, TD+1); end if

return 0

end Fc

Figure 5: Bottom-up implementation of the recurrence: Ada pseudo-

code.

where Cck is the cost of a cat when the type of the input is known

(so 6 in this example). And if only a dog is possible then

Fc(T ,TC,TD) = Dck + Fc(T + 1,TC,TD + 1)

with Dck = 5.

In the above description, three parameter (T , TC and TD) are em-

ployed to illustrate the recurrence property. However, on inspective,

it is clear that T (the number of pets) is always equal to TC + TD

(number of cats plus the number of dogs). Hence the implementation

drops the T parameter.

An outline of the pseudo (Ada) code for the algorithm is given in

Figure 5. The function returns one of four values: (i) the maximum

of the two allowed paths, or else (ii) the value of taking a cat when

only a cat is valid, or else (iii) the value of taking a dog when only a

dog is valid, or else (iv) the value 0 as neither a cat nor a dog can be

taken.

The array S holds previously computed values – that can be used

to reduce the computational load. A simple two dimensional array

is used in the pseudo code, with all elements in this array being

initialised to −1.

Since the recurrence is bottom up, the initial call of the function

is:

Cost := Fc(0, 0)

The call terminates and returns when a recursive call is made that

has no valid successor (and hence returns 0).

The code implementing the function Valid is written according

to the assumptions, and is therefore model-specific. For example,

if there is a maximum of 6 pets, 3 cats and 4 dogs then the Valid

function is simply:

function Valid(TC, TD : integer) is

begin

return TC+TD <= 6 and TC <= 3 and TD <= 4

end

This gives a result of 51 which is delivered by the sequence ⟨C, C,

D, D, D, C⟩.

The algorithm was coded in Ada and when executed on a normal

laptop returns ‘instantaneously’ from relatively large models such

as T = 400, TC = 200, and TD = 250; i.e., 400 RoIs, ≤ 200 cats

and ≤ 250 dogs. For this particular example, the computed worst-

case execution time for the classifier is 3400, and happens when

a sequence of 199 cats is followed by 200 dogs and then a final

cat. In this example the function Fc was called 128,976 times with

the S array providing the (previously computed) answer on 48,326

occasions.

3.4 Extending the model – arbitrary constraints

The above example shows a model defined by the costs of each

operation and a function that checks for a valid operation. The costs

reflect assumptions made about the RoI. Typically, if something

about the type of the RoI is known then the cost of the operation

can be reduced. In the simple example above if the RoI is known to

not be a cat then it may be passed directly to the dog classifier and

its execution time reflects the fact that the input is definitely a dog.

We re-emphesize that the assumptions are, in effect, axioms – they

are true if the system behaves correctly, while if the system does not

behave correctly then nothing need be guaranteed.

In addition to constraints concerning the number of RoIs and the

maximum number of each type of RoI, it is possible to add further

constraints that can help reduce the solution space for the algorithm.

So, for example, if it is known (i.e. it is a valid assumption) that

there are always more dogs than cats then Valid can reflect this:

function Valid(TC, TD : integer) is

begin

return TC+TD <= N and

TD + min(N-T, Nd-TD) > TC

end

The function returns true if TC+TD is not too large and if the number

of dogs so far identified (TD) plus the minimum that could still be in

the input image is greater than the number of cats so far identified

(TC). If this is true then there is a possible future that will satisfy the

constraint and hence this is a Valid step.

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

RTNS 2023, June 7–8, 2023, Dortmund, Germany Alan Burns and Sanjoy Baruah

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

This example demonstrates the expressive power of the mod-

elling technique being proposed. A wide range of constraints can be

utilised. Some, for example incorporating cache effects that reduce

the execution time of repeating steps (e.g. a cat after a cat), may re-

quire modifications to the recurrence formulation so that the history

of identified RoI processed so far is available at each step; but this is

not a fundamental change to the scheme and is easily incorporated.

