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Abstract
Preeclampsia (PE) is a serious hypertensive complication of pregnancy and is a 
leading cause of maternal death and major contributor to maternal and perinatal 
morbidity, including establishment of long- term complications. The continued 
prevalence of PE stresses the need for identification of novel treatments which 
can target prohypertensive factors implicated in the disease pathophysiology, 
such as soluble fms- like tyrosine kinase 1 (sFlt- 1). We set out to identify novel 
compounds to reduce placental sFlt- 1 and determine whether this occurs via 
hypoxia- inducible factor (HIF)- 1α inhibition. We utilized a commercially avail-
able library of natural compounds to assess their ability to reduce sFlt- 1 release 
from primary human placental cytotrophoblast cells (CTBs). Human placental ex-
plants from normotensive (NT) and preeclamptic (PE) pregnancies were treated 
with varying concentrations of luteolin. Protein and mRNA expression of sFlt- 1 
and upstream mediators were evaluated using ELISA, western blot, and real- 
time PCR. Of the natural compounds examined, luteolin showed the most potent 
inhibition of sFlt- 1 release, with >95% reduction compared to vehicle- treated. 
Luteolin significantly inhibited sFlt- 1 in cultured placental explants compared to 
vehicle- treated in a dose-  and time- dependent manner. Additionally, significant 
decreases in HIF- 1α expression were observed in luteolin- treated explants, sug-
gesting a mechanism for sFlt- 1 downregulation. The ability of luteolin to inhibit 
HIF- 1α may be mediated through the Akt pathway, as inhibitors to Akt and its 
upstream regulator phosphatidylinositol- 3 kinase (PI3K) resulted in significant 
HIF- 1α reduction. Luteolin reduces anti- angiogenic sFlt- 1 through inhibition of 
HIF- 1α, making it a novel candidate for the treatment of PE.
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1  |  INTRODUCTION

Preeclampsia (PE) is a common pregnancy disorder oc-
curring after 20 weeks of gestation characterized by 
new- onset hypertension, proteinuria, and end- organ 
damage linked to endothelial and vascular dysfunction.1 
Worldwide, PE affects ~7 million women each year, re-
sulting in over 500 000 fetal deaths and 70 000 maternal 
deaths, with a higher mortality rate in the United States 
compared to other developed countries.2– 6 Major risk fac-
tors associated with PE occurrence include prior history 
of PE, chronic hypertension, obesity, diabetes mellitus, 
multiple gestations, and antiphospholipid syndrome.7,8 
Moreover, PE is associated with substantial long- term risk 
for cardiovascular disease, cerebrovascular disease,9,10 
and renal dysfunction11 in mothers and increased risk for 
cardiovascular disease and metabolic syndrome in their 
children.12,13 Currently, there are no pharmacological 
treatments, and the only effective treatment strategy for 
PE requires delivery of the baby and removal of the pla-
centa, which can often occurs prematurely.1

The current paucity of effective treatments for PE 
likely is due to the complex pathophysiology of the dis-
ease. Disease pathogenesis is believed to progress in two 
stages beginning with abnormal formation of the placen-
tal vasculature in the first trimester resulting in placental 
ischemia and hypoxia. Abnormal placental development 
drives the systemic vascular dysfunction through release 
of anti- angiogenic factors, such as soluble fms- like tyro-
sine kinase 1 (sFlt- 1), ultimately leading to the clinical 
manifestations of PE during the second stage in the late 
second and third trimesters.7,14,15

sFlt- 1 is the soluble receptor for vascular endothelial 
growth factor (VEGF) and placental growth factor (PlGF), 
which are important for the maintenance of vascular 
health. Excess sFlt- 1 exerts its pathological actions by 
quenching bioavailable levels of VEGF and PlGF, caus-
ing endothelial and vascular dysfunction culminating in 
systemic vasoconstriction and hypertension. sFlt- 1 is pro-
duced and secreted by the placenta in normal pregnancy, 
with inappropriate upregulation in PE such that circu-
lating levels are elevated leading up to PE onset.16– 19 Its 
direct ability to promote hypertension in pregnancy has 
been demonstrated by overexpression of sFlt- 1 produc-
ing PE- like symptoms in animal models.17,20– 22 Similarly, 
hypoxia- inducible factor 1α (HIF- 1α) is highly expressed 
in preeclamptic placentas,23 and HIF- 1α overexpres-
sion in pregnant mice is associated with hypertension 
and increased sFlt- 1 expression.24– 26 Studies have shown 
that sFlt- 1 antagonism or depletion in cell culture27 as 
well in vivo animal models of PE led to improved clini-
cal symptoms.28– 30 Removal of sFlt- 1 using apheresis re-
cently demonstrated promise in reducing maternal blood 

pressure as well as in prolonging pregnancies in women 
with preterm PE,31,32 suggesting that sFlt- 1 reduction may 
provide relief from PE symptoms.

