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Abstract

In the past few decades, partial differential equations have drawn considerable attention, owing to
their ability to model certain physical phenomena. The aim of this paper is to investigate a cubic
B-spline polynomial to obtain a numerical solution of a nonlinear dissipative wave equation. For the
numerical procedure, the time derivative is obtained by the usual finite difference scheme. The
approximate solution and its principal derivatives over the subinterval is approximated by the
combination of the cubic B-spline and unknown element parameters. The accuracy of the proposed
method will be shown by computing L, error norms for different time levels. By applying Von
Neumann stability analysis, the developed method is shown to be conditionally stable for given values
of specified parameters. A numerical example is given to illustrate the accuracy of the cubic B-spline
polynomial method. The obtained numerical results show that our proposed method maintains good
accuracy.

1. Introduction

The nonlinear partial differential equations arise in a wide variety of physical phenomena in several different
aspects of physics, such as water wave theory, fluid dynamics, plasma physics, solid mechanics, and nonlinear
optics, etc. There are many methods for solving partial differential equations via numerical solutions. One of
these is numerically solving a nonlinear dissipative wave equation by using the Adomian decomposition method
[1,2]. The cubic B-spline, used for solving nonlinear partial differential equations, has been employed by many
researchers. The most known and well-focused results are those presented by Dag et al (2004) who presented a
way to solve the Regularised Long Wave (RLW) equation. The numerical results obtained in this paper
demonstrate that the method is capable of solving the RLW equation accurately and reliably [3]. Dag et al
published a paper that described a numerical solution for the one-dimensional Burger’s equation in 2005. The
comparison of the calculations with the analytic solution shows that a cubic B-spline collocation method is
capable of solving Burgers’ equation accurately. The proposed method is easy to implement and does not require
any inner iteration or corrector to deal with the nonlinear term of Burgers’ equation [4]. Khalifa et al (2008)
discussed the Modified Regularised Long Wave (MRLW) equation. The collocation method using cubic
B-splines was applied to study the solitary waves of the MRLW equation, and it is shown that the scheme is
marginally stable. Moreover, despite the fact that the wave does not change, results show that the interaction
results in a tail of small amplitude in two, and clearly in three, soliton interactions, and the conservation laws
were reasonably satisfied. The appearance of such a tail can be beneficial in further study [5]. In 2008, El Danaf
and ET Abdel Alaal constructed a non-polynomial spline-based method to obtain numerical solutions of a
dissipative wave equation. The obtained numerical results show that their proposed method maintains good
accuracy [6]. Later, Mittal and Jain (2012) argued that some numerical method should be proposed to
approximate the solution of the nonlinear parabolic partial differential equation with Neumann’s boundary

