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A B S T R A C T   

The goal of this study is to develop a general strategy for bacterial engineering using an integrated synthetic 
biology and machine learning (ML) approach. This strategy was developed in the context of increasing L-thre-
onine production in Escherichia coli ATCC 21277. A set of 16 genes was initially selected based on metabolic 
pathway relevance to threonine biosynthesis and used for combinatorial cloning to construct a set of 385 strains 
to generate training data (i.e., a range of L-threonine titers linked to each of the specific gene combinations). 
Hybrid (regression/classification) deep learning (DL) models were developed and used to predict additional gene 
combinations in subsequent rounds of combinatorial cloning for increased L-threonine production based on the 
training data. As a result, E. coli strains built after just three rounds of iterative combinatorial cloning and model 
prediction generated higher L-threonine titers (from 2.7 g/L to 8.4 g/L) than those of patented L-threonine 
strains being used as controls (4–5 g/L). Interesting combinations of genes in L-threonine production included 
deletions of the tdh, metL, dapA, and dhaM genes as well as overexpression of the pntAB, ppc, and aspC genes. 
Mechanistic analysis of the metabolic system constraints for the best performing constructs offers ways to 
improve the models by adjusting weights for specific gene combinations. Graph theory analysis of pairwise gene 
modifications and corresponding levels of L-threonine production also suggests additional rules that can be 
incorporated into future ML models.   

1. Introduction 

SynBio is a field of science that involves engineering organisms for 
useful purposes by redesigning them to have new properties. Such or-
ganism redesign and engineering open unexplored routs to study 
fundamental principles of organization and behavior of complex bio-
logical systems. Besides its impact on basic research, SynBio has un-
tapped potential to produce improved industrial organisms which are 
used in many areas of human activity, from agriculture (Zhang et al., 
2017) to chemical production (Clomburg et al., 2017) and pharma-
cology (Guo et al., 2017). Microbial production of amino acids (AA), 
which reached $26 billion in 2021 (https://www.grandviewresearch. 
com/industry-analysis/amino-acids-market) is one of such areas. We 
chose AA bioproduction to demonstrate real-world utility of synthetic 

biology guided by machine learning for effective organism engineering. 
In the 1970s, strains of Corynebacterium glutamicum, Brevibacterium 

flavum, and Escherichia coli were constructed to produce threonine with 
titers measured in tens of grams per liter (Kase and Nakayama 1972) 
(Hirakawa et al., 1973). Gradual improvements of AA production driven 
by genetic selection and gene cloning described in (Wittmann and 
Becker 2007), and continued since, drove costs of these products down 
to less than $1.5 per kilogram (bulk price at Alibaba, 2022). A 
comprehensive review of newer strategies employed for strain engi-
neering in AA bioproduction (with the emphasis on metabolic engi-
neering, flux analysis and comparative genomics) is presented in (Becker 
and Wittmann 2012). Exhaustive summary of AA strain development 
tools and approaches, starting with classical mutagenesis and system 
metabolic engineering and including such modern instruments as 
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optogenetic gene regulation, AA sensors, riboswitches and so on, can be 
found in (Lee and Wendisch 2017) and in (Ma et al., 2017). An example 
of such approach is the utilization of a DNA scaffold system, in which a 
zinc finger protein served as an adapter for binding enzymes of the 
threonine biosynthetic pathway which increase the proximity of en-
zymes and local concentrations of metabolites, and led to improved 
threonine production rates (Lee et al., 2013). The same time, machine 
learning was missing in the list of impactful strategies in reviews cited 
above. 

An early example of effective incorporation of system biology and 
metabolic analysis for threonine production in E. coli can be found in 
(Lee et al., 2007). Rational reengineering of metabolic fluxes in a wild 
type C. glutamicum resulted in high levels of lysine production, as 
described in (Becker et al., 2011). Similar approach was later applied for 
bioproduction of diaminopentane, a nylon building block (Kind et al., 
2014). Comparative-genomics provided an additional tool to choose 
impactful genes and combine mutations found in genomes of strains 
selected for high levels of lysine production which generated new 
improved C. glutamicum strains (Ohnishi et al., 2002) (Ikeda et al., 
2006). In the last paper, 16 genes chosen by metabolic analysis as 
potentially affecting lysine production were a source of beneficial mu-
tations which were pooled together to improve production. A similar 
approach to strain engineering was applied to threonine production of 
E. coli (Zhu et al., 2019) (Zhao et al., 2020), but in these studies, instead 
of transferring mutations, authors up- or down-regulated key genes 
selected by flux analysis. Rather complicated metabolic analysis allowed 
them to cherry-pick additional genes that would positively-affect thre-
onine production in E. coli including elimination of proP or ProVWX 
transporters (Wang et al., 2021) and overexpression of the phaCAB gene 
cluster (Wang et al., 2019). Reduction of the genome size (Lee et al., 
2009) and use of photosynthesis as a carbon source (Korosh et al., 2017) 
were also applied to improve microbial production. Lab evolution aimed 
to increase sugar utilization was applied in (Papapetridis et al., 2018). 

Multiple OMICs datatypes are being used to guide engineering of 
industrial microorganisms. For example, key genes affecting 5-methylte-
trahydrofolate biosynthesis were identified combining modular gene 
engineering and transcriptomics. (Yang et al., 2022). Quantitative ki-
netic analysis of microbial metabolism and Bayesian inference were 
applied to modeling the central carbon metabolism and lysine produc-
tion in (St John et al., 2019). Dynamic metabolomics applied in guided 
Design Build Test Learn (DBTL) cycling was reviewed in (Vavricka et al., 
2020). Meta-analysis of adaptive laboratory evolution (ALE) aggregated 
data from 63 ALE experiments in Escherichia coli K-12 MG1655 revealed 
global trends that underlie ALE-derived strain design principles. (Pha-
neuf et al., 2020). Technical approaches described in this paper present a 
successful case of information extraction from independently selected 
high-producing industrial organisms. 

RNA-seq data may contain clues to additional genes (besides more 
obvious candidates derived from flux analysis) which can affect bio-
production. However, the multidimensional nature of metabolic and 
regulatory interaction complicates the process of finding such genes. A 
possible solution to this problem can be found in gene expression clus-
tering described in (Sastry et al., 2019), in which unsupervised machine 
learning was applied to a compendium of 250 E. coli RNA-seq datasets. 
Ninety-two statistically independent signals which modulate the 
expression of specific gene sets–iModulons–were identified in this work. 
The current release of iModulonDB covers three organisms (Escherichia 
coli, Staphylococcus aureus and Bacillus subtilis) with 204 iModulons, 
which can be expanded to additional organisms (Rychel et al., 2021). 
Near-saturated targeted mutagenesis was applied to four primary routes 
that affect lysine flux (Bassalo et al., 2018). 16,300 mutations were 
incorporated in 19 genes involved in lysine biosynthesis, lysine degra-
dation, lysine transport, and expression regulation to test their effect on 
lysine production. Reaction stoichiometry, thermodynamics, and mass 
action kinetics that form modeling frameworks used to describe how 
organisms allocate resources towards both growth and bioproduction 

are reviewed in (Suthers et al., 2021). This review focuses on the latest 
algorithmic advancements that have integrated these principles into a 
quantitative framework. 

Numerous high-yielding production strains were engineered using 
methods described above. With all their success, there is an intrinsic 
problem of knowledge gaps, which must be bridged in such knowledge- 
driven strain engineering. Finding optimal combinations of modifica-
tions of genes represents another, even bigger problem. If one wants to 
construct a production strain which contains 7–10 “improved” genes 
from a list of 20–40 candidates, they must find the best variant in 107 

gene combinations. 
Machine learning (ML) algorithms make predictions by extracting 

patterns directly from experiments. That is why, unlike metabolic 
modeling (MM), which is based on balances derived from reconstructed 
metabolic networks, ML is much less sensitive to knowledge gaps. 
Moreover, ML can be applied to navigate vast combinatorial spaces with 
models built with much smaller training sets, potentially solving the 
second problem outlined above. At the same time, ML has its own lim-
itations: its models may not generalize and extrapolate well (as noted in 
(Oyetunde et al., 2018)), although DBTL cycling allows models to iter-
atively validate and correct themselves. ML also depends on mechanistic 
inputs to build initial training sets. So, integration of MM and ML should 
produce mechanism-guided machine learning frameworks for predic-
tion and characterization of the function of complex biological systems, 
something that is required for reliable organism engineering. 