Depending upon the kinds of assumptions that it is permitted to

specify for a given application, determining satisfiability of assump-

tions may turn out to be considerably more complex than was the

case in the earlier examples. Indeed, one could envision assumptions

that are of arbitrary computational complexity to check – e.g., if one

of our CADIS stakeholders were to specify an assumption that the

number of cats is the index, in some given standard encoding, of a

Turing Machine that halts on all inputs, then determining satisfiabil-

ity of this assumption requires the solving of the Halting Problem

and is thus undecidable. Although this example is admittedly very

contrived and rather extreme, one could envision more plausible

assumptions that similarly encode, say, some NP-complete problem.

If checking the satisfiability of assumptions is computationally non-

trivial, then efficiency considerations must take the computational

complexity of doing so into account; it may be computationally more

efficient to simply assume that some or all of the assumptions hold

and thereby take on the responsibility of satisfying more obligations

than may be strictly necessary.

As part of future work we plan to give further consideration to

the properties of the constraints that are amenable to inclusion in

the proposed modelling framework. In this paper we now focus

on extending this classification example to illustrate Multi-Model

specifications.

4 USE OF THE CADIS EXAMPLE TO

ILLUSTRATE MULTI-MODEL

SPECIFICATIONS AND ANALYSIS

We now extend the CADIS example to illustrate the use of a Multi-

Model for classification. Suppose that the nature of the environment

in which the classifier is to be deployed gives rise to two types

of input image. As cats and dogs do not naturally share the same

space, the image will either contain mainly dogs or mainly cats,

but not significant numbers of both. Each of the two image types

will have different assumptions. Alternatively, the CADIS may be

used simultaneously by two stakeholders, one that is interested in

determining the breeds of all the dogs in an image and the other,

in determining the breeds of all the cats in the (same) image. Each

stakeholder may again make different assumptions.

As before let N be a counter of the number of RoI’s, Nc the

number of these RoI’s containing images of cats, and Nd the number

of those containing images of dogs. The assumptions bound all of

these counters. The image type that is predominantly populated with

dogs is defined by the model, DM . A second model, CM , captures

the properties of images that contain mostly cats.

Let the assumption predicate for the DM model be given by:

ADM def
= N ≤ 8 ∧ Nc ≤ 1 ∧ Nd ≤ 7

and for CM:

ACM def
= N ≤ 7 ∧ Nc ≤ 6 ∧ Nd ≤ 1

Both have the same Postcondition:

QDM
,QCM def

= ∀i • Species(RoIi ) ∧ Breed(RoIi )

and Guarantee condition:

GDM
,GCM def

= e ≤ V

Hence model DM allows up to 8 Pets with a maximum of 1 Cat and

7 Dogs; whereas CM allows up to 7 Pets, with a maximum of 6 Cats

and 1 Dog. If both scenarios are to be catered for by a single model

S then the assumption predicate must incorporate both extremes:

AS def
= N ≤ 8 ∧ Nc ≤ 6 ∧ Nd ≤ 7

The algorithm of Section 3.3 reveals that the worst-case execution

duration of just DM is 63, just CM is 60 and of S is 70.

However it is clear that the single model S covers combinations

that are not possible; for example there cannot be 4 Dogs and 3 Cats

in the same image. An integrated Multi-Model of DM and CM will

more accurately specify how the classifier can behave, for example:

(1) The first RoI received from Initial will be pre-processed in

CBC (WCET = 2) to determine whether it is of a cat or a dog.

If the former, its breed is determined at an additional WCET

of 6; if the latter, it is passed on to DBC which determines

the dog-breed at an additional WCET of 5.

Suppose the outcome here were “cat” – from the perspective

of DM , its assumption predicate implies that all following

RoI’s are of dogs. (Analogously if the outcome were “dog”

the CM model will determine, based on its assumption predi-

cate, that all following RoI’s are of cats.)

(2) Our system seeks to satisfy the integration of both require-

ments. Hence regardless of the outcome above, neither as-

sumption is invalidated and consequently the second RoI of

interest must also be pre-processed.

