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a b s t r a c t

The Discrete Fourier Transform (DFT) has been extended to lossless compression for binary images.
Binarisation is key for DFT to compress losslessly because there exist lossy reconstructions (within a
specific range of loss values) which are error-corrected during the binarisation step, effectively making
the image lossless. In an ironic twist, the quantisation effect which usually introduces errors, has been
utilised to remove noise from lossy reconstructions.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Compression is useful for reducing the space and bandwidth
requirements of image storage and transmission [1] and allows
more efficient image processing by intelligent machines. The
Fourier Transform [2] is a popular image compression technique
able to discover hidden patterns via a convolutional property
which often transforms seemingly arbitrary data into a more
efficient description. It is also one of the most fundamental op-
erations in digital signal processing [3] and has a wide range of
applications from image reconstruction and noise reduction to
quantum mechanics, etc.

Unfortunately, it does not compress losslessly which prevents
it from being applied to certain use cases. For instance, lossless
image compression is a legal requirement for medical images
used in diagnosis [4,5] since loss of information in medical images
can lead to a misjudgment of the disease [1]. Furthermore, a
lossless Fourier-based compression opens up the potential for a
Fourier Transform bounded (FT-bounded) Kolmogorov Complex-
ity, which is immensely useful for a plethora of other theoretical
and practical applications [6].

A recent advancement successfully extended the Discrete
Fourier Transform (DFT) to lossless image compression [7] by
innovatively utilising a quantisation effect (which usually intro-
duces errors) for denoising (error-correct loss from noisy recon-
structions). We review this error-correcting quantisation effect
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in more detail and present proofs that expand on its underlying

principles.

The paper is organised as follows: Section 2 introduces con-

cepts related to image compression while Sections 3 and 4 pro-

vide a detailed breakdown of how the DFT was extended for

lossless compression. Section 5 briefly introduces Algorithmic

Information Theory (AIT) and presents FT-bounded Kolmogorov

Complexity. Section 6 summarises the findings, Section 7 presents

the various strengths, limitations and future directions of this

research and Section 8 discusses parallels and differences with

related research.

2. Image compression

Compression is used to reduce the space and bandwidth re-

quired for image storage and transmission [1] and can lead to

efficient representations useful for intelligent machines.

Definition 1 (Binary Images). Let B = {0, 1} and let S = BW×T

denote the finite set of all 2D binary images of width W and

height T (The size of |S| = |B|WT = 2WT ).

Definition 2 (Compression Encoder). Let Z = CU×V denote some

representation space in which images are compressed, where

U, V ∈ Z. A compression encoder C : S → Z is responsible

for transforming an arbitrary image s ∈ S into a compressed

representation z ∈ Z , such that:

z = C(s) (1)
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Definition 3 (Compression Decoder). The corresponding decoder
C−1 : Z → S is responsible for retrieving the image s ∈ S from a
compressed representation z ∈ Z , s.t.:

s = C−1(z) (2)

Definition 4 (Lossless Compression). A compression is considered
lossless if the decoder can restore the original image exactly from
the compressed representation without incurring any loss, s.t.
∀s ∈ S :

C−1(C(s)) = s (3)

Remark 1 (Examples of Lossless Compression). Lossless image com-
pression is useful for the fast transmission of large archived
images and legally required for medical images used for diag-
nostic purposes [4,5] since loss of crucial information in med-
ical images can lead to a misjudgment of the disease by doc-
tors [1] and medical technologies. There are many lossless im-
age compression methods [8], such as: Entropy coding, Huff-
man coding, Bit-plane coding, Run-length coding, Lempel Ziv
Welch coding, Gzip, Bzip2 (a block-sorting compressor based on
the Burrows–Wheeler transform), PPMZ (prediction by partial
matching), etc.

Definition 5 (Lossy Compression). A lossy compression returns an
image C−1(C(s)) which approximates the original image s with
some level of error (loss) ε ∈ ℜW×T , s.t.:

C−1(C(s)) = s + ε (4)

Remark 2 (Examples of Lossy Compression). Lossy compressions
can be useful in applications whereby a certain amount of error
is an acceptable trade-off for increased compression performance.
More than half of all files transmitted over the Internet con-
sist of lossy compressed objects. Methods for lossy compres-
sion include: Fractal compression, Transform coding, Fourier-
related Transform, Wavelet Transform and the classic JPEG algo-
rithm (which is still the most popular algorithm for lossy image
compression [4]).

