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Abstract
Aim: Globally distributed plant trait data are increasingly used to understand 
relationships between biodiversity and ecosystem processes. However, global trait 
databases are sparse because they are compiled from many, mostly small databases. 
This sparsity in both trait space completeness and geographical distribution limits the 
potential for both multivariate and global analyses. Thus, ‘gap-filling’ approaches are 
often used to impute missing trait data. Recent methods, like Bayesian hierarchical 
probabilistic matrix factorization (BHPMF), can impute large and sparse data sets 
using side information. We investigate whether BHPMF imputation leads to biases 
in trait space and identify aspects influencing bias to provide guidance for its usage.
Innovation: We use a fully observed trait data set from which entries are randomly 
removed, along with extensive but sparse additional data. We use BHPMF for 
imputation and evaluate bias by: (1) accuracy (residuals, RMSE, trait means), (2) 
correlations (bi- and multivariate) and (3) taxonomic and functional clustering 
(valuewise, uni- and multivariate). BHPMF preserves general patterns of trait 
distributions but induces taxonomic clustering. Data set–external trait data had little 
effect on induced taxonomic clustering and stabilized trait–trait correlations.
Main Conclusions: Our study extends the criteria for the evaluation of gap-filling 
beyond RMSE, providing insight into statistical data structure and allowing better 
informed use of imputed trait data, with improved practice for imputation. We expect 
our findings to be valuable beyond applications in plant ecology, for any study using 
hierarchical side information for imputation.

K E Y W O R D S
Bayesian hierarchical model, gap-filling, imputation, induced pattern, machine learning, matrix 
factorization, plant functional trait, sensitivity analysis, sparse matrix, TRY

1  |  INTRODUC TION

Plant traits are characteristics of plants whose expression is in-
fluenced by their phylogeny, biotic (Navarro-Cano et al.,  2021) 

and abiotic (Joswig et al.,  2022) environmental factors that vary 
in space and time (Jetz et al.,  2016) and trait–trait relationships 
(Díaz et al., 2016; Joswig et al., 2022; Thomas et al., 2020; Wright 
et al., 2004). They can be related to ecosystem functioning (Musavi 
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et al., 2015), bringing about understanding of how ecosystems may 
evolve under global change scenarios (Myers-Smith et al.,  2019), 
about biosphere–atmosphere feedback mechanisms and on the in-
fluence of biodiversity on ecosystem processes (Díaz et al.,  2007; 
Jetz et al.,  2016; Reichstein et al.,  2014; Shipley & Keddy,  2016). 
Many such studies rely on databases of in situ-collected trait data 
(Mohanraj et al.,  2018; Tavşanoğlu & Pausas,  2018). The largest 
global meta-collection is the TRY database (Kattge et al., 2020).

The TRY database (version 6.0) contains 15,409,681 trait re-
cords of 2661 trait variables, mounting a large matrix. For each 
individual plant (represented by a row in the matrix), however, 
TRY has only usually few measured traits, leaving most cells in 
the matrix empty, covering only 0.1% (Kattge et al.,  2020). This 
sparseness of observations limits the statistical power of analyses 
(Nakagawa & Freckleton,  2008), as well as the non-random na-
ture of missingness. Using only measured traits for all individuals 
results in fewer individuals which can be included in multivariate 
analyses (Kattge et al.,  2020; Shan et al.,  2012) and deletion of 
non-randomly missing data (Johnson et al.,  2020). In addition, 
sparse data may be biased when compared to fully observed 
data sets (Johnson et al.,  2020; Kim et al.,  2018; Nakagawa & 
Freckleton, 2008; Sandel et al., 2015).

Gap-filling, better termed imputation, is becoming a promising 
approach to handle sparse data (Johnson et al., 2020). Trait side in-
formation usually increases power, that is, reduces the error when 
imputing missing trait values (Poyatos et al.,  2018). Trait data are 
currently filled by making use of three types of side information: 
(1) the species' relationships described by their taxonomy or phy-
logeny (e.g. species mean, Bayesian hierarchical probabilistic matrix 
factorization, BHPMF, Fazayeli et al.,  2014; Schrodt et al.,  2015, 
Rphylopars, Johnson et al.,  2020); (2) plant trait–trait correlation 
structure (e.g. multiple imputation by chained equation, MICE, van 
Buuren & Groothuis-Oudshoorn, 2011, k-Nearest Neighbour, kNN, 
Dudani, 1976, BHPMF, Schrodt et al., 2015); or (3) trait–environment 
correlations (e.g. advanced hierarchical probabilistic matrix factor-
ization, aHPMF; Schrodt et al., 2015).

BHPMF serves as one example of an upcoming paradigm of 
theory-guided initialization in the field of data science (Karpatne 
et al.,  2017), generating data-based models which incorporate 
prior knowledge as side information (Barredo Arrieta et al., 2020). 
Probabilistic matrix factorization (PMF) is based on the assumption 
that the original matrix has correlated columns (‘is of low rank’) and 
can therefore be approximated and imputed by the product of two 
lower dimensionality matrices (Mnih & Salakhutdinov, 2007; Udell 
& Townsend, 2019). In case of BHPMF, the plant taxonomic hierar-
chy is added to the data matrix, based on the prior knowledge that 
plant traits cluster within taxonomic and functional groups (Kattge 
et al., 2011). While PMF is based on the distribution and correla-
tion of data within the incomplete matrix, the added taxonomic 
hierarchy substantially improves the accuracy of imputation by 
BHPMF (Schrodt et al., 2015; Shan et al., 2012). The implementa-
tion of imputation by BHPMF has therefore become integral to the 
vision of linking different trait data streams for spatio-temporal 

monitoring of plant functional biodiversity (Jetz et al.,  2016). 
BHPMF often performs well in comparison to other commonly 
used techniques (Fazayeli et al., 2014; Schrodt et al., 2015), par-
ticularly in large and very sparse data sets (Johnson et al., 2020) 
like the TRY database (Kattge et al.,  2020). Therefore, BHPMF 
imputation and its data have been used in a wide array of stud-
ies: BHPMF-imputed data have been shown to produce compa-
rable multivariate results to observed data in case studies (Díaz 
et al., 2016; Schrodt et al., 2015) and when used in an advanced 
form of trait–trait correlations: trait connectivity (Flores-Moreno 
et al., 2019). BHPMF has also been used to support the develop-
ment of process-based range models for many species at different 
spatial scales (Evans et al., 2016). An initiative collecting species 
abundance data across vegetation plots (sPlot) aims at broadening 
its applicability by linking to BHPMF-imputed trait data, derived 
from TRY (Bruelheide et al., 2019). This large data set is used to 
analyse community trait–environment relationships (Bruelheide 
et al., 2018).