Let us suppose that the outcome for this RoI is the opposite

of the outcome for the first (i.e., the first two RoI’s are either

⟨Cat, Dog⟩ or ⟨Dog, Cat⟩). The reader may verify that the

maximum duration required in Initial, CBC and DBC for

processing these two RoI’s is 2 + 8 + 7 = 17.

(3) The third RoI must also be preprocessed. Note that this pre-

processing necessarily invalidates one of the two assumptions

– if the outcome is “dog” then the assumption of theCM model

no longer holds (analogously if the outcome is “cat” then the

assumption predicate for the DM model is no longer valid).

Let us separately consider the possibilities when the prepro-

cessing (WCET=2) reveals that this third RoI is of a) a dog

or of b) a cat.

a) If this turns out to be a dog image then the assumption of

the CM model is not valid and henceforth our system need

only seek to satisfy the requirement of the DM model. It

may therefore assume that every subsequent RoI is of a

dog, and consequently no pre-processing in CBC is needed;

rather, the RoI is immediately passed through to the DBC

which identifies the dog breed at a WCET cost of 5. Since

there may be at most six such RoI’s (including the current

–third– one), the total processing duration does not exceed

6 + 6 × 5 = 36.

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Multi-Model Specifications and their application to Classification Systems RTNS 2023, June 7–8, 2023, Dortmund, Germany

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

b) If, on the other hand, the third RoI turns out to be of a

cat then the assumption defining the DM model is inval-

idated; henceforth our system need only seek to satisfy

the requirement of the CM model. It will therefore assume

that every subsequent RoI is of a cat, and consequently no

pre-processing in CBC is needed; rather, the RoI is imme-

diately processed to identify the cat breed (at a WCET 6).

Since there may be at most 5 such RoI’s (including the

current one), the total processing duration does not exceed

5 + 5 × 6 = 35.

Summarising the discussion above, (i) worst-case duration

for processing the first two RoI’s is 17; (ii) pre-processing the

third RoI takes a maximum duration of 2; and (iii) processing

the remaining RoI’s takes a maximum duration of either 36

(if of a dog) or 35 (if of a cat). Hence, the worst-case duration

for a system to satisfy the requirements of this sequence is

17 + 2 +max(36, 35) = 55

However, this sequence of images which has the property of sat-

isfying both models for as long as possible is not the worst-case.

Consider the sequence ⟨D,D,D,D,D,D,C,D⟩. After two RoIs the

assumption of the CM model is broken and hence only the DM

model applies, but because the allowed single cat does not appear un-

til almost the end the preprocessing of all but the last RoI is required.

This means that the worst case is

8 + (6 × 7) + 8 + 5 = 63

We continue with the issue of using the Multi-Model to estimate

the worst-case cost (cost(MM)) of the classification. As it is neces-

sary to ensure that either (or both) of the assumptions remains true,

the Multi-Model caters for each of the single models and hence:

cost(MM) ≥ max(cost(DM), cost(CM))

With this example the computed cost is as low as possible as cost(MM) =

63. This compares favourable with cost(S) = 70.

4.1 Necessary Properties for Integrated

Multi-Models

To integrate DM and CM to form an effective single Multi-Model

there are some necessary prerequisites:

• The two model assumptions are not inherently contradictory:

it is possible for both to be true.

• If both assumptions are true then the obligations are comple-

mentary.

In the example

ADM ∧ ACM
= N ≤ 7 ∧ Nc ≤ 1 ∧ Nd ≤ 1

but as N ≤ Nc + Nd then

ADM ∧ ACM
= N ≤ 2 ∧ Nc ≤ 1 ∧ Nd ≤ 1

Hence a maximum of two pets, one cat and one dog; both of which

will have their breeds identified.

A system that adheres to the integration of models DM and CM

may experience various Modes of behaviour:

• Mode 1: ADM and ACM are true. Both sets of obligations

are delivered

• Mode 2a: ADM remains true, ACM is false. Only obligations

of DM are satisfied.

• Mode 2b: ADM is false, ACM remains true. Only obligations

of CM are satisfied.

• Mode 3: ADM and ACM are false. No obligations are satis-

fied.