Definition 6 (Compression Ratio). The Compression Ratio CR is
defined as:

CR =
|s|

|C(s)|
(5)

Remark 3 (Lossy vs Lossless Compression Ratios). Compression
quality is typically quantified by CR (where a higher CR it more
desirable). CRs achieved by lossless image compression algo-
rithms are typically not as good as those achieved by lossy al-
gorithms [4]

3. Fourier transform based compression

The Fourier Transform is a very popular lossy image compres-
sion technique for its ability to decompose seemingly arbitrary
data into efficient descriptions by discovering hidden patterns.
Due to the efficiency of its convolutional property, the Discrete
Fourier Transform (DFT) [2] is one of the most fundamental
operations in digital signal processing [3] with a wide range of
applications from image reconstruction and noise reduction to
quantummechanics, etc. Recently the DFT has also been extended
to lossless image compression via quantisation [7]. Below we
provide new proofs which expand on the definitions given in [7]
to offer a precise explanation on how the DFT was extended
to lossless compression by innovatively utilising quantisation to
error-correct some lossy images.

Definition 7 (Discrete Fourier Transform). Let F : ℜW×T →
CU×V denote the 2D Discrete Fourier Transformation responsible
for transforming an image s from the spatial domain into the
frequency domain (by decomposing it into complex-valued co-
efficients with real and imaginary components), s.t. ∀u ∈ [0,U ∈
Z), ∀v ∈ [0, V ∈ Z):

F(s)u,v =

W−1
∑

w=0

T−1
∑

t=0

sw,t · e−i2π ( uw
W

+ vt
T
) (6)

Definition 8 (Inverse Discrete Fourier Transform). Let F
−1 :

CU×V → ℜW×T denote the Inverse of the Discrete Fourier Trans-
form, such that:

F
−1(F(s)) = s (7)

and invertibility is guaranteed by orthogonality (the inverse of
the DFT is just the conjugate transpose [3]).

Definition 9 (Compression Size). The compression size of the
Fourier representation |F(s)| is the number of nonzero coeffi-
cients (i.e. sparser representations will have a smaller compres-
sion size), s.t:

|F(s)| = |

U−1
∑

u=0

V−1
∑

v=0

(F(s)u,v ̸= 0 + 0i)| (8)

Remark 4 (Compression Size in Bits). The data storage require-
ment is reduced if only the coefficients with a significant amount
of energy are stored. Therefore, to store the transformed data
in a more efficient manner, Fourier coefficients which equate to
zero get ignored. The remaining non-zero coefficients will each be
represented by an equal number of bits internally (irregardless of
their varying values and differing significant figures) due to fixed-
point arithmetic. The compression length in bits can therefore be
obtained by multiplying the compression length by a constant b
which represents the number of bits to encode a single complex
value. The number of bits for a single floating point value is usu-
ally 32 bits (full-precision), however, 16 bits (half-precision) or
64 bits (double-precision) can also be used. For a single complex
value (with a real and an imaginary component), twice as many
bits are required.

Lemma 1. The compression size will always be within the finite

limits determined by the representation space Z = CU×V :

0 ≤ |C(s)| ≤ UV (9)

Proof. Let Cmin(s) be the smallest compression size, such that
|Cmin(s)| ≤ |C(s)|, and it is a compression where all coefficients
are zero. Therefore, there will be no coefficients maintained in
the representation according to Definition 9, s.t. |Cmin(s)| = |Ø| =
0. Similarly, let Cmax(s) denote the largest compression size, s.t.
|C(s)| ≤ |Cmax(s)|, which is a compression where all coefficients
are nonzero. Therefore, all coefficients will be maintained in the
representation according to Definition 9, s.t. |Cmax(s)| = UV .
Therefore: |Cmin(s)| ≤ |C(s)| ≤ |Cmax(s)| ⇒ 0 ≤ |C(s)| ≤ UV