However, the limitations of BHPMF-imputed data are still not 
well understood (Poyatos et al.,  2018). Because BHPMF learns 
from taxonomic side information and trait–trait correlation patterns 
(matrix factorization, Schrodt et al., 2015), it may introduce biases. 
Any additional (side) information that reduces the error during im-
putation is likely to also introduce bias because of the assumptions 
incorporated into the imputation algorithm. Whereas PMF-based 
imputation may strengthen trait–trait correlation patterns. In detail, 
imputed values may systematically deviate according to taxonomic 
or correlation patterns, or both. If introduced into data during im-
putation, these artificial patterns of taxonomic and trait–trait cor-
relation biases could then lead to false conclusions, for example, in 
studies testing for taxonomic differences. Such biases cannot be de-
tected in the current evaluation of BHPMF. This is because BHPMF, 
like most imputation techniques, optimizes against observed data 
using measures of imputation accuracy (here the root mean squared 
error, RMSE), but does not evaluate induced versus observed pat-
terns of taxonomy or trait–trait relationships. Any additional (side) 
information that reduces the error during imputation is likely to also 
introduce bias because of the assumptions incorporated into the im-
putation algorithm.

Evidence of bias emerges as systematic patterns in residuals, 
the distance of imputed to observed values (yimputed − yobserved), 
are evidence of bias. Residuals may be non-randomly distributed 
due to information added during imputation. Molina-Venegas 
et al.  (2018) analysed variability in plant trait imputation accu-
racy in relation to phylogeny using both Brownian Motion and 
Monte Carlo approaches. They showed that predictive accuracy 
depends on the strength of the phylogenetic signal in traits, pro-
ducing variable levels of imputation accuracy among phyloge-
netic taxa. This suggests that well-conserved species (and traits) 
are well explained, while trait samples, which are outliers within 
their taxon, are less accurately predicted. This may be because 
imputation moves all samples within a taxon towards the taxon 
mean. The second potential source of bias stems from the other 
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side information, that is, trait–trait correlation patterns that are 
retrieved by BHPMF directly from the data.

Functional groups—coarse approximations of plants' traits—are 
often used to draw broad-scale conclusions, for example, for trait 
mapping (Moreno-Martínez et al., 2018). Despite their importance 
in research, bias in plant functional types and growth forms are not 
explicitly considered in bias detection analyses. Therefore, impli-
cations of induced patterns during gap-filling specifically for plant 
functional types and growth forms may be of importance for these 
analyses. Functional groups can sometimes be related to taxonomy 
(e.g. pteridophytes and ferns), but may also represent different cate-
gories (e.g. Fabaceae, including trees and herbs).

The imputation accuracy may be increased by adding an ex-
ternal larger plant trait data set during imputation. Schrodt 
et al.  (2015) point to this potential when imputing a (geographi-
cally constrained) subset with and without external data. Still both 
approaches resulted in similar imputation errors (SD and RMSE) 
and were not tested for induced patterns. A greater available data 
set during imputation may help to stabilize trait predictions and 
ameliorate biases when a local data set has been collected as a 
focal study with sparse traits recorded. However, the extended 
data can also bias imputation, which may be reflected in terms 
of imputation error, trait distributions, taxonomic clustering and 
trait–trait correlations.

Here, we investigate whether data imputation by BHPMF leads 
to biases, and which aspects influence the bias. We aim to demon-
strate bias in imputed data using BHPMF. We expect (H1) that 
BHPMF-filled matrices may be of lower rank than the original ma-
trices: Trait–trait correlations would be increased after imputation; 
(H2) that the taxonomic side information added within BHPMF may 
strengthen or even introduce taxonomic patterns; and (H3) trait data 
which were imputed with external data to have smaller residuals and 
a reduced bias.

We used an observational data set drawn from the TRY da-
tabase (https://try-db.org, Kattge et al., 2020), and randomly re-
moved different numbers of samples from it to achieve several 
levels of missingness. After imputations, we compared observed 
and imputed data sets in terms of (1) error (RMSE, distribution, 
trait means, residuals of individual values and species means), (2) 
trait–trait correlations (Pearson correlation coefficient, principal 
component analysis [PCA], Procrustes test) and (3) taxonomic and 
functional clustering (silhouette index, distance to species mean). 
We describe the differences between observed and imputed trait 
data as ‘deviations’.

2  |  MATERIAL S AND METHODS

2.1  |  Data

The data used in this study are based on fully observed trait data 
and BHPMF-imputed trait data with different sparsity on the larg-
est completely observed in situ trait data collection that could be 

derived from the TRY database. The traits were selected based 
on their number of entries. We chose to use observed rather than 
synthetic trait data to represent the caveats of trait data as real-
istically as possible. This comes at the cost of using available ob-
servations only as well as relying on the inherent bias from data 
sets. Hence, the completely observed trait data comprise a set 
of non-randomly selected traits. In order to test for coherence, 
and influence of different properties, we selected two completely 
observed trait data sets (OBS, OBS2) which are part of the same 
global data set (TRY17), but do not share any overlapping entries. 
Results of OBS are presented in the main text, and those from 
OBS2 are in the supplement (for a summary of data used, see 
Figure 1, and Tables S1 and S2).

To obtain the trait data sets, we first extracted records for the 17 
most frequently observed continuous traits from the TRY database 
(try-db.org, 8.10.2016 and TRY version 3). In total, we retrieved traits 
from 241,653 individual plants. The resulting trait–individual matrix 
has a sparsity of 93.3%, that is, only 6.7[%] of cells contain a trait 
record (Table  S3). Information on genus, family and phylogenetic 
group, growth form and plant phenology was added from the TRY—
Categorical Traits Data set (https://www.try-db.org/TryWe​b/Data.
php#3; Table S4). The individuals were attributed to taxonomic (spe-
cies, genera, families and seed plant clades: Angiosperm–Eudicotyl, 
Angiosperm–Magnoliid, Angiosperm–Monocotyl Pteridophytes, 
Gymnosperm) and functional groups (plant functional type [PFT] 
and growth form Table  S4). Species and genera are completely 
nested within the functional groups.