In Fig. 2, the top-most mode corresponds to Mode 1, the two modes

depicted one layer down represent Modes 2a and 2b, and the mode

depicted at the bottom represents Mode 3. A system that enters Mode

3 (from either 2a or 2b) has failed. A transition from Mode 2a to 2b,

or vice versa, cannot be taken. Modes 1, 2a and 2b are all valid and

legal.

We note, as illustrated earlier, that the worst-case cost does not

necessarily occur when the system stays in Mode 1 for the longest

time.

A final example illustrates that the estimate of the Multi-Model

can lie between that of the combined model and the individual

models. Let

ADM def
= N ≤ 3 ∧ Nc ≤ 0 ∧ Nd ≤ 3

and for CM:

ACM def
= N ≤ 3 ∧ Nc ≤ 3 ∧ Nd ≤ 0

then the combined single model is :

AS def
= N ≤ 3 ∧ Nc ≤ 3 ∧ Nd ≤ 3

These give rise to the following computations: the cost of DM is 18,

CM is 21 and S is 27. However the Multi-Model results in a cost of

23, which is higher than either of the individual models but lower

that the combined single model.

4.2 How to compute the cost of the worst-case

load

To compute the worst-case duration any input adhering to a Multi-

Model specification requires only a trivial change to the algorithm

given earlier. For the single model case a Valid function was

required that checked that the next step in the recurrence was allowed

(was sanctioned by the model). For the Multi-Model case this is

simply extended:

function Valid(TC, TD : integer) is

begin

return Valid_CM(TC, TD) or Valid_DM(TC, TD)

end

where Valid_CM and Valid_DM are the checks for each specific

model.

When applied to the earlier example this dynamic program does

return with the worst-case estimate of 63.

We note, for completeness, that for independent Multi-Models

(where both models must be true at all times) then the following

code is appropriate.

function Valid(TC, TD : integer) is

begin

return Valid_CM(TC, TD) and Valid_DM(TC, TD)

end

Both models must sanction the step.

9



1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

RTNS 2023, June 7–8, 2023, Dortmund, Germany Alan Burns and Sanjoy Baruah

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

4.3 Discussion – Extending the Scope of the

Approach

The CADIS example discussed above has the property that the

temporal parameters of the models (Cc Dc, Cck, Dck) as illustrated

in Figure 5 are constant; they are not a function of the model that

is being applied (e.g. not a function of which of the single models

is valid when the parameter is employed). But this constraint is not

necessarily always true.

If we return to the example given in Section 4 then the worst-case

sequence of RoIs was obtained from the DM model: ⟨D,D,D,D,D,

D,C,D⟩. One interpretation of the DM model is that it applies to

stakeholders that are only interested in determining the breeds of all

the dogs in any input image. By the time a RoI is processed that has

the sole cat the CM model has become invalidated. Hence only DM

applies. Arguably the DM stakeholder is not interested in the breed

of the solitary cat. And hence the cost associated with the cat should

be only 2 not 2 + 6. Giving an overall cost of 57 (not 63).

To illustrate how this can be taken into account consider the pa-

rameterCc which is the cost of determining the breed of an identified

cat. In the examples discussed so far it has the constant value of 6.

To make its value model-specific requires a simple modification to

the code outlined in Figure 5, i.e. to include:

if Valid_CM then Cc := 6 else Cc := 0

Similar changes are needed to the other WCET parameters.

4.4 Integrated and Hierarchical Multi-Models

It was noted earlier that with a pure hierarchical model the assump-

tions are weakened as the system moves from one mode of operation

to another, degraded, mode. This means, with two models with pred-

icates Valid1 and Valid2, then if Valid1 is true then so is

Valid2. The normal mode of operation is governed by the first

model, the degraded mode by the second. In the degraded mode less

will be achieved — i.e., the obligations are reduced. And it follows

that the resources required will also be reduced.