Definition 10 (Fourier-based Encoder). The encoding stage ap-
plies a binary mask m∗ ∈ BU×V to optimally filter the Fourier
coefficients into a minimal representation (i.e. by setting as many
coefficients as possible to zero):

C∗(s) = m∗
F(s) (10)

Remark 5 (Fourier Filtering Causes Lossy Compression). F is an
invertible function (Definition 8) and so, on its own, it does not

2
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Fig. 1. An example of a lossy image with some noise (left) which gets

error-corrected by the binarisation step to ultimately become lossless (right).

lead to any loss of information. However, during compression

(i.e. when the coefficients get filtered bym∗), a loss of information

does result. This loss is often negligible as most information gets

encoded in only a small minority of coefficients, however, this is

ultimately why traditional Fourier Transform based compression

is lossy. In fact, the greater the compression the greater the

resulting loss (highlighting the trade-off between compression

size and loss)

Definition 11 (Fourier-Based Decoder). The decoding stage in-

cludes the indicator function 1>θ to binarise the reconstructed

image returned by the inverse Fourier transformation F
−1, s.t.

C−1(z) = 1>θ (F
−1(z)) (11)

Definition 12 (Binarisation Step). The indicator function 1>θ :
ℜW×T → S is used to map real-values into binary-values using

some real-valued threshold θ ∈ ℜ, s.t ∀ŝ ∈ ℜW×T :

1>θ (ŝ)w,t =

{

1 ŝw,t > θ

0 otherwise
(12)

Remark 6 (Binarisation Step Error-Corrects Lossy Images). As the

binarisation step 1>θ maps real-values into binary-values, a quan-

tisation effect occurs. However, rather than introducing further

loss (as would be expected), this quantisation effect removes

the noise from certain lossy compressions that have resulted

from the filtering step (Remark 5). Therefore, there exists lossy

reconstructions (within a specific range of loss values) which

will be error-corrected during the binarisation step 1>θ which

effectively makes the reconstruction lossless (Fig. 1).

Lemma 2 (Error-Correction). There exist lossy images that will be

error-corrected by the binarisation step 1>θ , s.t.

1>θ (s + ε) = s (13)

where ε ∈ ℜW×T denotes the loss in addition to image s ∈ S

Proof. Let θ = 1, s = 1W×T , ε = 0.5W×T and assume, by way of

contradiction, 1>θ (s + ε) ̸= s

⇒ 1>θ (1
W×T + ε) ̸= 1W×T

1>θ (1
W×T + 0.5W×T ) ̸= 1W×T

1>θ (1.5
W×T ) ̸= 1W×T

But by Definition 12 1.5 > θ : 1.5 ⇒ 1

⇒ 1>θ (1.5
W×T ) = 1W×T

Contradiction

Lemma 3. There exist lossy images which do not get error-corrected

by the binarisation step 1>θ , s.t.

1>θ (s + ε) ̸= s (14)

Proof. Let θ = 1, s = 1W×T , ε = −1.5W×T and assume, by way
of contradiction, 1>θ (s + ε) = s

⇒ 1>θ (1
W×T + ε) = 1W×T

1>θ (1
W×T + −1.5W×T ) = 1W×T

1>θ (−0.5W×T ) = 1W×T

But by Definition 12 − 0.5 ≤ θ : −0.5 ⇒ 0

⇒ 1>θ (−0.5W×T ) = 0W×T

Contradiction

Lemma 4 (Error-Correcting Limits). The range of loss values which

can be error-corrected by the binarisation step 1>θ is bounded by

the binarisation threshold θ , s.t:

−1 + θ < εw,t ≤ θ (15)

Proof. We can derive the range of loss values which will be
corrected by 1>θ directly from the indication function’s Defini-
tion 12, s.t. ∀w ∈ [0,W ), ∀t ∈ [0, T ):

sw,t ∈ B : sw,t = 1 ⇒ sw,t + εw,t > θ

⇒ 1 + εw,t > θ

εw,t > −1 + θ

and:

sw,t ∈ B : sw,t = 0 ⇒ sw,t + εw,t ≤ θ

⇒ 0 + εw,t ≤ θ

εw,t ≤ θ

Therefore:

− 1 + θ < εw,t ≤ θ

Lemma 5 (Binarisation Threshold Limits). The threshold must be

bounded between 0 and 1, s.t. θ ∈ (0, 1] ⊂ ℜ in order to ensure

no additional loss is introduced when there is no loss to begin wih

ε = 0W×T (i.e. to ensure the quantisation error does not end up

making a lossless image lossy).

