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ABSTRACT

Introduction Antimicrobial resistance (AMR) is a global
health threat with 1.27 million and 4.95 million deaths
attributable to and associated with bacterial AMR,
respectively, in 2019. Our aim is to estimate the vaccine
avertable bacterial AMR burden based on existing and
future vaccines at the regional and global levels by
pathogen and infectious syndromes.

Methods We developed a static proportional impact
model to estimate the vaccination impact on 15 bacterial
pathogens in terms of reduction in age-specific AMR
burden estimates for 2019 from the Global Research on
Antimicrobial Resistance project in direct proportion to
efficacy, coverage, target population for protection, and
duration of protection of existing and future vaccines.
Results The AMR burden avertable by vaccination in
2019 was highest for the WHO Africa and South-East Asia
regions, for lower respiratory infections, tuberculosis,
and bloodstream infections by infectious syndromes,

and for Mycobacterium tuberculosis and Streptococcus
pneumoniae by pathogen. In the baseline scenario for
vaccination of primary age groups against 15 pathogens,
we estimated vaccine-avertable AMR burden of 0.51
(95% Ul 0.49-0.54) million deaths and 28 (27-29) million
disability-adjusted life-years (DALYs) associated with
bacterial AMR, and 0.15 (0.14-0.17) million deaths and
7.6 (7.1-8.0) million DALYs attributable to AMR globally
in 2019. In the high-potential scenario for vaccination

of additional age groups against seven pathogens, we
estimated vaccine-avertable AMR burden of an additional
1.2 (1.18-1.23) million deaths and 37 (36—39) million
DALYs associated with AMR, and 0.33 (0.32—-0.34) million
deaths and 10 (9.8—11) million DALYs attributable to AMR
globally in 2019.

Conclusion Increased coverage of existing vaccines
and development of new vaccines are effective means to
reduce AMR, and this evidence should inform the full value
of vaccine assessments.

INTRODUCTION

Since the discovery of penicillin in 1928, anti-
microbials have been used to treat bacteria,
fungi, parasites and viruses, saving countless
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WHAT IS ALREADY KNOWN ON THIS TOPIC

= There is some evidence on the impact of vaccines
against Haemophilus influenzae type b, rotavirus,
Streptococcus pneumoniae, Salmonella typhi and
influenza on antimicrobial resistance (AMR) in spe-
cific settings.

WHAT THIS STUDY ADDS

= To our knowledge, this is the first study to estimate
attributable and associated bacterial AMR bur-
den avertable by vaccination against 15 bacterial
pathogens for a combined set of existing and new
vaccines in the pipeline by pathogen, infectious syn-
drome and region.

= The AMR burden avertable by vaccination in 2019
was highest for the WHO Africa and South-East Asia
regions, for lower respiratory infections, tuberculo-
sis and bloodstream infections by infectious syn-
dromes, and for Mycobacterium tuberculosis and
Streptococcus pneumoniae by pathogen.

HOW THIS STUDY MIGHT AFFECT RESEARCH,
PRACTICE OR POLICY

= Our model-based projections facilitate evidence-
based decision-making for scaling up of existing
vaccines to regions in most need with higher AMR
burden and prioritise development of new vaccines
with high potential for lowering AMR burden by
pathogen, infectious syndrome and region.

= Our study contributes to the WHO-led value attribu-
tion framework for vaccines against AMR, and spe-
cifically to the criterion focused on vaccine averted
AMR health burden.

lives.! However, antimicrobial resistance
(AMR) is a growing global public health
threat in the 21st century.” Resistance occurs
through pathogen evolution, either naturally
over time or acquired by the use of antimi-
crobial drugs, which render these drugs inef-
fective and increase the risk of morbidity and
mortality. While access to antimicrobial drugs
in low-income and middle-income countries
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to treat infections continues to be a challenge, misuse
and overuse of antimicrobials along with lack of access to
clean water, sanitation and hygiene and effective infection
prevention and control measures have fuelled the emer-
gence and spread of AMR globally. The UK government
commissioned review on AMR in 2014 projected that if
AMR is not controlled, it would lead to significant impact
on health with 10million AMR-related deaths annually
and macroeconomic consequences with a cumulative
economic loss of US$100 trillion by 2050.”

