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Introduction:Cerebral blood flow (CBF) is an important physiological parameter that
can be quantified non-invasively using arterial spin labelling (ASL) imaging. Although
most ASL studies are based on single-timepoint strategies, multi-timepoint
approaches (multiple-PLD) in combination with appropriate model fitting
strategies may be beneficial not only to improve CBF quantification but also to
retrieve other physiological information of interest.

Methods: In this work, we tested several kinetic models for the fitting of multiple-
PLD pCASL data in a group of 10 healthy subjects. In particular, we extended the
standard kinetic model by incorporating dispersion effects and the macrovascular
contribution and assessed their individual and combined effect on CBF
quantification. These assessments were performed using two pseudo-
continuous ASL (pCASL) datasets acquired in the same subjects but during two
conditions mimicking different CBF dynamics: normocapnia and hypercapnia
(achieved through a CO2 stimulus).

Results: All kinetic models quantified and highlighted the different CBF
spatiotemporal dynamics between the two conditions. Hypercapnia led to an
increase in CBF whilst decreasing arterial transit time (ATT) and arterial blood
volume (aBV). When comparing the different kinetic models, the incorporation of
dispersion effects yielded a significant decrease in CBF (~10–22%) and ATT
(~17–26%), whilst aBV (~44–74%) increased, and this was observed in both
conditions. The extended model that includes dispersion effects and the
macrovascular component has been shown to provide the best fit to both
datasets.

Conclusion: Our results support the use of extended models that include the
macrovascular component and dispersion effects when modelling multiple-PLD
pCASL data.

KEYWORDS

arterial spin labelling, cerebral blood flow, functional MRI, kinetic modelling, cerebral
haemodynamic

OPEN ACCESS

EDITED BY

Alex Bhogal,
Utrecht University, Netherlands

REVIEWED BY

Jan Petr,
Helmholtz Association of German
Research Centres (HZ), Germany
James Duffin,
University of Toronto, Canada

*CORRESPONDENCE

Joana Pinto,
joana.pinto@eng.ox.ac.uk

RECEIVED 11 January 2023
ACCEPTED 14 April 2023
PUBLISHED 26 May 2023

CITATION

Pinto J, Blockley NP, Harkin JW and
Bulte DP (2023), Modelling
spatiotemporal dynamics of cerebral
blood flow using multiple-timepoint
arterial spin labelling MRI.
Front. Physiol. 14:1142359.
doi: 10.3389/fphys.2023.1142359

COPYRIGHT

© 2023 Pinto, Blockley, Harkin and Bulte.
This is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Physiology frontiersin.org01

TYPE Original Research
PUBLISHED 26 May 2023
DOI 10.3389/fphys.2023.1142359

https://www.frontiersin.org/articles/10.3389/fphys.2023.1142359/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1142359/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1142359/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1142359/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2023.1142359&domain=pdf&date_stamp=2023-05-26
mailto:joana.pinto@eng.ox.ac.uk
mailto:joana.pinto@eng.ox.ac.uk
https://doi.org/10.3389/fphys.2023.1142359
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2023.1142359


1 Introduction

Imaging studies quantifying cerebral blood flow (CBF) have
been increasingly applied in an effort to characterize brain health
and baseline CBF has been known to be an important physiological
parameter that is commonly altered at earlier stages of several
pathological conditions, including Alzheimer’s disease, stroke and
small vessel disease (Alsop et al., 2015; Haller et al., 2016; De Vis
et al., 2018; Lindner et al., 2023). CBF can be quantified non-
invasively using the arterial spin labelling (ASL) MRI contrast,
with most studies using single timepoint approaches (Alsop et al.,
2015). However, in specific pathologies, as well as under certain
physiological states where CBF dynamics are altered, single
timepoint acquisition schemes and their assumptions might be
invalid, ultimately compromising CBF quantification. One of
those conditions is when acquiring data during a hypercapnia
challenge, which is the case when evaluating cerebrovascular
reactivity (CVR). CVR is the intrinsic mechanism of cerebral
blood vessels of adjusting their calibre in response to a vasoactive
stimulus. CVR has been shown to also be impaired in several
pathologies, possibly providing additional or complementary
information to baseline CBF (Catchlove et al., 2018; Chen, 2018).
The most common way to evaluate CVR is by increasing arterial
blood partial pressure of carbon dioxide (PaCO2) (Moreton et al.,
2016; Pinto et al., 2021) and imaging the concomitant CBF changes
using an appropriate modality such as ASL. In this case, CVR can be
quantified as the change in CBF in response to a change in PaCO2