Proof. Let εw,t = 0. Now to keep εw,t = 0, according to Lemma 4,
the threshold θ is bounded such that:

− 1 + θ < 0 ⇒ θ < 0 + 1 ⇒ θ < 1 is the upper bound

θ ≥ 0 ⇒ θ = 0 is the lower bound

⇒ θ ∈ [0, 1) ⊂ ℜ

Lemma 6 (Binarising a Binarised Image). When the binarisation

threshold is bounded between 0 and 1, s.t. θ ∈ [0, 1), the binarisation
step 1>θ does not modify an image that is already binarised, such

that ∀s ∈ S:

1>θ (s) = s (16)

Proof. Let θ ∈ [0, 1) ⊂ ℜ be some threshold and let s ∈ S

be a binary image. Now let us assume, by way of contradiction,
that the indicator function introduces some non-zero loss ε to the
image, s.t.

1>θ (s) = s + ε

1>θ (s + 0W×T ) = s + ε

3
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Now according to Lemma 4 ∀w ∈ [0,W ), ∀t ∈ [0, T ) :

− 1 + θ < 0W×T
w,t ≤ θ

− 1 + θ < 0 ≤ θ

⇒ ε = 0W×T by Lemma 5

Therefore, we find the resulting loss is zero:

⇒ 1>θ (s + 0W×T ) = s + 0W×T

ergo, no loss is introduced

1>θ (s) = s

Contradiction

4. Lossless fourier filters

Lemma 7 (Loss of a Filter). The loss ε in terms of a given filter m is

given by:

ε = C−1(mF(s)) − s (17)

Proof.

C−1(C(s)) = s + ε by Definition 5

ε = C−1(C(s)) − s

ε = C−1(mF(s)) − s by Definition 10

Definition 13 (Lossless Compression Filters). Let M
∗ ⊂ BU×V

denote the set of lossless filters which modify the Fourier rep-
resentation F(s) without preventing it from reconstructing any
original image exactly (i.e. without loss), such that ∀s ∈ S:

M
∗ = {m | C−1(mF(s)) = s ∀m ∈ B

U×V } (18)

Lemma 8. All lossless filters necessarily have a loss of zero, s.t.

∀m ∈ M
∗ : ε = 0W×T

Proof. Let m ∈ M
∗ be a lossless filter. Now assume, by way of

contradiction, it has a non-zero loss ε ̸= 0W×T

ε = C−1(mF(s)) − s by Lemma 7

ε = s − s by Definition 13

ε = 0W×T

Contradiction

Definition 14 (The Filter Yielding the Largest Compression Size). Let
m1 be a filter consisting entirely of ones, s.t.

m1 = 1U×V (19)

Lemma 9. Filter m1 gives the largest compression size, s.t.

|m1
F(s)| = max{|mF(s)| | ∀m ∈ B

U×V } (20)

Proof.

|m1
F(s)| = |1U×V

F(s)| by Definition 14

⇒ |F(s)| = UV

(which is the largest compression size according to Lemma 1)

Lemma 10. The loss of filter m1 is ε = 0W×T

Proof.

ε = C−1(m1
F(s)) − s by Lemma 7

ε = C−1(1W×T
F(s)) − s by Definition 14

ε = C−1(F(s)) − s

ε = 1>θ (F
−1(F(s))) − s by Definition 11

ε = 1>θ (s) − s by Definition 8

ε = s − s by Lemma 6

ε = 0W×T

Lemma 11. Filter m1 ∈ M
∗ is a lossless filter

Proof.