Several important papers describe ML applications for organism 
engineering, although we do not know examples of such microorgan-
isms used in the existing industrial processes. Microbial production data 
curated from ~100 papers together with additional features derived 
from the genome-scale metabolic model simulations were used to pre-
dict productivity by data augmentation and ensemble learning (e.g., 
support vector machines, gradient boosted trees, and neural networks in 
a stacked regressor model (Oyetunde et al., 2019). High-dimensional 
support vector machine (SVM) models were successfully applied to 
predict enzymes that mediate alternative branches in plant alkaloid 
biosynthesis from homologous candidate sequences which were suc-
cessfully validated in complex pathway engineering experiments 
(Moliner et al., 2019). SVM was also applied to predicting microor-
ganism growth temperatures and enzyme catalytic optima with confir-
mations by meta-analysis with Pearson correlation coefficients from 
0.75 to 0.96 (Li et al., 2019). ML studies of Pseudomonas putida KT2440 
transcriptomes reveals its transcriptional regulatory network (Lim et al., 
2022). Integration of knowledge mining, genome-scale modeling (GSM), 
and ML were applied to predict Yarrowia lipolytica titers achievable in 
bioproduction of organic acids and terpenoids. Pathway fluxes of central 
metabolism were estimated using GSMs and flux balance analysis to 
provide metabolic features used to train ML ensemble models, which 
were used to predict strain production titers with R2 up to 0.87 (Czajka 
et al., 2021). Synthetic biology tools for metabolic control including 
ML-based metabolic modeling, and CRISPR-derived methods for tran-
scription inhibition and activation are reviewed in (Lv et al., 2022). Most 
of these papers although informative, do not provide a direct guidance 
for strain engineering. 

A different paper was published by (Zhang et al., 2020), in which a 
biosensor that detects tryptophan titer was used to sample data from 
constructed strains which provided a high-quality training set for ML 
which was used to optimize the metabolic pathway of tryptophan pro-
duction. Constraint-based modeling for predicting single gene targets 
retrieved 192 impactful genes, covering 259 biochemical reactions. A 
7776-member combinatorial library (which was assembled from 
different preconstructed parts consisting of five genes selected from 
GSM simulations, each controlled by six different promoters selected 
from transcriptomics data mining) was analyzed to build predictive 
models for tryptophan biosynthesis rate in yeast. More than 500 of the 
possible genetic designs from the library were constructed and gener-
ated 124,000 experimental data points used for training of a model, 
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which suggested specific improved engineering combinations. 
Flux analysis, comparisons of mutations in the independent strains, 

and RNA-seq data can generate testable lists of gene candidates for 
combinatorial organism engineering. However, finding the most pro-
ductive combinations of such genes requires going through a vast space 
of possible combinations. Our work contains strong evidence that ML 
can be a reliable guiding tool in this quest. We chose threonine pro-
duction as a test case because 50 years of strain development by large 
research groups has produced efficient industrial strains that can serve 
as a benchmark for our study. Additionally, the impact of many meta-
bolic genes on threonine production is well understood, which facilitates 
mechanistic interpretation of the effects observed in our study. 

2. Methods 

2.1. Strains 

All strains are derived from Escherichia coli K-12. Constructed strains 
represent combinations of (1) individual or combined deletions of one to 
three out of 8 E. coli genes; (2) two host strains; (3) several modifications 
of Thr operon and the asd gene (inserted in chromosome or cloned in 
plasmid); and (4) 7 cloned and overexpressed “supplementary’ genes. 
These modification, and other factors varied in collected samples are 
listed in Supplementary Table 1 and are reflected in sample names, as 
shown in Supplementary Table 2. 

Axygen 1.1 mL 96-deep-well plates were used to grow the cultures 
using QuickSeal breathable membrane at 37 C, with 80% humidity at 
1000 RPM in 200 μL of minimal seed media (KH2PO4 1 g/L, Bis-Tris 40 
g/L, (NH4)2SO4 10 g/L, Glucose, 7.5 g/L, MgSO4

. 7H2O 0.3 g/L, pH 7.0) 
containing proline (300 mg/mL), isoleucine (100 mg/mL), methionine 
(200 mg/mL), lysine (100 mg/mL), diaminopimelate (100 mg/mL), and 
thiamine (1 mg/mL) with appropriate antibiotics. After about 24 h, 20 
μL was transferred to 220 μL of minimal fermentation media (KH2PO4, 1 
g/L, Bis-Tris, 40 g/L, (NH4)2SO4, 30 g/L, Glucose, 30 g/L, 
MgSO4

. 7H2O,1.2 g/L, Na3Citrate, 1.0 g/L, MnSO4
. H2O, 0.02 g/L, FeSO4, 

0.03 g/L, pH 7.0) containing the same amino acids and thiamine as the 
seed media but without antibiotics. IPTG was added at 5 h at a final 
concentration of 1 mM, to induce the threonine operon. 

2.2. Cloning and chromosomal manipulations 

2.2.1. Construction of plasmids 
Plasmids were made by Gibson assembly using the NEB Gibson As-

sembly cloning kit or the NEBuilder HiFi DNA Assembly kit. Q5 DNA 
polymerase from NEB was used for PCR reactions, which were treated 
with DpnI to cut residual plasmid or chromosomal DNA. PCR fragments 
were treated with the NEB Monarch PCR clean up kit. DNA concentra-
tions were determined using a nanodrop. 

Three core plasmids were constructed containing the threonine 
pathway genes, thrABC and asd genes. The thrABC and the asd genes 
were cloned into modified vector pSR58.6 (Schmidl et al., 2014) which 
resulted in a plasmid containing colE1 origin, the chloramphenicol 
resistance gene, with the thrABC-asd-gfp operon controlled by tac pro-
moter, and lacIq gene. The resulting three constructs have the following 
content Plasmids pfb6.4.2 and pfb6.4.3 and contain the feedback 
resistant thrA gene G433R from ATCC21277. Plasmid pfb6.4.3 contains 
two copies of the lacIq gene, which increased the growth rate of 
plasmid-carrying strains when compared with pfb6.4.2. 

Several supplemental plasmids were constructed for overexpression 
of enzymes by cloning the following genes: E. coli genes, rhtA, zwf, aspC, 
ppc, aceBA, pntAB and a E. coli codon-optimized, Rizobium etli pyc gene 
(Gokarn et al., 1999). They were cloned in a modified vector pSR43.6 
(Schmidl et al., 2014), resulting in plasmids containing the p15A origin, 
spectinomycin resistance gene, and the gene of interest controlled by a 
constitutive promoter J23108 (Moore et al., 2016). Combinations of 
aspC, ppc, and pntAB were made in the same vector under the control of 

the same constitutive promoter. These plasmids contained pntAB-aspC, 
pntAB-ppc, aspC-ppc, and pntAB-aspC-ppc). 

2.2.2. Chromosomal deletions 
Eight individual genes, eleven combinations of two genes, and three 

combinations of three genes (all genes used are shown in Table 1) were 
deleted using lambda red gene-replacement system described in (Dat-
senko and Wanner 2000). Chromosomal deletions were made in strains 
MG1655 and ATCC 21277 using the Gene Bridges Quick & Easy E. coli 
Gene Deletion Kit. All the deletions were made to remove the entire 
coding region from the start codon to the stop codon and the deleted 
genes replaced by Km resistance marker. They were confirmed by PCR. 
The deletions were moved to different strains and combined with other 
deletions by P1 transduction (Thomason et al., 2007). Kan genes were 
flipped out using the flanking frt sites according to the Gene Bridges 
protocol. 

2.2.3. Genome insertions 
The tac promoter was inserted into the genome by of MG1655 and 

ATCC21277 as described above replacing threonine leader peptide 
(thrL) and native thr promoter and upstream of asd geneomoter 
replacing its pr. Finally, the kan marker gene was flipped out. Two 
version of tac-controlled thrABC operon, one with a wild type thrA gene 
and another which was feedback-resistant to threonine (thrA*), were 
inserted in both host strains replacing wild type copy with its regulatory 
region. 

2.2.4. P1 transduction 
P1 transduction was done with P1vir using protocols described in 

(Thomason et al., 2007). 

2.3. Measurements 

2.3.1 Threonine was measured using the BioVision PicoProbe 
Threonine Assay Kit (Fluorometric). The protocol was modified for use 
in 384 well plates (Corning Assay Plate 384 well low Volume Black with 
Clear Bottom #3540) and scaled down to 20 μL instead of 100 μL. The 
threonine samples were diluted 100 to 1000-fold to be in the linear 
range of the assay, and standard curves were run on each 384 well plate. 
The fluorescence measurements were made on the Hidex Sense Plate 
Reader. 