Vaccination, when used in conjunction with other
preventive measures, has the potential to signifi-
cantly reduce AMR transmission through several path-
ways.* ° First, vaccination has a direct influence on the
health burden of AMR by preventing the emergence and
transmission of drug-resistant and drug-sensitive infec-
tions, and the associated antibiotic use. Second, vaccines
have an indirectinfluence by reducing resistant infections
in unvaccinated populations through herd immunity.
Third, vaccination can prevent infections where antimi-
crobials are not indicated but often wrongly prescribed,
such as primary viral infections, thereby reducing misuse
and overuse of antimicrobials. Fourth, vaccines can also
reduce the use of antimicrobials to treat secondary bacte-
rial infections caused by viral diseases. Finally, vaccines
can give longer-term health benefits in preventing infec-
tions and resistance to vaccines is rarely observed.’

The Global Research on Antimicrobial Resistance
(GRAM) project estimated the deaths and disability-
adjusted life-years (DALYs) attributable to and associated
with resistance by replacing all drug-resistant infections
with susceptible infection or no infection, respectively. It
estimated that 1.27 (95% UI 0.91-1.7) million deaths and
47.9 (85-64) million DALYs were attributable to bacte-
rial AMR and 4.95 (3.6-6.6) million deaths and 192 (146—
248) million DALYs were associated with bacterial AMR
in 2019.” Despite the significant potential impact of vacci-
nation in lowering AMR, evidence is limited due to the
methodological difficulties and challenges in obtaining
data on the health burden associated with AMR in order
to calculate this impact.*'’ Such evidence will be valu-
able to inform improvements in the coverage of existing
vaccines and prioritise research and development of new
vaccines.

To address this evidence gap, our aim is to analyse the
findings from the GRAM projectand estimate the vaccine-
avertable bacterial AMR burden based on the profiles of
existing and future vaccines by pathogen and infectious
syndromes at the regional and global levels in 2019. Such
pan-pathogen analyses using standardised approaches
are critical to inform vaccine development, funding,
introduction and use. They also inform the WHO-led
value attribution framework for vaccines against AMR,"
which includes five criteria: (1) vaccine averted AMR
health burden, (2) vaccine averted AMR economic
burden, (3) vaccine averted antibiotic use, (4) sense of
urgency to develop antimicrobial approaches and (5)
pathogen impact on equity and social justice. Our study

contributes to the first criterion—vaccine-averted AMR
health burden.

METHODS

AMR burden data

We used the bacterial AMR burden estimates from the
GRAM project which provided data for age-specific
deaths and DALYs associated with and attributable to
AMR by pathogen, infectious syndrome and region for
2019.” ¥ These comprehensive estimates of bacterial
AMR burden were based on statistical predictive model-
ling of data from systematic reviews, surveillance systems,
hospital systems and other sources to generate estimates
for 23 pathogens and 88 pathogen-drug combinations
for 204 countries in 2019. The AMR burden estimates
for Neisseria gonorrhoeae include only morbidity and no
mortality.

Two sets of estimates are presented—burden attrib-
utable to AMR, that is, deaths and DALYs that could be
averted if all drug-resistant infections would be replaced
by drug-sensitive infections; and burden associated with
AMR, that is deaths and DALYs that could be averted
if all drug-resistant infections would be replaced by no
infections. As vaccines prevent drug-resistant and drug-
susceptible burden, we infer that the associated AMR
burden is the appropriate metric for measuring the
impact of vaccination on AMR burden.