In order to build the two test trait data sets (OBS, OBS2), we 
extracted from the total trait data (extended data set) two sub-
sets with fully observed data only. These observed data comprise 
two collections each having the maximum available number of in-
dividual observations and traits (Table  S3). OBS is a mainly tropi-
cal data set dominated by trees (OBS: n(trees) = 806 n(herbs) = 119, 
n(grasses) = 118). In contrast, OBS2 consists mainly of data from tem-
perate regions, in which herbs and grasses are better represented 
than trees (OBS2: n(trees) = 28 n(herbs) = 390, n(grasses) = 119). 
The respective data stemming from the extended data are 
n(trees) = 65,474, n(herbs) = 78,561, n(graminoids) = 25,049. OBS 
and OBS2 have approximately the same number of observations 
per species (n(OBS) = 2.4; n(OBS2) = 2.2). The observations added 
to OBS and OBS2 by external data (excluding OBS, OBS2, respec-
tively) vary, for example, per species present in OBS, EXT adds four 
observations on average, in comparison to OBS2, to which species 
EXT adds five to six observations on average (Table S3). The retained 
total data set including OBS and OBS2, together with the external 
trait data (EXT, EXT2), is called the extended trait data from TRY 
(TRY17). For a summary of all data sets, see Figure 1 and Table S1.

2.1.1  |  Data transformation

Before running BHPMF, all trait data sets were normalized by log– 
and z–transformation. Specifically, each value y of a trait k was first 
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log-transformed, then in a second step, the trait mean �(log(k)) was 
subtracted, and the resulting value was divided by its standard de-
viation �(log(k)).

Log transformation was chosen to achieve a closer to normal dis-
tribution of values per trait (Kattge et al., 2011). We additionally con-
ducted z transformation because a given difference for small trait 
values (absolute value) is likely to be physiologically more relevant 
than the same difference (absolute value) for large trait values. The z
-log transformed data were used for all analyses of BHPMF imputa-
tions (unless specifically mentioned).

2.1.2  |  Data preparation for BHPMF imputation

The gap-filling procedure was prepared by perforation (see below), 
then perforated data were BHPMF-imputed and analysed. The ob-
served trait data set (OBS or OBS2) was perforated with varying 
numbers of missing entries: 1%, 5%, 10%, 20%, 30%, 40%, 50%, 
60%, 70% and 80% of observed data were randomly deleted across 
the whole data set, with the constraint to keep at least one trait re-
cord per individual plant (i.e. row) and at least one observation per 
trait (i.e. column). In total, these minimum values represent 14% of 
the original, observed data set. For each level of missingness, we re-
peated the random gap setting three times. In preliminary analyses, 

repetitions of BHPMF imputations did not show significant differ-
ences in total RMSE and were thus not considered. For the imputa-
tion with external data, the perforated trait data (OBSsparse) were 
complemented with external data (EXT).

2.1.3  |  BHPMF imputation

BHPMF decomposes or factorizes the trait matrix probabilistically 
(probabilistic matrix factorization, PMF Salakhutdinov & Mnih, 2009) 
at different hierarchical levels (here: taxonomy) within a Bayesian 
framework (Schrodt et al.,  2015). PMF probabilistically factorizes 
the trait matrix by latent vectors for each row and for each column 
of the matrix. The trait values are imputed as the inner products of 
the latent vectors. Using a Gibbs sampler (a Markov Chain Monte 
Carlo algorithm), BHPMF sequentially performs PMF at the differ-
ent hierarchical levels, using the latent vectors of the PMF at the 
current hierarchical level as prior information for the next hierarchi-
cal level. BHPMF thus samples the higher level-constrained prob-
ability density distributions of the latent vectors at the level of the 
individuals. Eventually these iterations are used to derive imputation 
means as well as imputation confidence in the form of standard de-
viations (SD), which are per-value estimates of uncertainty in trait 
imputations (Fazayeli et al., 2014; Schrodt et al., 2015). The underly-
ing premise of BHPMF is therefore to impute traits of the individual 
plants using PMF to account for trait–trait correlations as well as 
intra- and interspecific trait variability and using the taxonomic hi-
erarchy to constrain the sampling of the spars individual-based trait 

zlog(y) =
log(y) − �(log(k))

�(log(k))

F I G U R E  1  Data sets used and produced in this study. TRY17, a sparse global data set of 17 plant traits derived from TRY including OBS, 
a completely observed data set (for OBS2, the naming is accordingly with added ‘2′). OBS is then added with gaps (missingness from 1% to 
80%), resulting in OBSsparse. The same OBSsparse is replacing OBS in TRY17, making it TRY17sparse. OBSsparse and TRY17sparse are being BHPMF 
imputed. This results in IMPobs from OBSsparse as well as IMPTRYsparse, including IMPobsExt and IMPEXT. The imputations IMPobs IMPobsExt are 
then further analysed and compared to OBS.
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    |  5JOSWIG et al.

matrix by well-covered trait matrices at the higher levels of the taxo-
nomic hierarchy (Fazayeli et al., 2014; Schrodt et al., 2015).

BHPMF internally splits the data sets randomly into a training data 
set for parameter setting (80%), a validation data set for parameter ad-
justment by optimizing performance and (10%) and a test data set for 
independently testing the performance after parameter adjustment 
and learning (10%, Schrodt et al., 2015). The training data set is used 
for the training of latent vectors, while the validation data set is used to 
evaluate and stop the optimization process of the latent vectors after 
five consecutive iterations with stable RMSE, and finally, the test data 
set serves as the basis for independent performance testing after pa-
rameter adjustment and learning (Schrodt et al., 2015).