(Mandell et al., 2008; Sobczyk et al., 2015).
However, an increase in PaCO2 concentration is also expected to

alter blood flow dynamics, with an increase in blood flow velocity and
shortening of transit times (Donahue et al., 2016). This can potentially
make approaches and assumptions commonly used for baseline CBF
quantification inaccurate under these conditions (e.g., fixed transit time,
unchanged bolus shape). This issue can be partially overcome by using
an ASL multiple time-point acquisition strategy (multiple-PLD) and
fitting this signal using an appropriate physiological model. This
approach allows estimation of CBF as well as other related features,
such as the time it takes for the labelled blood to flow from the labelling
region to the vascular or tissue compartment of the imaging regions
(arterial transit time, ATT) (Donahue et al., 2016; Zhao et al., 2021), or
the volume of blood signal arising from larger arteries that is destined
for more distal tissues (arterial blood volume, aBV) (Chappell et al.,
2010). Additionally, most ASL studies assume that the shape of the
labelled blood bolus remains unaltered during the transit time of the
label through the vasculature. However, due to effects collectively
known as dispersion and including different laminar flow profiles,
vessel architecture, or diffusion of the labelled water, the bolus shape is
in fact altered throughout the vascular tree (Wu et al., 2007; Gallichan
and Jezzard, 2008; Kazan et al., 2009; Chappell et al., 2013). By
correcting for this effect, as some dispersed spins might not have
arrived at their final destination, CBF estimation can be improved while
potentially also refining the separation between the aBV and tissue
components (if these aremodelled separately). The impact ofmodelling
dispersion and aBV effects in ASL has been recently investigated during
normocapnia (van der Plas et al., 2022), however, given the change in
blood velocity and CBF temporal features that occurs during
hypercapnia or in pathologies that alter CBF dynamics, the impact
of these modelling strategies might be different. In this work, we test

several modelling strategies that include dispersion and/or
macrovascular contribution and assess their effect on the
quantification of CBF spatiotemporal dynamics during two different
physiological states, normocapnia and hypercapnia.

2 Materials and methods

2.1 Data acquisition

A group of 10 healthy subjects (5 M, 20.4 ± 0.8 years old) was
studied on a 3 T Siemens Prisma Scanner with a 32 channel receive
only head coil (Blockley et al., 2016). All participants provided
written, informed consent in order to take part in the study and
ethical approval was obtained from the Central University Research
Ethics Committee (CUREC) at Oxford University.

Functional MR scanning included a multiple-PLD
pseudocontinuous ASL (pCASL) sequence (Okell et al., 2013)
with a 2D multi-slice GE-EPI readout, background suppression,
and the following parameters: spatial resolution = 3.5 × 3.5 × 5 mm3,
TR/TE = 4,100/14 ms, bolus duration = 1400 ms, 6 PLDs (250, 500,
750, 1,000, 1,250, and 1,500 ms), 8 averages for each PLD, number of
slices = 24, time per slice = 46 ms and total acquisition time of 6 min
and 40 s. Background suppression was achieved with a pre-
saturation module (WET) and optimally timed global hyperbolic
secant inversion pulses. AnM0 calibration image with no labelling or
background suppression was also collected. A field map was
acquired using a 2D Fast Low Angle Shot (FLASH) method with
the following parameters: TR 378 ms, TE1/TE2 4.92 ms/7.38 ms,
FOV of 220 mm × 220 mm, matrix 64 × 64, slices 24, slice thickness
4.5 mm, slice gap 0.45 mm, flip angle 45°. A T1-weighted structural
image was also acquired for each subject using a 3D Magnetisation
Prepared Rapid Acquisition Gradient Echo (MPRAGE) pulse
sequence with the following parameters: TR 1.9 s, TE 3.74 ms,
FOV 174 mm × 192 mm × 192 mm, matrix 116 × 128 × 128, flip
angle 8°, inversion time (TI) 904 ms.