Vaccine profiles

We focused our analysis on 15 pathogens—Acinetobacter
baumannii, Enterococcus faecium, Escherichia coli, Group
A Streptococcus, Haemophilus influenzae, Klebsiella pneu-
moniae, Mycobacterium tuberculosis, Neisseria gonorrhoeae,
non-typhoidal Salmonella, Pseudomonas aeruginosa, Salmo-
nella paratyphi, Salmonella typhi, Shigella spp, Staphylo-
coccus aureus and Streptococcus pnewmoniae. We selected
pathogens that are part of the WHO evaluation of the
value of vaccines in preventing AMR. We used vaccine
profiles (see table 1), which comprise the vaccine target
population, efficacy, coverage, duration of protection
and disease presentation prevented. For the existing
vaccines against H. influenzae type b, S. pneumoniae and
S. typhi, the vaccine profiles expand coverage of the
current vaccines in order to meet the strategic priority on
coverage and equity of Immunisation Agenda 2030." For
vaccines that are not yet available, hypothetical profiles
were developed based on preferred product character-
istics (PPCs),"* target product profiles (TPPs), attributes
of advanced vaccine candidates and expert consultations
with WHO working groups, PATH and pathogen experts.
Some pathogens have multiple disease presentations and
would require different vaccines to prevent different
disease presentations. As such, these pathogens have
more than one vaccine profile.

Modelling process
We developed a static proportional impact model (see
figure 1) to estimate the vaccination impact in terms of
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Figure 1 Vaccine impact on antimicrobial resistance model. Static proportional impact model to estimate the reduction in pre-
vaccine AMR burden after vaccination in direct proportion to efficacy, coverage, target population for protection, and duration
of protection of existing and potential future vaccines. The AMR burden among the infants could be higher or lower than the
AMR burden among the elderly depending on the pathogen. For example, AMR burden for Streptococcus pneumoniae and
Haemophilus influenzae are higher among the infants compared to the elderly, while AMR burden for Staphylococcus aureus
and Acinetobacter baumannii are lower among the infants compared to the elderly.

reduction in age-specific AMR burden estimates for 2019
from the GRAM project. We estimated a counterfactual
prevaccination scenario for diseases with current vaccina-
tions and adjusted for disease type specification before
applying the vaccine impact. We calculated the reduction
in prevaccine AMR burden after vaccination in direct
proportion to efficacy, coverage, target population for
protection, and duration of protection of existing and
potential future vaccines.'

For ages that lie within the duration of protection since
the time of vaccination:

AMR burden averted at age i=AMR burden at age i
prevaccination x vaccine efficacy x vaccine coverage.

Scenarios

We estimated vaccine avertable deaths and DALYs attrib-
utable to and associated with AMR by region, infectious
syndrome and pathogen with 95% uncertainty intervals
(UIs) for two scenarios—baseline scenario (for 15 patho-
gens) for primary vaccination of specific age groups, and
high-potential scenario (for a subset of 7 pathogens) that
includes additional age groups at risk of infection based
on expert opinion.

Vaccine profiles with the corresponding product
characteristics for efficacy and duration of protection
for vaccine-derived immunity, and coverage and target
population for the baseline and high-potential scenarios
are described in table 1. In the baseline scenario, we
estimated the vaccine avertable burden from the age of
vaccination under the assumption that vaccine-derived
immunity would sustain for the duration of protection of
the corresponding vaccines. We did not consider vaccine

waning dynamics due to limited evidence. For pathogens
with a highly uncertain vaccine target population or feasi-
bility of vaccine delivery, we estimated an additional high-
potential scenario which assumed that individuals at risk
(including additional age groups at risk) would be vacci-
nated to protect against corresponding disease presenta-
tions. This was applicable to vaccines against A. baumannii,
E. faecium, Extraintestinal Pathogenic E. coli (ExPEC), K.
prneumoniae (all syndromes), P. aeruginosa and S. aureus. For
S. pneumoniae, we explored the high-potential scenario by
administering a vaccine to an elderly population with the
highest disease burden.