2.3.2 Glucose was measured using the Sigma-Aldrich glucose assay 
kit (GAGO20) scaled down for use in 96 well assay plates (Corning Clear 
Flat Bottom Assay Plate #9017). Each well contained 70 μL assay mix 5 
μL sample (100-fold dilution). Each plate had a glucose standard curve 
for calculating glucose concentration. 

2.4. ML models used to predict optimal strain design from production data 
and strain composition 

We used a Deep Neural Network to predict threonine production 
from combinations of strain engineering elements shown in Table 1 and 
Supplementary Table 2. The feature vector consisted of indicators for 
individual strain modifications, with multi-valued modifications such as 
the core threonine operon specification one-hot encoded, for a total of 
33 input dimensions and one output dimension (threonine titer). When 
multiple experiments were performed on identical samples, the trimean 
of all results was used as the target. 

DeepLearning4J was used for model training, prediction, and 
hyperparameter tuning. For most models, we used a batch normalization 
layer followed by 2–9 feed-forward layers with no gradient normaliza-
tion and an output layer loss function of L2 (squared error). To minimize 
the effect of outliers, the model search was tuned to optimize the mean 
absolute error rather than the squared error. The activation functions 
tested were hard hyperbolic tangent, rectified linear unit, Gaussian error 
linear unit, and the normalized exponential function Softmax. The same 
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function was used for all inner layers, but a second function was 
sometimes used for the input layer. The model was validated using 9- 
fold cross-validation. The mean error during cross-validation for the 
models constructed was 3.1% of the total output range, with an IQR less 
than 1.0% of the total output range. (The output range varied from 1.2 
g/L for the smallest model to 6.4 for the largest.) 

One significant concern was the performance of the model beyond 
the range of the data used for training and testing the model. The upper 
range of the production used to train the first model was 2.6 g/L. We 
were interested in values over 2.0 g/L, but only 18 samples of a total 
1963 were in this range. We therefore decided to use 1.2 g/L as a cutoff, 
giving us 50 samples in range. We built a second model that was trained 
and tested only on the 1913 samples at 1.2 or below. This second model 
was then run against the full set to determine what predictions it would 
make for the samples producing above 1.2 g/L. 

The model predictions were compared against the actual values from 
the experimental run using a simple utility to classify predictions and 
actual results by whether or not they were above 0.8. There were 241 
samples not used to train the model, including the original 50 with 
production levels over 1.2 g/L and 191 holdouts used as a testing set. Of 
50 samples with actual production values over 1.2, 20 were predicted 
over 0.8 by the model, a success rate of 40%. No samples with pro-
duction values less than 0.8 were predicted to have output over 0.8, 
which indicates a low rate of false positives. 

2.5. Graph reconstruction 

Cytoscape 3.9.1 (Otasek et al., 2019) was used to reconstruct the 
graphs from the data presented in Supplementary Table 3 and for the 
topological analysis. 

3. Theory 

3.1. Overall strategy 

Our approach, which we call “agnostic strain engineering”, relies on 
general computational tools, flux analysis and comparative genomics. It 
does not depend on extensive process-specific information (hence the 
term “agnostic”), and, in principle, can be applied to a broad set of 
strain-construction projects. The approach consists of the following 
steps: (1) flux-analysis-based selection of genes whose inactivation or 
overexpression can affect bioproduction of a specific chemical; (2) 
combinatorial cloning aimed to construct an initial training set of strains 
for ML analysis; (3) ML modeling to predict optimal combinations of 
modified genes; and (4) DBTL cycling, in which subsequent sets of 
strains suggested by ML are constructed achieving a gradual strain 
improvement (Fig. 1). Building successful ML models, which predict 
better combinations of modified genes and guide strain engineering, is 
the key element of the approach. 

3.2. Gene selection 

Sixteen genes and operons were selected to be incorporated in the 
construction of initial combinatorial training set based on their positions 
in the network of metabolic reactions of E. coli iJO1366 (Orth et al., 
2011) metabolic model (Fig. 2). The focus was made on reactions in a 
proximity to the biosynthetic pathway and responsible for a supply of 
precursors for the biosynthesis of threonine, threonine efflux, as well as 
pathways of threonine degradation. The enzymes in the threonine 
biosynthetic pathway: aspartate kinase, homoserine dehydrogenase, 
homoserine kinase, and threonine synthase are in an operon whose 
expression is controlled by threonine, also aspartate kinase and homo-
serine dehydrogenase are allosteric regulated by threonine. These 

Table 1 
Genes used in combinatorial cloning and their metabolic functions. Mod column shows which gene was deleted “- “, or upregulated “+”, Modifications of genes 
with indicated ‘-’ mode appear in the text with ‘D’ prefix (Dtdh).  

Gene 
name 

Enzyme Name Role Expected effect Mod Reference 

thrABC Bifunctional aspartokinase/homoserine 
dehydrogenase 1, homoserine kinase, and 
threonine synthetase 

Thr/Lys/Met 
biosynthesis 

Amplification should activate threonine overproduction + (Kozlov Iu et al., 
1980) 

asd Aspartate semialdehyde dehydrogenase Thr/Met biosynthesis Amplification should activate threonine overproduction + (Debabov 2003) 
lysC Lysine-sensitive aspartokinase 3 Thr/Lys/Met 

biosynthesis 
Increased expression of lysine feedback resistant allele is 
expected to improve production 

– (Ogawa-Miyata 
et al., 2001) 

metL Bifunctional aspartokinase/homoserine 
dehydrogenase 2 

Thr/Lys/Met 
biosynthesis 

Deletion/Increased expression are expected to affect 
methionine and SAM production 

– (Neidhardt and 
Curtiss 1996) 

rhtA Threonine/homoserine exporter Threonine export Increased expression is expected to improve threonine 
production 

+ or 
- 

(Livshits et al., 2003) 

aceBA Malate synthase A and Isocitrate lyase Carbon backbone Increased expression of the glyoxylate shunt is expected 
to improve threonine production 

+ (Liu et al., 2019) 

ppc Phosphoenolpyruvate carboxylase Carbon backbone Increased expression of ppc is expected to improve 
threonine production (more precursor available) 

+ (Lee et al., 2007) 

pyc Pyruvate carboxylase Carbon backbone Increased expression facilitates the flow of carbon to 
oxaloacetate and aspartate in C. glutamicum, expected to 
cause the same effect in E.coli 

+ (Peters-Wendisch 
et al., 2001) 

ptsG PTS system glucose-specific EIICB component Carbon backbone Deletion of the PTS system for glucose uptake is expected 
to make more precursor available 

– (Zhu et al., 2019) 

dhaM PEP-dependent dihydroxyacetone kinase, 
phosphoryl donor subunit 

Carbon backbone Deletion is expected to disrupt putative allosteric 
regulation of dihydroxyacetone kinase (encoded by 
dhaK) and negative regulation of dha operon 

– (Gutknecht et al., 
2001) 
(Bachler et al., 2005) 

zwf Glucose-6-phosphate 1-dehydrogenase Carbon backbone, 
Co-factor biosynthesis 

Increased expression is expected to increase availability 
of threonine precursors (glucose-6-p and NADPH) 

+ (Becker et al., 2007) 

pntAB NAD(P) transhydrogenase (membrane-bound) Co-factor biosynthesis Increased expression expected to compensate for NADPH 
depletion 

+ (Liu et al., 2019) 

aspC Aspartate aminotranferase Threonine 
biosynthesis/ 
Competing pathways 

Increased expression is expected to increase precursor 
pool 

+ (Zhao et al., 2020) 

lysA Diaminopimelate decarboxylase Competing pathways Deletion is expected to make more precursors available – (Lee et al., 2007) 
dapA Dihydrodipicolinate synthase Competing pathways Deletion is expected to affect availability of all threonine 

precursors (aspartate, glutamate, NADPH) 
–  

tdh L-threonine 3-dehydrogenase Threonine catabolism Deletion is expected to diminish threonine degradation – (Lee et al., 2007)  
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regulatory mechanisms must be altered to ensure the consistent 
increased flow of the metabolites. The flux through the pathway was 
found to be strongly dependent on aspartate concentrations that we 
decided to improve via modulation of the upstream functions of ana-
plerotic pathways, glyoxylate shunt and diminishing of phosphoenol-
pyruvate loss to the PTS metabolite transport. 

