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How to efficiently represent a graph in computer memory is a fundamental data 
structuring question. In the present paper, we address this question from a combinatorial 
point of view. A representation of an n-vertex graph G is called implicit if it assigns to 
each vertex of G a binary code of length O (logn) so that the adjacency of two vertices 
is a function of their codes. A necessary condition for a hereditary class X of graphs to 
admit an implicit representation is that X has at most factorial speed of growth. This 
condition, however, is not sufficient, as was recently shown in [19]. Several sufficient 
conditions for the existence of implicit representations deal with boundedness of some 
parameters, such as degeneracy or clique-width. In the present paper, we analyze more 
graph parameters and prove a number of new results related to implicit representation 
and factorial properties.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Every simple graph with n vertices can be represented by a binary word of length 
(n

2

)
(one bit per pair of vertices), and 

if no a priori information about the graph is known, this representation is optimal. However, for graphs belonging to certain 
classes, this representation can be substantially shortened. For instance, the Prüfer code allows representing a labelled tree 
with n vertices by a binary word of length n logn. This is optimal among all representations of a labelled graph, because 
we need log n bits for each vertex just to represent its label. Of course, those n logn bits describing the vertex labels do 
not in general describe the graph itself, since these bits do not necessarily allow us to determine the adjacencies. However, 
for graphs in some classes, it is possible to represent the labels by only O (log n) bits per vertex in such a way that vertex 
adjacency becomes a function of the labels. We emphasize that this function and the constant hidden in the O -notation 

✩ Some results presented in this paper appeared in the extended abstract [1] published in the proceedings of the 33rd International Workshop on 
Combinatorial Algorithms, IWOCA 2022.

* Corresponding author.
E-mail addresses: B.Alecu@leeds.ac.uk (B. Alecu), Aistis.Atminas@xjtlu.edu.cn (A. Atminas), V.Lozin@warwick.ac.uk (V. Lozin), 

Viktor.Zamaraev@liverpool.ac.uk (V. Zamaraev).
1 Deceased.
2 Aistis Atminas was supported by XJTLU Research Development Fund RDF-22-01-070.
https://doi.org/10.1016/j.disc.2023.113573
0012-365X/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

https://doi.org/10.1016/j.disc.2023.113573
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/disc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.disc.2023.113573&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:B.Alecu@leeds.ac.uk
mailto:Aistis.Atminas@xjtlu.edu.cn
mailto:V.Lozin@warwick.ac.uk
mailto:Viktor.Zamaraev@liverpool.ac.uk
https://doi.org/10.1016/j.disc.2023.113573
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


B. Alecu, V.E. Alekseev, A. Atminas et al. Discrete Mathematics 346 (2023) 113573
are specific to the class, and if such a function and a constant exist, then we say that graphs in this class admit an implicit 
representation or, with some abuse of terminology, that the class itself admits an implicit representation.

The idea of implicit representation was introduced in [20]. Implicit representations are important for a number of rea-
sons. First, they are order-optimal, i.e. within a constant factor of an optimal representation. Second, they allow one to 
store information about graphs locally, which is crucial in distributed computing. Finally, they have a wide range of ap-
plicability: many classes of practical or theoretical importance admit implicit representations, such as graphs of bounded 
vertex degree, of bounded clique-width, planar graphs, interval graphs, permutation graphs, line graphs, and numerous 
others.

To better describe the area of applicability of implicit representations, let us observe that, if a class X admits an implicit 
representation, then the number of n-vertex labelled graphs in X , also known as the speed of X , must be 2O (n logn) , since the 
number of graphs cannot be larger than the number of binary words representing them. In the terminology of [7], hereditary 
classes containing 2�(n logn) n-vertex labelled graphs have factorial speed of growth. The family of factorial classes, i.e. 
hereditary classes with a factorial speed of growth, is rich and diverse. In particular, it contains all classes mentioned earlier 
and a variety of other classes, such as unit disk graphs, classes of graphs of bounded arboricity, of bounded functionality 
[2], etc. The authors of [20] asked whether every hereditary class of speed 2O (n logn) admits such a representation.

Recently, Hatami and Hatami [19] answered this question negatively by proving the existence of a factorial class of 
bipartite graphs that does not admit an implicit representation. This negative result raises the following natural question: if 
the speed alone is not responsible for the existence of an implicit representation, then what is responsible for it?

Searching for an answer to this question, we remark that many, if not most positive results from the literature on 
implicit representations are associated with specific graph parameters. More concretely, implicit representations can often 
be constructed when certain parameters, for instance degeneracy, clique-width [28], or twin-width [8], are bounded. In 
order to better understand this phenomenon – and indeed, because these types of graph parameters, whose boundedness 
implies factoriality, are interesting in their own right – a closer analysis is warranted.

We carry out such a study in Section 3, in which we begin by analyzing a parameter called symmetric difference. Directly 
from the definition, one sees that the parameter generalizes degeneracy and twin-width, in the sense that if a class has 
bounded degeneracy, respectively twin-width, then it has bounded symmetric difference. We show in Subsection 3.1 that 
symmetric difference also generalizes contiguity, i.e. by bounding contiguity we bound symmetric difference, and that by 
forbidding the graph from Fig. 1 we bound symmetric difference of bipartite graphs as well. Noting that bipartite chain 
graphs admit implicit representations, we then define in Subsection 3.2 a parameter which, roughly speaking, measures 
the number of parts in which we need to partition the vertex set of a graph in order for the adjacency between the 
parts to be a bipartite chain graph. We further generalize that parameter in Subsection 3.3, by allowing more complex 
(but still well-behaved) adjacencies between the parts. Finally, in Subsection 3.4, we study the h-index (which generalizes 
the maximum degree), and provide a list of all minimal induced obstructions to its boundedness, proving a conjecture 
from [3].

Section 4 then compiles a number of results on classes of bipartite graphs admitting implicit representations. In Subsec-
tion 4.1, we show that forbidding the graph from Fig. 1 yields an implicit representation, and as a consequence, so does 
boundedness of the parameter described in Subsection 3.3. Then in Subsection 4.2, we provide partial results towards a 
conjecture that merely forbidding one-sided copies of the graph from Fig. 1 is in fact enough to yield an implicit representa-
tion. Finally, in Subsection 4.3, we identify several subclasses of chordal bipartite graphs admitting implicit representations: 
the one obtained by forbidding a claw whose edges are subdivided once; the one obtained by forbidding a certain graph 
containing the two graphs in Fig. 2; and the ones obtained by forbidding any bipartite chain graph.

Finally, in Section 5, we focus on factorial properties. A motivation for this section’s results is that, although [19] showed 
that factorial speed is not sufficient to guarantee an implicit representation, factoriality is still a necessary condition, and 
so a good sanity check to determine whether a class has an implicit representation is proving that it has factorial speed. 
In this direction, we show factoriality of four subclasses of bipartite graphs: the hereditary closure of hypercubes (settling 
an open problem from [2]), as well as three subclasses of chordal bipartite graphs, each defined by forbidding one of the 
graphs from Fig. 4.

All relevant preliminary information can be found in Section 2, and Section 6 concludes the paper with a number of 
open problems.

2. Preliminaries

All graphs in this paper are simple, i.e. undirected, without loops or multiple edges. The vertex set and the edge set 
of a graph G are denoted V (G) and E(G), respectively. The neighbourhood of a vertex x ∈ V (G), denoted N(x), is the set 
of vertices adjacent to x, and the degree of x, denoted deg(x), is the size of its neighbourhood. The codegree of x is the 
number of vertices non-adjacent to x. By [n] we denote the set of integers between 1 and n inclusive.

As usual, Kn, Pn and Cn denote a complete graph, a chordless path and a chordless cycle on n vertices, respectively. Si, j,k
is a tree with exactly three leaves with distances i, j, k from the only vertex of degree 3. By nG we denote the disjoint 
union of n copies of G .

The subgraph of G induced by a set U ⊆ V (G) is denoted G[U ]. If G does not contain an induced subgraph isomorphic 
to a graph H , we say that G is H-free, or that G excludes H , or that H is a forbidden induced subgraph for G .
2
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Fig. 1. The graph Ft,p .

In a graph, a clique is a subset of pairwise adjacent vertices and an independent set is a subset of pairwise non-adjacent 
vertices. A homogeneous set is a subset of vertices, which is either a clique or an independent set.

A graph G = (V , E) is bipartite if its vertex set can be partitioned into two independent sets. A bipartite graph given 
together with a bipartition of its vertex set into two independent sets A and B will be denoted G = (A, B, E). The bipartite 
complement of a bipartite graph G = (A, B, E) is the bipartite graph G̃ := (A, B, (A × B) − E). The bi-codegree of a vertex x
in a bipartite graph G = (A, B, E) is the degree of x in G̃ . By Kn,m we denote a complete bipartite graph with parts of size n
and m. The graph K1,n (for some n) is called a star. A chain graph is a bipartite graph whose vertices in one of the parts can 
be linearly ordered with respect to the inclusion of their neighbourhoods. The class of chain graphs is precisely the class of 
2K2-free bipartite graphs.