Currently, no approved treatments can safely pro-
long pregnancies or reduce dysregulated sFlt- 1 levels in 
women with PE, making the delivery the sole treatment 
option, contributing to adverse neonatal outcomes. Thus, 
identifying a safe therapeutic for PE that can target anti- 
angiogenic factors implicated in the pathogenesis of PE is 
a major unmet need for women worldwide. Bioflavonoids 
are present in many plants, including their fruits and 
vegetables, and have been well established for their an-
tioxidant and anti- inflammatory effects.33– 35 Regular con-
sumption of bioflavonoids or their sources is associated 
with a reduced risk of chronic cardiovascular and neuro-
degenerative diseases.36 While flavonoids, such as querce-
tin and puerarin, have also been studied for their potential 
to reduce blood pressure in PE animal models, it is un-
clear whether any of these compounds are inhibitors of 
sFlt- 1.37– 39 Therefore, the aim of this study was to identify 
if bioflavonoids are inhibitors of sFlt- 1 and determine its 
mode of action, such as inhibition of the HIF- 1α pathway.

2  |  MATERIALS AND METHODS

2.1 | Protocol for obtaining human 
placentas

Placental tissue was collected from normotensive (NT) 
or preeclamptic patients delivered at the University of 
Chicago Medical Center. PE was diagnosed according to 
the American College of Obstetricians and Gynecologists 
(ACOG) guidelines.1 Patients with a history of diabetes, 
chronic hypertension, renal disease, or multiple gestations 
were excluded from this study. The Institutional Review 
Board approved using all study- related materials at the 
University of Chicago (Institutional Review Board No. 
#14- 1532).

2.2 | Primary cytotrophoblasts 
isolation and culture for initial 
screening of natural compounds to inhibit 
sFlt- 1

Primary cytotrophoblast cells (CTBs) were isolated 
from placentas collected from NT and PE patients and 
cryopreserved for subsequent culture experiments as de-
scribed.40 CTBs were cultured in medium 199 (Corning; 
Cat# 10- 060- CV; Manassas, VA) with 5% fetal bovine 
serum (FBS) (Corning; Cat# 35- 015- CV; Manassas, 
VA) and 1% penicillin– streptomycin (Corning; Cat# 
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30- 002- CI; Manassas, VA). For screening experiments, 
cells were thawed and plated in a 96- well flat- bottom 
plate (Microtest 96; Becton Dickinson; Franklin Lakes, 
NJ). Prior to screening experiments, the medium was 
removed and replaced with fresh medium with either 
a drug library (Enzo Life Sciences; Cat# BML- 2865; 
Farmington, NY) compound or vehicle dimethyl sulfox-
ide (DMSO) (Sigma- Aldrich; Cat# D8418; St. Louis, MO) 
and incubated in standard culture conditions, with 5% 
CO2– 95% room air (21% O2) at 37°C, for 72 h, as previ-
ously described.41 The compounds of the library were 
provided at a stock concentration of 2 mg/mL, which 
was diluted 1:100 in culture medium for a concentration 
of 20 μg/mL. Additional information about the prod-
uct library can be seen in Table  S1. At the end of the 
experiment, cell culture supernatant was collected for 
analysis.

2.3 | Placental villous explant cultures

Placental villous explant tissues were cultured in a 
complete medium, followed by RNA and protein extraction 
as described previously.41,42 Villous biopsies (2 cm3) were 
excised from the maternal surface, midway between the 
chorionic and basal plates, within 30 min of delivery, 
and decidual layers were carefully removed. Tissue was 
dissected into 0.5 cm3 explants and thoroughly rinsed with 
phosphate- buffered saline (PBS) to ensure removal of 
maternal blood and placed in a 24- well flat- bottom plate 
(Falcon multi- well tissue culture plate; Becton Dickinson) 
containing 1 mL of conditioned medium 199 for 72 h under 
standard tissue culture conditions (room air with 5% CO2) 
or hypoxia (5% CO2, 2% O2, 93% N2) in a humidified cell 
culture incubator with varying concentrations of luteolin 
(1, 5,10 μM) (Sigma- Aldrich; Cat# L9283; St. Louis, MO), 
Akt IV inhibitor (Santa Cruz Biotechnology; Cat# sc- 
203 809; Dallas, TX), LY294002 (Sigma- Aldrich; Cat# 
440202; Temecula, CA), or DMSO control. Concentrations 
of luteolin for these experiments were based on published 
in vitro experiments.43,44 After 72 h, the explants were 
removed, blotted with sterile cotton gauze, and flash- 
frozen along with corresponding conditioned media 
for storage at −80°C. Experiments were duplicated on 
explants from each NT and PE patient.