Besides its role in threonine biosynthesis, aspartate is a precursor for 
biosynthesis of methionine and lysine. The impact of a crosstalk in this 
metabolic system is hard to quantitate using the flow models as the 
fluxes through these pathways are subjected to additional regulation 
and the kinetics of the enzymes may be nonlinearly affected by high, 
non-physiological, concentrations of the precursor(s). Lysine biosyn-
thesis, however, also shares two other precursors with biosynthesis of 
threonine (NADPH and glutamate) and was considered as the impactful 
explicit competitor. The anaplerotic reactions chosen for modulation 
(phosphoenolpyruvate carboxylase and pyruvate carboxylase) were 

shown to impact lysine biosynthesis in C. glutamicum (Peters-Wendisch 
et al., 2001) and our model predicted their differential impact on thre-
onine production in the engineered strains with and without inhibition 
of lysine biosynthesis. 

NADPH restoration is a noted bottleneck in the biosynthesis of 
threonine. A strong impact of membrane NADPH transhydrogenase 
(encoded by pntAB) on NADPH restoration has been demonstrated 
earlier (Sauer et al., 2004) and this gene became one of the first can-
didates for a modulation. We also chose glucose-6-phosphate 1-dehydro-
genase, which has a double function affecting carbon and NADPH 
availability. To reduce experimental complexities of combinatorial 
approach, we limited the number of seed functions for the first round of 
ML and did not include other potentially impactful metabolic sources of 
NADPH, functions supporting a provision of glutamate, and other 
threonine degradative functions, in this round of ML. We also did not 
include the housekeeping pathways competing for aspartate, such as 

Fig. 1. AI-driven “agnostic” strain engineering HTP-High Throughput.  

Fig. 2. Genes chosen for modification and their 
positions in metabolic fluxes. Selected pathways 
(dashed line) and reactions (solid line) are high-
lighted as follows: (green) carbon backbone biosyn-
thesis; (blue) threonine biosynthesis; (pink) 
competing pathways and threonine catabolism; (or-
ange) threonine efflux, and (red) NADPH regenera-
tion. Genes subjected for deletion are indicated in red 
and genes subjected for induction are indicated in 
purple. (For interpretation of the references to color 
in this figure legend, the reader is referred to the Web 
version of this article.)   
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pyrimidine and asparagine biosynthesis. 
Table 1 shows genes selected for combinatorial cloning which 

encode enzymes involved in: (1) glycolytic biosynthesis of carbon 
backbone (aspartate) via phosphoenolpyruvate (ppc, pyc, zwf), (2) 
glyoxylate shunt (aceAB), (3) biosynthesis of threonine from aspartate 
(asd, aspC, threABC, lysC, metL), (4) restoration of NADPH from NADP+

(zwf) or NADP+ and NADH (pntAB), (5) pathways competing for phos-
phoenolpyruvate (ptsG, dhaM) and the precursors for biosynthesis of 
threonine from aspartate (dapA, lysA), (6) threonine catabolism (tdh), 
and (7) threonine efflux (rhtA). 

These genes were selected based on generic information on the roles 
of the proteins they code in E. coli pathways. The impact of most of these 
proteins on threonine production was already demonstrated (see refer-
ences in Table 1), which makes threonine test case seemingly less 
“agnostic”, but having such prior information allowed us to find 
mechanistic explanations and additional validation of phenomena 
observed in high-producing ML-designed variants. Additionally, even 
with all the information available for the impacts of individual genes, 
there was no systematic understanding of the effects of their combina-
tions, a major challenge which we address in our study. 

4. Results 

4.1. Initial combinatorial cloning 

Strains constructed in the study consisted of 4 major variable ele-
ments: (1) the thrABCasd core operon; (2) a chromosomal knockout of a 
“negative” gene or a group of such genes expected to decrease threonine 
production; (3) overexpressed “positive” genes or operons expected to 
increase production; (4) a bacterial host. 

The following construction parts were used for combinatorial 
cloning:  

1. “Positive” genes rhtA, zwf, aspC, ppc, aceBA, pntAB and a codon- 
optimized pyc gene from Rizobium etli (Gokarn et al., 1999) cloned 
using a modified vector pSR43.6 (Schmidl et al., 2014), resulting in 
plasmids containing the p15A origin, the spectinomycin resistance 
gene, and the gene of interest controlled by the constitutive promoter 
J23108 (Moore et al., 2016).  

2. The thrABC and the asd genes cloned into modified vector pSR58.6 
(Schmidl et al., 2014) which resulted in a plasmid containing colE1 
origin, the chloramphenicol resistance gene, with the thrABC-asd-gfp 
operon controlled by tac promoter, and lacIq gene (as described in 
Methods). Plasmids pfb6.4.2 and pfb6.4.3 contain the feedback 
resistant thrA gene G433R from ATCC21277. Plasmid pfb6.4.3 con-
tains two copies of the lacIq gene, which increased the growth rate of 
plasmid-carrying strains when compared with pfb6.4.2.  

3. Eight individual “negative” genes (metL, lysA, ptsG, lysC, dapA, rhtA, 
tdh, dhaM), and six combinations of two genes (dapA-tdh,lysA-tdh, 
lysC-tdh, metL-tdh, ptsG-tdh, rhtA-tdh) were deleted using lambda red 
gene-replacement system described in (Datsenko and Wanner 2000). 
After individual deletions were constructed, they were moved be-
tween strains using P1 transduction (Thomason et al., 2007). In the 
text and the figures, modifications of “negative” genes are indicated 
by ‘D’ (deleted) prefix (as Dtdh).  

4. These gene combinations were introduced into two host strains, 
MG1655 (wild type) and ATCC21277 (one of the early production 
strains). 

Seven plasmids carrying “positive” genes were individually trans-
formed into each of 70 strains carrying chromosomal deletions of 
“negative” genes and different versions of a core threonine operon, all of 
it incorporated into two E. coli hosts, which resulted in 385 combina-
torial clones. (Their composition, presence, or absence of modified or 
deleted genes, was verified using PCR). 1998 samples, representing 
different growth time points and results of IPTG induction were grown 

in 96-deep-well plates in synthetic media. Threonine was measured in 
the media using the BioVision PicoProbe. Threonine Assay Kit and 
glucose was measured using the Sigma-Aldrich glucose assay kit as 
described in Methods. Table 1, Supplement, contain the data on threo-
nine titer, yield, and OD at 24 h. Strain modifications and growth con-
ditions are reflected in sample names as shown in Supplementary 
Table 2. 

In the initial run, the best engineered strain produced 2.6 g/L, while 
the industrial control strains produced 3.1–3.8 g/L (These industrial 
strains represent variants constructed more than a decade ago. No 
published information is available on most recent ones, but based on 
personal communications, their titer may be increased by 20–30%.) By 
the end of the project, after three DBTL cycles, 64 of the engineered 
strains had produced more than 4 g/L of threonine, the best making 8.4 
g/l. Each sample was tested multiple times and the trimean of all tests 
was used as the computed production level for the sample. If one test’s 
production differed from the others by more than 1.2 g/L it was dis-
carded as erroneous outlier. Over the course of the project, 959 samples 
were tested 3 times, 1095 twice, 502 only once, and 943 four or more 
times. The mean threonine production levels ranged from 0.0 to 8.4 g/L, 
heavily weighted toward 0.0. The average error in a test (comparing the 
observed titer to the trimean value used in the models) was 0.22 g/L. 

In general, strains carrying an upregulated feedback resistant thre-
onine operon and a pair of “positive” modifications of gene expression 
produced up to 2.6 g/L of threonine when grown in minimal media in 
microtiter-plates. Modifications found to contribute to high threonine 
production most were: (1) chromosomal location of the IPTG-induced 
threonine operon; (2) addition of overexpressed ppc, pntAB, or aspC; 
and (3) deletions of tdh, dapA and metL. 

4.2. Optimization of strain design by deep learning 

A set of strains carrying pairwise combinations of genes selected by 
flux analysis was used to train a deep learning (DL) model to predict 
threonine production in strains carrying more complex combinations of 
engineering elements (gene parts). We expect that a single improved 
strain may carry up to 8 different modified genes (knockouts or over-
expressed), which creates a virtual space of over 107 variant strains to be 
analyzed by DL. The key question—whether the effects of pairwise gene 
combinations observed in the initial set of strains would be represen-
tative of far more complex constructs in the much larger virtual space-
—was answered by experimental validation of DL models. 