Given two bipartite graphs G1 = (A1, B1, E1) and G2 = (A2, B2, E2), we say that G1 does not contain a one-sided copy of 
G2 if there is no induced copy of G2 in G1 with A2 ⊆ A1 or there is no induced copy of G2 in G1 with A2 ⊆ B1.

We say that a graph G is co-bipartite if it is the complement of a bipartite graph, and that G is split if the vertex set of 
G can be partitioned into a clique and an independent set.

2.1. Graph classes

A class of graphs is hereditary if it is closed under taking induced subgraphs. It is well known that a class X is hereditary 
if and only if X can be described by a set of minimal forbidden induced subgraphs. In this section, we introduce a few 
hereditary classes that play an important role in this paper.

Most of our results deal with hereditary classes of bipartite graphs, which is motivated by the negative result in [19]
and the following argument. A natural way to transform any graph into a bipartite graph is to interpret its adjacency matrix 
as a bipartite adjacency matrix. This extends to a transformation between hereditary classes: transform every graph in a 
hereditary class to a bipartite graph and take the hereditary closure of the obtained set of bipartite graphs. As was shown 
in [18], this transformation preserves the factorial speed of growth as well as the existence of an implicit representation.3

Monogenic classes of bipartite graphs. Even in the case of monogenic classes of bipartite graphs, i.e. classes of bipartite graphs 
defined by a single forbidden induced bipartite subgraph, characterizing which classes are factorial is not straightforward. 
In [4], Allen identified nearly all factorial classes in this family, with the exception of P7-free bipartite graphs. This excep-
tional class was characterised as factorial in [25], which leads to a dichotomy presented in Theorem 1 below. This theorem 
follows readily from the results in [4] and [25] and Lemma 1. The graph Ft,p mentioned in the lemma is presented in 
Fig. 1.

Lemma 1. A bipartite graph H is simultaneously a forest and the bipartite complement of a forest if and only if H is an induced 
subgraph of a P7 , of an S1,2,3 or of a graph Ft,p .

Proof. The “if” part of the proof is obvious. To prove the “only if” part, assume a bipartite graph H = (A, B, E) is simulta-
neously a forest and the bipartite complement of a forest. Then any two vertices of the same colour in H share at most one 
neighbour and at most one non-neighbour. Therefore, if one of the parts of H contains at most two vertices then H is an 
induced subgraph of a graph Ft,p for some t and p. From now on, we assume that each part of H contains at least three 
vertices, say a1, a2, a3 ∈ A and b1, b2, b3 ∈ B .

Suppose first that neither H nor H̃ contain vertices of degree more than 2. Then every connected component of H (and 
of H̃) is a path. None of the components of H is trivial (a singleton), since otherwise the opposite part has size at most two, 
contradicting our assumption. Also, the number of non-trivial components is at most 2, since 3P2 = C̃6. If H is connected, 
then H = Pk with k ≤ 7, since P̃8 contains a C4. If H consists of two components Pk and Pt (k ≥ t ≥ 2), then k, t ≤ 4, since 
otherwise an induced 3P2 = C̃6 arises. Moreover, if k = 4, then t = 2, since otherwise H̃ contains a vertex of degree at least 
3. It follows that H is an induced subgraph of P7. If k ≤ 3, then H is again an induced subgraph of P7.

We are left with the case in which H (or H̃ – the cases are symmetric) contains a vertex of degree at least 3. Say this 
vertex is a1, and that it is adjacent to b1, b2, b3 in H . Then each of a2 and a3 has exactly one neighbour in {b1, b2, b3} and 
these neighbours are different, since otherwise an induced C4 or an induced C̃4 arises. Without loss of generality, let a2 be 
adjacent to b2 and let a3 be adjacent to b3.

3 In [18], the transformation was shown to preserve a specific type of implicit representations, but the argument works for arbitrary implicit representa-
tions.
3
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Assume A contains at least one more vertex, say a4. Then by the same arguments a4 has exactly one neighbour in 
{b1, b2, b3} and this neighbour must be different from b2 and b3, i.e. a4 is adjacent to b1. But then a2, a3, a4, b1, b2, b3
induce 3P2 = C̃6. This contradiction shows that A = {a1, a2, a3}.

Assume B contains at least one more vertex, say b4. Then b4 is not adjacent to a1, since otherwise an induced C4 or 
an induced C̃4 arises. Additionally, b4 is adjacent to exactly one of a2 and a3, since otherwise an induced C6 or an induced 
C̃4 arises. Without loss of generality, suppose b4 is adjacent to a2. If B contains one more vertex, say b5, then by the same 
arguments, b5 is adjacent to exactly one of a2 and a3. If b5 is adjacent to a2, then a1, a3, b4, b5 induce a C̃4, and if b5 is 
adjacent to a3, then a1, a2, a3, b1, b4, b5 induce 3P2 = C̃6. A contradiction in both cases shows B = {b1, b2, b3, b4} and hence 
H is an induced S1,2,3. �
Theorem 1. For a bipartite graph H, the class of H-free bipartite graphs has at most factorial speed of growth if and only if H is an 
induced subgraph of one of the following graphs: P7, S1,2,3 and F p,q.

Proof. The factorial speed of Ft,p -free bipartite graphs and S1,2,3-free bipartite graphs was shown in [4], while for P7-free 
bipartite graphs, it was shown in [25]. If H is not an induced subgraph of P7, S1,2,3 or Ft,p , then by Lemma 1, either H or 
H̃ contains a cycle. It follows that the speed of the class of H-free bipartite graphs is superfactorial (this is a well-known 
fact that can also be found in [4]). �

A similar dichotomy of monogenic classes of bipartite graphs with respect to the existence of an implicit representation 
is not known yet. Since at most factorial speed of growth is a necessary condition for a class to admit an implicit rep-
resentation, it readily follows from Theorem 1 that if a class of H-free bipartite graphs admits an implicit representation 
then H is an induced subgraph of P7, S1,2,3, or F p,q . It is known that the class of S1,2,3-free bipartite graphs admits an 
implicit representation because this class has bounded clique-width [21] and graph classes of bounded clique-width admit 
an implicit representation [28]. Prior to this work, the question remained open for the other two cases. In Section 4.1 we 
resolve the case of F p,q-free bipartite graphs, by showing that any such class admits an implicit representation.

Chordal bipartite graphs. A bipartite graph is chordal bipartite if it has no chordless (induced) cycles of length at least 6. 
The class of C4-free chordal bipartite graphs is precisely the class of forests, which is factorial and admits an implicit 
representation. Despite this ‘closeness’ to the class of forests, the class of chordal bipartite graphs is superfactorial [27] and 
hence does not admit an implicit representation. This makes the class of chordal bipartite graphs a natural area for the 
study of factorial and implicitly representable graph classes.

It is known that classes of K p,q-free chordal bipartite graphs have bounded tree-width [12], and hence admit an implicit 
representation. Some other subclasses of chordal bipartite graphs are not known to admit an implicit representation, but 
they are known to be factorial. These include classes of chordal bipartite graphs excluding a fixed forest [24]. In the present 
paper we reveal a number of new factorial subclasses of chordal bipartite graphs and show that some of them admit an 
implicit representation. Among other results, we show that the class of S2,2,2-free chordal bipartite graphs, and any class of 
chordal bipartite graphs avoiding a fixed chain graph admit an implicit representation.

2.2. Tools

Several useful tools to produce an implicit representation have been introduced in [6]. In this section, we mention two 
such tools, and generalize one of them.

The first result deals with the notion of locally bounded coverings, which can be defined as follows. Let G be a graph. A 

set of graphs H1, . . . , Hk is called a covering of G if the union of H1, . . . , Hk coincides with G , i.e. if V (G) =
k⋃

i=1
V (Hi) and 

E(G) =
k⋃

i=1
E(Hi).

Theorem 2. [6] Let X be a class of graphs and c a constant. If every graph G ∈ X can be covered by graphs from a class Y admit-
ting an implicit representation in such a way that every vertex of G is covered by at most c graphs, then X also admits an implicit 
representation.

The second result deals with the notion of partial coverings and can be stated as follows.

Theorem 3. [6] Let X be a hereditary class. Suppose there is a constant d and a hereditary class Y which admits an implicit represen-
tation such that every graph G ∈ X contains a non-empty subset A ⊆ V (G) with the properties that G[A] ∈ Y and each vertex of A
has at most d neighbours or at most d non-neighbours in V (G) − A. Then X admits an implicit representation.