So in the CADIS example rather than the classifier failing if there

are more than Nmax RoIs in the input image, we could define a

degraded mode in which the type of the Pet within the RoI, but

not the breed, is computed. So in the normal mode we had the

assumptions and obligations as before:

A
def
= N ≤ 4

Q
def
= ∀i • Species(RoIi ) ∧ Breed(RoIi )

but in degraded mode (X):

AX def
= N ≤ 10

QX def
= ∀i ∈1..4 • Species(RoIi ) ∧ Breed(RoIi ) ∧

∀j>4 • Species(RoIj )

So if the number of RoIs is bounded by the initial aassumption then

all Pets will have their type and breed identified. But if there is a 5th

RoI then rather than fail, the system degrades to a mode in which

only the species of the RoI is identified. To make this commitment it

is still necessary to bound the load on the system. And if the number

of RoIs now raises above 10 then even the degraded mode will fail.

Note in this simple example the two models have the appropriate

hierarchical relationship as A ⇒ AX .

It is of course acceptable to combine Integrated and Hierarchical

Multi-Models. So again with the CADIS use case if ADM and ACM

both fail then there could be a degraded model similar to the one

given above that delivers only a partial classification.

5 CONCLUSIONS AND FUTURE WORK

We have proposed a framework for modelling and evaluating the

worst-case execution times of complex software components such

as classifiers. We have used a combination of assumptions and obli-

gations to define a workload model and a resource (CPU time)

requirements model. The assumptions are used to constrain potential

paths through the software and hence deliver effective estimates of

overall end-to-end timing behaviour. These estimates are obtained by

utilising a bottom-up recurrence algorithm that only considers steps

that are compliant with the defined assumptions. These assumptions

are also used to identify input elements and sequences that are easier

to process and hence lead to a reduction in the worst-case execution

time.

Although single models are potentially useful, a strong motivation

for the modelling approach adopted is to facilitate the combination

of models into, what has been termed here, Multi-Models. The

extensive literature on Mixed-Criticality systems has revealed a

large number of applications where one model is used to describe

the required behaviour in a “normal” mode of operation, and another

the acceptable reduced behaviour in a “degraded” mode. These

Multi-Model descriptions are mostly hierarchical – the degraded

behaviour is a restricted form of the normal behaviour. In this paper

we have generalised this relationship to also include independent and

integrated Multi-Models. The integrated Multi-Model seems to be

particularly effective at describing and analysing complex systems

with multiple stakeholders or modes of operation.

In this first paper on these execution time Models and Multi-

Models we used an artificial simple example to motivate and illus-

trate the main ideas. Readers will hopefully be able to appreciate

that functionally similar applications (such as real-time classifiers

and other AI inspired autonomous components) within future Cyber

Physical Systems are likely to become increasingly common. For ex-

ample, a road-side monitoring unit could take periodic photographs

and be tasked with (a) estimating the real-time volume of traffic,

(b) classifying the traffic into cars, vans, lorries, bikes, motor bikes

etc, (c) estimate the total number of drivers/passengers for various

combinations of these vehicle classes, taking into account the fact

that a single photograph cannot simultaneously have a maximum

number of each vehicle class, (d) identify the number of self-driving

cars, (e) identify the number of cyclists not wearing helmets, etc.

A combination of these requirements could be expected to lead to

realistic independent, integrated and hierarchical Multi-Models.

There are a number of extensions that follow naturally from the

work presented in this paper:

• For classifiers that have multiple components, such as IDKs [1,

12, 30], the order in which components are arranged can have

a significant influence on the worst-case execution time of

the classification. In future work we will use the framework

developed to investigate this optimisation.

10



1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Multi-Model Specifications and their application to Classification Systems RTNS 2023, June 7–8, 2023, Dortmund, Germany

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

• In future work we will also give further consideration to the

properties of the constraints that are amenable to inclusion in

the proposed modelling framework.

• A required extension to the framework is to consider multiple

concurrent components, their deadlines and system schedul-

ing; for Mixed-Criticality Systems this has been addressed [8]

within an assumptions/obligations formulation. In future work

we will integrate this approach with the more general Multi-

Model notion present in this paper.