C−1(C(s)) = s + ε by Definition 5

C−1(m1
F(s)) = s + ε by Definition 10

C−1(m1
F(s)) = s + 0W×T by Lemma 10

C−1(m1
F(s)) = s ⇒ m1 ∈ M

∗ by Definition 13

Lemma 12. Filter m1 gives the largest compression size of all lossless
filters, s.t.

|m1
F(s)| = max{|mF(s)| | ∀m ∈ M

∗} (21)

Proof. m1 ∈ M
∗ is a lossless filter (Lemma 11) and the lossless

filters are a subset of all binary filters M∗ ⊂ BU×V (Definition 13).
Now since m1 is the largest of all binary filters (Lemma 9), it
has to be the largest of the lossless filters too ⇒ |m1

F(s)| =
max{|mF(s)| | ∀m ∈ M

∗ ⊂ BU×V }

Remark 7 (Binarisation is Key for DFT to Compress Losslessly). Filter
m1 ∈ M

∗ is the only truly lossless filter (i.e. lossless in the
sense that it does not need error-correction via binarisation).
However,m1 is also trivially lossless (i.e. it has no loss by avoiding
compression of the image, Lemma 9). This highlights the signif-
icance of the error-correcting binarisation step 1>θ (Lemma 2),
without which the Discrete Fourier Transform (DFT) would have
no lossless filters that perform actual compression on the image
(and thus not viable for lossless image compression at all).

Definition 15 (The Filter Yielding the Smallest Compression Size).
Let m0 be a filter consisting entirely of zeros, s.t.

m0 = 0U×V (22)

Lemma 13. Filter m0 gives the smallest compression size, s.t.

|m0
F(s)| = min{|mF(s)| | ∀m ∈ B

U×V } (23)

Proof.

|m0
F(s)| = |0U×V

F(s)| by Definition 15

⇒ |0U×V | = 0

(which is the minimum compression size according to Lemma 1)

Lemma 14. The loss of filter m0 is ε = −s

Proof.

ε = C−1(m0
F(s)) − s by Lemma 7

ε = C−1(0U×V
F(s)) − s by Definition 15

ε = C−1(0U×V ) − s

ε = 0W×T − s

ε = −s

Lemma 15. Filter m0 is not lossless, m0 ̸∈ M
∗

Proof. Assume, by way of contradiction, filter m0 is lossless, s.t.
m0 ∈ M

∗. It follows that it must have no loss ε = 0W×T by

4
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Lemma 8. But we know by Lemma 14 that m0 does produce a
loss. Contradiction.

Definition 16 (The Optimal Filter). The optimal filter m∗ ∈ M
∗ is

the lossless filter resulting in the smallest Fourier representation,
such that:

|m∗
F(s)| = min{|mF(s)| | ∀m ∈ M

∗} (24)

Lemma 16. The smallest filter m0 ∈ BU×V is not the optimal filter

m∗ ∈ M
∗

m∗ ̸= m0 (25)

Proof. Let us assume, by way of contradiction, m0 is the op-
timal filter, s.t. m∗ = m0. Therefore, m0 ∈ M

∗ is lossless by
Definition 16. But m0 ̸∈ M

∗ is lossy by Lemma 15. Contradiction

5. FT-bounded Kolmogorov complexity

Definition 17 (Kolmogorov Complexity). The Kolmogorov Com-
plexity K is defined as the length l of the shortest program p

that can generate a given string s and halt when executed on a
universal computer U , s.t.

K (s) = min{l(p) | U(p) = s} (26)

and K (s) = ∞ if there are no such p [6]

Remark 8 (Algorithmic Information Theory). In the 1950s, Kol-
mogorov generalised Shannon’s information theoretic Entropy
metric (which measures the average information communicated
through objects produced by a random source) to be able to apply
it to the study of deterministic dynamical systems [9–11]. The
result was a precise and objective way to quantify of the amount
of information in an individual object [12], commonly referred to
as Kolmogorov Complexity [6]. It has since grown into an entirely
new branch of computer science and mathematics, known as
Algorithmic Information Theory (AIT) [6,13].