The gas challenge was delivered by a computer controlled gas
blender (RespirAct™ Gen 3, Thornhill Research Inc., Toronto,
Canada) that implements a prospective algorithm for the
targeting and maintenance of end-tidal CO2 partial pressure
(PETCO2) and end-tidal O2 partial pressure (PETO2)
concentrations (Slessarev et al., 2007). The gas protocol
(Figure 1A) was personalised to each subject’s PETCO2 and
PETO2 baseline values. Modulations in PETCO2 were targeted
relative to baseline, whilst maintaining PETO2 constant
(Figure 1B). Other details on the gas challenge setup can be
found in (Blockley et al., 2017). The pCASL gas protocol
consisted of a baseline period of normocapnia followed by a
period of hypercapnia (PETCO2 step change of +10 mmHg).
Both periods lasted 6 min and 40 s (Figure 1A).

2.2 Data analysis

Offline data processing was performed using FSL 6.0.3 [FMRIB
Software Library (Jenkinson et al., 2012)], Matlab R2019b
(Mathworks, Natick, MA, United States), and the IBM SPSS
statistics tool (v.27).
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Structural images were tissue segmented using FAST (Zhang
et al., 2001), to produce grey matter (GM), white matter and
cerebrospinal fluid partial volume estimate (PVE) maps. The GM
PVE maps were further thresholded at 0.3, creating restrictive GM
masks whilst maintaining a significant number of voxels within
regions of interest (Figure 1C). Co-registration from functional to
structural space was performed using a linear registration tool,
FLIRT (BBR) (Jenkinson et al., 2002), and from structural to
standard (MNI) space was done using FLIRT and a non-linear
registration (FNIRT) tool (Andersson et al., 2007). These registrations
were also used to transform four regions of the MNI structural atlas
(frontal, parietal, temporal and occipital lobes, Figure 1C) (Mazziotta
et al., 2001) and the segmented structural images to functional space.
Individual arterial masks were also considered, and these were obtained
by thresholding the arterial masks that resulted from model fitting
(more details below).

The multiple-PLD pCASL datasets underwent standard pre-
processing using FSL. Steps included extraction of first volume (M0),
removing non-brain structures using BET (Smith, 2002), motion
correction using MCFLIRT (Jenkinson et al., 2002), and distortion
correction using a field-map strategy (FUGUE). Pairwise
subtraction of label and control images was then performed in
order to generate perfusion-weighted images (ΔM).

Model fitting of the multiple-PLD pCASL data for parameter
quantification was performed by applying a Bayesian approach with
the default parameter prior information (BASIL, http://fsl.fmrib.ox.
ac.uk/fsl/fslwiki/BASIL). Bayesian modelling strategies have been
shown to provide robust and reliable results for ASL data
quantification, by using prior knowledge based on physically
realistic ranges of the parameters (Chappell et al., 2009). In
particular, in this work we have modelled our ASL data using a
standard kinetic model (Buxton et al., 1998), and incorporating
other physiological contributions, creating extended models
(Chappell et al., 2009). In particular, we have explored the

impact of modelling the intravascular blood water that is
destined to perfuse more distant tissues (also known as
macrovascular or arterial component, aBV) using the model
proposed by (Chappell et al., 2010) (aBV with an automatic
relevancy determination prior and ATT prior with mean set at
1 and precision set at 1). Additionally, we also tested for the impact
of modelling dispersion effects, using a gamma distribution shaped
kernel as proposed by (Chappell et al., 2013), with parameters: time
to peak (p) and sharpness (s) [parameters reparametrized and
subject to a Gaussian prior with means described by log (s) =
2 and log (s*p) = −0.3 and precision set at 1]. All models are
implemented in BASIL. A combination of different modelling
strategies was used to assess the impact of these on parameter
estimation when using different conditions (normocapnia and
hypercapnia) (Table 1). Four different models were tested: 1)
with arterial component but without dispersion effects
(MartMnodisp), 2) with the arterial component and dispersion
effects (MartMdisp), 3) without arterial component and dispersion
effects (MnoartMnodisp), and 4) without arterial component but with
dispersion effects (MnoartMdisp).