4.2.1. Building DL models 
Of the 1998 samples described in the previous section, 35 were 

derived from various industrial control strains. The remaining 1963 
were used to train a deep learning (DL) model to predict production 
from combinations of strain-engineering elements used as descriptive 
attributes (features). Feature vectors were constructed with indicators 
for individual strain modifications, with multi-valued modifications 
(such as the core threonine operon specification) one-hot encoded for a 
total of 26 input dimensions and one output dimension (threonine titer). 
Hyperparameter searches were optimized for lowest mean absolute 
error. 

When validated with holdout (testing) samples, our initial model 
(shown in a Fig. 3A) had mean absolute error of 0.06 g/l and Pearson 
coefficient of 0.85, which was highly encouraging. However, when it 
was applied to the 1,376,256-variant virtual space of possible gene 
combinations, no strain was predicted to produce more than 3 g/L. This 
could have been either a result of poor initial selection of genes used for 
combinatorial design, or a limitation of DL models, which simply cannot 
predict production outcomes exceeding values observed in the training 
set. 

To test the second hypothesis (and better understand the model’s 
predictive performance in the tail of distribution of threonine produc-
tion values), we trained a DL model with samples that only produced less 
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than 1.2 g/L (a cutoff chosen to insure at least 50 samples were 
considered “high”). We evaluated such model with the holdout set of 
241 samples, 50 of which had production levels greater than or equal to 
1.2 g/L (Fig. 3B). High-producing samples in the holdout set showed 
very little correlation between the predicted and actual numeric values 
of threonine production (Pearson’s coefficient of 0.41). This meant that 
regression analysis could not generate accurate numeric predictions. 
Nonetheless, there was a significant clustering of samples that produced 
over 1.2 g/L and that were predicted to produce over 1.2 g/L. In our first 
test, in which no machine learning model was used, only 1% of samples 
produced over 1.2 g/L. The above exercise tells us that we can expect 
40% of the samples chosen by the model to produce at that high level—a 
clear improvement. Thus, using the model enables us to choose better 
samples for each subsequent test run, even though the predictions of the 
model have a low accuracy by most metrics. 

The question being addressed - “Which combinatorial designs would 
produce high quantities of threonine?” - can be treated as a classification 
problem, which can be solved by putting strains in groups exceeding or 

falling below of certain production cutoffs. The classification approach 
is, however, complicated by the fact that the target class of interest, a 
highly productive set of strains, represents only a small percentage of the 
initial training set (0.7%). Thus, a model that classified all strains as low 
producing variants would have over 99% accuracy. Our solution to this 
problem was to use neural network regression to predict the production 
level first. Then, the resulting model would assign numeric weights to 
modifications and combinations thereof that are used to compute pre-
dicted production levels even if those levels are well below the value 
selected for “high” production. In addition, when selecting strains to test 
for the next round, the numerical production value provided a natural 
way to sort the most-likely candidates from the rest. 

Once the numeric regression model is generated, its results are 
classified depending on whether or not they are above a certain 
threshold, and this is used to generate classification metrics for the 
model, a hybrid regression/classification approach. Using 1.2 g/L as a 
cutoff between high-producing and low-producing variants, the confu-
sion matrix for the testing set in the first model is shown in Table 2 
below. 

Like the full dataset, the testing set is heavily biased toward negative 
results, so the value of the standard accuracy measure is limited, and an 
MCC (Mathews Correlation Coefficient) score is more useful. The MCC 
score is 0.66, indicating a good correlation. 

4.2.2. DBTL cycling 

4.2.2.1. Overview. The initial DL model was used to predict improved 
strain designs (defined as producing over 1.2 g/L). 71 strains predicted 
to be high-producing, plus 176 additional strains representing slight 
variations of these or carrying gene combinations that were insuffi-
ciently explored in the first round were constructed, tested and included 
in the training set used for the second round. 

Table 3 shows the results of three testing runs. The first run was 
unique in that there was no ML data. So, the lower rows indicate 
numbers computed from the previous run and used to select samples to 
test for the next run. 

Tot size is the total number of samples run at that time. Note that 
when we build the model later, all samples, even those from previous 
runs, are used. New size is the number of samples that had never been 
run before. The rest are being re-tested for verification. Max prod all is 
the maximum production output. There is a clear increase here, which is 
why we felt we were improving. Tot strains and new strains identify 
unique strains. For a given strain, we might run it at different time in-
tervals, but we almost always run it both induced and uninduced. Tot 
constructed and new constructed indicate how many of the strains 
were built by us, rather than being controls. Note that in the last run all 
of them were constructed. The other rows are self-explanatory. The in-
crease in AUC indicates that the predictions are getting better, but the 
max prod constructed is the real measure of our success. 

The DL model from the second round was the final model produced 
by the project. It used a batch normalization layer followed by seven 
feed-forward layers. The inner layer widths were 22, 19, 16, 13, 10, 7, 
and 4. The activation function chosen was rectified linear unit (RELU). 
The mean error during cross-validation was 2.5% of the total output 
range (here 0.0 to 8.4), with an inter-quartile range equal to 0.4% of the 
total output range. Because of the scarcity of training data with yields of 
1.2 g/L or greater, mean absolute error increased at higher output, 0.22 
for strains yielding less than 1.2 g/L, and 1.3 for high-yielding strains. 
This model’s predictions on the training and testing sets are shown in 

Fig. 3. Validation of predictions of threonine concentration generated by 
a deep learning model. A. Predicted versus actual for 1724 training sam-
ples (blue) and 191 holdout testing samples (red). B. Predicted versus 
actual for a model trained on samples producing less than 1.2 g/L of 
threonine. Red dots to the right of 1.2 g/L show poor quantitative performance 
of the model outside of its training range. (For interpretation of the references 
to color in this figure legend, the reader is referred to the Web version of 
this article.) 

Table 2 
Confusion matrix for initial model using 1.2 g/L cutoff for first model.   

Predicted ≥ 1.2 Predicted <1.2 

Actual ≥ 1.2 2 1 
Actual <1.2 1 192  
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Fig. 4 below. 
Once again using 1.2 as the cutoff between low-producing and high- 

producing, the confusion matrix for the second model is shown in 
Table 4. The MCC for this model is 0.80, indicating a strong correlation. 

4.2.2.2. ML1 round. 1998 samples derived from 393 strains engineered 
in the MM-guided construction round were used to train the first DL 
model. In this model, an exhaustive set of all possible combinations of 
features was generated and used as input to the trained model to predict 
threonine production. This set of feature combinations (referred to 
subsequently as samples) was processed to eliminate samples that were 
logically impossible (for example, knocking out and promoting the same 
gene), leaving 1,376,256 total samples. Of these strains, 72,900 had 
predicted threonine yield greater than 1.2 g/L (roughly 5.3%). The 
strains with the highest predicted threonine production were chosen, 
and these were further filtered to insure they were no more than two 
construction steps from existing strains. A total of 71 strains together 
with another group of 176 designed “around” these strains were built. Of 
the 71 predicted strains, 45 (63%) were confirmed in the experiment, a 
24-fold enrichment over their overall 2.6% fraction in the first run, 
which was designed using metabolic modeling alone. Of these 71 AI- 
directed variants, 12 produced more threonine compared with the 
best industrial control strain NRRL B-21593. 

4.2.2.3. ML2 round. 278 new strains constructed in ML1 round were 
added to the training set. Adding these strains shifted a ratio of “high- 
producing” (higher than 1.2 g/L) variants from 2.6% (MM-round) to 
7.8% (MM + ML1 rounds) and moved highest measured threonine 
production from 2.6 to 5.8 g/L. As expected, a new ML model used to 
suggest engineering designs for the ML2 round was able to significantly 
extend prediction range (from 3 to 8.3 g/L). Out of 321 strains were 
predicted to produce more than 1.2 g/L of threonine using the hybrid 
regression/classification approach as discussed above, 50% were 
experimentally confirmed (64 of these strains produced more than 4 g/ 

L). For 104 strains predicted to produce more than 4 g/l, 19 (18%) were 
experimentally confirmed. The best strain from among those predicted 
over 4 g/L produced 8.15 g/L as average of three measurements. We 
observed significantly increased production characteristics of the strains 
constructed in the second round, but inability to rate strain candidates 
within a class obviously forces us to construct more strains to catch the 
best variants. A similarly low Pearson’s coefficient was observed for 
experimentally tested strains in the ML-generated designs of the first 
DBLT round, which was then explained by demonstrated inability of ML 
to extrapolate (as seen in Fig. 3B). However, this explanation cannot be 
applied to the second round, in which training-set production values 
were increased to nearly 6 g/l. A reason for ML’s inability to generate 
accurate numeric predictions in this case can be due to increase of 
combinatorial complexity in subsequent DBTL cycles and due to un-
derrepresentation of specific gene combinations in the training sets. 

