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Abstract
Clinical trials that investigate interventions on physical activity often use accelerometers to measure
step count at a very granular level, often in 5-second epochs. Participants typically wear the
accelerometer for a week-long period at baseline, and for one or more week-long follow-up periods
after the intervention. The data is usually aggregated to provide daily or weekly step counts for the
primary analysis. Missing data are common as participants may not wear the device as per protocol.
Approaches to handling missing data in the literature have largely defined missingness on the day
level using a threshold on daily wear time, which leads to loss of information on the time of day
when data are missing. We propose an approach to identifying and classifying missingness at the
finer epoch-level, and then present two approaches to handling missingness. Firstly, we present a
parametric approach which takes into account the number of missing epochs per day. Secondly, we
describe a non-parametric approach to Multiple Imputation (MI) where missing periods during the
day are replaced by donor data from the same person where possible, or data from a different person
who is matched on demographic and physical activity-related variables. Our simulation studies
comparing these approaches in a number of settings show that the non-parametric approach leads
to estimates of the effect of treatment that are least biased while maintaining small standard errors.
We illustrate the application of these different MI strategies to the analysis of the 2017 PACE-UP
Trial. The proposed framework of classifying missingness and applying MI at the epoch-level is likely
to be applicable to a number of different outcomes and data from other wearable devices.
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Introduction
Wearable devices are increasingly becoming popular tools to measure health outcomes in clinical trials. In
trials that investigate interventions aimed to increase physical activity, accelerometers have been used in
a number of studies to evaluate impact on participants’ step count (Harris et al. 2015, 2017, 2018; Ismail
et al. 2019). Accelerometers measure acceleration in three dimensions in very fine intervals of time,
typically in 5-second intervals or epochs, and offer a more objective measure of physical activity with
reduced participant burden compared to self-report approaches. Outputs of interest from accelerometers
include vector magnitude (VM), which summarizes the accelerations in three dimensions, step count and
time spent in different physical activity intensities (e.g. sedentary, light, moderate-to vigorous physical
activity) (Leeger-Aschmann et al. 2019). Missing data can occur in a number of ways in this setting; for
example, there may be device failure due to the battery running out or water damage, or participants may
remove or forget to wear the accelerometer for periods of time during the day. Analyses should account
for the missingness in a suitable way in order for results to be unbiased and to reflect the uncertainty
appropriately. Multiple Imputation (MI) is a flexible and powerful approach to handling missing data,
and has previously been applied to the accelerometer setting where outcomes are aggregated at the day
level (Tackney et al. 2021).

Approaches which apply MI to day-level step counts require missingness to also be determined at the
day-level. A popular approach in the literature is to define a day as missing if a participant wore the device
for less than 540 minutes in a day (Harris et al. 2015, 2017, 2018; Ismail et al. 2019). Other common
choices of threshold include 360 minutes of wear time (De Craemer et al. 2016) and 600 minutes of
wear time (Goode et al. 2015; Cameron et al. 2017). Defining missingness at the aggregate day-level
has some drawbacks. Thus participants may provide valuable data on so-called “missing days” (e.g. days
with less than 540 minutes of wear time) which would then become discarded; for example, Figure 1
plot (a) displays VM from a day where the device was worn for 475.92 minutes, which is slightly short
of the required weartime. Equally, participants who do provide at least 540 minutes of weartime could
potentially still have missing parts of days; for example, Figure 1 plots (b) and (c) are examples of days
where weartime is above the 540 minute threshold, but there are periods during the day where no data
is recorded and could potentially be missing. Tackney et al. (2021) proposed an alternative approach
where days are classified as missing, partially observed or observed, and partially observed days are
treated as right-censored data, which retains the information from days where participants provide some,
but insufficient, data. However, even with this approach, information on times of day where missingness
takes place is discarded. Examining the time of day when participants have missing data could be valuable
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Tackney et al 3

in trying to restore information and can lead to greater clarity. How to apply MI using epoch-level data
has received limited attention in the literature so far.

Figure 1. Vector Magnitude (VM) is plotted against time for data from three days from three different
individuals from the PACE-UP trial.

Multiple Imputation (MI) is a flexible and powerful approach to handling missing data. MI accounts
for uncertainty in the missing values, and allows for sensitivity analysis to explore departures from the
Missing at Random (MAR) assumption. Further, MI can allow for outcomes to be on an aggregate level
(day- or week-level), while missingness is handled on the finer epoch-level. To date, there has been
limited exploration of missingness on the epoch-level data in the literature. Lee and Gill (2018) propose
a zero-inflated Poisson and log-normal mixture distribution which allows for imputations at the epoch-
level. Butera et al. (2019) proposed a non-parametric (hot deck) approach to MI at the epoch-level.
When data are MAR, their simulation studies showed that the non-parametric approach produced less
bias and improved coverage compared to available case and complete case analyses. However, neither
of these epoch-level approaches to imputation fully reflect the complexity of defining missingness at the
epoch-level. Lee and Gill (2018) assume a window of between 9am and 9pm in which participants are
awake, and define missingness as intervals of at least 20 minutes of no recorded acceleration. Limiting
the window of data considered between 9am and 9pm ignores the variation within and between people’s
waking and sleeping times, and does not acknowledge the possibility that some of these periods may
actually be due to the participant removing their device during sleep, which is per-protocol and should
not be imputed. In their simulation studies, Butera et al. (2019) induce missingness in two-hour blocks
of time, which simplifies the complexity of missingness in genuine datasets.