The resulting CBF and aBV maps were calibrated using
a voxelwise approach within BASIL, assuming a labelling
efficiency of 0.85 (Pinto et al., 2020). CVR was computed as CBF

FIGURE 1
(A) Schematic of the stimulus paradigm; (B) PETCO2 trace of one illustrative subject. ASL data acquisition was performed only during the plateau
periods; (C)Orthogonal representations, for one illustrative subject, overlaid on the structural image: (left) thresholded GMmask in yellow; (middle) four
regions of interest (ROIs—frontal, parietal, occipital, and temporal lobes); (right) arterial mask in light blue.

TABLE 1 The four different extended models including dispersion and/or
macrovascular contributions.

Model Options

Dispersion

Yes No

Macrovascular Component Yes MartMdisp MartMnodisp

No MnoartMdisp MnoartMnodisp
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change due to hypercapnia normalized by the corresponding change
in PETCO2.

Average parameter values were computed for the following
regions intersected with the total GM mask: frontal, parietal,
temporal, and occipital (Figure 1C, middle). A total GM mask
was also considered (Figure 1C, left), as well as an arterial mask
obtained by thresholding the corresponding arterial blood
volume maps results from the model that includes dispersion
and the arterial component, MartMdisp (visually optimised
threshold of aBV > 0.7, Figures 1, 4). The Bayesian approach
used in this study also allows for model comparisons to be
performed through the estimation of the free energy (FE)
(Chappell et al., 2009). FE approximates the Bayesian evidence
for a model, and thus combines the accuracy of a model’s fit to the
data with a penalty for the number of free parameters in the
model. The closer FE is to zero the better the model is at
explaining the data.

To evaluate differences between average parameters across
regions, models, and conditions, a repeated-measures 3-way
Analysis of Variance (rm-3-way-ANOVA, p < 0.05, Greenhouse-
Geisser correction for sphericity), with factors: condition, region,
and model, was applied. Post-hoc analysis was done using simple
effects tests and pairwise comparisons with Bonferroni correction
for multiple comparisons.

3 Results

Table 2 summarizes the main demographic descriptors of each
subject as well as the corresponding ΔPETCO2 values acquired
during the multiple-PLD pCASL acquisitions. The inhalation of a
gas mixture with higher content of CO2 (hypercapnia) significantly
altered individual PETCO2 values with an average increase of
approximately 8 mmHg (p < 0.001).

Figure 2A shows illustrative images of the ASL difference
normalized by the corresponding M0 image, ΔM/M0, across time
(τ + PLDs) for the two conditions (normocapnia and hypercapnia).

The corresponding kinetic curves for a representative voxel
highlighted in Figure 2A can be seen in Figure 2B.

Figure 3 shows two illustrative ΔM maps. Several voxels were
selected and their corresponding four model fittings for each one of
the conditions can be seen. This figure further highlights the
different dynamics between conditions and the impact of the
different modelling strategies.

Figure 4 displays the CBF, ATT, and aBV maps averaged across
subjects, obtained using the four different modelling strategies, and
during the two conditions, as well as the corresponding differences
in CBF (CVR), ATT (ΔATT) and aBV (ΔaBV) across conditions
maps. Representations of illustrative individual CBF, ATT, and aBV
maps can be found in the Supplementary Material.

Several differences can be observed across the parameter maps.
For instance, when comparing the conditions regardless of the
model used, hypercapnia yielded maps showing higher CBF,
shorter ATT in most regions, and less-defined areas of
thresholded aBV (aBV with lower values).