2.4 | Enzyme- linked immunosorbent 
assay (ELISA) for sFlt- 1

Collected media were applied to a human VEGF receptor 
1 (VEGFR1) Quantikine ELISA Kit (R&D Systems; DVR 
100B; Minneapolis, MN, USA) to quantify sFlt- 1 secreted 

by primary trophoblast cells in culture. The manufacturer's 
specifications approve of using culture media on this 
assay, and the instructions were followed. The sensitivity 
of this ELISA to detect sFlt- 1 was reported to be 5 pg/mL, 
with an intra- assay coefficient of variation of 2.6%– 3.8% 
and an inter- assay coefficient of variation of 7.0%– 8.1%.

2.5 | Immunoblotting

Tissue from placental explants (described above) were 
homogenized, and total protein was collected.45,46 Briefly, 
protein quantification was assessed using Pierce BCA 
Protein Assay Kit (ThermoFisher; Cat# 23225; Scientific, 
Waltham, MA), and equal quantities (50 μg total protein) 
were resolved on a 4%– 20% SDS gel and transferred to a 
nitrocellulose membrane. Western blots of sFlt- 1 in culture 
medium were performed using equal amounts of heparin 
agarose- enriched medium as previously described41 
and similarly transferred to a nitrocellulose membrane. 
Membranes were blocked with 5% milk in tris- buffered 
saline- tween (TBS- T) (0.05% tween) for 1 h and incubated 
with the primary antibodies against phosphorylated 
(ser473) Akt (Cell Signaling; Cat# 4051S; Danvers, MA), 
total Akt (Cell Signaling; Cat# 4685; Danvers, MA), HIF- 1α 
(BD Biosciences; Cat# 610958; Sparks, MD), VEGFR1 
(sFlt- 1) (Abcam; ab32152; Waltham, MA), and β- Actin 
(BD Biosciences; Cat# 612656; Sparks, MD) at 1:1000 in 
1% milk in TBS- T overnight at 4°C. After washing the 
membrane with TBS- T, goat anti- mouse (ThermoFisher 
Scientific; Cat# 31430; Waltham, MA) or goat anti- 
rabbit (ThermoFisher Scientific; Cat# 31460; Waltham, 
MA) secondary antibodies (1:5000) in 1% milk in TBS- T 
were added for 1 h at room temperature. Proteins were 
detected using enhanced chemiluminescent reagents and 
quantified using ImageJ (NIH) to collect densitometry 
data.

2.6 | Quantitative real- time PCR

RNA was extracted from placental explants (n = 5) using 
TRIzol (Invitrogen, Carlsbad, CA) and transcribed 
into cDNA using a high- capacity cDNA kit (Applied 
Biosystems, Carlsbad, CA). Reverse transcription– PCR 
was performed as previously described47 and using a cus-
tom primer (Applied Biosystems; Carlsbad, CA) for sFlt- 1 
(forward primer: TCAGA GGT GAG CAC TGC AACA; re-
verse primer: CATTC CTT GTG CTT TTA AAT TTGGA) and 
a commercially available primer for HIF- 1α (Catalog# 
Hs00936371; Life Technologies, Carlsbad, CA). Relative 
mRNA gene expression was calculated using the 2−ΔΔCt 
method as described.48
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2.7 | Statistical analysis

Data from control DMSO (NT or normoxic) samples were 
averaged and used for normalization. Data are presented as 
means ± standard error of the mean (SEM), and analyses 
were completed using Prism (GraphPad; San Diego, CA). 
Statistically significant differences between means were as-
sessed by t- test and two- way analysis of variance (ANOVA). 
The Tukey post hoc test was applied for ANOVA models. 
Differences were considered statistically significant at p < .05.