Lemma 17 (Uncomputability). Kolmogorov complexity K is a pow-

erful and elegant definition of complexity. However K is not a

computable function in general (it is only possible to bound K [11]

and approximate it [14])

Proof. The proof for the uncomputability of Kolmogorov Com-
plexity is well-known but we provide a proof here for complete-
ness. Let us assume, by way of contradiction, that K (sn) = n is
a computable function with a program size at least as large as
the complexity value n ∈ Z it returns for a given image sn ∈ S,
s.t. |K | ≥ |n|, where the size of n is the number of digits used to
represent it, s.t. |n| ≥ log(n), giving us a lower-bound on the size
of K , ⇒ |K | ≥ log(n).

Now let K−1 be a program that recursively searches for an
image with a specified complexity, s.t.

K−1(n, i) =

{

Si K (Si) = n

K−1(n, i + 1) otherwise

where S is the infinite set of lexicographical ordered binary
strings. So K−1 returns sn when given n, s.t. K−1(n, 0) = sn as
sn is determined to have a complexity of n by K−1 (by way of K ,
s.t. K (sn) = n). It necessarily follows that n is the smallest size
for any program able to produce sn, by Definition 17. Since K−1

is one such program able to produce sn, we can lower-bound the
size of K−1 to n, s.t. |K−1| ≥ n.

Further note that K is contained within K−1 and so the size
of K−1 must at least be as large as K , s.t. |K−1| ≥ |K |. Therefore,

|K−1| ≥ log(n) or ⇒ |K−1| = log(n) + c where c is a constant
denoting the fixed size overhead required by K−1 in addition to
using K . Substituting |K−1| = log(n) + c into |K−1| ≥ n gives
⇒ log(n) + c ≥ n which is clearly a contradiction for any n

exceeding c (or more precisely, we have a contradiction for any
c < n − log(n)).

Remark 9 (Complexity vs Compression). In the algorithmic sense,
higher complexity equates to less compressibility and vice-versa.
Sequences can sometimes be quite long and even seem arbitrarily
random, however, they may be hiding a simpler underlying pat-
tern (an intrinsic order) which, if discovered (i.e. by the Fourier
Transform), can be utilised to describe (or encode) the original se-
quence more efficiently, making for higher compressibility. Since
regularities can be used to compress descriptions, the absence of
regularities intuitively implies incompressibility [6].

Lemma 18 (FT-bounded Kolmogorov Complexity). The compression

size of the optimal lossless compression C∗ is equivalent to the

Fourier Transform-bounded (FT-bounded) Kolmogorov Complexity

KF , such that:

KF (s) = |C∗(s)| (27)

Proof. Let s ∈ S be an arbitrary binary image (if so desired,
this image can be read in row-by-row as a binary string). Let the
program p be the filtered Fourier representation of s, s.t. p =
mF(s) (Note that the program’s length l becomes equivalent to
the compression size, s.t. l(p) = |mF(s)|). Finally, let the computer
which executes p be the Fourier-based decoder, s.t. U = C−1.
Therefore:

K (s) = min{|mF(s)| | C−1(mF(s)) = s} by Definition 17

⇒ KF (s) = |m∗
F(s)| by Definition 16

KF (s) = |C∗(s)| by Definition 10

Remark 10 (Kolmogorov Complexity vs FT-bounded Kolmogorov

Complexity). There are some significant differences between the
pure definition Kolmogorov Complexity K (Definition 17) and FT-
bounded Kolmogorov Complexity KF (Lemma 18), which include:

• K takes in an infinite binary string, whereas KF takes in a
binary image from the set S with a finite size (Definition 1)

• K uses a Universal Computer U which has the ability to sim-
ulate one another and effectively execute any program [12]),
whereas KF replaces U with the Fourier-based Decoder
(which is essentially the Inverse Fourier Transform) and so
not a Turing Machine as it is constrained to running Fourier-
based programs. As such, KF can run any (Fourier-based)
program it is given without risk of encountering the halting

problem.

Lemma 19 (Computability). The additional constraints imposed on

FT-bounded Kolmogorov Complexity KF allow for it to be com-

putable within the range KF ∈ [0,UV ) for binary images in

S.