The tested models also led to differences across the
haemodynamic parameter maps. Specifically, for CBF maps,
brighter areas localised around the major arteries can be seen in
models that do not account for the macrovascular component or
dispersion effects. Models that account for dispersion effects also
tend to yield lower CBF values across the brain, and the model that
includes both the macrovascular component and dispersion effects
produced more homogeneous CBF maps in both conditions, and in
the CVR maps (CBF difference maps). The CVR maps also show
high and unrealistic values in some regions including brain edges
andWM regions, but this might be due to low SNR resulting in poor
fitting (Figure 3), that is amplified when computing CVR due to the
normalization step. These erroneous high CVR regions appear to be
less frequent when including the arterial and dispersion components
into the model.

Regarding ATT, the occipital and superior areas tend to display
higher values in all models/conditions tested in comparison with
other brain regions. When using models that include dispersion
effects, the corresponding ATT maps show higher contrast between

TABLE 2 Demographic data and PETCO2 values for each subject. Bottom row corresponds to the mean and standard deviation (mean ± SD) across subjects. M
stands for male and F for female.

Subject Age Sex PETCO2 normocapnia PETCO2 hypercapnia ΔPETCO2

1 21 M 38.0 ± 0.5 46.2 ± 0.4 8.2

2 21 M 37.8 ± 0.8 44.2 ± 0.4 6.4

3 21 M 42.1 ± 0.8 50.5 ± 0.4 8.4

4 19 M 42.6 ± 0.8 49.8 ± 0.3 7.2

5 20 F 39.3 ± 1.2 47.7 ± 0.5 8.4

6 21 F 33.0 ± 2.8 41.6 ± 0.9 8.6

7 21 F 38.7 ± 0.6 47.3 ± 0.3 8.7

8 21 M 39.9 ± 0.8 47.7 ± 0.3 7.8

9 19 F 38.4 ± 0.9 45.5 ± 1.2 7.1

10 20 F 38.2 ± 0.7 45.5 ± 2.0 7.3

mean ± SD 20.4 ± 0.8 5 F/5 M 38.8 ± 2.6 46.6 ± 2.6 7.8 ± 0.8
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FIGURE 3
Illustrative ΔM maps (two different axial slices, normocapnia, signal intensity in arbitrary units). Four different voxels were selected (green) and the
corresponding voxelwise model fittings are displayed in different colours for each condition.

FIGURE 2
(A) Illustrative magnetization difference images (control-label, ΔM) normalized by corresponding calibration image (M0), of a representative subject
and brain slice, throughout the different τ + PLDs. (B) Kinetic curves of a representative voxel (highlighted in Figure 2A), for the two gas challenges. The
curves have been demeaned for clarity and better visualization.
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specific regions such as GM/WM as well as cortical/sub-cortical
areas (e.g., lower ATT in the putamen and globus pallidus). The
differences between conditions, displayed by the ΔATT, are higher
when using the dispersion models. ΔATT is also higher during
hypercapnia (positive values), in some specific frontal areas.

Including dispersion in the modelling also leads to higher aBV
areas, in particular, in lateral regions further downstream. The
differences between conditions are higher if including dispersion
effects into the model.

Figure 5 shows the results of the regional analysis for CBF, ATT,
aBV, and FE for each model and condition and the corresponding
regional change in CBF (CVR), ΔATT and ΔaBV values between
conditions for each model. Statistically significant main effects in
CBF were observed for all factors tested (condition, model, and
regions), as well as for the interactions between these (all p ≤ 0.01).
Post-hoc comparisons of CBF across models yielded significant
differences (p < 0.05), except for the inclusion of an arterial
component in models that do not account for dispersion
(MnoartMnodisp and MartMnodisp; blue bar plots) in specific
regions/conditions (GM changes across the different models in
relation to MnoartMnodisp: ~0.6–22%). Significant main effects in
ATT measures were also observed for all factors tested and pairwise
interactions (p < 0.05). Pairwise comparisons of ATT across models
and conditions yielded significant differences (p < 0.05) except for
MnoartMnodisp and MartMnodisp (blue bar plots) and for MnoartMdisp

and MartMdisp (red/orange bar plots) in specific regions/conditions
(GM changes across the different models in relation to
MnoartMnodisp: ~0.6–19%). For average aBV, significant main
effects were obtained for condition and model and their
interaction (p < 0.01). Pairwise comparisons between the two

models were all significant in both conditions (in relation to
MartMnodisp ~ 74 and 44% for normocapnia and hypercapnia,
respectively). Statistically significant main effects were observed
in FE for all factors/interactions (p < 0.05), except for factor
condition (p = 0.077). Regardless of the condition and region
tested, significant differences were obtained when comparing
models except for MnoartMnodisp and MnoartMdisp. The model
including dispersion and macrovascular components
consistently yields FE values closer to zero across models,
i.e., better model fit.