3  |  RESULTS

3.1 | Natural library screen for sFlt- 1 
inhibitors

A library of 502 natural compounds, including 11 biofla-
vonoids, was screened using primary placental CTB cells 
treated with the compounds (20 μg/mL) or vehicle (DMSO) 
for 72 h. Several compounds reduced sFlt- 1 protein expres-
sion released into the medium (Figure 1). Of these, luteo-
lin was the most effective at reducing sFlt- 1 expression at 
97%, followed by other flavonoids apigenin (89%), narin-
genin (82%), and hesperetine (79%), relative to the vehicle 
control. In previous studies, luteolin has been shown to 
provide protective effects using in vitro and in vivo mod-
els of coronary artery disease, atherosclerosis, and heart 

failure49; thus, we focused on luteolin to further investigate 
its potential in mediating the pathophysiology of PE.

3.2 | Dose-  and time- dependent effects of 
luteolin on sFlt- 1 expression in NT and 
PE placenta

Placental explants collected from NT and PE patients 
at delivery were treated with 0– 10 μM luteolin for 72 h 
to determine the dose– response of luteolin in reducing 
sFlt- 1. In both NT and PE samples, luteolin significantly 
decreased sFlt- 1 protein expression at 5 and 10 μM by 
Western blot (Figure  2A,B). Similarly, a time- course 
study of placental explants treated with 5 μM luteolin for 
0– 72 h demonstrated that placental sFlt- 1 increases over 
time in control samples, and this increase is diminished 
with luteolin treatment after 72 h (p < .001; Figure  2C). 
Furthermore, sFlt- 1 secretion in conditioned medium 
from both NT and PE placental explants was significantly 
reduced (p < .0001 and p < .01, respectively) following 
luteolin treatment (5 μM, 72 h) compared with control 
explants as detected by western blot (Figure 2D,E).

3.3 | Effect of luteolin on sFlt- 1 and 
HIF- 1α protein and mRNA expression

Previous work has suggested that sFlt- 1 expression is regu-
lated by HIF- 1α23,50; thus, we evaluated whether the reduc-
tion in sFlt- 1 expression by luteolin was associated with 
a decrease in HIF- 1α. Placental explants from NT and PE 
patients were treated with 5 μM luteolin for 72 h. sFlt- 1 
and HIF- 1α protein expression were significantly higher in 
placental explants from PE patients as compared to tissue 
from NT patients (p < .05; Figure 3A), which is consistent 
with previous work.17,51 PE placental tissue treated with 
luteolin had significantly decreased expression in HIF- 1α 
and sFlt- 1 (p < .01) relative to control. NT placental tissue 
treated with luteolin had significantly reduced HIF- 1α ex-
pression (p < .05). Luteolin treatment significantly reduced 
sFlt- 1 mRNA (p < .05); however, no significant differences 
were observed in HIF- 1α mRNA (p = .15; Figure 3B). These 
results suggest that luteolin reduces HIF- 1α protein expres-
sion but not transcription, thereby decreasing sFlt- 1 tran-
scription and protein expression.

3.4 | Examining the impact of luteolin on 
upstream mediators of HIF- 1α expression

sFlt- 1 regulation may occur through upstream regulation 
by mTOR and downstream effector, p70S6K, which is 

F I G U R E  1  Natural product library to reduce sFlt- 1 release 
from primary placental CTBs. CTBs were isolated from normal 
placentas and plated in 96- well plates. CTBs were treated with each 
bioflavonoid at 20 μg/mL (~10– 20 μM) or DMSO vehicle for 72 h in 
normoxia. sFlt- 1 protein was quantified in the conditioned medium 
using ELISA. Data are the percentage of the sFlt- 1 reduction 
compared to the control (vehicle- treated) conditioned medium.
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mediated upstream by Akt signaling and epidermal growth 
factor receptor (EGFR).52 Luteolin treatment (5 μM, 72 h) 
had a nonsignificant trend to decrease phospho- Akt 
(Ser473) expression in both NT and PE explants (p = .07 
and p = .053, respectively; Figure  4). To further evaluate 
this pathway, we assessed HIF- 1α expression after treat-
ment with Akt inhibitors and luteolin. We utilized pla-
cental explants from NT patients in normoxia (21% O2) 
and hypoxia (2% O2) to mimic the conditions of PE, and 
increased HIF- 1α expression in hypoxia was confirmed 

in all experiments. Decreased HIF- 1α protein expression 
was observed with treatment using a direct Akt inhibitor 
(5 μM) compared with control (p < .05; Figure  5A). The 
Akt inhibitor combined with luteolin demonstrated a re-
duction in HIF- 1α similar to 10 μM luteolin, suggesting 
that luteolin is potentially capable of inhibiting this path-
way through additional mechanisms. Similarly, treatment 
with an inhibitor of upstream phosphoinositide 3 kinase 
(PI3K) (LY294002, 10 and 50 μM) resulted in significantly 
decreased HIF- 1α expression compared with control 