The R package BHPMF was run with a maximum of 1000 total 
iterations, where the first 200 were discarded during the ‘burn-in’ 
phase. In order to avoid autocorrelation, only every 20th iteration 
was used to calculate the resulting trait values. The mean of these 
maximum 40 imputations resulted in the final trait values used as 
the output.

To determine the effect of adding the external trait data, we 
imputed the perforated observed data with and without the exter-
nal trait data (Table S3). This resulted in four main data sets (OBS is 
used here to indicate both OBS and OBS2, lookup table for both ap-
proaches here: Figure 1, Table S1, and for OBS2, Table S2): (1) OBS, 
observed trait data (OBSsparse if OBS is perforated), (2) IMPobs, trait 
data imputed based on perforated trait data OBSsparse, (3) TRY17, 
the extended trait data, including the trait data (OBS) and external 
data (EXT; TRY17 = OBS + EXT). TRY17sparse, if included trait data 
are sparse (OBSsparse), and (4) IMPobsExt trait data imputed based on 
OBSsparse with the extended trait data (EXT).

2.2  |  Analysis

We computed the error (RMSE, mean, distribution, residuals), the 
trait–trait correlations (Pearson, PCA) and taxonomic and functional 
clustering (silhouette index, distance to cluster mean, coefficient 
of variation). The distance between the observed data (OBS) and 
the imputed data sets (IMPobs and IMPobsExt) are defined here as 
deviations.

2.2.1  |  Error

The error was calculated for individual observations as residuals, 
and the distance of individual observations to cluster mean, whereas 
clusters are taxonomic (species, genus, family) or phylogenetic 
(clade) and functional (growth form [GF] and plant functional type 
[PFT]). Furthermore, the root mean square error (RMSE) was cal-
culated per trait and for the whole data set, and distributions were 
plotted.

Residuals are calculated as the distance between (back-
transformed) imputed value yimputed and observed value 
yresidual = yimputed − yobserved.

RMSE was calculated from transformed data.

The trait distributions across individual values were calculated 
with the density function of the ‘stats’ package in R.

2.2.2  |  Trait–trait correlations

Trait–trait correlation patterns were calculated for trait pairs and for 
multivariate trait sets.

For trait pairs, we calculated Pearson correlation coeffi-
cients of both the back-transformed and the respective z − log 
transformed data set. The Pearson correlation coefficients were 
calculated for all three imputation repetitions, and aggregated 
to mean and SD. For multivariate correlation patterns, we per-
formed principal component analysis (PCA) with the R package 
‘princomp’ for one random repetition of imputations. The kernel 
density was calculated with the ‘kernel’ package. For quantitative 
comparison of the PCA results of imputed (IMPobs, IMPobsExt) with 
those of the PCA result from the observed data set (OBS), we 
applied a Procrustes test (Peres-Neto & Jackson, 2001) using the 
‘procrustes’ and ‘protest’ functions in R package ‘vegan’ (Oksanen 
et al., 2020). The procrustes analysis rotates the two PCA axes to 
maximize similarity with the other PCA axes to be tested against 
(function procrustes). Second, we test the non-randomness (‘sig-
nificance’) between two PCA results (function protest). Non-
random results (e.g. <0.05) for the first two PCA axes indicate 
non-randomness, thus similarity.

2.2.3  |  Clustering

Clustering was analysed for single values, clusters of a trait and 
clusters of all traits (multivariate clusters). Clusters were defined by 
taxonomic and functional groups.

For the value-wise analysis of clustering, we calculated the dis-
tance to the respective cluster mean for each value y of a cluster A, 
(y − y, z-log transformation). Clusters were species, genera, families, 
clades, growth forms (GFs), and plant functional types (PFTs).

For the traitwise (univariate) cluster analysis, the coefficient of 
variation (CV) was calculated per trait and cluster A (e.g. species) 
consisting of its single values y1, y2, … yn. The CV is calculated as the 
division of standard deviation � of all observations of one cluster 
(y1, y2, … yn), n = number of values of cluster A, and the mean � of all 
observations of the same cluster (y1, y2, … yn), n = number of values of 
cluster A. The CV of clusters with n > 1 was calculated. Values with 
missing functional group cluster attributions were excluded from 
analyses. The CV is based on back-transformed data.

RMSE =

√

√

√

√
1

N

N
∑

i=1

(

yimputed−yobserved
)2

CV =
�

�
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6  |    JOSWIG et al.

For calculating the multivariate cluster analysis, we used the 
silhouette index (Rousseeuw,  1987) Rpackage: ‘clues’, function: 
get_Silhouette. The silhouette index (S) calculates the dissimilar-
ity of one element of a group to its cluster. First, we calculated for 
each object y, within any cluster A (e.g. individual within any taxon 
or functional group), its distance to all other objects yn, independent 
of their cluster attribution. Second, we averaged the distances of all 
elements per cluster in two ways. On the one hand, we averaged the 
distances of all elements to the elements within the same cluster, 
resulting in the dissimilarity a(y). We also averaged the distances of 
the same cluster to all elements of the closest neighbouring cluster 
b(y). Finally, the dissimilarity a(y) within the cluster A is compared to 
the dissimilarity b(y) of the closest neighbouring cluster, so a(y) = av-
erage distance to objects of group A, while d(y) = average distance 
to objects of cluster ≠ A, for example, C, and b(y) = minimum (d(y, all 
clusters)).

A value of S = − 1 indicates great dissimilarity (little clustering), 
S = 0 indicates that items are situated evenly between two clusters, 
and S close to 1 indicates little dissimilarity, such that items are taken 
to be part of the attributed cluster. Silhouette indices of clusters 
with one individual must result in S = 0 and thus were not calculated. 
Values with missing functional group cluster attributions were ex-
cluded from analyses. We extracted median values of all clusters of 
more than one individual per group (species, genera, families, seed 
plant clades, growth forms, PFTs). Only fully observed clusters can 

be used to calculate S, thus sparse and perforated data cannot be 
calculated.

3  |  RESULTS

We compared the observed trait data (OBS) to the imputed trait data 
(IMPobs, IMPobsExt) either from OBSsparse alone or on the basis of ex-
tended trait data (TRY17sparse). All analyses were run in parallel for a 
second data set (OBS2, see supplementary material).