Focusing on differences between conditions, there was a
significant main effect for the factor model (p < 0.01), but not
for factors region/interaction. While CBF changes (CVR) were
significantly higher with the model that includes dispersion and
the arterial component in specific areas including GM, for ATT the
highest changes were obtained whenmodelling only dispersion, thus
there seems to be an interaction between these two modelling
options that depends on the parameter estimated.

4 Discussion

In this work, we analysed pCASL data during two conditions
(normocapnia and hypercapnia) and using different kinetic models.
Our results highlight the different CBF spatiotemporal dynamics
across conditions: hypercapnia led to a significant increase in CBF and
ATT, whilst aBV decreased significantly. Moreover, parameter
quantification was also significantly affected by model selection.
Incorporation of dispersion effects yielded a significant decrease in
CBF and ATT and aBV increased in both conditions. Overall, the

FIGURE 4
(A) Orthogonal representations of group average of the CBF, ATT, and aBV maps for the two conditions (normocapnia and hypercapnia) obtained
using different modelling strategies (MNI space). (B) CVR, and difference ATT (ΔATT) and aBV (ΔaBV) maps (difference between hypercapnia and
normocapnia). aBV and ΔaBV maps were only obtained when using strategies where the macrovascular component was modelled (Mart).
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extended model that includes dispersion effects and the macrovascular
component provides the best fit to both datasets (in terms of FE).

4.1 Data acquisition and gas challenge

Hypercapnia was attained through a respiratory challenge that
increased the CO2 content of arterial blood by applying a prospective
end-tidal targeting andmaintenancemethod using a computer-controlled
gas blender. This approach has been shown to be a robust and reliable way
to prospectively induce changes in the arterial blood CO2 content, whilst
targeting andmaintaining stable O2 levels (Fierstra et al., 2013). Although
the target value of an increase of 10mmHg to each subject’s baseline
PETCO2 was not attained, all subjects completed the gas challenge and
experienced a similar PETCO2 change within a standard deviation of
0.8 mmHg (Table 2). The two conditions yielded statistically significantly
different PETCO2 average values (p < 0.01) (Table 2).

4.2 Impact of different conditions on CBF
dynamics quantification

Although literature on the effect of hypercapnia using multiple-
PLD ASL is still limited, our results are in agreement with other

reports that confirm a change in CBF dynamics with an increase in
amplitude and a faster response due to hypercapnia (Donahue et al.,
2016). These different dynamics can be perceived even before model
fitting, as illustrated by the ΔM/M0 maps and curves of the two
conditions (Figure 2), and during model fitting (Figure 3).

Our quantitative changes of CBF (~33%) and ATT (~15%) are
slightly higher than the ones previously reported, although these
differences might be partially explained by the different stimuli and
processing analyses used. Donahue et al. reported reductions in ATT
in the order of 4.6%–7.7% and a CBF increase of 8.2%–27.8% when
using a pCASL sequence with a fixed-inspired challenge (inspired
fraction of 5%) (Donahue et al., 2016), while Ho and others observed
a GM CBF increase of around 21% and an ATT decrease in the GM
of approximately 5% when using an ASL-QUASAR strategy in
combination with an increase in PETCO2 content by a third of
the subject’s baseline (~14 mmHg) (Ho et al., 2011).