©2021 The Author(s). Published by IOP Publishing Ltd
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conditions. The numerical results produced by the present method are quite satisfactory and in good agreement
with the exact solutions. The computed results justify the advantage of this method. The proposed method can
be extended to solve multi-dimensional parabolic equations [7]. In 2015, Zaki developed a new numerical
method based on quadratic non-polynomial spline functions, which has three coefficients in each sub interval
for solving a dissipative wave equation. The results obtained by the proposed technique show that the approach
is easy to implement and computationally attractive. The proposed method is shown to be robust, efficient, and
easy to implement for linear and nonlinear problems arising in science and engineering [8]. A year later, El-
Danaf et al addressed methods for solving the Generalised Regularised Long Wave (GRLW) equation. The cubic
B-splines used to study solitary waves of GRLW equation show that the scheme is unconditionally stable. Also,
the obtained approximate numerical solutions maintain good accuracy when compared with the exact solutions
[9]. Hepson and Dag, in their 2017 research, implemented a numerical technique to obtain approximate
solutions of Fisher’s equation. The method is capable of producing solutions for Fisher’s equation fairly and can
be used as an alternative to the method’s accompanied B-spline functions [10]. In 2017, Igbal et al’s proposed
numerical technique was based on the cubic B-spline collocation method. Their version used a new
approximation for the second order derivative. The proposed scheme is based on the cubic B-spline collocation
method equipped with a new approximation for second order derivative and produces fifth order accurate
results. The proposed method also generates a piecewise spline solution in the presence of the singularity, which
can be used to obtain a numerical solution at any point in the domain and is not restricted to the values at the
selected knots, unlike existing finite difference methods [11]. A year later, Baghan (2018) studied the numerical
solutions of the third-order nonlinear Korteweg—de Vries (KdV) equation by using modified cubic B-splines in
five different test problems. The performance and accuracy of the modified cubic B-splines method was shown
by calculating and comparing the L, and L, error norms with earlier works. The stability analysis has been
performed for all of the test problems, and all of the eigenvalues are in convenience with stability criteria. So,
MCBC-DQM may be useful in obtaining the numerical solutions of other important nonlinear problems [12].
In research conducted in 2019 by Bashan, a modified cubic B-spline differential quadrature method has
successfully been implemented for the numerical solution of nonlinear Kawahara equation. To obtain the first,
third, and fifth-order derivative approximation, a modified cubic B-spline differential quadrature method was
utilised. Four different test problems have then been investigated separately. These newly obtained results
obviously indicate that a modified cubic B-spline differential quadrature method can be used to produce
numerical solutions of the Kawahara equation with high accuracy [13]. More recently, Igbal et al studied the
Galerkin method, based on a cubic B-spline function, where the shape and weight functions are applied for the
numerical solution of the one-dimensional coupled nonlinear Schrodinger equation. The use of the cubic
B-spline Galerkin method produced smooth solutions without numerical smearing in 2020 [14]. In the same
year, by Ahmed et al (2020) a Non-polynomial spline function was used to get numerical solutions of a
Dissipative Wave equation at middles points for lattice in space direction and at the same time, a finite difference
method was used in time direction. The presented method is shown to be conditionally stable. The
approximating results showed to have well agreement compared with the true solutions, hence it can be used to
set approximate solutions for such type of problems [ 15]. In the current work, we propose a mathematical
treatment for the nonlinear dissipative wave equation, utilising the collocation technique with cubic B-spline
shape functions. For the mathematical methodology, the time derivatives will be achieved through the typical
finite difference method. The technique will be shown to be conditionally stable by applying the Von Neumann
stability investigation procedure. We will test the precision of the proposed strategy by conducting an
examination of the mathematical outcomes and the specific arrangement of the condition.

2. The governing equation and the derivation of the proposed method

This paper is worried about applying the cubic B-spline method to build up a mathematical strategy for
approximating the specific arrangement of the nonlinear dissipative wave equation [1] of the structure:

Uy — Uge + 20 = (%, 1), N(x, t) = —2sin’x sin t cos t. 2.1

Under the boundary and initial conditions:

Upc(a, 1) = 0, uy(b, t) =0, u(x, 0) = sinx, u;(x, 0) = 0. (2.2)

The interval [a, b] can be divided into equal subintervals [x;_1, x;],i =0, 1,...,N + 1,where x; = a + ih,
andh = 1,
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Let the cubic B-spline basis functions &;(x) given as:

(x — x;2)° x € [xi 2 Xi1]
B 4 3h%(x — xi—1) + 3h(x — xi—1)* — 3(x — xi-1)> x € [xi_1, xi]

p;(x) = w h> 4 3h2(xip1 — x) + 3h(xip1 — X)* — 3(xiy1 — X)° X € [Xj, Xiy1]
(Xit2 — x)° X € [xit1 Xiy2]
0 otherwise,

where { &;} fori = 0, 1,...,N + 1are the basis for the function defined over the interval [a, b], this implies that
the estimations of the cubic B-spline &;(x) and its derivatives vanish outside the interval
[Xi_z, X,‘+2], 1= 0,1, ... N.
The mathematical treatments for equation (2.1) by the collocation method with cubic B-splines is to track
down an inexact arrangement Uy (x, t) to the exact solution u(x, t).
Set the approximate solution Uy (x, t) as follows:
N+1