Next we provide a generalisation of Theorem 3 that will be useful later.
4
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Theorem 4. Let X be a hereditary class. Suppose there is a constant d and a hereditary class Y which admits an implicit representation 
so that every graph G ∈X contains a non-empty subset A ⊆ V (G) with the following properties:

(1) G[A] ∈Y ,
(2) V (G) − A can be split into two subsets B1 and B2 with no edges between them, and
(3) every vertex of A has at most d neighbours or at most d non-neighbours in B1 and at most d neighbours or at most d non-

neighbours in B2.

Then X admits an implicit representation.

Proof. Let G be an n-vertex graph in X . We assign to the vertices of G pairwise distinct indices recursively as follows. Let 
{1, 2, . . . , n} be the index range of G , and let A, B1, and B2 be the partition of V (G) satisfying the conditions (1)-(3) of the 
theorem. We assign to the vertices in A indices from the interval {|B1| + 1, |B1| + 2, . . . , n − |B2|} bijectively in an arbitrary 
way. We define the indices of the vertices in B1 recursively by decomposing G[B1] and using the interval {1, 2, . . . , |B1|}
as its index range. Similarly, we define the indices of the vertices in B2 by decomposing G[B2] and using the interval 
{n − |B2| + 1, n − |B2| + 2, . . . , n} as its index range.

Now, for every vertex v ∈ A its label consists of six components:

1. the label of v in the implicit representation of G[A] ∈ Y ;
2. the index of v;
3. the index range of B1, which we call the left index range of v;
4. the index range of B2, which we call the right index range of v;
5. a boolean flag indicating whether v has at most d neighbours or d non-neighbours in B1 and the indices of those at 

most d vertices;
6. a boolean flag indicating whether v has at most d neighbours or d non-neighbours in B2 and the indices of those at 

most d vertices.

For the third and the fourth component we store only the first and the last elements of the ranges, and therefore the total 
label size is O (log n). The labels of the vertices in B1 and B2 are defined recursively.

Note that two vertices can only be adjacent if either they have the same left and right index ranges or the index of one 
of the vertices is contained in the left or right index range of the other vertex. In the former case, the adjacency of the 
vertices is determined by the labels in the first components of their labels. In the latter case, the adjacency is determined 
using the information stored in the components 5 and 6 of the labels. �

In the context of bipartite graphs, Theorem 4 can be adapted as follows.

Theorem 5. Let X be a hereditary class of bipartite graphs. Suppose there is a constant d and a hereditary class Y which admits an 
implicit representation so that every graph G ∈X contains a non-empty subset A ⊆ V (G) with the following properties:

(1) G[A] ∈Y ,
(2) V (G) − A can be split into two subsets B1 and B2 with no edges between them, and
(3) every vertex v of A has at most d neighbours or at most d non-neighbours in the part of B1 which is opposite to the part of 

A containing v, and at most d neighbours or at most d non-neighbours in the part of B2 which is opposite to the part of A
containing v.

Then X admits an implicit representation.

3. Graph parameters

It is easy to see that classes of bounded vertex degree admit an implicit representation. More generally, bounded degen-
eracy in a class provides us with an implicit representation, where the degeneracy of a graph G is the minimum k such that 
every induced subgraph of G contains a vertex of degree at most k.

Spinrad showed in [28] that bounded clique-width also yields an implicit representation. The recently introduced param-
eter twin-width generalizes clique-width in the sense that bounded clique-width implies bounded twin-width, but not vice 
versa. It was shown in [8] that bounded twin-width also implies the existence of an implicit representation.

The notion of graph functionality, introduced in [2], generalizes both degeneracy and twin-width in the sense that 
bounded degeneracy or bounded twin-width implies bounded functionality, but not vice versa. The graphs of bounded func-
tionality have at most factorial speed of growth [6]. However, whether they admit an implicit representation is wide-open. 
To approach this question, we begin by analysing a parameter intermediate between twin-width and functionality.
5



B. Alecu, V.E. Alekseev, A. Atminas et al. Discrete Mathematics 346 (2023) 113573
3.1. Symmetric difference

Let G be a graph. Given two vertices x, y, we define the symmetric difference of x and y in G as the number of vertices 
in V (G) −{x, y} adjacent to exactly one of x and y, and we denote it by sd(x, y). We define the symmetric difference sd(G)

of G as the smallest number such that any induced subgraph of G has a pair of vertices with symmetric difference at most 
sd(G).

This parameter was introduced in [2], where it was shown that bounded clique-width implies bounded symmetric dif-
ference. Paper [2] also identifies a number of classes of bounded symmetric difference. Below we reveal more classes where 
this parameter is bounded.

The first result deals with classes of graphs of bounded contiguity. This includes, for instance, bipartite permutation 
graphs, which have contiguity 1 [11]. The notion of contiguity was introduced in [16] and was motivated by the need for 
compact representations of graphs in computer memory. One approach to achieving this goal is finding a linear order of the 
vertices in which the neighbourhood of each vertex forms an interval. Not every graph admits such an ordering, in which 
case one can relax this requirement by looking for an ordering in which the neighbourhood of each vertex can be split into 
at most k intervals. The minimum value of k which allows a graph G to be represented in this way is the contiguity of G , 
denoted cont(G).

Theorem 6. For any k ≥ 1, any graph of contiguity k has symmetric difference at most 2k.

Proof. It suffices to show that any graph G of contiguity k has a pair of vertices with symmetric difference at most 2k. Let 
x1, . . . , xn be a linear order of the vertices in which the neighbourhood of every vertex consists of at most k intervals, and 
let

S :=
n−1∑
i=1

sd(xi, xi+1).

Since the neighbourhood of an arbitrary vertex y consists of at most k intervals in the linear order, there are at most 2k
pairs of consecutive vertices xi, xi+1 such that y is adjacent to one of them, but not adjacent to the other. Therefore, y
contributes at most 2k to S , and hence S ≤ 2kn. Since there are n − 1 terms in the sum, one of them must be at most 2k
(unless n ≤ 2k + 1, in which case the statement is trivial). �

The second result deals with classes of Ft,p -free bipartite graphs (see Fig. 1 for an illustration of Ft,p ). These classes have 
unbounded clique-width for all t, p ≥ 2. To show that they have bounded symmetric difference, we assume without loss of 
generality that t = p.

Theorem 7. For each t ≥ 2, every Ft,t -free bipartite graph G = (B, W , E) has symmetric difference at most 2t.

Proof. It is sufficient to show that G has a pair of vertices with symmetric difference at most 2t . For two vertices x, y, we 
denote by dd(x, y) the degree difference | deg(x) − deg(y)| and for a subset U ⊆ V (G), we write dd(U ) := max{dd(x, y) :
x, y ∈ U }. Assume without loss of generality that dd(W ) ≤ dd(B) and let x, y be two vertices in B with dd(x, y) = dd(B), 
deg(x) ≥ deg(y).

Write X := N(x) − N(y). Clearly, dd(B) ≤ |X |. If |X | ≤ 2, then sd(x, y) ≤ 4 ≤ 2t and we are done.
Now assume |X | ≥ 3. First observe that dd(X) ≤ dd(W ) ≤ dd(B) ≤ |X |. Let x1, x2, . . . , x|X | be a sequence of vertices of X

with decreasing degree order, i.e. deg(xi) ≥ deg(x j) for all i > j. Since 
∑|X |−1

i=1 (deg(xi) − deg(xi+1)) = dd(X) ≤ |X |, and each 
summand is non-negative, by the Pigeonhole principle it easily follows that d(xi) − d(xi+1) ≤ 1 for some i. So X contains 
two vertices p and q with dd(p, q) ≤ 1. Finally, we conclude that sd(p, q) ≤ 2t , since otherwise both P := N(p) − N(q) and 
Q := N(q) − N(p) have size at least t , in which case x, y, p, q together with t vertices from P and t vertices from Q induce 
the forbidden graph Ft,t . �

The symmetric difference is also bounded in the class of S1,2,3-free graphs, since these graphs have bounded clique-
width [21]. For the remaining class from Theorem 1, i.e. the class of P7-free bipartite graphs, the boundedness of symmetric 
difference is an open question.

Conjecture 1. The symmetric difference is bounded in the class of P7-free bipartite graphs.

We also conjecture that every class of graphs of bounded symmetric difference admits an implicit representation.

Conjecture 2. Every class of graphs of bounded symmetric difference admits an implicit representation.

We will verify this conjecture for the classes of Ft,p -free bipartite graphs in Section 4.
6
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3.2. Chain partition number

Let G be a graph and let k be the minimum number of subsets in a partition of V (G) into homogeneous sets such that 
the edges between any pair of subsets form a chain graph. We call k the chain partition number of G .