3.1  |  Imputation error and residuals

In a first step, we analysed the patterns of error and tested whether 
missingness was associated with error for IMPobs and IMPobsExt, 
measured as RMSE and residuals per trait and per individual plant 
value. We found RMSE to increase with missingness (Figure 2) and 
to be higher for gaps than for available samples (Figure 2 top vs. bot-
tom). This translates into non-gap data being better imputed than 
absent data (compare also OBS and OBSsparse in Figure S2e).

Including external data during imputation did not change the 
RMSE much for IMPobs to IMPobsExt (Figure 2). However, IMP2obsExt 
showed a greater RMSE-reduction in comparison to IMP2obs 
(Figure S3). The addition of external data did not increase residuals 
in comparison to IMPobs (Figure S4a) and reduced them for OBS2 
(Figure  S5a). Across taxa, addition of EXT kept the correlations 
of samples similar (OBS) or ameliorated them (OBS2, Figure S2e). 
For species mean, adding external data reduced the fit for OBS, 

S =
b(y) − a(y)

max(a(y), b(y))

F I G U R E  2  Percentage of missingness 
in trait data (OBS) impacts the classical 
estimator of imputation error: RMSE; 
while the extent of the input data set 
(with or without external data) does not. 
Lines connect the points at missingness 
of 0%, 1%, 5%, 10%, 20%, 30%, 40%, 
50%, 60%, 70% and 80%. The points are 
average values of three repetitions while 
the missingness per trait is approximate, 
since gaps were set randomly. Top figures 
refer to the RMSE calculated from all 
values, that is, imputed values for both 
types of samples: the observed values as 
well as the introduced gaps. Both types 
of samples have an imputed equivalent. 
Bottom figures refer to the imputed gaps 
only. Left figures refer to input being trait 
data only, while figures on the right show 
results when external data are included 
during imputation. For illustration 
purposes, we show one repetition. For 
trait data 2, see Figure S3.

R
M

SE
0

0.
2

0.
4

0.
6

Missingness [% gaps]
0 20 40 60 80

IMP_obs

R
M

SE
0

0.
2

0.
4

0.
6

Missingness [% gaps]
0 20 40 60 80

IMP_obsExt SLA
PlantHeight
SSD
LeafN
LeafP
LeafNArea

Average

R
M

SE
0

0.
2

0.
4

0.
6

Missingness [% gaps]
0 20 40 60 80

IMP_obs gaps

R
M

SE
0

0.
2

0.
4

0.
6

Missingness [% gaps]
0 20 40 60 80

IMP_obsExt gaps

 14668238, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/geb.13695 by T

est, W
iley O

nline L
ibrary on [06/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  7JOSWIG et al.

while for OBS2, it improved it (Figure S6), this external data effect 
depended on the trait (Figures S7 and S8). To better understand 
the implications for ecological analyses, we converted the imputa-
tions back to original units (Table S5). Single imputed trait values 
deviated substantially in comparison to the original observations. 
For example, converted into original units, residuals translate for 
plant height into a median deviation of 2.3 m (7.72 for 75th quan-
tile), which may be as large as 43.4 m (Extended trait data: me-
dian = 2.54 m; 75th quantile = 6.9 m; max = 47.6 m, Table  S5). This 
is interesting given plant height shows the lowest RMSE, when 
transformed. The extreme (original unit) residuals of specific leaf 
area (SLA), leaf nitrogen (leafN), leaf phosphorus (leafP) and leaf 
nitrogen per leaf area (LeafNArea) were reduced for IMPobsExt in 
comparison to IMPobs (Table S5).

3.2  |  Distributions

To determine whether imputed trait data represented the trait dis-
tributions well, we compared these for trait means (Figure 3a,b), for 
single values (Figure S4a, Table S5) and for taxon means (Figures S6a 
and S4b–d).

The trait distributions of IMPobs and IMPobsExt (of both trait data 
sets) reproduced the observed distributions in OBS (OBS2) well, 
but with reduced variance (Figure 3a, OBS2 Figure S9a). IMPobsExt 

distribution resembled the distribution of OBS more than the dis-
tribution of the TRY17 (i.e. OBS with external data, Figures  3a). 
Consistently, trait means were similar among the imputations IMPobs 
and IMPobsExt, and OBS than to the added external data (Figure 3b). 
However, some trait means were shifted: for example, tall plants be-
come shorter than observed, and stem density (SSD) greater than 
observed.

When assessing the residuals at all taxonomic and phylogenetic 
mean levels (species to clades), we found adding supplement trait 
data did usually not change the residuals for OBS (Figure  S4, but 
it did reduce them for OBS2, Figure S5). This was also reflected in 
the similar correlation coefficients between IMPobs or IMPobsExt with 
OBS (Figures S1, S2 and S6), but an amelioration for OBS2. It is worth 
mentioning that a perfect reproduction of the trait distribution and 
mean is theoretically possible even with a large RMSE.

3.3  |  Trait–trait correlations

To determine how imputation affected trait–trait correlations, we 
analysed the trait–trait correlations of OBS, IMPobs and IMPobsExt on 
the level of pairwise (Figure 4a,b) and multivariate trait combinations 
(Figure 4c–e).

The mean Pearson correlation coefficients of pairwise correla-
tion coefficients are reduced for IMPobs and IMP2obs in comparison 

F I G U R E  3  Trait distribution deviations from observed to BHPMF-imputed values (missingness: 80% gaps, n = 1136; values back-
transformed one BHPMF repetition). (a) Trait value distributions of observed trait data (OBS, filled light blue), extended trait data (TRY17, 
dark blue) and imputed values without (IMPobs, orange) and with external data (IMPobsExt, red). (b) Bar plot of mean trait value of trait data 
(OBS, light blue), IMPobs (orange) and IMPobsExt (red) imputed including extended trait data (EXT, blue). For OBS2, see Figure S9.
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8  |    JOSWIG et al.

to OBS, OBS2 (Figure  4a although not significantly for IMP2obs). 
The correlation coefficients varied along missingness levels, less 
so when supplemented with external data (Figures  S10 and S11 
and Tables S6 and S12). Adding external data improved the match 
with observed correlation coefficients for both OBS and OBS2, 
accompanied by an insignificant increase in correlation coefficient 
values (Figure  4a vs. b). The perforated trait data (OBSsparse) had 
few entries, sometimes only 17, to deduce trait–trait relationships 
(Table S6). Multivariate trait–trait relationships were similar for im-
puted and observed data (Figure 4c–e) according to a Procrustes 
test (Table S7).