Un(x, 1) = ) wi(t)@i(x), (2.3)

i=—1

where wj () are the time dependent parameters which can be resolved utilizing the boundary conditions:

(Uxx)N(a) t) =0, (Uxx)N(b: t) =0, (24)
and the collocation form of equation (2.1)
(U (xjp 1) — (Ueen (x5 1) + 2(U)n (%) ) (Un (x5 1) = 1(x;), 1). (2.5)

By subbing equations (2.3) into (2.5), we get:
N+1 1 N+1
d*w;(t ’
> 0010 - 3 wi2] () + 20 2x)

i=—1 i=—1

NZH dws (t)

o=—1

Ds5(xj) = r];.’(x, t). (2.6)

Applying the finite difference method, we have:

wi =

ntl n=1 72 n=1 _ 9" ntl
%, Z—f _ Y :2’ + Wi , where k= At. 2.7)
t

Substituting equations (2.7) into (2.6) and simplifying the results, we get:
N+1 N+1 )
Do LW = 20f + W i) — K2 YT wi() @7 () + KW+ w2
i=—1 i=—1

N+1
> 220 gy = ke . .89
b=—1

Equation (2.8) can be determined at X, j=0,1,2,.,N,s0 that

aiwit + biw! T + it = —diw] | — ejw! — fiwl,
—nw!T! — 5w = Ll + Kl 1), (2.9)
where
6
a; =1+ kZZ,',b di=-2-— ﬁkz’ n =1+ kZZ,‘,lb,‘ =4 + 4k22i,1,
K2
e;=—8 + 12ﬁ’ si=4+ 4k221‘,1,
6
=1+ kzzi,l, fz =-2— ﬁkz, =2+ kZZ,',1 (2.10)
B | n_ -1 Wl . .
with z;_, = aUN{,(;"’t”) = | 2= ka + 4% kw’ + P “L |, foralli = 0, 1, 2, ...., N. The nonlinear

logarithmic system (2.9) contains (N + 1) equations of (N 4 3) unknowns. To find the solution for this system,
we need two additional conditions which are gotten from the conditions (2.4) as follows:
6 12 6 6 12

6
ﬁw_l — ﬁbdo + ﬁwl = 0, ﬁwl\]_] - ﬁwN + ﬁwNH = 0. (211)
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Figure 1. The exact and numerical results when the time t = 2.0 withk = 0.01.

2

Table 1. The values of @;(x) and their derivative within the
interval [x;_,, x;2].

X Xi—2 Xi—1 X Xit1 Xit+2
(%) 0 1 4 1 0
@' (x) 0 3/h 0 —3/h 0
2, (%) 0 6/h? —12/12 6/h? 0

System (2.9) and the additional equation (2.11) has (N + 3) equations with (N + 3) unknowns, so we can
determine the time dependent variables w; in the matrix form:

ATl =
where
[ 6 —12 6 1
e o 0
agp bo Co 0 0
_ 10 .
A= . oI
0 0 an bN CN
6 —12 6
0 "R e ow
o 0 0 0 .. 0
no $So lo 0 .. 0
10 oL .
€= . w 0
0 .0 NN SN lN
| 0 .0 0 0 O
3. The initial state

In this section, we apply the first initial condition:

u(x, 0) = sinx

—Bw" — Cw" ! + k*l(x, 1),

[0 0 0 O
do €o fOO
0

0 0 dn
0 0 0

(2.12)

3.1
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w
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” - \ 4
-0.4} \ /
\\\ '}/
Bl ,

Figure 2. The exact and numerical results when the time t = 2.5 withk = 0.01. In numerical computation, we take t = 1/20,
k=10.01, and the results are computed for different time levels. Comparisons of approximate and exact solutions at different graphs.
From graphs (figure 1-8), it is clearly seen that the present method produces numerical results in good agreement with the exact
solutions. The results indicate that, the proposed algorithm is substantially more stable and efficient than that of [15].