Proof. Let KF : S × Z → Z be the FT-bounded Kolmogorov
Complexity computed by a greedy search algorithm, s.t. ∀s ∈ S:

KF (s, n) =

⎧

⎨

⎩

∞ n ̸∈ [0,UV )

n M
∗ ∪ M

n ̸= ∅

KF (s, n + 1) otherwise

whereM
∗ denotes the finite set of lossless filters andM

n denotes
the finite set of filters with a resulting compression size of n,
s.t. M

n = {m | |mF(s)| = n ∀m ∈ BU×V }. Therefore,
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KF (s, 0) will initially assume a compression size of 0 and then
greedily enumerating all filters of that size and then doing the
same for all filters with an associated compression size of 1, and
then 2 and so on up until UV . The first lossless filter encountered
in this way would have the smallest compression size and the
algorithm would have found the FT-bounded Kolmogorov Com-
plexity (Lemma 18). Since both the lossless filters M

∗ and all
filters of a specified compression size M

n are ultimately subsets
of the binary filters BU×V , s.t. M∗,Mn ⊂ BU×V , then all subsets
used in KF have a finite size (since BU×V has a finite size, s.t.
|BU×V | = |B|UV = 2UV ) and thus are enumerable and guaranteed
to halt.

Definition 18 (Upper Semi-Computable). A function f is upper
semi-computable if f can be computably approximated from
above [12]. More precisely, if there exists another function g , such
that for some x ∈ Q and ∀k ∈ Z+:

g(x, k + 1) ≤ g(x, k) and lim
k→∞

g(x, k) = f (x) (28)

Definition 19 (Lower Semi-Computable). A function f is lower
semi-computable if −f is upper semi-computable

Definition 20 (Computable). A function is computable if it is both
upper semi-computable and lower semi-computable

Definition 21 (Decidable). Let A be a countable set. A is decid-
able (i.e. recursive) if for any candidate a, there exists a Turing
machine that can decide whether a ∈ A and halts.

Definition 22 (Enumerable). Let A be a countable set. A is (recur-
sively) enumerable if there exists a Turing machine that outputs
all and only the elements of A without halting (e.g. the prime
numbers are enumerable [12])

6. Summary

The extension of the DFT to lossless image compression is a
recent advancement in [7]. We contribute theoretical explana-
tions and proofs for a better understanding of the underlying
principles related to lossless compression using DFT and the
innovative utilisation of quantisation to perform error-correction.
To summarise, the Fourier-based compression encoder uses a
binary mask to filter the Fourier coefficients for a minimal rep-
resentation (however, this produces a lossy compression as in-
formation is discarded by the filter — highlighting the trade-off
between compression size and loss). Fortunately, the Fourier-
based decoder further binarises the reconstructed image and this
binarisation step introduces a quantisation effect which allows
for certain lossy compressions to be error corrected. While it
was shown that not all lossy images can be error-corrected by
the binarisation step (and that it is ultimately bounded by the
binarisation threshold), many lossy images can be perfectly re-
covered in this way. The corrected loss effectively bypasses the
compression-loss trade-off and, for the first time, permits the DFT
to perform non-trivial, lossless compression.

7. Future directions

Using the DFT for lossless compression was shown (on three
different tests) to be superior to many other lossless compressors
(including Huffman encoding, Run-length encoding, Lempel–Ziv–
Markov-Chain Algorithm, ZLIB, GZIP, BZIP2, etc.) [7].

However, once the Fourier-based compression encoder ob-
tains a set of coefficients for a given image, it is not trivial to filter
it optimally. A search algorithm is required to find the optimal

filter mask m∗ which has the potential to make the compression
computationally demanding (if the search is inefficient) or impair
compression (if the search is suboptimal). While it is theoretically
possible to find the optimal mask via a greedy search algorithm,
like the one shown in proof 19, it would be inefficient and
impractical due to the length of time it could take to enumerate
all filters (O(UV |B|UV )). The search could be improved if the
lossless filters M

∗ are cached and the binary filters BU×V are
iterated through just once at the beginning to generate all the
sets M

0,M1, . . . before commencing the search (O(|B|UV )). An
even better search heuristic was given in the appendix of [7]
that improves the efficiency to O(UV ) using the magnitude of
the Fourier coefficients to guide the search. However, this search
strategy would not guarantee the optimal filter is found.