3.4  |  Clustering

In order to detect possible taxonomic patterns introduced during 
BHPMF imputation, we analysed clustering at different levels for 
observed and imputed data arranged in groups (Figure 6), for indi-
vidual traits (Figure S13) and for single values (Figure 5, and sepa-
rated according to trait Figures S14a–f). On all three of these ‘levels’, 
we observed changes in clustering due to imputation.

First, based on the Silhouette index, we tested whether orig-
inally observed clustering was changed by imputation. We found 
increased clustering after imputation for all groups (Figure  6). 

F I G U R E  4  Comparison of observed versus imputed pairwise trait–trait correlations. (a) Pearson coefficients for OBS and OBS2, including 
t–test result, comparing trait–trait relationships of observed trait data (OBS, OBS2) and data imputed with 80% missingness (IMPobs, IMP2obs) 
(for other transformations and missingness levels: see Figure S10, for OBS2: Figure S11). Imputed without external trait data (repetition 
n = 3). (b) Pearson coefficients for OBS and OBS2, imputed with external trait data, including t–test result, comparing trait–trait relationships 
of observed trait data (OBS, OBS2) and data imputed with 80% missingness (IMPobsExt, IMP2obsExt) (IMPobsExt, IMP2obsExt, repetition n = 3). (b–
d) Principal component analyses for log-transformed traits (b) trait data imputed with trait data, IMPobs (c) trait data observed, OBS (c) trait 
data imputed from extended trait data IMPobsExt. For bivariate trait–trait relationships and different transformations and missingness levels 
of OBS, see Figure S10, and for OBS2, see Figure S11. For multivariate relationships of OBS2, see Figure S19. Significance levels: * < 0.05, 
** < 0.01; *** < 0.005.

(a)

(c) (d) (e)

(b)
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    |  9JOSWIG et al.

Species and genera increased clustering most, clades and func-
tional groups least. Second, we found that intraspecific trait 
diversity was also reduced by imputation as measured by the 
coefficient of variation (CV), especially for heterogeneous and 
observation-poor species (Figure  S13). The reduction in CV oc-
curred regardless of the addition of external data, but external 
data seemed to reduce the effect size for observation-rich species 
(Figure S13). Third, we found that single values became closer to 
the group mean with imputation (Figure 5). We analysed the dis-
tance to taxon mean (as well as clade and functional group mean) 
for OBS, IMPobs, and IMPobsExt. We found an overall reduced dis-
tance to taxon mean for IMPobs and IMPobsExt in comparison to 
OBS, with values which were originally further from the mean 

shifted more than values which were originally closer to the mean 
(Figure  5, and separated according to trait Figure  S14a–f). This 
was most pronounced for leaf nitrogen concentration and leaf 
phosphorus concentration, which clustered only loosely in ob-
served data, and least pronounced for plant height, which is more 
similar within observed groups.

OBS2, in comparison to OBS, clustered more tightly in the ob-
served data set, and also clustered more tightly following imputa-
tion. For OBS2, the effect of imputation on clustering was, however, 
eliminated by the addition of external data during imputation 
(Figure S15). Single values for OBS2 also became closer to the group 
mean with imputation, with outlier values shifting more than values 
which were initially close to the mean (Figure S16).

F I G U R E  5  Comparison distance to 
group mean of OBS (blue), imputed IMPobs 
(80% gaps, orange) and IMPobsExt (80% 
gaps, red). Outside: mean trait value 
of the respective cluster (taxonomic, 
functional). The further away the lines, 
the more dissimilar the single values are 
to it. Lines depict the average (mean) of 
all single values and traits. For traitwise 
analysis, see Figure S14. Distances of >2 
are not shown and set to 1. For OBS2, see 
Figures S16 and S21.
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observed data). For OBS2, see Figure S15.
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10  |    JOSWIG et al.

4  |  DISCUSSION

We investigated whether data imputation with BHPMF leads to in-
accuracies and biases which could cause problems in downstream 
analyses, and aimed to identify aspects influencing the bias. We 
found that the error of imputed data in terms of RMSE increased 
with missingness up to an RMSE of OBSmean = 0.3 (OBS2mean = 0.25 ; 
Figure  2a). The individual error per value depended on the trait 
identity, as well as presence during imputation (if a missing or an 
observed value was predicted; Figure 2a,c; see summary Table 1). 
However, the imputations of trait means (IMPobs,IMPobsExt) as well 
as taxa means were usually close to the ones of the fully observed 
data set, even with high missingness, and were not much affected 
by imputation in the presence of sparse external data (Figures 3b; 
Figure S2e).

The PMF approach and the side information used by BHPMF 
suggest two aspects of potential bias: trait–trait relationships de-
picted from the sparse data set by BHPMF, and taxonomic relation-
ships which are added to the data set as clustering side information 
in terms of the taxonomic hierarchy. A third aspect potentially in-
troducing bias is given by using a larger data set for imputation than 
is actually needed for the downstream analyses. We did not find 
evidence for strengthened trait–trait relationships after imputation 
(H1). Instead, we found reduced trait–trait relationships, also linked 
to stronger variability with increasing missingness (IMPobs, IMP2obs; 
Figure 4e, Figures S11 and S12). In contrast, the use of external data 
during imputation improved and stabilized the predicted trait–trait 
correlations across all levels of missingness. Imputation with exter-
nal data revealed an insignificant trend for increasing correlation 
strength with increasing missingness, which might provide very 
weak support for H1 (but see discussion of H3). The relatively un-
biased prediction of trait–trait relationships with BHPMF may help 
explain why the observed and imputed trait data published in Díaz 
et al.  (2015) and Joswig et al.  (2022, suppl. section 7.2) revealed 
very similar trait–trait correlations, and it should be noted that both 

studies used very large data sets (for Díaz et al., 2015, 45,507 spe-
cies; and for Joswig et al.,  2022, 652,957 individuals). Imputation 
generally did not modify trait–trait relationship patterns. This sup-
ports the use of imputed data for analysing trait connectivity as in 
Flores-Moreno et al.  (2019), as well as for trait–trait relationships 
(Joswig et al., 2022). Our method only included linear trait–trait rela-
tionships, as these are most commonly investigated (Díaz et al., 2015; 
Joswig et al., 2022), and may miss non-linear relationships. Future 
work should investigate to what extent non-linear relationships may 
be affected by BHPMF imputation.