-10

Figure 3. The exact and numerical results when the time t = 3.0 withk = 0.01.

The initial conditions can be communicated as:

N+1
(Udn(a, 0) = uy(a, 0), Un(xj, 0) = > @i(x)w), j=0,1,2,..,N,
i=—1

(Uon (b, 0) = ux(b, 0). (3.2)

By using the values of @; and their derivatives in table 1, the system (3.2) takes the structure

—3w(ll + 3w{) = hu,(a, 0), w?_l + 4w? + w?+1 =u(x;, 0), j=0,1,2,.,N,
=30+ 3wl = huy(b, 0). (3.3)
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Figure 4. The exact and numerical results when the time t = 4.0 withk = 0.01.

mw
h=—
20

Figure 5. The exact and numerical results when the time t = 5.0 withk = 0.01.

Rewrite the system (3.3) in a matrix form:

My =q
where

-3 0 3 0 0

1 41 0 0

0 o

M = N

.. 0

0 01 41

0 .0 =30 3

(3.4)
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u(x,60)
1.0

08

04

5 10 15 20

Figure 6. The exact and numerical results when the time t = 6.0 withk = 0.01.

u(x, 7.0
0.8

0.6

0.4

0.2

5 10 15 20

Figure 7. The exact and numerical results when the time t = 7.0 withk = 0.01.

To find the second initial condition using Taylor expansion to Uy (x, t;) att = ¢,

OUy (x, to) n k_zazUN(X, to)
ot 2! ot?

Un(x, ) = Uy(x, to) + k

Set ty = 0, we get:
8UN(X, 0) + k_282UN(x, 0)

o o2 + O(k3.

UN(X, tl) = UN(JC, 0) + k

Subbing equations (2.1) into (3.6) we get:

PUy(x 0) ) 9Uy( 0)
Ox? ot

2
Un(x, t1) = Un(x, 0) + %( + n(x, 0)).

After simplifying, equation (3.7) becomes:

k2 (92UN(.XZ, 0)
Un(x, t) = Un(x, 0) + ;T,

where 7(x, 0) = 0.

+ O(ka), k=1t — t.

(3.5)

(3.6)

(3.7)

(3.8)
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u(x, 10)

5 10 15 20

-0.2
-0.4
-0.6

-0.8 -

Figure 8. The exact and numerical results when the time t = 10.0 withk = 0.01.

Substituting equation (3.1) and initial condition (2.2) into equation (3.8), we obtain:

N+1

Z w(xj)w} ~ n(xj), j =0, 1,...,N, (3.9)
i=—1

where

K2
n(x;) = sinx; — 0 sin x;.

To complete this system, differentiate (3.9) with respect to x, and compute its value at the ends of the range,
which gives us the following system:

—3wl | + 3w; = hy/(x0), wi_, + 4wj + wiy, = hn(x)), —3wi_| + 3wy, = hn'(xn). (3.10)
The system (3.10) in a matrix equation form as follows: My = H
where:
-3 0 3 0 . 0
1 41 0 0
0 .
M = ,
e e .. 0
0 .01 4 1
0 .0 =30 3
and
)/ = (wl_l, w}),...,wk], w}\I+1)T’
while H has the form:
H = (hn (x0)> h1(xX0)5 eveveven. s hn(xn), ' (xn))T.
4. Stability analysis