This notion was never formally introduced in the literature, but it implicitly appeared in [5], where the author proved a 
result which can be stated as follows.

Theorem 8. [5] The chain partition number is unbounded in a hereditary class X if and only if X contains at least one of the following 
six classes: the class M of (bipartite) graphs of vertex degree at most 1, the class M̃ of the bipartite complements of graphs in M, 
the classes of complements of graphs in M and M̃, and two related subclasses of split graphs obtained from graphs in M and M̃ by 
creating a clique in one of the parts of their bipartition.

Bounded chain partition number implies implicit representation by Theorem 2 and the fact that chain graphs admit an 
implicit representation.

3.3. Double-star partition number

The results in [5] suggest one more parameter that generalizes the chain partition number. To define this parameter, 
let us call a class X of bipartite graphs double-star-free if there is a constant p such that no graph G in X contains an 
unbalanced copy of 2K1,p , i.e. an induced copy of 2K1,p in which the centres of both stars belong to the same part of the 
bipartition of G . In particular, every class of double-star-free graphs is Ft,p -free for some t, p. We will say that a class X of 
graphs is of bounded double-star partition number if there are constants k and p such that the vertices of every graph in X
can be partitioned into at most k homogeneous subsets such that the edges between any pair of subsets form a bipartite 
graph that does not contain an unbalanced copy of 2K1,p . We observe that if p = 1, we obtain a class of bounded chain 
partition number.

Classes of bounded double-star partition number have been defined in the previous paragraph through two constants, k
and p. By taking the maximum of the two, we can talk about a single constant, which can be viewed as a graph parameter 
defining the family of classes of bounded double-star partition number. In Section 4 we will show that any class in this 
family admits an implicit representation.

Similarly to Theorem 8, classes of bounded double-star partition number admit a characterisation in terms of minimal 
hereditary classes where the parameter is unbounded. In this characterisation, the class M of graphs of vertex degree at 
most 1 is replaced by the class S of star forests in which the centres of all stars belong to the same part of the bipartition.

Seven more classes are obtained by various complementations either between the two parts of the bipartition or within 
these parts. Together with the class S itself this gives eight different classes of bipartite, co-bipartite and split graphs 
(notice that complementing the part containing the centres of the stars and the part containing the leaves of the stars 
produce different classes of graphs). We will refer to all of them as the “classes related to S”.

Theorem 9. [5] A hereditary class X is of unbounded double-star partition number if and only if X contains at least one of the 
following ten classes: the class of P3-free graphs (disjoint union of cliques), the class of P3-free graphs (complete multipartite graphs), 
the class S and the seven classes related to S .

3.4. h-index

We observed earlier that the family of classes of bounded chain partition number forms a subfamily of classes of bounded 
double-star partition number. One other interesting restriction of the latter family consists of classes of bounded h-index. 
The h-index h(G) of a graph G is the largest k ≥ 0 such that G has k vertices of degree at least k. This parameter is 
important in the study of dynamic algorithms [13].

To see that bounded h-index does indeed imply bounded double-star partition number, we note that all classes in 
Theorem 9, except star forest, contain either all complete graphs or all complete bipartite graphs. The implication then 
follows since complete graphs, complete bipartite graphs and star forests have unbounded h-index (which gives us the 
contrapositive statement).

In fact, as we show in Theorem 10 below, those three classes are the only minimal classes of unbounded h-index. We 
note that a “prototype” of this characterisation appeared in [3], where the set of minimal classes of unbounded h-index was 
identified within the class of cographs. It was also conjectured in [3] that this characterisation extends to the universe of all 
graphs, which is what we now show.

Theorem 10. The classes of star forests, complete bipartite graphs and complete graphs are the only three minimal hereditary classes 
of graphs of unbounded h-index.

Proof. It is routine to check that h-index is unbounded in these three classes. Hence it remains to show that any class X
for which h-index is unbounded contains one of the three classes. To do this, it suffices to show that for each n, there exists 
7
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d = d(n) such that any graph of h-index d or greater contains, as an induced subgraph, either a clique Kn , or a complete 
bipartite graph Kn,n , or a star forest nK1,n . We start with the following observation:

(*) For any pair of positive integers n, m, there exists an integer zn,m such that any bipartite graph with zn,m vertices of 
degree at least zn,m in one side of its bipartition contains either a Kn,n , or an induced star forest mK1,n .

We prove the observation by induction on m. The statement is true for m = 1, as we can simply take zn,1 := n for any 
n. Now let m > 1. Write Rb(i, j) for the bipartite Ramsey number, i.e. the smallest integer such that any bipartite graph 
with Rb(i, j) vertices in each side either contains Ki,i , or the bipartite complement of K j, j . Put zn,m := Rb(n, zn,m−1), and 
let G = (A, B, E) be a bipartite graph containing a set S ⊆ A of zn,m vertices of degree at least zn,m .

Pick a vertex s ∈ S of minimum degree, and consider the bipartite graph G ′ induced by the sets S and N(s). As both 
|S| ≥ zn,m and |N(s)| ≥ zn,m , G ′ contains by construction either a Kn,n , or two sets S ′ ⊆ S , T ⊆ N(s) of size zn,m−1 with 
no edges between them. In the former case we are done, so consider the latter. Note that, by minimality of the degree 
of s, since each vertex in S ′ has at least |T | = zn,m−1 non-neighbours in N(s), each vertex in S ′ must have at least zn,m−1

neighbours outside N(s). Let G ′′ be the graph induced by the vertices in S ′ , together with their neighbourhoods outside of 
N(s). Applying the induction hypothesis to G ′′ , we find that G ′′ contains either a Kn,n , or an induced (m − 1)K1,n . In the 
former case we are once more done; in the latter, we note that adjoining vertex s together with any n vertices from T to 
the (m − 1)K1,n yields a mK1,n , and the observation is proven.

The second ingredient is as follows:

(**) For any positive integer n, there exists an integer m = m(n) with the following property: if G is a graph whose vertex 
set can be partitioned into m independent sets of size n, then G contains a Kn , an induced Kn,n , or an independent set 
of size n2 which is the union of n of the original independent sets.

To show this, write Rc(i) for the multicolour Ramsey number – the smallest integer such that, for any edge colouring 
with c colours of a complete graph on Rc(i) vertices, there is a monochromatic clique on i vertices. Put m := R

2n2 (2n).
Now let G be a graph with vertex set V (G) = V 1 ∪ V 2 ∪ . . .∪ Vm (the V i are disjoint), such that for all i, V i is independent 

and |V i | = n. For each i, fix an ordering of the vertices in V i , that is, a bijection ϕi : V i → [n]. For each i, j with 1 ≤ i < j ≤ m, 
put Eij := {(ϕi(x), ϕ j(y)) : x ∈ V i, y ∈ V j, and {x, y} ∈ E(G)}. Intuitively, Eij ⊆ [n] × [n] is simply the edge set between V i

and V j , where we orient the edges from the lower to the higher index, and identify the two sets with copies of [n] via 
their respective orderings.

Consider an auxiliary complete graph with vertex set [m]; for each i < j, we colour the edge {i, j} with the set Eij . We 
note that there are 2n2

possible colours, corresponding to the subsets of [n] × [n]; we find a monochromatic clique on 2n
vertices i1 < i2 < · · · < i2n . Note that Ei1 i2 = Eikil for all 1 ≤ k < l ≤ 2n. If Ei1 i2 is empty, then V i1 ∪ V i2 ∪ · · · ∪ V in induces an 
independent set of size n2. If there exists 1 ≤ t ≤ n such that Ei1 i2 contains (t, t), then {ϕ−1

ir
(t) : 1 ≤ r ≤ n} is a Kn . Finally, 

if for some s 
= t , Ei1 i2 contains (s, t) and not (s, s) nor (t, t), then {ϕ−1
ir

(s) : 1 ≤ r ≤ n} ∪ {ϕ−1
ir

(t) : n + 1 ≤ r ≤ 2n} induces a 
Kn,n in G .

We can now put these two facts together to obtain our main result.

(***) For any integer n, there exists an integer d = d(n) such that any graph of h-index at least d contains either a Kn , a 
Kn,n , or a nK1,n .