4.2.2.4. Summary of DBTL cycling. Using 1.2 g/L as a cutoff for high 

Table 3 
The results of three testing runs.  

statistic Run 
1 

Run 2 Run 3 Detailed description 

Tot size 1998 948 1131 Number of samples run. 
New size 1998 786 862 Number of samples new to this 

run. 
Max prod all 5.49 5.83 8.39 Maximum production output. 
Max prod 

constructed 
2.90 5.83 8.39 Maximum production output for 

a constructed strain. 
Max prod 

control 
5.49 5.49  Maximum production output for 

a control strain. 
Tot strains 393 286 583 Number of strains run. 
New strains 393 247 431 Number of strains new to this 

run. 
Tot constructed 385 280 583 Number of constructed strains in 

this run. 
New 

constructed 
385 247 431 Number of constructed strains 

new to this run. 
Predictions 

computed  
1376256 57986 Total number of predictions 

computed in virtual space to 
build run. 

High 
predictions 
computed  

72900 1933 Total number of predictions in 
virtual space ≥ 1.20. 

Tot predictions  2057 3643 Number of samples with 
predicted values from the model 
used to create the run. 

New 
predictions  

412 726 Number of samples with 
predicted values new to this run. 

Max prediction  2.63 8.30 Maximum prediction from the 
model used to create the run. 

AUC  0.65 0.86 Area-Under-Curve for 
classification by production 
level of samples new to the run.  

Fig. 4A. Second ML model; Validation with holdout samples. 4B Predicted 
versus actual for a model trained on the second DBLT round. Only samples 
introduced in the third experiment run for which predictions were made (726 
samples) are shown. The 1.2 g/L cutoff is shown in red, the 4.0 g/L cutoff in 
green. (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 

Table 4 
Confusion matrix for initial model using 1.2 g/L cutoff.   

Predicted ≥ 1.2 Predicted <1.2 

Actual ≥ 1.2 13 5 
Actual <1.2 3 284  
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performance, our first model had a predictive accuracy of 99%, true 
positive rate of 66%, and a fallout rate of 0.5% in validation with 
holdout samples when applied to all strains constructed in the first 
round of engineering and carrying pairs of modifications. This means 
that within the tested range of the model (in this case, up to 2.6 g/L) we 
expect to catch 66% of the high-output strains and to only pick up 2.5% 
of the low-producing variants by accident. When expanded to a virtual 
space in which more complex modifications were allowed, the model 
performed slightly worse, with only 63% of the predicted high- 
producing strains being confirmed in the actual experiments (Table 5). 
Our second model had a predictive accuracy of 97%, true positive rate of 
73%, and a fallout rate of 1.0%. The model predicted that 321 of the 
tested strains would perform over 1.2 g/L. In actual experiments, 50% of 
these samples were confirmed. Similarly, 104 strains were predicted to 
perform over 4.0 g/L and 19 of them exceeded that production level. 
Using the 1.2 cutoff, the second model had an F1-score of 0.76 and an 
MCC of 0.79. 

The theoretical yield of threonine conversion from glucose is 81% g/ 
g (122% mole/mole (Lee et al., 2007)). (Together with the production 
rate of a target molecule, yield is the most important property of an 
industrial strain). In the conditions tested, yield of the control industrial 
strains vary from 22 to 50%. Several of the most productive strains 
constructed in the first DBLT round had glucose utilization yields of 
24–28%, the best strain from the second round has yield of ~43%. 

To summarize, we found that: (1) deep learning models demonstrate 
91–98% accuracy in validation with holdout samples when labels 
(production values) of such samples stay within training set values; (2) 
regression, but not classification accuracy, deteriorates for samples 
outside of the training range of production values; (3) up to 63% of the 
strains predicted to produce more threonine than a cut-off (chosen based 
on distribution of productivity values in the training set) were confirmed 
experimentally, and (4) 64 best deep learning-designed strains produced 
more threonine than the industrial strains used as a controls. 

4.3. Graph analysis of pairwise combinations of gene modifications used 
for ML-training 

Though an individual impact of each gene in strains with triplet or 
pairwise combinations of modifications is not explicitly obvious, it can 
be assessed by AI from a training set and guide strain engineering (as 
demonstrated above). In order to illustrate how an AI model may lead to 
predictive conclusion, we analyze graphs topology to infer relations 
between the gene modifications. We define that a pair of gene modifi-
cations is in a relation if it is combined in one engineered strain. If gene 
modifications are presented as graph vertices, and their paired combi-
nations are represented by the adjacent edges, we can use the corre-
sponding values of threonine production (Supplementary Table 3) as 
edge weights. In this weighted graph (Fig. 5) each node can be charac-
terized by; (1) a number of adjacent edges (pairwise gene modification 
combinations in threonine producing strains); (2) weights of the adja-
cent edges (an impact of the paired modifications on threonine pro-
duction); and (3) a position in respect to other nodes/gene modifications 
(that would reflect a gene’s network outreach and indicate its impactful 
potential). Multiple highly weighted edges adjacent to one node suggest 
a strong impactful potential of the corresponding gene modification on 
threonine production. Strong interconnectivity of the impactful nodes 

and particular topological characteristics of this interconnectivity (such 
as closeness of a graph, when all the nodes have highly weighted con-
nections to at least two other nodes in a group) could indicate a 
potentially high synergistic value of a combination of the corresponding 
gene modifications in one strain. 

The graphs have been constructed using Cytoscape 3.9.1 (Otasek 
et al., 2019). The Degree Sorted Circular Layout of the graph (Fig. 5A) 
places genes in accordance to a number of the adjacent edges in anti-
clockwise direction starting from Dtdh, which has a highest connectivity 
degree. The edge weights (yellow-green edges as <1.2 g/l and blue ones 
as >1.2 g/l associations) are distributed unevenly, which indicates 
different individual impact of different gene modifications. Notably, one 
gene modification (Dtdh) is adjacent to only and few (DdapA, pntAB) to 
almost only >1.2 g/L threonine production levels, where the others (zwf, 
ptsG, lysC) to only <1.2 g/l. Two main hubs, Dtdh and DdapA, are the 
most impactful in terms of their highly weighted network outreach 
(characterized by the values of Degree and the Average Shortest 
Path-the number of links to reach any other node in the graph) and their 
high Betweenness Centrality (a measure based on shortest paths and a 
way of detecting the amount of influence a node has over the flow of 
information in a graph) (Supplementary Table 4). 

Fig. 5 B shows a graph for gene modifications that are associated 
with threonine production which is higher than 1.2 g/L. The hierar-
chical layout places nodes in accordance with their rank from the top to 
the bottom of the graph, the highest having more linear connections. 
Overall, Dtdh, and DdapA appear as invariable, required modifications, 
and we can suggest potential effects for other gene modifications, shown 
on this graph as subordinated, when they are paired with Dtdh, or 
DdapA. We use a term ‘driver’ to highlight a primary role of these 
modifications in increased threonine production. DdhaM, which is also 
characterized by a strong Connectivity and Betweenness Centrality is, 
however, present in strains with <1.2 g/l of threonine production and 
though might have a lesser ‘driving’ significance. DrhtA demonstrates 
strong connectivity characteristics, but moderate associated levels of 
threonine production that are never the highest for any of the paired 
modifications. It suggested rather a neutral role of this genomic inter-
vention, turned into negative in strains with more complex constructs 
(Supplementary Table 1). 

Among the engineered strains of the ML-led rounds, the pntAB, Dtdh, 
DdapA, DdhaM,DMetL combination of gene modifications showed the 
strongest impact on threonine production (Supplementary Table 1). 
Connectivity of the nodes corresponding to these gene modifications has 
unique topological characteristics in the reconstructed graph, and this 
group of nodes can be graphically distinguished (Fig. 5 C, highlighted by 
pink color). All pairwise combinations of pntAB, Dtdh and DdapA led to 
the highest levels of threonine production, that is reflected in the 
structure, where the corresponding highly weighted edges form a closed 
graph (a structure where each node is connected to at least two other 
nodes). This graph could be explicitly extended to DdhaM and DmetL 
nodes. Though the edge connecting DhaM and DmetL is associated with 
only 0.94 g/l threonine production value, adjacent Dtdh-DmetL and 
Ddham-DdapA edges are strongly weighted. All these considerations can 
be incorporated in the AI algorithm in favor of a line combination Dtdh- 
DmetL-DdhaM-DdapA in a ML model. 