• In the models presented in this paper the only failures con-

sidered are those caused by the input sequence failing to

comply with the defined assumptions. It is also possible to

introduce classification failures; e.g. a dog being wrongly

identified as being a cat, and hence its breed not being as-

certained unless it passes through both the CBC and DBC

components. With such failures the Assumptions must be

extended to include a Fault Model that bounds the number

of such mis-classification. This addition will be described in

detail in an extended version of this paper.

REFERENCES
[1] S.K. Baruah, A. Burns, and Y. Wu. 2021. Optimal Synthesis of IDK-Cascades. In

Proc. 29th International Conference on Real Time Networks and Systems, RTNS.

ACM.

[2] R. Bellman. 1957. Dynamic Programming (1 ed.). Princeton University Press,

Princeton, NJ, USA.

[3] A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J-B. Raclet, P. Reinkemeier,

A. Sangiovanni-Vincentelli, W. Damm, T. Henzinger, and K.G. Larsen. 2018.

Contracts for System Design. Foundations and Trends in Electronic Design

Automation 12 (2018), 124–400.

[4] A. Burns. 2019. Multi-Model Systems – an MCS by any other name. In Proc. 7th

Int. RTSS Workshop On Mixed Criticality Systems (WMC). 5–8.

[5] A. Burns, S. Baruah, C.B. Jones, and I. Bate. 2019. Reasoning about the Relation-

ship Between the Scheduler and Mixed-Criticality Jobs. In Proc. 7th Int. RTSS

Workshop On Mixed Criticality Systems (WMC). 17–22.

[6] A. Burns and R.I. Davis. 2017. A Survey of Research into Mixed Criticality

Systems. ACM Computer Surveys 50, 6 (2017), 1–37.

[7] A. Burns and R.I. Davis. 2022. Mixed Criticality Systems: A Review (13th Edi-

tion). https://www-users.cs.york.ac.uk/burns/review.pdf and White Rose Reposi-

tory: https://eprints.whiterose.ac.uk/183619/. (2022).

[8] A. Burns and C.B. Jones. 2022. An Approach to Formally Specifying the Be-

haviour of Mixed-Criticality Systems. In Proc. 34th Euromicro Conference on

Real-Time Systems (ECRTS) (Leibniz International Proceedings in Informatics

(LIPIcs)), Martina Maggio (Ed.), Vol. 231. Schloss Dagstuhl – Leibniz-Zentrum

für Informatik, Dagstuhl, Germany, 14:1–14:23.

[9] J. Chen and X. Ran. 2019. Deep Learning With Edge Computing: A Review. Proc.

IEEE 107, 8 (2019), 1655–1674.

[10] Y.F. Chen, E.M. Clarke, A. Farzan, M.H. Tsai, Y.K. Tsay, and B-Y Wang. 2010.

Automated Assume-Guarantee Reasoning through Implicit Learning. In Computer

Aided Verification, Tayssir Touili, Byron Cook, and Paul Jackson (Eds.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 511–526.

[11] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. 2009. Introduction to

Algorithms. (third ed.). MIT Press.

[12] R. Davis, S. Baruah, A. Burns, and Y. Wu. 2022. Optimally ordering IDK classi-

fiers subject to deadlines. Real-Time Systems online (2022).

[13] R. Ernst and M. Di Natale. 2016. Mixed Criticality Systems?A History of Mis-

conceptions? IEEE Design & Test 33, 5 (2016), 65–74.

[14] A. Esper, G. Neilissen, V. Neils, and E. Tovar. 2015. How Realistic is the mixed-

criticality real-time system model. In 23rd International Conference on Real-Time

Networks and Systems (RTNS 2015). 139–148.

[15] A. Esper, G. Nelissen, V. Nélis, and E. Tovar. 2018. An industrial view on the

common academic understanding of mixed-criticality systems. Real-Time Systems

54, 3 (2018), 745–795.

[16] P. Graydon and I. Bate. 2013. Safety Assurance Driven Problem Formulation for

Mixed-Criticality Scheduling. In Proc. WMC, RTSS. 19–24.