Write R(p, q) for the usual Ramsey number – the smallest number such that a graph on R(p, q) vertices contains either 
a clique of size p, or an independent set of size q. Put N := R(n, n), and let d := R(n, zN,m(n)), where z and m are defined 
as in (*) and (**) respectively. Suppose that a graph G contains a set S of d vertices of degree at least d. Then either G[S]
contains a Kn , in which case we are done, or it contains an independent set S ′ ⊆ S of size z = zN,m(n) . Note that each vertex 
of S ′ has degree at least zN,m(n) outside S . Write G ′ for the bipartite graph with parts S ′ and T ′ := V (G) \ S ′ , and with 
E(G ′) := {{x, y} ∈ E(G) : x ∈ S ′, y ∈ T ′} (that is, G is obtained from G ′ by removing all edges with both endpoints in T ′). By 
definition of z, G ′ contains either a K N,N , or an induced star forest m(n)K1,N . A K N,N in this bipartite graph translates into 
either an induced Kn,n in G or a Kn in G; indeed, look at the N vertices of the K N,N lying in T ′: by construction, the graph 
induced by them in G must contain an independent set of size n, or a clique of size n.

It remains to consider the case where G ′ contains an induced star forest m(n)K1,N . Note that each K1,N is induced in G ′ , 
but not necessarily in G . However, by a similar argument to the case above, either G contains a Kn (and we are done), or 
we may find a m(n)K1,n induced in G ′ and not necessarily in G , but such that each separate K1,n is also induced in G . In 
particular, the leaves of each separate K1,n form an independent set in G . Consider the graph H ⊆ G induced by the leaves 
of those m(n) K1,n ’s. By definition of m(n), H either contains a Kn (and we are done), an induced Kn,n (and we are done), 
or the n2 leaves of n of the K1,n ’s induce an independent set. In this final case, G contains an induced nK1,n , and this proves 
the theorem. �
8
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4. Implicit representations

In this section, we identify a number of new hereditary classes of graphs that admit an implicit representation.

4.1. Ft,p-free bipartite graphs

In this section we show that Ft,p -free bipartite graphs admit an implicit representation for any t and p. Together with 
Theorem 7 this verifies Conjecture 2 for these classes.

Without loss of generality we assume that t = p and split the analysis into several intermediate steps. The first step 
deals with the case of double-star-free bipartite graphs.

Lemma 2. Let G = (A, B, E) be a bipartite graph that does not contain an unbalanced induced copy of 2K1,t . Then G has a vertex of 
degree at most t − 1 or bi-codegree at most (t − 1)(t2 − 4t + 5).

Proof. Let x ∈ A be a vertex of maximum degree. Write Y for the set of neighbours of x, and Z for its set of non-neighbours 
in B (so B = Y ∪ Z ). We may assume |Y | ≥ t and |Z | ≥ (t − 1)(t2 − 4t + 5) + 1, since otherwise we are done.

Note that any vertex w ∈ A is adjacent to fewer than t vertices in Z . Indeed, if w ∈ A has t neighbours in Z , then it 
must be adjacent to all but at most t − 1 vertices in Y (since otherwise a 2K1,t appears), so its degree is greater than that 
of x, a contradiction.

We now show that Z has a vertex of degree at most t − 1. Pick members z1, . . . , zt−1 ∈ Z in a non-increasing order of 
their degrees, and write W i for the neighbourhood of zi . Since G does not contain an unbalanced induced copy of 2K1,t and 

deg(zi+1) ≤ deg(zi), for all 1 ≤ i ≤ t − 2, |W i+1 − W i | ≤ t − 1. It is not difficult to see that in fact, |W i+1 −
i⋂

s=1
W s| ≤ (t − 1)i, 

and in particular, |Wt−1 −
t−2⋂
i=1

W i | ≤ (t − 1)(t − 2).

With this, we can compute an upper bound on the number of vertices in Z which have neighbours in Wt−1: by the 

degree condition given above, each vertex in Wt−1 ∩
t−2⋂
i=1

W i is adjacent to no vertices in Z other than z1, . . . , zt−1. Each of 

the at most (t − 1)(t − 2) vertices in Wt−1 −
t−2⋂
i=1

W i has at most t − 2 neighbours in Z other than zt−1. This accounts for a 

total of at most (t − 1) + (t − 1)(t − 2)2 = (t − 1)(t2 − 4t + 5) vertices which have neighbours in Wt−1, including zt−1 itself. 
By assumption on the size of Z , there must be a vertex z ∈ Z which has no common neighbours with zt−1. Since 2K1,t is 
forbidden, one of z and zt−1 has degree at most t − 1, as claimed. �

An immediate implication of this result, combined with Theorem 5 (applied with B2 = ∅), is that double-star-free bipar-
tite graphs admit an implicit representation.

Corollary 1. The class of bipartite graphs excluding an unbalanced induced copy of 2K1,t admits an implicit representation for any 
fixed t.

Together with Theorem 2 this corollary implies one more interesting conclusion.

Corollary 2. The classes of graphs of bounded double-star partition number, and in particular those of bounded h-index, admit an 
implicit representation.

Our next step towards implicit representations of Ft,t -free bipartite graphs deals with the case of F 1
t,t -free bipartite 

graphs, where F 1
t,t is the graph obtained from Ft,t by deleting the isolated vertex.

Lemma 3. The class of F 1
t,t -free bipartite graphs admits an implicit representation.

Proof. It suffices to prove the result for connected graphs (this follows for instance from Theorem 2). Let G be a connected 
F 1

t,t -free bipartite graph and let v be a vertex of maximum degree in G . We denote by V i the set of vertices at distance i
from v .

First, we show that the subgraph G[{v} ∪ V 1 ∪ V 2] admits an implicit representation. To this end, we denote by u a 
vertex of maximum degree in V 1, by U the neighbourhood of u in V 2, W := V 2 − U , and V ′

1 := V 1 − {u}.
Let x be a vertex in V ′

1 and assume it has t neighbours in W . Then x has at least t non-neighbours in U (due to 
maximality of u), in which case the t neighbours of x in W , the t non-neighbours of x in U together with x, u and v
9



B. Alecu, V.E. Alekseev, A. Atminas et al. Discrete Mathematics 346 (2023) 113573
induce an F 1
t,t . This contradiction shows that every vertex of V ′

1 has at most t − 1 neighbours in W , and hence the graph 
G[V ′

1 ∪ W ] admits an implicit representation by Theorem 5 (applied with B2 = ∅).
To prove that G[V ′

1 ∪ U ] admits an implicit representation, we observe that this graph does not contain an unbalanced 
induced copy of 2K1,t . Indeed, if the centres of the two stars belong to V ′

1, then they induce an F 1
t,t together with vertex 

v , and if the centres of the two stars belong to U , then they induce an F 1
t,t together with vertex u. Therefore, the graph 

G[{v} ∪ V 1 ∪ V 2] can be covered by at most four graphs (two of them being the stars centred at v and u), each of which 
admits an implicit representation, and hence by Theorem 2 this graph admits an implicit representation.

To complete the proof, we observe that every vertex of V 2 has at most t −1 neighbours in V 3 (note that, by the definition 
of the sets V i , any neighbour of V 2 is either in V 1 or in V 3). Indeed, if a vertex x ∈ V 2 has t neighbours in V 3, then x has 
at least t non-neighbours in V 1 (due to maximality of v), in which case the t neighbours of x in V 3, the t non-neighbours 
of x in V 1 together with x, v , and any neighbour of x in V 1 (which must exist by definition) induce an F 1

t,t .
Now we apply Theorem 3 with A = {v} ∪ V 1 ∪ V 2 to conclude that G admits an implicit representation, because every 

vertex of A has at most t − 1 neighbours outside of A. �
The last step towards implicit representations of Ft,t -free bipartite graphs is similar to Lemma 3 with some modifications.

Theorem 11. The class of Ft,t -free bipartite graphs admits an implicit representation.

Proof. By analogy with Lemma 3 we consider a connected Ft,t -free bipartite graph G , denote by v a vertex of maximum 
degree in G and by V i the set of vertices at distance i from v . Also, we denote by u a vertex of maximum degree in V 1, by 
U the neighbourhood of u in V 2, W := V 2 − U , and V ′

1 := V 1 − {u}.
Let x be a vertex in V ′

1 and assume it has t neighbours and one non-neighbour y in W . Then x has at least t non-
neighbours in U (due to maximality of u), in which case the t neighbours of x in W , the t non-neighbours of x in U
together with x, y, u and v induce an Ft,t . This contradiction shows that every vertex of V ′

1 has either at most t − 1
neighbours or at most 0 non-neighbours in W , and hence the graph G[V ′

1 ∪ W ] admits an implicit representation by 
Theorem 5 (applied with B2 = ∅).

To prove that G[V ′
1 ∪ U ] admits an implicit representation, we show that this graph is F̃ 1

t,t -free (we emphasize that in 
F̃ 1

t,t the isolated vertex belongs to one part of the bipartition and the centres of the stars to the other part). Indeed, if the 
centres of the two stars of F̃ 1

t,t belong to V ′
1, then F̃ 1

t,t together with vertex v induce an Ft,t , and if the centres of the 
two stars of F̃ 1

t,t belong to U , then F̃ 1
t,t together with vertex u induce an Ft,t . Therefore, the graph G[{v} ∪ V 1 ∪ V 2] can 

be covered by at most four graphs (two of them being the stars centred at v and u), each of which admits an implicit 
representation, and hence by Theorem 2 this graph admits an implicit representation.