The Sparse Fast Fourier Transform [15] is a recent algorithm
which can compute the DFT with a sparse frequency domain
in sub-linear runtime. This algorithm finds the minimal number
of coefficients to represent a given image and could potentially
provide a more efficient search for the optimal filter.

Alternatively, if the goal is to represent the original signal
using a relatively small set of coefficients (to reduce the com-
pression size), an alternative transformation may be desireable.
The Discrete Cosine Transform (DCT) is a close relative of the
Fourier transform and known to compact more energy into a
fewer number of coefficients [16] (the DCT representation tends
to have more of its energy concentrated in a smaller number of
coefficients when compared to other transforms like the DFT).
The DCT is frequently used in lossy data compression (such as the
widely used JPEG compression [1]) and is very similar to the DFT
except that the complex-valued coefficients are replaced with
real-valued coefficients, thus further reducing the bits required
to represent the compression (Remark 4).

JPEG2000 (a newer but less commonly used version of JPEG)
is based on the Discrete Wavelet Transform (DWT) and is the
most widely known algorithm for both lossy and lossless com-
pression [4]. While the DWT may not necessarily offer increased
compression gains over the DCT or DFT, it may improve the
overall quality of the compression since the Fourier Transform
is known not to represent abrupt changes efficiently. Consider
an image containing a square wave (which can be compactly
represented by a ‘‘half on, half off’’ signal). It would require an
infinite number of frequencies to represent this square wave
perfectly in Fourier space [9]. For any function that is smooth
everywhere except at a few singular points, there is no way
to localise these singularities in Fourier space [17] because the
Fourier transform is inherently nonlocal (unlike wavelets which
can be performed locally on a signal [17]).

Finally, it should be noted that while utilising the error-
correcting quantisation effect of a binarisation function does
successfully extend the DFT to lossless image compression, it also
limits it to binary images. Nevertheless, scaling this quantisation
effect to nonbinary data should simply be a matter of increasing
the number of quantisation buckets as required (we leave this for
future work).

8. Discussion

A couple of parallels can be found in lifting-based lossless
transforms [16] which use the Wavelet Transform and quantisa-
tion to produce lossless compressions. An input signal is trans-
formed and the resulting coefficients are quantised (i.e. lifting
steps are applied to round the values to integers). The quan-
tisation step compresses the representation but, in so doing,
introduces loss by corrupting the invertability of the transfor-
mation such that the inverse no longer guarantees an exact
reconstruction. To preserve the invertability property and recover
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the original signal perfectly, the same procedure is applied to
both the forward and inverse transforms [3] (i.e. a reversible de-
noising and lifting step is used to remove the loss [18]). Therefore,
quantisation is used to compress the representation instead of a
filtering mask and a search is used to find an optimal denoising
filter (to avoid distortions worsening the transformed component
more than the noise reduction [18]) instead of a simple linear
binarisation filter.

Another method is described in [12] which uses compression-
based denoising to error-correct a lossy image. However, this
method also relies on a search algorithm to remove noise (loss)
from a noisy image, as opposed to the quantisation effect of a
binarising threshold function. More precisely, the method uses a
Genetic Algorithm to search for an optimal compression which
can separate structure from noise by minimising the distortion
of a target image (which is noiseless), thus denoising the (noisy)
input image being compressed. Interestingly, the search objective
here is almost the exact opposite of the search objective to find
the optimal filter mask (which looks for a filter that effectively
adds noise to the image – without exceeding the error-correcting
range of the binarisation step to ensure the noise can later be
removed – to minimise the compression size, as opposed to
looking for a compression that minimises the noise).

Finally, an image compression method is described in [19]
which uses the DFT in conjunction with quantisation. However,
the compression method is not lossless. An image is divided
into blocks and DFT is then applied to each block followed by
a uniform quantisation to reduce the number of bits needed to
represent the coefficients. A Matrix Minimisation algorithm is
further applied to the high frequency components to reduce them
to 1

3
of the original size by contracting every three coefficients

into a single value. The decompression stage uses a search to
recover the original coefficients.
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