Uncertainty analysis

We conducted a Monte Carlo simulation of 400 runs
(sufficient for results to converge) to propagate the
uncertainty in the AMR burden, vaccine efficacy and
coverage through the model simulations to estimate
the uncertainty in our projected outcomes of vaccina-
tion impact. We provide summary estimates in terms of
vaccine-avertable deaths and DALYs attributable to and
associated with AMR by region, infectious syndrome
and pathogen with 95% Uls for the baseline and high-
potential scenarios. Additional details on the modelling
process, scenarios and uncertainty analysis are provided
in online supplemental appendix Al.

Patient and public involvement

We analysed anonymised secondary data in our study.
The data analysed originated from the GRAM project,
and they were analysed in aggregate. As a result, it was
not appropriate or possible to involve patients or the
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public in the design, or conduct, or reporting, or dissemi-
nation plans of our research. The public will benefit from
the findings of our study as our model-based projections
facilitate evidence-based decision-making for scaling up
of existing vaccines to regions in most need with higher
AMR burden and prioritise development of new vaccines
with high potential for lowering AMR burden by path-
ogen, infectious syndrome and region.

Data availability and code repository

We conducted our analysis using the R (version 4.2.3)
programming language for statistical computing,'® and
the repository for the data and software code of this
modelling study are publicly accessible at https://github.
com/vaccine-impact/vaccine_amr and Dryad open data
publishing platform. 7

RESULTS

Vaccine impact on global AMR burden

At the global level in 2019 for the baseline scenario,
we estimated that vaccines against the 15 pathogens
(analysed in this study) could avert 0.51 (95% UI 0.49-
0.54) million deaths and 28 (27-29) million DALYs asso-
ciated with AMR, and 0.15 (0.14=0.17) million deaths
and 7.6 (7.1-8.0) million DALYs attributable to AMR. In
the high-potential scenario, we estimated that vaccines
against a subset of 7 pathogens could avert an additional
1.2 (1.18-1.23) million deaths and 37 (36-39) million
DALYs associated with AMR, and 0.33 (0.32-0.34) million
deaths and 10 (9.8-11) million DALYs attributable to
AMR globally in 2019.

Vaccine impact on AMR burden by pathogen
Figure 2A and table 2A present the vaccine avertable
burden attributable to and associated with AMR in 2019
for each of the pathogen-specific vaccine profiles at the
global level for the baseline scenario. For pathogens with
licensed vaccines, we estimated that vaccination against
S. pneumoniae at 2019 coverage levels averted 44 (37-52)
thousand deaths and 3.8 (3.3—4.5) million DALYs associ-
ated with AMR in 2019. By reaching the WHO recom-
mended coverage level of 90% globally, 59 (50-69) thou-
sand deaths and 5.1 (4.5-5.9) million DALYs associated
with AMR could have been averted in 2019. Expanding
the coverage to elderly populations would increase the
vaccination impact to avert 71 (63-81) thousand deaths.
We estimated that vaccination against H. influenzae at
2019 coverage levels averted 11 (9.7-13) thousand deaths
and 0.98 (0.85-1.2) million DALYs associated with AMR
in 2019. At 90% coverage globally, 13 (11-15) thousand
deaths and 1.1 (0.96-1.3) million DALYs associated with
AMR could have been averted. We estimated that wider
introduction and scale-up of vaccination against S. typhi
could have averted 34 (26-44) thousand deaths and 2.8
(2.2-3.6) million DALYs associated with AMR in 2019.
For pathogens with hypothetical vaccine profiles (devel-
oped by experts or provided in PPCs), we estimated that
a vaccine against M. tuberculosis that meets WHO’s PPC