To complete the proof, we observe that every vertex of V 2 has either at most t − 1 neighbours or 0 non-neighbours in 
V 3. Indeed, if a vertex x ∈ V 2 has t neighbours and one non-neighbour y in V 3, then x has at least t non-neighbours in V 1
(due to maximality of v), in which case the t neighbours of x in V 3, the t non-neighbours of x in V 1 together with x, y, v , 
and any neighbour of x in V 1 induce an Ft,t .

Finally, we observe that if a vertex x ∈ V 2 has t neighbours in V 3, then V 5 (and hence V i for any i ≥ 5) is empty, 
because otherwise an induced Ft,t arises similarly as in the previous paragraph, where vertex y can be taken from V 5. Now 
we apply Theorem 5 (with B2 = ∅) with A = {v} ∪ V 1 ∪ V 2 to conclude that G admits an implicit representation. Indeed, 
if each vertex of V 2 has at most t − 1 neighbours in V 3, then each vertex of A has at most t − 1 neighbours outside of A, 
and if a vertex of V 2 has at least t neighbours in V 3, then V i = ∅ for i ≥ 5 and hence every vertex of A has at most t − 1
neighbours or at most 0 non-neighbours in the opposite part outside of A. �
4.2. One-sided forbidden induced bipartite subgraphs

In the context of bipartite graphs, some hereditary classes are defined by forbidding one-sided copies of bipartite graphs. 
Consider, for instance, the class of star forests, whose vertices are partitioned into an independent set of black vertices 
and an independent set of white vertices. If the centres of all stars have the same colour, say black, then this class is 
defined by forbidding a P3 with a white centre. Very little is known about implicit representations for classes defined by 
one-sided forbidden induced bipartite subgraphs. It is known, for instance, that bipartite graphs without a one-sided P5
admit an implicit representation. This is not difficult to show and also follows from the fact P6-free bipartite graphs have 
bounded clique-width and hence admit an implicit representation (note that P6 is symmetric with respect to swapping 
the bipartition). Below we strengthen the result for one-sided forbidden P5 to one-sided forbidden Ft,1. We start with a 
one-sided forbidden F 1

t,1, where again F 1
t,1 is the graph obtained from Ft,1 by deleting the isolated vertex.

Lemma 4. The class of bipartite graphs containing no one-sided copy of F 1
t,1 admits an implicit representation.

Proof. Let G = (U , V , E) be a bipartite graph containing no copy of F 1
t,1 with the vertex of largest degree in U . To prove 

the lemma, we apply Theorem 5.
10



B. Alecu, V.E. Alekseev, A. Atminas et al. Discrete Mathematics 346 (2023) 113573
If G is edgeless, then the conclusion trivially follows from Theorem 5 with A = V (G). Otherwise, let u be a vertex of 
maximum degree in U . We split the vertices of V into the set V 1 of neighbours and the set V 0 of non-neighbours of u. 
Assume there exists a vertex x ∈ U that has neighbours both in V 1 and in V 0. We denote by V 10 the set of non-neighbours 
of x in V 1 and by V 01 the set of neighbours of x in V 0. We note that |V 01| ≤ |V 10|, since deg(x) ≤ deg(u). Additionally, 
|V 10| < t , since otherwise t vertices in V 10, a vertex in V 01 and a common neighbour of u and x (these vertices exist by 
assumption) together with u and x induce a forbidden copy of F 1

t,1. Therefore, x has at most t − 1 non-neighbours in V 1
and at most t − 1 neighbours in V 0. Now we define three subsets A, B1, B2 as follows:

A consists of vertex u, the vertices of U that have neighbours both in V 1 and in V 0, and the vertices of U that have 
neighbours neither in V 1 nor in V 0,
B1 consists of V 1 and the vertices of U that have neighbours only in V 1,
B2 consists of V 0 and the vertices of U that have neighbours only in V 0.

With this notation, the result follows from Theorem 5. �
Theorem 12. The class of bipartite graphs containing no one-sided copy of Ft,1 admits an implicit representation.

Proof. Let G = (U , V , E) be a connected bipartite graph containing no one-sided copy of Ft,1 with the vertex of largest 
degree in U . Let v be a vertex in V and let V i the set of vertices at distance i from v . Then the graph G1 := G[V 1 ∪ V 2]
does not contain a one-sided copy of F̃ 1

t,1 with the vertex of largest degree in V 1 (we emphasize that in F̃ 1
t,1 the isolated 

vertex belongs to one part of the bipartition and the vertex of degree t to the other part). Indeed, a one-sided copy of F̃ 1
t,1

with the vertex of largest degree in V 1 together with v would induce a one-sided copy of Ft,1 with the vertex of largest 
degree in U . Therefore, by Lemma 4 the graph G1 admits an implicit representation.

For any i > 1, the Gi := G[V i ∪ V i+1] does not contain a one-sided copy of F 1
t,1 with the vertex of largest degree in V i

(for odd i) or with the vertex of largest degree in V i+1 (for even i), since otherwise together with v this copy would induce 
a one-sided copy of Ft,1 with the vertex of largest degree in U . Therefore, by Lemma 4 the graph Gi admits an implicit 
representation for all i > 1. Together with Theorem 2 this implies an implicit representation for G . �

For general one-sided forbidden Ft,p the question remains open. Moreover, it remains open even for one-sided forbidden 
2P3. It is interesting to note that if we forbid 2P3 with black centres and if all black vertices have incomparable neighbour-
hoods, then the graph has bounded clique-width [10] and hence admits an implicit representation. However, in general the 
clique-width of 2P3-free bipartite graphs is unbounded and the question of implicit representation for one-sided forbidden 
2P3 remains open.

4.3. Subclasses of chordal bipartite graphs

Any subclass of chordal bipartite graphs excluding a forest is factorial, as was shown in [24]. However, implicit rep-
resentations for such subclasses are in general unavailable. Below we provide an implicit representation for the class of 
S2,2,2-free chordal bipartite graphs, which recently attracted attention in a different context [26]. We emphasize that the 
class of S2,2,2-free bipartite graphs (without the restriction to chordal bipartite graphs) is superfactorial and hence does not 
admit an implicit representation.

Theorem 13. The class of S2,2,2-free chordal bipartite graphs admits an implicit representation.

Proof. Similarly to Lemma 3 we consider a connected graph G in the class and a vertex of maximum degree v in G . We 
also denote by V i the vertices of distance i from v and show that for any i, the bipartite graph Gi := G[V i ∪ V i+1] belongs to 
a class that admits an implicit representation. First, we observe that G (and hence each Gi ) is C6-free (since it is chordal), 
and that C6 ∈ M̃, since the bipartite complement of C6 is 3K2. It remains to show that each Gi is pK2-free for some 
constant p, implying that Gi has bounded chain partition number (Theorem 8) and hence admits an implicit representation 
(Theorem 2).

The fact that G1 is 3K2-free is obvious, since otherwise an induced S2,2,2 can be easily found. Now we show that Gi
is 3K2-free for all i. Assume the contrary: there is a minimum i > 1 such that Gi contains a 3K2 induced by vertices 
a1, a2, a3 ∈ V i and b1, b2, b3 ∈ V i+1 with a jb j ∈ E(G) for all j. Then at least two of a1, a2, a3 have a common neighbour in 
V i−1, since otherwise an induced 3K2 arises in Gi−1, contradicting the minimality of i. Without loss of generality assume 
a1 and a2 are adjacent to a vertex c ∈ V i−1. To avoid an induced S2,2,2, vertex c is not adjacent to a3 and i ≤ 2 (since 
otherwise we may consider a neighbour d ∈ V i−2 of c and e ∈ V i−3 of d). We must thus have i = 2.

Now consider a neighbour d ∈ V 1 of a3. If d has 2 or 0 neighbours in {a1, a2}, then an induced S2,2,2 can be easily found 
(with centres d or c respectively). So, assume d is adjacent to a2 and non-adjacent to a1. Then v has a neighbour e non-
adjacent to a2, since otherwise the degree of a2 is greater than the degree of v . If e is not adjacent to a1, then an induced 
S2,2,2 with centre c arises. Similarly, if it is not adjacent to a3, then an induced S2,2,2 with centre d arises. However, and if 
11
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Fig. 2. The graphs Q (left) and A (right).

e is adjacent to both a1 and a3, then vertices a1, a2, a3, c, d, e induce a C6, which is forbidden. A contradiction in all cases 
shows that Gi is 3K2-free for all i and completes the proof. �

We observe that the class of S2,2,2-free chordal bipartite graphs extends the class of bipartite permutation graphs, which 
has bounded symmetric difference by Theorem 6. One may ask whether this result can be extended to S2,2,2-free chordal 
bipartite graphs; the answer is negative: it is possible to construct S2,2,2-free chordal bipartite graphs with arbitrarily large 
symmetric difference. For brevity, we omit the full construction. We mention, however, that our examples have the form 
G = (A, B ∪ C, E), where G[A ∪ B] and G[A ∪ C] are chain graphs. We call such graphs linked chain graphs (and one can show 
that linked chain graphs are S2,2,2-free chordal bipartite).