The Von Neumann stability analysis for system (2.9) takes effect after linearizing the nonlinear term as:
ziv=d+4d+ d=(6d), m = 6d.
Then the Von Neumann stability analysis takes the form:
w = e"exp(qajh), q= NES (4.1)
where 0 is the wave number and h is the element size. At x = x;, equation (2.9) can be written as:

n+1 n+1 n+1 __ n n n n—1 n—1 n—1 2. n
aiwily + biwi" + qwiy = —diw]_y — ejwi — fiwi ) — miwiT) — siwiT — Lwin + k). (4.2)
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Substituting equation (4.1) into the recurrence relation (4.2) and dividing both sides by £" exp(jqoh), we

obtain the equation:
e2[(¢j + aj) cos dh + bj + q(cj — a;)sin ph] + 5[(fj + dj)cos ph + ej + q(fj — d})sin ¢h]
+[(I; + nj) cos ¢h + s; + q(l; — nj)sin ph] = 0. (4.3)
So we have:

e2[(2 + 2k*m) cos ph + (4 + 4k’m)] + e[(—4 — 2r) cos oh + (=8 + 2n)]
+[(2 + 2k*m) cos ¢ph + (4 + 4k*m)] = 0, m = 6d, (4.4)

wherer; = [%kz].
Dividing equation (4.4) by [(2 + 2k?m) cos ¢h + (4 + 4k?m)], we obtain the equation:

24 e [(—4 — 2n) cos ph + (—8 + 21)]
[(2 + 2K2m) cos dh + (4 + 4k*m)]

1=0. (4.5)

Equation (4.5) written as:

e2+2B8+1=0, (4.6)
[(=2 —n)cos ph + (—4 + n)]
[(2 + 2k%m) cos oh + (4 + 4k>m)]"
Equation (4.9) is a quadratic in € and hence will have two roots, thatise = —3 £ /3> — 1.
For stability, then |e| < 1. Now, from equation (4.6) we see that the result of the two estimations of € should
rise to solidarity, which emerge three cases as follows:

where: 3 =

Case 1. On the off chance that the two roots are equivalent to solidarity, which infers that the segregate of the
equation (4.6) is zero.

Case 2. One of the two roots is more prominent than solidarity. At that point, the separate is more noteworthy
than nothing. This implies that the steadiness condition, (|| < 1), isn’t fulfilled.

Case 3. The discriminate is less than zero, thatis 3> — 1 < 0.

Thus for stability:
~1<B< L (4.7)
Using equation (4.7), the above inequality becomes

[(=2 — n)cos ph + (—4 + n)]

< < (4.8)
[(2 + 2k?m) cos ph + (4 + 4k*m)]
The right inequality (4.8) takes the form:
[(—=2 — n)cos ¢ph + (—4 + n)] (4.9)
[(2 + 2k*m) cos ph + (4 + 4k>m)] = '
After simplifying inequality (4.9), we obtain:
ik2 < [(ik2 + 4 + ZkZm) cos ph + (8 + 4k2m)],
h? h?
or
h? h?
6 < (6 + 4? + 2h2m) cos ph + (Sﬁ + 4h2m) . (4.10)
And by using the relation cos ¢h = 1 — 2sin? %, inequality (4.10) reduces to:
h? 5 h? R R
6 < (6+ 12ﬁ+6h m)(12+8ﬁ+4h m)sm | (4.11)

After simplifying inequality (4.11), we get:

2 2
12h— + 6h2m > |12 + Sh— + 4h%m | sin? (b—h
k? k2 2
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Table 2. Comparison between the numerical and

exactsolutionsat t = 0.2, k = 0.002, h = %.
X Numerical Solution Exact Solution
0.17 0.302 857 0.303 116
0.27m 0.576 069 0.576 509
037 0.792 891 0.793 442
0.47 0.932 099 0.932 707
0.57m 0.980 067 0.980 692
0.6m 0.932 099 0.932 707
0.7m 0.792 891 0.793 442
0.87 0.576 069 0.576 509
097 0.302 857 0.303 116

Table 3. The L, error when k = 0.001, h = zlo fromt = 0.05tot = 0.2.