In contrast, Hypothesis 2 (H2) was mainly supported because 
imputed data clustered more tightly into taxonomic groups (taxo-
nomic hierarchy) and consequently in functional groups (growth 
forms and PFTs), in comparison to observed data (Figures 5 and 6, 
Figure  S13). Functional groups comprise sets of entire taxa, that 
is, members of a species belong to the same functional group and 
therefore patterns of functional groups follow the patterns ob-
served for taxonomy (Figure 5). However, the strength of the effect 
depended on the taxonomic level (strong for species and genera, 
Figure 6), data set heterogeneity (more bias when heterogeneous; 
Figure 5) and sample size per cluster (less bias with more samples; 
Figure  S6a). This was also influenced by the presence of external 
data during imputation (Figure 6, Figures S1 and S2). For the second 
data set, IMP2obsExt was less (taxonomically) biased than IMP2obs 
(Figure S15). Observed values which were far from their respective 
cluster means became—following imputation—more similar to their 
cluster mean (Figure 5). Therefore, plant traits are likely to be differ-
ently well imputed depending on their homogeneity within species 
and genera. In ecological terms, the intraspecific diversity influences 
the amount of clustering bias introduced during imputation. Traits 
that are taxonomically well conserved thus show a smaller error 
and bias in comparison to less-conserved traits. This points into the 
same direction as the finding by Molina-Venegas et al. (2018), who 
used two imputation methods (PEM and pGLM), and showed a neg-
ative relationship between accuracy and phylogenetic tip length (i.e. 
evolutionary time) depending on the strength of the phylogenetic 
signal. In the future, the guiding aspect of each trait for its varia-
tion should be investigated (i.e. taxonomy, environment, etc.), as it 
is of importance for decisions regarding scale, aggregation and input 
during imputation. Compared to OBS, OBS2 is of low functional di-
versity and high taxonomic conservatism, in part because of the low 
number of individuals per taxon in OBS2 (Table S3). Thus for OBS2, 
BHPMF even reduced clustering for some species (Figure  S13). 
External data likely increased accuracy for OBS2 more than for OBS 
because, per trait and species, the external data provided more new 
observations for OBS2 (average number of observations per species 
n(mean) = 5.4) than for OBS (average number of observations per 
species, n(mean) = 4; Table S3).

The effect of adding external data during imputation (H3) 
depended on the analysis and the data set. The addition of ex-
ternal data resulted in more consistent predictions of trait–trait 
correlations which, however, showed a very weak tendency to in-
crease with increasing missingness in the trait data. The addition 

TA B L E  1  General rules for the factors and their direction on 
accuracy.

Accuracy
•	 The average accuracy of imputations depends on the input data. 

The relationships with accuracy is:
− missingness (Figure 2, Figure S3)
+ taxonomic clustering/ phylogenetic conservatism (Figure 5)
− functional diversity/environmental plasticity (Figure 5, 

Figures S13 and S21)
+ ∕ − trait–trait relationships (Figure 4, Figures S10 and S12)

Accuracy of single samples/entries
•	 The accuracy of single samples/entries on:

− gap during imputation (compare top Figure 2 vs. bottom Figure 2)
(+ ) external data (Figures S2e, S4 and S5)
+ similarity to taxon mean (outlier/aligns, Figure 5)
? alignment with trait–trait relationships
+ addition of samples in the external trait data, which are same as 

in your local target data set (see difference between OBS and 
OBS2 in Table S3, Figures 6, and S15)
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    |  11JOSWIG et al.

of external data slightly ameliorated taxonomic clustering. This 
buffering effect of external data (IMPobsExt)—where present—is 
likely to be the consequence of having a greater trait sample size 
including trait distribution and trait pairs to draw from (Table S3). 
Yet, not all predictions were improved by the use of an extended 
trait data (Figures S7a–S8c). This may be due in part to the envi-
ronmental plasticity of traits, leading to high intraspecific variabil-
ity. As BHPMF learns from all individuals of a taxon, imputation 
of local trait data from widely distributed species could deviate 
towards trait values originating in other environmental conditions. 
Consequently, external data may shift taxa means and cause large 
errors, as seen for single values (Table  S5). For the second trait 
data set (IMP2obsExt), wider clustering (Figures S16 and S15) may 
stem from greater variance introduced by the addition of exter-
nal data. The addition of external data during imputation has little 
effect on RMSE, although it tends to increase RMSE for low miss-
ingness, and to decrease RMSE for high missingness. It may ame-
liorate the tendency of BHPMF to increase taxonomic clustering, 
and stabilizes the prediction of trait–trait relationships when data 
are sparse. Thus, it is generally recommended to include external 
data during imputation of sparse data sets (e.g. data sets where 
more than 10% of entries are missing). We recommend comparing 
taxon means of external data with the target trait data, and rec-
ommend against including external trait and taxon data with large 
differences in taxon means, as these are likely to result in biases 
(recommendations Table 2).

Accuracy and taxonomic side information were interlinked. For 
example, IMP2obs was more accurate (Figure S3) with smaller residu-
als (Figure S5) and was less biased or even unbiased from taxonomy 
than IMPobs (Figure S15). The accuracy of OBS2 was likely due to 
tighter taxonomic clusters than OBS (Figure 5, Figure S16), and thus, 
its samples could not shift much when deviating to cluster mean 
after imputation (see also summary Table 1).

This also gives rise to recommendations when external data are 
useful (Table 2). External data buffered the taxonomic bias slightly 
more for OBS2 than for OBS (Figure S15), also species mean was 
better predicted with external data for OBS2 (Figure S6). This may 
have been due to the fact that external data provide 5.4 additional 
samples per OBS2 species, while for OBS only added four per 
sample (Table S3). Further OBS2 may have represented the aver-
age environmental condition in the external data better than OBS, 
since OBS2 was a tropical tree data set, while OBS consists of 
growth forms dominating temperate, well-sampled areas (Kattge 
et al., 2020).