Several factorial subclasses of chordal bipartite graphs defined by forbidding a unicyclic graph (i.e. a graph containing a 
single cycle) have been identified in [12]. In particular, a factorial upper bound was shown for Q -free chordal bipartite and 
A-free chordal bipartite graphs (see Fig. 2 for the graphs Q and A).

Below we strengthen these results in two ways. First, we extend both of them to the class of Dk -free chordal bipartite 
graphs, where a Dk is the graph obtained from a cycle C4 = (v1, v2, v3, v4) by adding one pendant edge to v1, one pendant 
edge to v2 and k pendant edges to v4. Second, we show that Dk-free chordal bipartite graphs admit an implicit represen-
tation, which is a stronger statement than a factorial upper bound on the size of the class. We observe that the class of 
Dk-free bipartite graphs (without the restriction to chordal bipartite graphs) is superfactorial and hence does not admit an 
implicit representation. In our proof, we make use of the fact that any chordal bipartite graph has a vertex which is not the 
centre of a P5 [15].

Theorem 14. The class of Dk-free chordal bipartite graphs admits an implicit representation.

Proof. We consider a connected graph G in the class and a vertex v in G which is not the centre of a P5. We denote by 
V i the vertices of distance i from v and show that for any i, the bipartite graph Gi := G[V i ∪ V i+1] belongs to a class that 
admits an implicit representation.

Since v is not the centre of a P5, the graph G1 is a chain graph, and hence admits an implicit representation. For i > 1, 
we show that the graph Gi does not contain a one-sided copy of F 1

1,k with the vertex of large degree in V i . Indeed, assume 
that Gi contains a one-sided copy of F 1

1,k with the vertex of large degree in V i , and denote the two vertices of this copy 
in V i by a and b. By definition, a and b have neighbours in V i−1. If they have a common neighbour c in V i−1, then the 
copy of F 1

1,k together with c and any neighbour of c in V i−2 induce a Dk (where V 0 = {v}). If a and b have no common 
neighbours in V i−1, then an induced cycle of length at least 6 can be easily found, which is forbidden for chordal bipartite 
graphs. A contradiction in both cases shows that Gi does not contain a one-sided copy of F 1

1,k and hence admits an implicit 
representation by Lemma 4. Therefore, by Theorem 2, G admits an implicit representation as well. �

Noting that Q and A are chain graphs, we next provide a different generalisation of these results by showing that the 
class of chordal bipartite graphs avoiding a chain graph admits an implicit representation. Chain graphs have a well-known 
universal construction [23]. More specifically, any chain graph on n vertices is induced in the universal chain graph Zn on 
2n vertices with parts a1, . . . , an and b1, . . . , bn , and with ai adjacent to b j whenever j ≥ i (see Fig. 3 for an illustration). It 
thus suffices to show that, for fixed k, the class of Zk-free chordal bipartite graphs admits an implicit representation.

Theorem 15. The class of chordal bipartite graphs avoiding a fixed chain graph admits an implicit representation.

Proof. As discussed above, it suffices to show the claim for Zk-free chordal bipartite graphs. We prove this by induction on 
k. This is clear when k = 1, since those graphs are edgeless, and when k = 2, since those graphs are cographs and hence 
have bounded clique-width. In general, assume the statement is true for some k ≥ 2, and consider the class of Zk+1-free 
chordal bipartite graphs. As in the proof of Theorem 14, we find a vertex which is not the centre of a P5, and define the 
graphs Gi in the same way. Once more, G1 is a chain graph. For i > 1, we show that the graph Gi contains no induced 
copy of Zk . Suppose for a contradiction that there was such a copy, labelled as in Fig. 3, with the a vertices in V i and the 
12
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Fig. 3. The graph Z5.

b vertices in V i+1. We then note that, by chordality, the graph induced by the a vertices together with their neighbours 
in V i−1 is a chain graph (otherwise a 2K2 together with bk and a shortest path between the 2K2’s going through the V j
with j < i − 1 would induce a large cycle). Since every a vertex has a neighbour in V i−1, it follows that there must be 
a vertex bk+1 in V i−1 adjacent to all a vertices. Together with a vertex ak+1 from V i−2 adjacent to bk+1, we obtain an 
induced Zk+1, which is the desired contradiction. As before, from Theorem 2 and using the induction hypothesis, we are 
done. �
5. Factorial properties

A factorial speed of growth, as we mentioned in the introduction, is a necessary condition for a hereditary class to admit 
an implicit representation, and hence determining the speed is the first natural step towards identifying new classes that 
admit such a representation. In this section, we prove a number of results related to the speed of some hereditary classes 
of bipartite graphs.

5.1. Hypercubes

We repeat that bounded functionality implies at most factorial speed of growth. Whether the reverse implication is also 
valid was left as an open question in [2]. It turns out that the answer to this question is negative. This is witnessed by 
the class Q of induced subgraphs of hypercubes. Indeed, in [2] it was shown that Q has unbounded functionality. On the 
other hand, it was shown in [17] that the class admits an implicit representation and is, in particular, factorial; in fact, 
more generally, the hereditary closure of Cartesian products of any finite set of graphs [18] and even of any class admitting 
an implicit representation [14], admits an implicit representation. These results, however, are non-constructive and they 
provide neither explicit labelling schemes, nor specific factorial bounds on the number of graphs. Below we give a concrete 
bound on the speed of Q.

Theorem 16. There are at most n2n n-vertex graphs in Q.

Proof. Let Q n denote the n-dimensional hypercube, i.e. the graph with vertex set {0, 1}n , in which two vertices are adjacent 
if and only if they differ in exactly one coordinate. To obtain the desired bound, we will produce, for each labelled n-vertex 
graph in Q, a sequence of 2n numbers between 1 and n which allows us to retrieve the graph uniquely.

As a preliminary, let G ∈ Q be a connected graph on n vertices. By definition of Q, G embeds into Q m for some m. We 
claim that, in fact, G embeds into Q n−1. If m < n, this is clear. Otherwise, using an embedding into Q m , each vertex of G
corresponds to an m-digit binary sequence. For two adjacent vertices, the sequences differ in exactly one position. From this, 
it follows inductively that the n vertices of G all agree in at least m − (n − 1) positions. The coordinates on which they agree 
can simply be removed; this produces an embedding of G into Q n−1. Additionally, by symmetry, if G has a distinguished 
vertex r, we remark that we may find an embedding sending r to (0, 0, . . . , 0).

We are now ready to describe our encoding. Let G ∈ Q be any labelled graph with vertex set {x1, . . . , xn}. We start by 
choosing, for each connected component C of G:

• a spanning tree TC of C ;
• a root rC of TC ;
• an embedding ϕC of TC into Q n−1 sending rC to (0, 0, . . . , 0).

Write Ci for the component of xi . We define two functions p, d : V (G) → [n] as follows:

p(xi) =
{

i, if xi = rCi ;

j, if xi 
= rCi , and x j is the parent of xi in TCi .

d(xi) =
{

1, if xi = rCi ;

j, if xi 
= rC , and ϕC (xi) and ϕC (xp(x )) differ in coordinate j.
i i i i

13
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Fig. 4. The graphs X (left), Y (middle), and Z (right).

One easily checks that the above maps are well-defined; in particular, when xi is not a root, the embeddings of xi and 
of its parent do, indeed, differ in exactly one coordinate. The reader should also know that the value of d on the roots is, in 
practice, irrelevant – setting it to 1 is an arbitrary choice.

We now claim that G can be restored from the sequence p(x1), d(x1), . . . , p(xn), d(xn). To do so, we first note that 
this sequence allows us to easily determine the partition of G into connected components. Moreover, for each connected 
component C , we may then determine its embedding ϕC into Q n−1: ϕC (rC ) is by assumption (0, 0, . . . , 0); we may then 
identify its children using p, then compute their embeddings using d; we may then proceed inductively. This informa-
tion allows us to determine the adjacency in G as claimed, and the encoding uses 2n integers between 1 and n as 
required. �
We conjecture that a stronger bound holds.