criteria of 80% efficacy, given to infants, with lifelong
immunity or boosting, would have averted 0.12 (0.11-
0.13) million deaths and 4.5 (4.1-5.0) million DALYs
associated with AMR. An improved vaccine against S.
pneumoniae (70% efficacy against bloodstream infections
(BSI), meningitis and other bacterial central nervous
system infections, 50% efficacy against lower respiratory
infection (LRI) and all related infections in the thorax,
given to 90% of infants at 6weeks of life) would have a
relatively highest impact by averting 99 (86-115) thou-
sand deaths and 8.6 (7.5-10) million DALYs associated
with AMR in 2019. An M72-like vaccine against M. tuber-
culosis given to adolescents and older populations with
lifelong immunity or boosting would avert 71 (64-78)
thousand deaths and 2.6 (2.3-2.8) million DALYs associ-
ated with AMR. A vaccine against all disease presentations
of K. pneumoniae infection given to infants and elderly
populations would avert 64 (59-72) thousand deaths and
3.7 (3.3—-4.1) million DALYSs associated with AMR.

In the high-potential scenario (see table 2B), we esti-
mated that vaccination of atrisk individuals across all
age groups against L. coli—non-diarrhogenic could avert
0.39 (0.37-0.40) million deaths and 13 (12-13) million
DALYs associated with AMR in 2019. Vaccination of
atrisk individuals against K. pneumoniae could avert
0.32 (0.31-0.34) million deaths and 14 (13-15) million
DALYs associated with AMR, and vaccination against S.
aureus could avert 0.32 (0.31-0.33) million deaths and 11
(10-11) million DALYs associated with AMR.

Vaccine impact on AMR burden by infectious syndrome
Figure 2B shows the vaccine avertable deaths and DALYs
attributable to and associated with bacterial AMR for the
different infectious syndromes in 2019 at the global level
in the baseline scenario. We estimated vaccine avertable
mortality associated with bacterial AMR to be highest
for LRIs at 0.16 (0.14—0.17) million deaths and 11 (9.6—
11) million DALYs for the baseline scenario, followed by
tuberculosis (TB) at 0.12 (0.11-0.13) million deaths and
4.5 (4.1-5.0) million DALYs and bloodstream infections at
0.11 (0.10-0.12) million deaths and 5.6 (5.1-6.3) million
DALYs in 2019. In the high-potential scenario, vaccine
avertable deaths and DALYs were highest for LRIs, BSIs
and intra-abdominal infections.

For each infectious syndrome, we stratified the vaccine
avertable AMR burden for deaths and DALYs by pathogen
in the baseline scenario, as shown in figure 3 and online
supplemental figure Al. S. pneumoniae, S. aureus and K.
prneumoniaeaccount for most of the vaccine avertable AMR
burden associated with LRIs. K. pneumoniae, A. baumannii
and E. coli account for most of the vaccine avertable AMR
burden associated with BSIs.

Vaccine impact on AMR burden at the regional level

Table 3 and figure 2C show the vaccine avertable deaths
and DALYs attributable to and associated with bacte-
rial AMR at the regional levels in 2019 for the baseline
scenario. We estimated the vaccine avertable burden
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Figure 2 Vaccine impact on AMR burden by (pathogen-specific) vaccine profile, infectious syndrome, and region. The
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in the baseline scenario. (Bone+ = infections of bones, joints, and related organs; BSI =
endocarditis and other cardiac infections; CNS = meningitis and other bacterial CNS infections; intra-abdominal =

and intra-abdominal infections; LRI+ =

bloodstream infections; cardiac =
peritoneal

lower respiratory infections and all related infections in the thorax; skin = bacterial

infections of the skin and subcutaneous systems; TF-PF-INTS = typhoid fever, paratyphoid fever, and invasive non-typhoidal
Salmonella spp; UTI = urinary tract infections and pyelonephritis).

associated with bacterial AMR to be highest in the WHO
Africa region at 0.17 (0.15-0.18) million deaths and 12
(11-13) million DALYs, followed by the WHO South-East
Asia region at 0.16 (0.15-0.18) million deaths and 7.5
(6.8-8.5) million DALYs in 2019. The vaccine avertable
AMR burden for the WHO Africa and South-East Asia
regions accounts for around two-thirds of the vaccine
avertable AMR burden globally in 2019. In the high-
potential scenario, we estimated that vaccines would
avert an additional 0.19 (0.18-0.20) million deaths and
9.6 (8.8-11) million DALYs associated with AMR in the
WHO Africa region, and 0.32 (0.30-0.33) million deaths
and 11 (10-11) million DALYs associated with AMR in
the WHO South-East Asia region.