F I G U R E  2  Luteolin inhibits sFlt- 1 production in placental explants. Representative western blots of placental explants from 
normotensive (A) and preeclamptic (B) patients treated with luteolin for 72 h show a dose- dependent decrease in sFlt- 1, demonstrating 
significance with 5- 10 μM treatment compared to DMSO control. Over time, explants from normotensive patients have significantly 
increased sFlt- 1 production when treated with DMSO control, but levels of sFlt- 1 remain unchanged over time when treated with 5 μM 
luteolin (C). Similarly, sFlt- 1 released into the media from normotensive (D) and preeclamptic (E) explants are significantly decreased with 
5 μM luteolin treatment compared to DMSO control. N = 6; *p < .05, **p < .01, ***p < .001, ****p < .0001.
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under hypoxic conditions (p < .01 and p < .001, respec-
tively; Figure 5B). No changes were observed in normoxic 
samples.

4  |  DISCUSSION

In this study exploring novel compounds to target sFlt- 1 
production in PE, we report several key findings: (1) we 
identified that luteolin, a naturally occurring bioflavonoid, 
can reduce sFlt- 1 protein levels, (2) luteolin also regulates 
HIF- 1α expression, and (3) luteolin decreases HIF- 1α 
through the Akt pathway. Given the evidence that sFlt- 1 
plays a key role in PE pathogenesis and that inhibition of 
sFlt- 1 has been shown to improve PE symptoms and signs 
in human pregnancies, our data suggest that luteolin can 
potentially be used as a therapy for PE.

PE is a multisystem disease, and in this study, we aimed 
to see how luteolin would impact the factors leading to 
endothelial and vascular dysfunction in PE. Increased 
activation of HIF- 1α leading to inappropriate upregula-
tion of sFlt- 1 is a common pathway observed in PE.23,50 
Increased sFlt- 1 antagonizes VEGF and PlGF, creating an-
giogenic imbalance, causing maternal hypertension and 

end- organ damage.17 Reduction of sFlt- 1 from maternal 
circulation by plasmapheresis resulted in decreased blood 
pressure and proteinuria and extended human pregnancy 
before delivery.31 These findings highlight the importance 
of targeting the sFlt- 1 pathway. However, apheresis is an 
expensive and invasive procedure that requires extensive 
expertise and increases the risk for complications, such 
as uncontrolled bleeding and infection, thus limiting its 
utility in most clinical settings. Although other strategies, 
such as siRNA, are being developed as a therapy for PE,53 
natural compounds offer an advantage in their inexpen-
sive and stable capsule formulations. Upon screening over 
500 natural compounds to reduce sFlt- 1 expression, we 
identified luteolin as having the most robust inhibition, 
prompting our study.

Luteolin is a natural bioflavonoid found in many plants, 
fruits, vegetables, teas, and herbs and is thus consumed 
regularly.54 It has been shown to protect against reactive 
oxygen species, restoring normal nitric oxide production 
and mitochondrial function,55 as well as nuclear factor- 
κB- mediated inflammation.56 Several flavonoids have 
been studied in pathological settings, including cardio-
vascular disease and hypertension,44,57,58 infections,54,59 
and mitigating the negative effects of chemotherapies.60,61 

F I G U R E  3  Luteolin decreases 
placental HIF- 1α and sFlt- 1 expression. 
Representative western blots of placental 
explants from normotensive (NT) 
or preeclamptic (PE) patients have 
significantly reduced levels of HIF- 1α 
expression when treated with 5 μM 
luteolin compared to DMSO control. This 
decrease in HIF- 1α is associated with 
a near- significant decrease in sFlt- 1 in 
normotensive explants and a significant 
sFlt- 1 decrease in preeclamptic explants 
(A). RT- PCR of mRNA from NT explants 
treated with luteolin demonstrates a 
significant reduction in sFlt- 1 expression 
and a nonsignificant decrease in HIF- 1α 
(B). N = 5; *p < .05, **p < .01.
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Given the broad spectrum of beneficial effects that flavo-
noids have been found to exert, they have also been re-
cently studied for the potential treatment of PE.37– 39