Conjecture 3. There exists a constant c such that the number of n-vertex graphs in Q is at most cnn!, i.e. the class Q is 
small,

If Conjecture 3 is true, the class Q would be an explicit counter-example to the small conjecture [8], which says that every 
small class has bounded twin-width. This conjecture is known to be false [9], but, to the best of our knowledge, no explicit 
counter-example is available.

5.2. Subclasses of chordal bipartite graphs

A super-factorial lower bound for the number of labelled n-vertex chordal bipartite graphs was shown in [27]. This result 
was improved in [12] by showing that the speed remains super-factorial for the class of (2C4, 2C+

4 )-free chordal bipartite 
graphs, where 2C+

4 is the graph obtained from 2C4 by adding an edge between the two copies of C4. In this section, we 
show that for every proper induced subgraph H of 2C4 or of 2C+

4 , the speed of H-free chordal bipartite graphs is factorial. 
There are precisely three maximal such subgraphs, which we denote by X , Y and Z (see Fig. 4).

In the proof, we use the following analogue of Theorem 2 proved in [22].

Theorem 17. [22] Let X be a class of graphs and c a constant. If every graph G ∈X can be covered by graphs from a class Y of at most 
factorial speed of growth in such a way that every vertex of G is covered by at most c graphs, then X also has at most factorial speed of 
growth.

We also use the following result.

Theorem 18. [24] For any forest F , the class of chordal bipartite graphs excluding F has at most factorial speed of growth.

We observe that it is unknown whether the last result can be strengthened by replacing “at most factorial speed of 
growth” with “implicit representation”. In particular, it remains an open problem whether a factorial upper bound obtained 
for the three subclasses chordal bipartite graphs in the next three theorems can be strengthened to an implicit representa-
tion.

Theorem 19. The class of X-free chordal bipartite graphs is factorial.

Proof. Let G be a connected X-free chordal bipartite graph, let v be a vertex of G , and let V i be the set of vertices of 
G at distance i from v . Assume G[V i ∪ V i+1] (i ≥ 1) contains an induced P12 = (x1, . . . , x12) with even-indexed vertices 
in V i and odd-indexed vertices in V i+1. To avoid an induced cycle of length at least 6, vertices x2 and x4 must have a 
common neighbour a ∈ V i−1. Similarly, vertices x8 and x10 must have a common neighbour b ∈ V i−1. If b is adjacent to 
14
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x2, then vertices x1, x2, x3, x8, x9, x10, b induce an X in G . Similarly, an induced X arises if b is adjacent to x4, and if a is 
adjacent to x8 or x10. Therefore, b is adjacent neither to x2 nor to x4, and a is adjacent neither to x8 nor to x10, and hence 
a 
= b. If additionally a or b is not adjacent to x6, then an induced cycle of length at least 6 can be easily found. Finally, if 
both a and b are adjacent to x6, then vertices x2, x3, x4, x6, x7, a, b induce an X in G . A contradiction in all possible cases 
shows that V i and V i+1 induce a P12-free chordal bipartite graph for all i ≥ 1. By Theorems 17 and 18 this implies that the 
speed of X-free chordal bipartite graphs is at most factorial. Since this class contains all chain graphs, its speed is at least 
factorial. �
Theorem 20. The class of Y -free chordal bipartite graphs is factorial.

Proof. This class contains all chain graphs and hence its speed is at least factorial. To prove that the speed is at most 
factorial, we will show that every graph G in this class has either a vertex of bounded degree or a pair of vertices of 
bounded symmetric difference. If G has a vertex x of bounded degree, we create a record of the neighbours of x and delete 
x. If the symmetric difference of two vertices x and y is bounded, we create a record containing vertex y and the vertices 
in the symmetric difference of x and y, and delete x. Applying this procedure recursively, we create a record of length 
O (n log n) (where n = |V (G)|), which allows us to restore the graph and shows that the class is at most factorial.

Let G be a Y -free chordal bipartite graph, let v be a vertex of G which is not the centre of a P5, and let V i be the set 
of vertices of G at distance i from v . Then V 1 and V 2 induce a 2K2-free bipartite graph, i.e. a chain graph. If two vertices 
ai, a j in V 1 have the same neighbourhood, then sd(ai, a j) = 0 and we are done. Therefore, we assume that all vertices in 
V 1 have pairwise different neighbourhoods. Using the notation of Fig. 3, we denote the vertices of V 1 by a1, . . . , ak . Also, 
for i = 1, . . . , k − 1, let Bi := N(ai) − N(ai+1). Note that for each i the set Bi is non-empty.

If deg(v) ≤ 4, we are done, so assume k ≥ 5. Let b be a vertex in Bk−4 and assume b has at least 3 neighbours c1, c2, c3
in V 3. Let b′ be a vertex in Bk−2. Then b′ has either two neighbours or two non-neighbours among c1, c2, c3. If b′ is adjacent 
to c1 and c2, then b, b′, c1, c2, v, ak−1, ak induce a Y . If b′ is not adjacent to c1 and c2, then b, b′, c1, c2, v, ak−3, ak−2 induce 
a Y . A contradiction in both cases shows that b has at most 2 neighbours in V 3 and hence sd(v, b) ≤ 6. �
Theorem 21. The class of Z -free chordal bipartite graphs is factorial.

Proof. Let G be a connected Z -free chordal bipartite graph given together with a bipartition of its vertices into an inde-
pendent set of white vertices and an independent set of black vertices. We will show that G either contains no P14, or it 
has two vertices of symmetric difference at most 2. If G is P14-free, then G belongs to a factorial class by Theorem 18. 
Using this, it is then routine to produce a (not necessarily implicit) representation of G using O (n log n) bits by iteratively 
removing vertices of low symmetric difference until we are left with a P14-free graph.

To show that G either contains no P14, or it has two vertices of symmetric difference at most 2, we assume that G
contains a P14, and extend it to a maximal induced tree that we denote by T . We claim that the vertices in T are not 
distinguished by the vertices in G − T . This immediately yields our two vertices of low symmetric difference: if T has at 
least three leaves, then it has two in the same side of the bipartition, and the only two vertices possibly distinguishing 
them are their neighbours in T . If T has only two leaves, it is a path, and we can easily find two vertices on the path with 
symmetric difference at most 2 (even at most 1). Therefore, it suffices to prove the following claim.

Claim. Let T be as above, and let x ∈ G − T . Then NT (x) is either empty, or consists of all vertices of T lying in one part of the bipartition.

Proof of claim. Suppose x has, without loss of generality, a white neighbour in T , and let D be the set of all white neigh-
bours of x in T . We prove the claim in a series of steps.

i. |D| ≥ 2, since otherwise the tree T is not maximal.
ii. If w, w ′ ∈ D , then w ′′ ∈ D for each white vertex w ′′ lying on the path in T between w and w ′ , since otherwise an 

induced cycle of length at least 6 arises.

From the above, we immediately obtain:

iii. Every vertex of D belongs to a C4 in T ∪ {x}.

We then note:

iv. No vertex of T − D lies at distance 4 or more from D , since otherwise an induced Z arises.

In particular, any white vertex is at distance at most 2 from D . Since T contains a P14 (and hence has two white vertices 
at distance 12), the triangle inequality implies:
15
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v. There exist two vertices in D at distance at least 8.

Together with ii., this in turn implies:

vi. There exists an induced path P = (v1, . . . , v9) in T (with edges vi vi+1) such that v1, v3, v5, v7, v9 ∈ D .

Let w0 be a white vertex in T − D closest to P in T , and let Q = (w0, w1, . . . , wk) be the unique path from w0 to P
in T (with wk ∈ V (P )). If k = 1, say wk = v4 (without loss of generality), then w0, w1, v5, x, v7, v8, v9 induce a Z . If k ≥ 2, 
then x is adjacent to w2 (due to the choice of w0), and assuming, without loss of generality, that w2 is different from v7
and v9, we conclude that w0, w1, w2, x, v7, v8, v9 induce a Z . A contradiction in both cases shows that T − D contains no 
white vertices, thus proving the claim and the theorem. �
6. Conclusion

In this paper, we proved several results related to graph parameters, implicit representation and factorial properties 
and raised a number of open questions. In particular, we asked (in the form of conjectures) whether bounded symmetric 
difference implies implicit representation and whether symmetric difference is bounded in the class of P7-free bipartite 
graphs. Concerning implicit representations, one of the minimal classes for which this question is open is the class of 
P7-free chordal bipartite graphs. It is also open for the three subclasses of chordal bipartite graphs from Section 5.2, for 
the class of bipartite graphs excluding a one-sided forbidden copy of an unbalanced 2P3. An explicit description of a 
labelling scheme that provides an implicit representation for induced subgraphs of hypercubes also remains an open prob-
lem.
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