The spatiotemporal patterns in the dynamics during
hypercapnia are also in line with previous reports (MacIntosh
et al., 2010; Donahue et al., 2014). While the impact of
hypercapnia on CBF appears to be statistically significant across
the brain, for ATT, hypercapnia appears to mainly affect posterior
and lateral regions, without statistically significant changes in frontal
regions. Other ASL studies have also indicated prolonged ATT in
border zone regions between the major cerebral artery territories

FIGURE 5
Regional analysis of: (A) CBF, ATT, and aBV with the different modelling strategies and conditions. (B) Percentage change of CBF, ATT and aBV
normocapnia vs. hypercapnia. CVR corresponds to CBF change normalized against the change in the individual PETCO2 level (%/mmHg). (C) Regional FE
for each of the different modelling strategies and conditions Statistically significant results (p < 0.05) are highlighted with *.
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(Petersen et al., 2010), highlighting the dependence of these areas on
the individual vascular architecture and geometry (Wong et al.,
1997).

The arterial component during hypercapnia also seems to be
lower and less defined than during normocapnia. This can be
explained by the increased flow velocity in arteries resulting in
the tagged blood arriving earlier in combination with the non-
optimal ASL sampling scheme in terms of PLDs during hypercapnia.
Ho et al. also investigated the impact of hypercapnia on the arterial
component, observing dissociations in the dynamics between large
vessels and GM. In particular, there were significant changes in the
aBV of the larger arteries (~11%) and this difference was
approximately half of the CBF increase (Ho et al., 2011).

4.3 Impact of model strategies on CBF
dynamics quantification during different
conditions

To our knowledge, this is the first study to assess the individual
and combined impact of modelling dispersion and macrovascular
components in multiple-PLD ASL haemodynamic parameter
quantification during hypercapnia. Our results highlight the
influence of modelling strategies on parameter quantification,
even when not taking different conditions into account, which is
in line with previous reports. In particular, the inclusion of
dispersion into the model yielded lower CBF, ATT, and higher
aBV, while more arterial signal was fitted, particularly in arteries
further downstream. This can be seen visually in the parameter maps
of Figure 4, where including dispersion led to less variable CBFmaps
in both conditions, while correcting for macrovascular areas. In fact,
there seems to be an interaction between these two modelling
aspects, with no significant difference in parameter quantification
when introducing a macrovascular component in most regions/
conditions if dispersion is not included. If dispersion is already
included, adding the macrovascular component leads to significant
differences in parameter quantification, with an overall decrease in
CBF and an increase in ATT, likely due to better tissue and arterial
signal separation. This is confirmed by the signal changes when
comparing the two conditions, as CBF changes between conditions
(CVR) are higher when including the arterial component, while for
ATT are higher without including this component.

The impact of including dispersion also appears to be region
dependent. For instance, the contrast between WM in relation to
cortical GM seems to be higher when introducing dispersion into the
model which is in line with the expectation that the impact of dispersion
modelling will be more pronounced deeper into the vascular tree, hence,
introducing this component might improve modelling and ATT
quantification across WM (Figure 4). Subcortical GM areas also tend
to display a different profile ratio in relation to cortical GM when
including dispersion, where ATT values in subcortical areas are lower
than in cortical areas.

Similarly, the impact ofmodelling strategies in parameter changes due
to hypercapnia are also model and region dependent. For example, while
the CBF changes when using MnoartMdisp or MartMdisp in the frontal area
are not significantly different, for other areas such as temporal or occipital
regions, these two models yield significant differences. These regional
differences and model/parameter dependencies might be due to the

distinctive dynamics of blood coming from different main feeding
arteries and their interaction with model fitting. Including both the
dispersion and the macrovascular component seems to incorporate/
alleviate some of these vascular differences.

The arterial component is also better distinguished when adding
dispersion into the model, particularly in regions further
downstream, which is in line with the assumption of a higher
impact of dispersion modelling in deeper areas within the
vascular tree. This effect seems to be higher during normocapnia,
as the increase in blood velocity due to hypercapnia possibly makes
the multi-PLD sampling scheme not optimised for this condition, as
the earliest PLD might be too long to accurately detect the
macrovascular contribution.