In placentas from both NT and PE pregnancies, we 
evaluated the ability of luteolin to prevent sFlt- 1 expres-
sion under various conditions. Luteolin significantly at-
tenuated sFlt- 1 production at 5 μM and 10 μM, which is 
consistent with previously reported in vitro doses of luteo-
lin.43,44 Although the half- life of luteolin is approximately 
5 h in vivo,49 we observed that luteolin inhibited sFlt- 1 
production over time and significantly inhibited sFlt- 1 
after 72 h, suggesting that the mechanisms of luteolin 
degradation are not present in human placental tissue in 
vitro. Because sFlt- 1 production has been linked to HIF- 1α 
expression,50 we also assessed whether this was a path-
way through which luteolin acted. Placental tissue from 
NT and PE patients had significantly decreased HIF- 1α 
expression with luteolin. Several pathways upregulate 
HIF- 1α, including Akt,62 and our study shows decreased 
phospho- Akt in placental samples treated with luteolin, 
suggesting that luteolin inhibits this pathway.

Utilizing NT placentas, we examined the effect of Akt 
pathway inhibitors compared to luteolin treatment in 

F I G U R E  4  The effect of luteolin on phospho- Akt and total Akt 
expression. Representative western blots of placental explants from 
normotensive and preeclamptic patients treated with luteolin show 
a near- significant decrease in the ratio of Phospho- Akt to total Akt, 
suggesting that this pathway may be relevant in the inhibition of 
HIF- 1α and sFlt- 1. N = 5.

F I G U R E  5  Luteolin decreases HIF- 1α through Akt pathway. Representative western blots of explants from normotensive patients were 
treated in normoxic and hypoxic conditions with luteolin, Akt Inhibitor IV, or a combination of the two (A). We also compared luteolin 
treatment with PI3K inhibitor LY294002 or a combination of the two (B). We confirmed that phospho- Akt was decreased as a result of the 
treatment, and HIF- 1α expression was measured and normalized to β- Actin (samples in blots are in the same order as listed in the graph). As 
expected, there was a significant increase in HIF- 1α in hypoxia. However, treatment with luteolin, Akt inhibitor, and both concentrations of 
LY294002 resulted in a significant decrease of HIF- 1α expression in hypoxia. Of note, samples in blots are in the same order as listed in the 
figures, and separate blots were used for the measurement of phospho- Akt and total Akt. *p < .05, **p < .01, ***p < .001, ****p < .0001; N = 5.
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normoxia and hypoxia, allowing us to examine samples 
from the same tissue under conditions mimicking NT and 
PE, respectively. Treatment with either luteolin or Akt 
IV inhibitor significantly decreased HIF- 1α expression. 
Luteolin's ability to reduce HIF- 1α expression more than 
the Akt IV inhibitor under hypoxia suggests that luteolin 
potentially inhibits HIF- 1α through additional pathways. 
Similar reductions in HIF- 1α were observed when treated 
with the upstream PI3K inhibitor, LY294002. In addition 
to the PI3K/Akt pathway, luteolin may inhibit HIF- 1α ex-
pression through alternate mechanisms. Our group previ-
ously showed that ouabain inhibits HIF- 1α expression by 
preventing its stabilization by heat shock proteins.41 Along 
with pathways promoting the degradation of HIF- 1α, 
these are potential mechanisms whereby luteolin might 
regulate the expression of HIF- 1α, which will be explored 
further in future experiments.

Our current studies are limited to luteolin treatment in 
vitro to determine the effects on the anti- angiogenic pro-
tein sFlt- 1 and its regulators. Luteolin has shown promise 
in reducing reactive oxygen species and inflammation. 
Still, its ability to mitigate these factors in PE has not 
been explored and will be a focus of future experiments. 
Although we have previously shown that luteolin causes 
vasodilation of uterine arteries in pregnant rats,63 in vivo 
animal studies are ongoing to evaluate the effect of lute-
olin on sFlt- 1 production, uteroplacental perfusion, blood 
pressure, and safety in pregnancy. In summary, these ex-
periments provide compelling evidence that luteolin is a 
potent inhibitor of sFlt- 1 production and secretion in the 
human placenta.

5  |  CONCLUSION

Bioflavonoids, such as luteolin, are readily available and 
inexpensive compounds and represent an exciting poten-
tial therapeutic for PE. Here, we observed significant de-
creases in sFlt- 1, HIF- 1α, and phospho- Akt with luteolin 
treatment in human placental explants, suggesting prom-
ise for its use. However, future studies are necessary to de-
termine the ability of luteolin to target these pathways and 
reduce PE symptoms in preclinical animal models.
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