The power of ML-guided design goes beyond our mechanistic un-
derstanding of systems. A graph analysis of predictions made by ML 
increases our confidence in them by providing sanity checks. Besides 
this, graph analysis, which is based on the independent, purely algebraic 
approach can be integrated in ML models making them more selective. A 
predictive ML algorithm ranks likewise associations between paired 
gene modifications favoring consistently larger weights (threonine 
production levels) withing a group of gene modifications paired in 
different combinations, and any data associated with gene pairs, 
including a prior knowledge of the effects of their combinations and 
omics data (gene proximity in metabolic network, imodulones or 
genomic neighborhoods, co-expression, and etc.) and other strain 

Table 5 
Summary of 3 DBTL rounds.  

Rounds Max production, 
average for 3 
measurements 

Success, 
1.2 g/L 

predicted, 
1.2 g/L 

success, 
4.0 g/L 

predicted, 
4.0 g/L 

MM 2.7 NA NA NA NA 
ML 1 6.2 63% 71 NA 0 
ML 2 8.4 50% 321 18% 104  
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characteristics (growth rate, substrate consumption, etc), can be inte-
grated via adjustment of the weights of the pairwise connections. The 
dataset used in our example was effective in revealing of a driving role of 
Dtdh and DdapA. Our analysis also pointed to gene combinations (pntAB, 
Dtdh, DdapA), and (pntAB, Dtdh, DdapA, DdhaM, DdmetL), which should 
be found in strains with improved threonine production, as it is also 
suggested by ML. There are still some other combinations that look 
promising from the connectivity point of view. A larger dataset size 
would be required to apply other topological analysis algorithms that 
can improve an overall accuracy of ML predictions. 

4.4. Mechanistic analysis of the results of ML-driven design 

1038 clones were constructed in three engineering rounds. 64 pro-
duced more than 4 g/L of threonine, with the best making 8.4 g/L 
(average for 3 tests) (Supplementary Table 1). ML-guidance was used 
to suggest engineering designs and up to 63% of such designs were 
confirmed experimentally. However, the approach also has certain 
shortcomings, which are discussed above, making ML-guided strain 

engineering less precise. Mechanistic analysis of observed effects of gene 
combinations used for strain construction has a potential to help with it. 

Threonine production as a function of gene modifications is pre-
sented in Fig. 6, which shows both conservation of gene patterns among 
high-producing variants and seemingly unpredictable abrupt effects of 
relatively small differences in gene composition. 

ATCC21277 parental strain occurred to be the most promising host. 
and, as expected, overexpression of asd and thrABC was required to 
achieve highest levels of production. Though strains bearing Ddap and 
Dtdh produce high levels of threonine even without thr operon induc-
tion, its induction increases threonine production further. Effects of Dtdh 
and Ddap were confirmed in multiple complex constructs, where almost 
all strains bearing these modifications produced comparably high levels 
of threonine. PntAB induction was not equally effective in all combi-
nations that is probably due to differential TCA and, consequently, 
NADH production rate modulations in different strains, and potential 
confronting action of differentially expressed soluble transhydrogenase 
encoded by sthA. Upregulated ppc (with or without upregulated aspC in a 
place of pntAB) had a slightly lesser but also beneficial effect on 

Fig. 5. A Cytoscape 3.9.1 graph reconstruction 
from the data on threonine production by strains 
with paired gene modifications (Supplementary 
Table 3). A. The Degree Sorted Circular Layout 
with genes placed anticlockwise in accordance to 
a number of their adjacent edges. B, C. Hierar-
chical layout for modifications that appear in 
pairwise-modified strains with > 1.2 g/l threo-
nine production. Each gene modification is pre-
sented as a node and each edge presents a 
combination of the adjacent gene modifications in 
one engineered strain. The color of an edge corre-
sponds to a threonine production value at 24h growth 
point with induced thrABC/asd operon (according to 
the scale shown). The edges of closed graphs defined 
by gene modifications with the most positive impact 
on threonine production are highlighted in C. Ab-
breviations for gene modifications are as explained in 
Table 1. (For interpretation of the references to color 
in this figure legend, the reader is referred to the Web 
version of this article.)   

Fig. 6. Patterns in the effects of individual genes and their combinations on threonine production in the engineered strains, based on data presented in 
Supplementary Table 1. Deletions of tdh, dapA genes and overexpression of pntAB, aspC and ppc genes look most effective in different combinations. 
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threonine production. We do not see any positive effect of over-
expression of zwf (that would, however, correspond to its modest effect 
in NADPH production in E. coli (Lindner et al., 2018) (Olavarria et al., 
2014). So far, the best-producing strains combine upregulated pntAB, 
and deletions of tdh, dapA, metL, dhaM. A loss or a substitution of any 
gene from the pntAB, tdh, dapA, metL, dhaM combination in the best 
producing strains is associated with a drop in a threonine production 
level (Fig. 7). 

The outcomes of the strain engineering highlight a complexity of the 
interactions between the gene modifications favored by ML predictions 
(represented by blue arrows on Fig. 7). Although a prediction of im-
pactful combinations using only prior knowledge of bacterial meta-
bolism remains a challenge, it is possible to explain why a particular 
combination of modifications is effective in concrete cases predicted by 
ML. Moreover, as shown below, analysis of the results of ML predictions 
can be used to improve the algorithms and to increase predictability via 
rule-guided ML models. Metabolic shifts in a proximity of the threonine 
biosynthetic pathways, which may explain observed results, are shown 
in Fig. 8. 

As it is summarized in the diagram, a deletion of dapA, the first gene 
in lysine biosynthetic pathway, affects flows of aspartate, glutamate, 
NADPH, pyruvate and succinate, that would impact threonine and 
methionine biosynthesis, respiration and biosynthesis of the cofactors 
originated from the TCA intermediates. Consequently, it has much 
stronger effect than a deletion of lysA, which encodes a terminal enzyme 
in the pathway. Deletion of dhaM accompanying deletion of dapA can be 
especially beneficial to compensate for PEP depletion (Gutknecht et al., 
2001). Similarly, tdh deletion not only stops catabolic degradation of 
threonine but likely shifts equilibrium in serine-methionine-cysteine 
metabolic system and SAM-dependent regulation, due to a decreased 
l-threonine-3-dehydrogenase-dependent production of glycine (Weiss-
bach and Brot 1991) (Lee et al., 2007). Though an exact role of metL 
deletion is not clear, in a complement to Dtdh it may affect regulation of 
methionine biosynthesis at the DNA level (affecting the downstream 
operon) or protein level (suggesting a regulatory or metabolite chan-
neling role of MetL). PntAB, which encodes for the main supplier of 
NADPH (Lindner et al., 2018) in most engineered strains, can support 
two reactions in threonine biosynthesis and one reaction in biosynthesis 
of glutamate, making its induction one of the most impactful modifi-
cations. Another impactful modification, induction of rhtA, have a role 
in both threonine and l-homoserine efflux, where the latter, if accu-
mulated, may affect a diversion of the pathway towards methionine and 
SAM (Wang et al., 2005) and even suppress biosynthesis of glutamate 
(Kotre et al., 1973). 

From these examples, we see that topology of metabolic network can 

be utilized as a prior knowledge in weighting of particular gene asso-
ciations in a ML model. A significance of Dmetl and DdhaM, for instance, 
was underestimated in ML predictions for combined constructs with two 
or more modifications of genes from pntAB, Dtdh or DdapA group, which 
could be compensated by weighting derived from mechanistic analysis. 
We can also find additional constrains for ML models analyzing cases in 
which complex constructs have performed worse than predicted. In 
these cases, the main overestimation can be explained by a diminishing 
value of sequential functions in linear pathways (functions encoded by 
ppc, aspC, for instance), simultaneous activation of which would not 
necessarily lead to the ML-predicted synergism. Lowering weights of the 
consequent functions in a linear metabolic pathway will be considered 
in future ML models. 