Moreover, our FE values also support the application of the model
that includes dispersion and the macrovascular component, since this
combination yielded the FE values closest to zero across models and
conditions (i.e., better fit to the data). Although, the CVR maps
obtained seem to be similar across the models tested, the model that
includes both dispersion and the macrovascular component appears
to create maps with lower variability, also yielding significantly higher
regional values of CVR when compared with the other models.

Most of these parameter quantification differences due to
modelling strategies are in line with previous reports on
normocapnia (Zhang et al., 2021; van der Plas et al., 2022). A
recent study comparing different ASL sequence optimization
strategies in normocapnia, showed that sequences optimized for
both ATT and CBF estimation are sensitive to macrovascular
signal and that including dispersion effects and the macrovascular
component leads to significant decreases in CBF and ATT estimation
errors (Zhang et al., 2021).

As seen in other ASL studies, our CVR maps also do not display
the clear GM/WM contrast commonly seen in BOLD CVR maps.
Some studies argue that the tissue difference in BOLD CVR maps
might be the result of the complex interaction between several
physiological parameters, and the lack of differences in ASL
might be reasonable as both baseline CBF and CBF induced
changes by hypercapnia might be lower inWM (Taneja et al., 2019).

4.4 Limitations and future work

Although differences between parameters across conditions and
models were observed and quantified, a major limitation of this work
is the lack of a gold standard measure to compare our results with. In the
future, a comparison with other methodologies such as PET imaging
should be performed (Zhao et al., 2021). Additionally, although
hypercapnic stimuli are commonly used for CVR mapping, some
pathological conditions might mimic the spatiotemporal changes in
CBF dynamics seen with hypercapnia (for example, if the basal
vascular tone is altered or arterial blood velocities are reduced (Bright
et al., 2011)). Another major limitation of this work is the small sample
size (n = 10). Additionally, some of the analysis options used in this work
were dependent on the ASL acquisition parameters/strategies. Given the
faster flow in large arteries and the earlier arrival times of labelled blood
during hypercapnia, it might be important to investigate the impact of
optimising the ASL sampling scheme when acquiring data during this
condition (Woods et al., 2019). Regarding the macrovascular signal,
alternative strategies can be used to remove this component during
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acquisition, such as including the use of flow crusher gradients. However,
this approach has been discouraged (Alsop et al., 2015) and by removing
this component, important clinical information might be overlooked.
Another aspect thatwarrants further investigation is the large variability in
anatomical features across and within individuals (different vascular
architecture and territories) and its impact on ASL modelling,
particularly in dispersion effects. Including a combination of functional
and structural information might be beneficial to better model the ASL
signal by taking these vascular differences into account (Li et al., 2018).
Conflicting results have been reported when comparing the impact of
blood flow velocity on ASL imaging (Aslan et al., 2010; Heijtel et al., 2014;
Dolui et al., 2016). Although these differences can impact CVR results,
these will not affect our conclusions regarding the impact of the different
model strategies within each conditions, as the effect of the different
labelling efficiencies will be the same across the models tested.

Importantly, our observations regarding the impact of the different
models on parameter quantification can also have implications when
evaluating CBF in pathologies. In several conditions, including steno-
occlusive diseases, brain tumors or arteriovenous malformations
(Amemiya et al., 2022; Hirschler et al., 2023), the dynamics of blood
vessels and flow are known to be altered and these will likely depend on
the degree of disease severity and underlying etiology. In those cases, using
multi-PLD ASL strategies in combination with modelling strategies that
take into account these differences, including models with dispersion and
macrovascular component, might be beneficial for a more accurate
estimation of CBF parameters. Further work on ASL modelling
strategies should focus on translating/validating these findings in
clinical applications.

5 Conclusion

This work highlights the significance of acquiring ASL data
using a multiple-PLD approach to allow a larger flexibility in ASL
parameter estimation, and the critical aspect of making anatomically
and physiologically valid assumptions when modelling ASL data.
Here we recommend the use of extended models that include the
macrovascular component and dispersion effects when modelling
multiple-PLD pCASL data. This is of particular importance when
imaging abnormal states such as increased or decreased global CBF
as induced by respiratory challenges or vasoactive substances, or in
subjects with pathologies that may impact their cerebral perfusion.
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