DISCUSSION

We estimated vaccine avertable disease burden attrib-
utable to and associated with AMR for existing and
new vaccines in the pipeline by pathogen, infectious
syndrome and region based on the most recent, compre-
hensive estimates of the global burden of AMR. The AMR
burden avertable by vaccination in 2019 was highest for

the WHO Africa and South-East Asia regions, for LRIs,
TB and BSIs by infectious syndromes, and for M. tubercu-
losis and S. pneumoniae by pathogen.

Our estimates show the impact of existing vaccines for
pneumococcal conjugate vaccine, H. influenzae type b
(Hib) and typhoid conjugate vaccine (TCV) on reducing
AMR burden attributable to and associated with S. pneu-
moniae, H. influenzae and Salmonella typhi, respectively. We
highlight the critical need to scale up existing vaccines
to high and equitable immunisation coverage, and the
acceleration of TCV introductions in high burden coun-
tries. Also, we show that vaccines can contribute towards
preventing a significant proportion of the AMR burden
for pathogens which have vaccines in late-stage clinical
development with clear attributes or published PPCs
or TPPs, such as for ExPEC and M. tuberculosis. Novel
regulatory and policy mechanisms should be developed
to accelerate the approval and use of these vaccines to
prevent AMR. Based on the estimated high vaccine avert-
able burden associated with AMR for K. pneumoniae, S.
aureus and A. baumannii, we urgently call for studies to
enhance biological understanding and improve the
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Figure 3 Vaccine avertable AMR burden by infectious syndrome and pathogen. Vaccine avertable deaths associated with
AMR by infectious syndrome and pathogen in the baseline scenario. (“Others” include infections of bones, joints, and related
organs, bloodstream infections, endocarditis and other cardiac infections, meningitis and other bacterial CNS infections,
peritoneal and intra-abdominal infections, lower respiratory infections and all related infections in the thorax, bacterial
infections of the skin and subcutaneous systems, typhoid fever, paratyphoid fever, and invasive non-typhoidal Salmonella spp,

and urinary tract infections and pyelonephritis)

feasibility of developing vaccines for these pathogens. For
the remaining pathogens that have vaccine candidates in
the early stages of clinical development or no vaccines in
the pipeline, we recommend investing in vaccine devel-
opment to resolve biological challenges as well as feasi-
bility in terms of product development, market access
and product implementation.

Our analysis included a baseline and high-potential
scenarios. In the baseline scenario, we model vaccine
delivery based on known vaccine attributes, including a
defined target age group that has been immunised with
a vaccine in the past, during clinical trials or identified
in vaccine TPPs. In contrast, the high-potential scenario
makes no assumptions about vaccine delivery and target
age group and shows the highest probable vaccine
impact, should there be a policy recommendation and
feasibility of delivery to all who would benefit from a
vaccine. We recognise that the high-potential scenario
includes multiple challenges that need overcoming such
as immunisation of adults and the elderly, timely immu-
nisation to prevent nosocomial infections, vaccine effi-
cacy in patients who are immunocompromised and with
comorbidities, vaccine demand and financing.

Pan-pathogen analyses with standardised method-
ologies are critical to inform vaccine funding and
development and should be followed up with detailed

vaccine-specific analyses, considering pathogen biology
and transmission, and accounting for varied disease
burden patterns across the spatial and temporal scales. H.
influenzae type b (Hib), rotavirus, pneumococcal, typhoid
and influenza vaccines have been directly associated
with reduction of resistance, antibiotic use and related
clinical complications,” " while Fu et al modelled the
global burden of drug-resistant TB avertable by a future
TB vaccine.”