Time 0.05 0.1 0.15 0.20

Loerror[Our] 2.0097 x 107> 3.1051 x 107> 3.3695 x 107> 2.8898 x 107>
Loerror [15] 2.5236 x 1074 9.8616 x 10°* 2.1532 x 1073 3.7090 x 1073

Table 4. The L., error for the numerical and exact solutions when k = 0.01, h = % fromt = 0.5
tot = 2.0.

Time 0.5 1.0 1.5 2.0

Loerror [Our] 6.2131 x 107* 6.2454 x 107* 1.92996 x 107° 3.87406 x 107

Loerror [15] 8.7356 x 107* 25274 x 1072 4.4852 x 1072 7.5875 x 10>

Satisfied for k < h, where h is small enough. But the left inequality (4.8) becomes:

[(=2 — n)cos ph + (=4 + n)]
12 + 2k*m) cos dh + (4 + 4k2m)]

After simplifying inequality (4.12), we get:

(—Zkzm + %kz) cos ph < %kz + 4k%*m,
or
2mh?

12
( mh +1)cos¢h<l+ .
3 3

2 9h
2

— mh? 2 2
( mh +1)+(2mh z)sinzﬁg(w 2mh )
3 3 2 3

if his small enough, thus the method is conditionally stable.

Using the relation cos ¢h = 1 — 2sin* —, inequality (4.13) becomes:

5. Numerical illustration

Z M Alaofietal

(4.12)

(4.13)

(4.14)

We apply cubic B-spline method to obtain numerical solution of the dissipative equation for one standard issue.
The precision of our proposed mathematical technique estimated by registering the L., error norm. The exact

solution of the dissipative equation (2.1) which obtained in [1] given by:
u(x,t) = costsinx, 0 <x<m, t=>0.
We use the following conditions:
u(x, 0) = sinx, U (0, t) = 0, uy(m, t) = 0.

We put the acquired mathematical outcomes in the accompanying tables 2—7.

From tables 3—7, we observe that the smaller the At = k (than the value of h), the better the accuracy. The

numerical approximations is still acceptable within the large time.

10
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Table 5. The L, -error for the numerical and exact solutions when k = 0.01, h = % from
t=6.0tot =9.0.

Time 6.0 7.0 8.0 9.0

Looerror 2.9063 x 102 2.7145 x 1072 1.7337 x 1072 3.1307 x 1072

Table 6. The Lo error for the numerical and exact solutions for a big time
when k = 0.01, h = %.

Time 10.0 20.0 30.0 40.0

Loerror 3.4557 x 1072 3.3574 x 102 1.4119 x 1072 2.3355 x 1072

Table 7. Comparison between the numerical and

exact solutionsat t = 2, k = 0.002, h = %

x Numerical solution Exact solution
0.17 —0.128 596 —0.129 169
027 —0.244 605 —0.245 756
037 —0.336 67 —0.338 348
0.47 —0.395 779 —0.397 833
0.57m —0.416 147 —0.418 337
0.6m —0.395 779 —0.397 833
0.77 —0.336 67 —0.338 348
0.8 —0.244 605 —0.245 756
097 —0.128 596 —0.129 169

6. Conclusion

In this paper, a numerical solution for the nonlinear dissipative wave equation, utilising a collocation strategy
with the cubic B-splines, is proposed. To illustrate our method and to demonstrate its convergence and
applicability of our presented methods computationally, we will apply the Von Neumann stability method. The
stability analysis investigation will show that the method is conditionally stable. The performance and accuracy
of the present method have been shown by calculating and comparing the L., error norms with earlier works.
The obtained invariants are considered acceptable when compared with some earlier works. The numerical
results produced by the present method are quite satisfactory and show good agreement with the exact solutions.
The computed results justify the advantage of this method. As seen in tables 3 and 4, the present results are better
than [15]. The estimated mathematical arrangements that achieve great precision with the specific
arrangements, particularly when At is more modest than the estimation of h.
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