For single traits, bias resulted from information in taxonomy 
and trait–trait relationships. Plant height, for example, was imputed 
with lowest error for OBS (Figure 2a). This was likely due to the high 
taxonomic information content: plant height was, for this data set, 
highly conserved (Figures S14 and S13a). Despite the poor usage of 
information from trait–trait relationships (Figure S20), the phyloge-
netic conservatism on low taxonomic levels was sufficient for high 
prediction accuracy. For plant height, the effect of adding external 
data (EXT) was not visible in terms of error (Figure 2) or in terms of 

distributions (Figure 3) or of taxonomic clustering (Figure S14). Yet, 
the trait–trait relationships were much better imputed for IMPobsExt 
than for IMPobs in terms of stability of repetitions and similarity to 
OBS (Figure S20).

Leaf nitrogen values in OBS (Figure S17) were the worst imputed. 
Leaf nitrogen neither used much information from correlations 
(Figure S17) nor was it well conserved (Figures S14 and S13a), being 
strongly dependent on the environment and particularly soil compo-
sition. Leaf phosphorus was also poorly conserved, but appeared to 
use more correlation information (Figure S18).

The z- and log-transformation of the imputed data may have 
hidden some relevant deviations when back-transformed to the 
original scale. It is important to note that, while central tendencies 
and trait–trait relationships can be successfully predicted from im-
puted data with little bias, there can be large deviations of individ-
ual values from observations, causing a reduction in the apparent 

TA B L E  2  Choices for gap-filling with BHPMF and its usage 
summarized.

Gap-filling with BHPMF
•	 We recommend to include additional external trait data to 

stabilize trait–trait relationships (Figure 4).
Disclaimer The trait–trait relationships are likely to become 

stable, as the additional external trait data show rather 
unaltered trait–trait relationship itself. For varying trait–trait 
relationships, for example, due to scales (small, big, variable), 
BHPMF gap-filled data are yet to be tested.

•	 We recommend to include additional data (e.g. from TRY) if the 
external taxa add entries to the target data sets species and 
genera. With additional entries for taxa (see difference OBS 
and OBS2 Table S3), the imputations are likely to become more 
accurate (compare OBS in Figure 6, and OBS2 in Figure S15), 
while still keeping distribution and mean (Figure 3).
Disclaimer If the taxa replicated in the external data are different 

from the target data set, for example, because of coming from 
different environments etc., the accuracy may be reduced. This 
is because the output taxa (not trait mean) resemble the input 
taxa mean (Figures S13 and S6b).

Trait–trait relationships with BHPMF imputations
•	 BHPMF gap-filled data can be used to analyse trait–trait 

relationships (Figure 4). We recommend including additional 
external trait data to stabilize the relationships.

Disclaimer for local and sparse data sets: trait–trait relationships may 
be reduced

Taxonomic analyses with BHPMF imputations
•	 Do not use BHPMF gap-filled trait data for taxonomic analyses 

(Figures 6 and 5, Figures S14a,d,e,f and S21d). Especially intraspecific 
analyses cannot be made with BHPMF gap-filled data, samples 
within taxa are inherently reduced in trait–space, thus biased.

Disclaimer Exceptions may exist for specific data. Originally strongly 
clustered trait data, that is, data that have either few entries 
per taxon or phylogenetically very conserved species, will likely 
show high accuracy and little deviation after BHPMF imputation 
(e.g. OBS2 in, Figures S15, S16 and S21b,c, or some traits in OBS 
Figure S14b).

Difference of imputed and actual gap-filled data
•	 Always use the observed value. BHPMF generates imputations 

independently if the value was available. Replace imputations 
with observations.
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biological variation of data sets. In most applications, imputation 
was likely to produce differently distributed bias than in the exam-
ple we present here, with larger bias in chunks missing and smaller 
bias where chunks are available. In our approach, trait samples are 
missing completely at random (MCAR), while most sparse data sets, 
trait values are not missing at random (NMAR), but rather the more 
difficult to observe traits (taxa, regions, etc.) are systematically miss-
ing (Jetz et al., 2016). NMAR missingness is likely to show a more 
variable taxonomic bias than in our approach, because missingness 
will be distributed unevenly. This results in stronger clustering in 
large and sparse taxa, and less clustering in small and observed ones. 
Especially for these large and sparse taxa, additional sparse NMAR 
big data can strongly influence the imputation result. Either way, it is 
not recommended to use imputed data for the analysis of taxonomic 
diversity or within-taxa diversity.

CONCLUSIONS
This study identified the potential and limitations of BHPMF-
imputed data sets and deduced guidelines for appropriate use. 
We found that imputation either reduced the Pearson correlation 
coefficients for trait–trait relationships or let them be little altered. 
External data stabilized imputation and improved trait–trait 
correlation accuracy. The accuracy of imputed values depended on 
their distance to taxon mean, as BHPMF tends to systematically 
shift imputed values to the means of the taxonomic groups. Imputed 
values, which are closer to the genus or species mean are therefore 
likely to be more accurately predicted than outliers. Following 
imputation, taxonomic groups clustered more closely together 
than in the observed data, as did functional groups. We conclude 
that trait–trait relationship patterns may be inferred from BHPMF-
imputed data, but taxonomic patterns should not be as they are 
strongly biased and have reduced variance. Our study extends 
criteria for the evaluation of gap–filling beyond RMSE, providing 
insight into statistical data structure and allowing better-informed 
use of imputed trait data, with improved practices for imputation. 
The accuracy and bias of BHPMF is now well characterized, which 
may make it more useful in comparison to other hierarchical 
imputation techniques. Moreover, the bias testing suggested here 
can be beneficial for developing tailor-made gap-filling methods for 
specific problems. For taxonomic analyses, taxonomic information 
could be excluded during imputation. It may be replaced by other 
meaningful information—that is, environmental, temporal ones—
and finalized with bias testing. This study’s approach, results and 
conclusions may thus further be useful beyond applications in 
plant ecology, for any study using hierarchical side information for 
imputation (see summary of recommendations Tables 1 and 2).
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