[17] T.A. Henzinger, S. Qadeer, and S.K. Rajamani. 1998. You assume, we guarantee:

methodology and case studies. In International Conference on Computer Aided

Verification. Springer Berlin Heidelberg, 440–451.

[18] C.B. Jones. 1981. Development Methods for Computer Programs including

a Notion of Interference. Ph.D. Dissertation. Oxford University. Printed as:
Programming Research Group, Technical Monograph 25.

[19] C.B. Jones and A. Burns. 2020. A Rely-Guarantee Specification of Mixed-

Criticality Scheduling. arXiv. (2020). 2012.01493.

[20] C. Liu and J. Layland. 1973. Scheduling Algorithms for Multiprogramming in a

Hard Real-Time Environment. J. ACM 20, 1 (1973), 46–61.

[21] S. Neema. 2019. Assurance for Autonomous Systems is Hard. https://www.darpa.

mil/attachments/AssuredAutonomyProposersDay_ProgramBrief.pdf. (2019). Last

Accessed: 2022-21-01.

[22] M. Paulitsch, O.M. Duarte, H. Karray, K. Mueller, D. Muench, and J. Nowotsch.

2015. Mixed-Criticality Embedded Systems–A Balance Ensuring Partitioning and

Performance. In Proc. Euromicro Conference on Digital System Design (DSD).

IEEE, 453–461.

[23] D. Powell. 1992. Failure Mode Assumptions and Assumption Coverage. In Proc.

22nd Int. Symp. on Fault-Tolerant Computing (FTCS-22). IEEE Computer Society

Press, 386–95.

[24] K. Razavi, M. Luthra, B. Koldehofe, Max M. Muhlhauser, and L. Wang. 2022.

FA2: Fast, Accurate Autoscaling for Serving Deep Learning Inference with SLA

Guarantees. In Proc. IEEE Real-Time and Embedded Technology and Applications

Symposium (RTAS).

[25] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. 2016. You Only Look Once:

Unified, Real-Time Object Detection. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR).

[26] J. Redmon and A. Farhadi. 2018. YOLOv3 Incremental Improvement. CoRR

abs/1804.02767 (2018).

[27] S. Ren, K. He, R. Girshick, and J. Sun. 2016. Faster R-CNN: Towards Real-

Time Object Detection with Region Proposal Networks. (2016). arXiv, cs.CV,

1506.01497.

[28] N. Stoimenov, S. Chakraborty, and L. Thiele. 2012. Interface-Based Design of

Real-Time Systems. Springer Berlin Heidelberg, Berlin, Heidelberg, 83–101.

[29] S. Vestal. 2007. Preemptive Scheduling of Multi-criticality Systems with Varying

Degrees of Execution Time Assurance. In Proc. Real-Time Systems Symposium

(RTSS). 239–243.

[30] X. Wang, Y. Luo, D. Crankshaw, A. Tumanov, F. Yu, and J.E. Gonzalez. 2018.

IDK Cascades: Fast Deep Learning by Learning not to Overthink. (2018). arXiv,

cs.CV, arXiv, 1706.00885.

[31] S. Yao, S. Hu, Y. Zhao, A. Zhang, and T. Abdelzaher. 2017. DeepSense: A Unified

Deep Learning Framework for Time-Series Mobile Sensing Data Processing. In

Proc. of the 26th International Conference on World Wide Web. 351–360.

11


	Abstract
	1 Introduction
	2 Multi-Model Systems
	2.1 Related Work: Mixed-Criticality Systems
	2.2 Types of Multi-Model

	3 A Single-Model Classification System
	3.1 An Example Classifier - CADIS
	3.2 Determining the Maximum Execution Duration
	3.3 A Bottom-up Implementation
	3.4 Extending the model – arbitrary constraints

	4 Use of the CADIS Example to Illustrate Multi-Model Specifications and Analysis
	4.1 Necessary Properties for Integrated Multi-Models
	4.2 How to compute the cost of the worst-case load
	4.3 Discussion – Extending the Scope of the Approach
	4.4 Integrated and Hierarchical Multi-Models

	5 Conclusions and Future Work
	References