5. Discussion 

Finding an optimal combination of genes with altered levels of 
expression to achieve maximal production of targeted metabolite in the 
engineered bacterial strain, was a key problem addressed in this study. 
ML models, which connect threonine production and gene modifications 
(taken as features in the training sets of engineered strains), provided a 
solution to this problem guiding engineering designs with sufficient 
accuracy. With 1034 clones constructed in three engineering rounds, we 
were able to increase threonine production from 2.6 g/l in the first 
round to 8.6 g/L in the third one, having inference accuracy (defined as 
accuracy of prediction for a strain to belong to a high-producing class) 
up to 63%. In microtiter plates, 64 of these strains produced more 
threonine than several industrial strains used for comparison (strains 
were grown in synthetic buffered high-glucose media in extensively 
aerated deep-well plates reaching an optical density of 3.0–5.0 in 24 h). 
This cell density is 10–20 times lower than observed in industrial 
fermentation conditions in which threonine titer may reach 130 g/L in 
48–72 h. 

To apply DL to strain design, two problems had to be addressed: (1) 
inability of regressor models to extrapolate to unobserved threonine 
yields, and (2) heavy bias towards low-producing strains in the training 
data, which cause a classifier that simply classified everything as low- 
producing to be 98% accurate. Second problem was resolved via a 
hybrid DL approach in which, at first, a regression model was con-
structed, so that information about the effects of the engineering 
changes would be represented in the form of equation coefficients, and 
then, interpretation of the continuous output variable of the model as a 
classifier predicted low-producing and high-producing variants. Pre-
diction of actual production levels was imprecise at the higher ranges of 
threonine production values, but classification was sufficiently accurate 

Fig. 7. Combinations of genes targeted in the best 
constructed strains. Each color represents one 
complex construct/one strain: numbers on the right 
are the levels of threonine production. The most im-
pactful genes are highlighted (red outline, white 
font). Blue arrows point to the interpretable func-
tional connections between the modifications likely 
to be responsible for the observed outcomes. The 
genes tdh, dapA, dhaM and metL were deleted and the 
rest of the genes were overexpressed. (For interpre-
tation of the references to color in this figure legend, 
the reader is referred to the Web version of this 
article.)   
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to guide experiments. 
The first problem—inability to extrapolate beyond unobserved 

experimental data—was partially eliminated by the hybrid regression- 
classification approach described above, and even more, by expansion 
of training sets, when higher producing variants were constructed in the 
subsequent round of strain engineering and added to the training. We 
expected these factors to eliminate problems of regression analysis, but 
it was not the case (as seen in Fig. 4B). Although production of the 
constructed strains was increased in subsequent rounds, the inability to 
rate strain candidates within a class forces us to construct more strains 
and potentially lose some of the best variants. A likely reason for ML’s 
inability to generate accurate numeric predictions may be the increase 
in combinatorial complexity in subsequent DBTL cycles, and underrep-
resentation of specific gene combinations in the training sets. 

To deal with this and to increase the ML model predictability one can 
introduce additional restraints, for instance, increase weights of specific 
modifications and their pairwise combinations, based on a prior 
knowledge, or analysis of the results of the initial DBTL cycles, as 
explained in our graph analysis example. Genes can be ranked in 
accordance with their metabolic network-based interference with me-
tabolites in the biosynthetic pathway, with ones sharing the highest 
number of metabolites (as dapA or pntAB in our set) being attributed a 
larger weight. In a wider set, genes can be also weighted in accordance 
with their proximity and topology of connectivity to the biosynthetic 

pathway. For example, our mechanistic analysis suggests that weights of 
functions in a linear pathway could be decreased due to their potential 
partial redundancy. The weighting of gene combinations may be 
expanded to the data on imodulones or genomic neighborhoods, co- 
expression, and any other indicator of potential synergism of these 
genes or their deletions in the engineered strains. Utilizing other char-
acteristics of strain performance, such as growth rate and a substrate 
consumption rate, weighting each feature via integrated values of 
potentially leading parameters may also increase accuracy of 
predictions. 

Mechanistic analysis of the most efficient combinations of gene 
modifications revealed their complex interplay underlying non-linear 
effects of their integration into one producing strain (Fig. 8). Some of 
the relationships separating ‘drivers’, such as Dtdh and DdapA, from 
secondary modifications, can be discovered by in graph theory 
approach. We have applied the graph analysis to characterize the effect 
of the modifications that in combination with the weights of the corre-
sponding edges show how each modification can affect threonine 
biosynthesis and modulate outcomes of other introduced genomic 
changes. Graphical analysis of potential hierarchy of modifications 
presents a clear, though still hypothetical, structure of the functional 
subordination in the engineered strains, where modification of tdh, dapA 
and pntAB genes would be the most essential after modulation of 
thrABCasd to ensure high threonine production. Pairwise combinations 

Fig. 8. A simplified diagram of metabolic connections and metabolic shifts in a proximity of the modulated threonine biosynthetic pathways. A. Strains 
without gene deletions, B. Strains with dapA and tdh being deleted. Red arrows suggest metabolite depletion. Dashed lines-general directions of metabolic 
effects or metabolite flows. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

P. Hanke et al.                                                                                                                                                                                                                                  



Metabolic Engineering Communications 17 (2023) e00225

13

of Dtdh, DdapA, pntAB are reflected in a closed graph of the highly 
weighted edges preceding the core of the most successful combinations 
of engineered gene modifications. A graph analysis is an independent 
purely algebraic approach connecting topology of metabolic networks 
and productivity of engineered strains, and as such, may be integrated in 
ML model increasing its accuracy. 

Our results demonstrate that engineering of industrial strains based 
on general computational tools and “general” metabolic and compara-
tive genomic information can produce high-yielding microbial strains in 
a predictable and accelerated manner. The following sequence of ele-
ments, a majority of which were tested in our study, represent a general 
algorithm for such organism engineering: (1) flux-based gene selection 
of the most impactful genes for strain engineering; (2) combinatorial 
cloning producing initial training set of gene combinations associated 
with production titers; (3) building and validating of ML models pre-
dicting improved strain design; (4) performing subsequent DBTL rounds 
to improve models and model-designed strains. 

Two important factors which can further improve this strategy are: 
(1) solving the problem with the accuracy of regression modeling, (2) 
expansion, refining and weighting of gene repertoire used for combi-
natorial cloning. To address the first problem, besides pure computa-
tional approaches, both metabolic and statistical analysis can be applied 
to find mechanical connections or conserved patterns separating groups 
of strains by their “predictability”. If successful, it should lead to a much 
more productive design of training sets and add important precision to 
numeric predictions generated by ML models. Set of genes used for 
combinatorial cloning in our study, although not including all possible 
impactful genes, was sufficient to assemble highly productive variants. 
In many less studied cases, we, however, envision a necessity of “fishing 
expeditions” going beyond flux analysis, which will be needed to find 
additional gens driving processes of interest. Three possible directions 
for such gene-finding efforts are: (1) metabolic analysis of RNA-Seq 
samples; (3) whole genome comparison of producing strains; (3) 
genome scanning in which ordered genomic libraries of knockouts or 
overexpressed variants are tested in production strains. 

Historically, organism construction for bioproduction started by 
using random mutagenesis and genetic selection. Knowledge-driven 
strategies, like genomics and flux analysis, further empower our engi-
neering toolbox and became a new driving force in strain development. 
Limitations highlighted in the introduction, however, constrain the 
utility of these strategies. ML offered an orthogonal approach which 
allows to explore vast combinatorial spaces by discovering correlations 
between engineering designs and their properties which we often cannot 
explain. Integration of ML capabilities and various knowledge-driven 
techniques is required to maximize effectiveness of organism engineer-
ing, and our project is a step in this direction. Our accelerated “agnostic” 
engineering strategy can significantly expand the list of chemicals pro-
duced in biomanufacturing by eliminating its important bottleneck, 
slow and poorly predictable process of strain engineering. 

6. Conclusions 

Functional (metabolic) models form a foundation of knowledge- 
driven organism engineering. However, gaps in the underlying stoi-
chiometric matrices and lack of integration of metabolic effects of reg-
ulatory networks limit power of such models and make unreachable 
many important applications of synthetic biology. Going from individ-
ual gene modifications to an effective combination of target genes is a 
major challenge even with all existing prior knowledge on metabolic 
systems. ML can provide a “universal glue” capable to fill these gaps and 
guide organisms engineering based on patterns extracted from the 
engineered strains performance and gene expression data. We see no 
limitations in applying such strategy to numerous fundamental and 
applied engineering projects. 
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