Our study has limitations. First, since we included
the direct effect of vaccination but excluded indirect
effect and transmission dynamics of AMR pathogens,
our vaccine impact estimates on averted AMR burden
are conservative. Second, our analysis focused on 15
bacterial pathogens and additional pathogens included
in the GRAM project such as Enterobacter spp, Group B
Streptococcus, E. feacalis, Proteus spp, Citrobacter spp and
Morganella spp were excluded. However, inclusion of
these pathogens appears unlikely to significantly affect
our overall inferences considering that the included 15
pathogens are responsible for the majority of the AMR
burden. Third, while our analysis was based on the esti-
mates generated by the GRAM project, which represents
the most comprehensive estimates of bacterial AMR
burden to date, limited input data to the GRAM project
especially from low-income and middle-income countries
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Table 3 Vaccine avertable AMR burden globally and by WHO region

Vaccine avertable DALYs (median and 95% UlI)

Vaccine avertable deaths (median and 95% Ul)

Attributable to resistance

Associated with resistance

Attributable to resistance
44745 (40 658-49 196)
8824 (7 949-9 939)

Associated with resistance
166105 (154 785-180 343)

32901 (30 020-35 892)
61060 (56 445-66 784)

WHO region

3092513 (2 783 222-3 396 579)

295226 (269 907-321 201)

12311693 (11 333 145-13 343 956)
1153608 (1 062 629-1 250 636)
4100742 (3 742 727-4 559 594)
944991 (875 082-1 031 180)

Africa

Americas

1133518 (1 023 025-1 258 309)

291308 (265 281-325 272)

18105 (16 426-20 194)
9721 (8 646-11 126)

Eastern Mediterranean

32218 (29 145-37 168)

Europe

2289200 (2 014 438-2 684 501)

508474 (466 317-566 236)

54989 (47 336-64 667) 7523796 (6 770 514-8 458 311)

162699 (147 461-179 566)
58701 (52 392-67 736)

South-East Asia

1933726 (1 778 575-2 113 470)

16569 (14 593-19 491)

Western Pacific

Global

153009 (144 253-165 008) 27978617 (26 626 506-29 377 853) 7620837 (7 133 393-8 046 001)

514631 (491 550-540 336)

The estimates (median and 95% Uls) for vaccine avertable disease burden attributable to and associated with bacterial AMR in 2019 is presented in terms of deaths and

DALYs avertable by vaccination in the baseline scenario.

is a significant data gap that necessitates newer surveil-
lance data and platforms to inform the updates, validity
and confidence in the estimates of the GRAM project.
In particular, estimates from the GRAM project for TB
do not include TB associated with HIV. Fourth, we did
not consider the impact of viral vaccines on reducing the
AMR drivers of antibiotic misuse and overuse.*' ** *" #
Finally, we did not consider geographic and socioeco-
nomic clustering of vaccination coverage, which could
lead to heterogeneity in vaccination impact on lowering
AMR burden with relatively less impact among subpop-
ulations with higher risk of disease while also facing
lower healthcare access including access to vaccination
services.”

The value of vaccines in preventing AMR should be
systematically considered in the decision-making process
during scale-up of existing vaccines and introduction of
new vaccines. Vaccines should be explicitly incorporated
as tools to combat AMR into National Action Plans on
AMR™ and National Immunisation Strategies.”’ For new
vaccines in the pipeline and future vaccines, we recom-
mend vaccine avertable burden of AMR to be included
in the full value of vaccine assessments.”® This evidence
can support stakeholders in their decision-making
process and priority setting throughout the end-to-end
continuum from discovery and clinical development to
investment, development, introduction and sustainability
of new vaccines with equitable access.

Twitter Isabel Frost @IsabelFrost19
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