This study aims to characterize the common patterns of missing accelerometer data at the epoch-level,
and handle epoch-level missingness utilising MI using both parametric and non-parametric approaches,
illustrated by a specific trial example. We first describe the PACE-UP trial, and then describe Multiple
Imputation and the challenges in its application in the accelerometer context. We then describe the non-
parametric and parametric approaches in Proposed Approaches. These approaches are validated through
Simulation Studies, and their performances are compared in an Application to the PACE-UP trial.

PACE-UP trial
We illustrate the complexities due to missing data in the accelerometer context using the 2017 PACE-UP
trial as a motivating example. The PACE-UP trial investigated postal and nurse-supported interventions
for increasing physical activity in patients aged 45-75 years from seven primary care practices in London.
Randomization was by household (to avoid couple contamination) and block randomization was used
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within seven primary care practices. Of the 1023 patients in the trial, 338 were randomized to usual care,
339 to postal intervention and 346 to nurse-supported intervention. The participants were provided with
an ActiGraph GT3X accelerometer (ActiGraph, FL, USA) for a period of seven consecutive days on
four separate occasions, which we refer to as measurement periods: baseline, 3 months, 12 months, and
3 years. They were instructed to wear the accelerometer on the hip using a belt during waking hours,
except when swimming or showering. The protocol and results of the trial have been reported previously
(Harris et al. 2017, 2018), and the trial showed that physical activity increased in both intervention groups
compared to usual care.

In the reported trial results, days are defined as missing if wear time is less than 540 minutes (Harris
et al. 2017). Further, at least five non-missing days at baseline, and at least one non-missing day at 12
Months are required to be included in the primary analysis. Of the 1023 patients who were randomized,
93% of participants were included in the 12-month primary analysis. The average of the non-missing
days were computed at baseline and 12 months to assess change in step count, adjusting for day of week,
and day-order-of-wear. The primary analysis assumes that the data are missing at random (MAR), and
sensitivity analyses were conducted to assess the impact of using different thresholds on weartime for
defining missingness, and to assess the impact of data being missing not at random (MNAR) (Harris
et al. 2017).

Multiple Imputation

Multiple imputation (MI) is a flexible and practical approach to the analysis of datasets with missing
values. An imputation model is specified, which is a model for the posterior predictive distribution of
the missing outcomes given the observed data (Harel and Zhou 2007). This model is used to impute
missing data with M plausible values, resulting in a total ofM sets of complete data. The analysis model
is fitted to each of the M datasets, and the estimates are combined using Rubin’s rules (Rubin 1976)
to take full account of the uncertainty due to the missing values. If the imputation model is specified
appropriately, MI provides valid and efficient inference under the assumption that the data are MAR given
the observed data in the imputation model (Carpenter and Kenward 2012, Ch.2). Sensitivity analysis to
assess the robustness of the results to missing data assumptions is recommended (Cro et al. 2020). An
attractive feature of MI in the accelerometer setting is that the imputation model and the analysis model
are separate, which allows missingness to be defined on a different level than the level specified in the
analysis model. For example, the analysis model may have as the outcome the step counts averaged across
the week and the imputation model may handle missingness at the finer day- or epoch-level to achieve
more precise imputations.

The imputation model is typically specified as an explicit parametric model for the predictive
distribution of the missing variables given the observed data. For example, a multivariate normal model
can be specified, or Tobit regression may be used in the accelerometer setting to incorporate step counts
as right-censored observations in the imputation model if the data from participants are only partially
observed. A parametric imputation model may include additional auxiliary variables which are not in the
analysis model, but are predictive of missingness or step count. The inclusion of variables such as daily
weather variables in the accelerometer setting can help to make the MAR assumption more plausible
(Tackney et al. 2021).
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An alternative approach is to use non-parametric or hot-deck imputation, which replaces missing
values with donor data, which are observed data that have been identified to be of similar characteristics to
the missing data (Andridge and Little 2010). Identifying such data involves consideration of the variables
required to make the MAR assumption plausible. An important advantage of this approach is that it is
compatible with complicated relationships in the dataset which do not have to be specified via a statistical
model (Carpenter and Kenward 2012, p. 181).

Prior to implementing either parametric or non-parametric MI in the accelerometer data context,
however, two important challenges need to be addressed: firstly, the challenge of defining missingness at
the epoch-level, and secondly, the challenge of handling difficult distributions. These are discussed in the
next section.

Complications for MI in the accelerometer context

Challenge 1: Defining missingness at the epoch-level
The first challenge in defining missing data in the accelerometer context is identifying when participants
have removed the device. For some wearable devices, additional data from other measurements, such as
heart rate, may be available to aid in identifying device removal. Heart rate would be measured when
a participant is not moving while wearing the device, but missing if the participant has removed it.
However, the GT3X+ accelerometers used in the PACE-UP trial does not measure heart rate. It is there
difficult to decide whether a period with no movement recorded is: (A) a period where the participant
is wearing the device but staying still, (B) a period where the participant has removed the device per
protocol, such as during sleep, or (C) whether the participant has removed the device during the day and
is an instance of missing data. Participants’ movement is often quantified by Vector Magnitude (VM),
which is the square root of the sum of the acceleration in each component squared. Figure 1 displays
plots of VM against time for three days from different participants in the PACE-UP trial. In plot (c), there
is a short period of no activity in the middle of the day, which could be missing data, or perhaps could
be the participant lying still. In contrast, the longer periods of no movement in the morning and in the
evening are very likely to be the participant removing the device for sleep, as per protocol. There is a
need to classify these types of activities at the epoch-level, in order to identify the missing intervals that
need to be imputed through MI.

Challenge 2: Difficult distributions
Accelerometer data at the epoch-level are characterized by a large proportion of zeros, a heavy positive
skew, and high autocorrelation (Lee and Gill 2018). The complexity in the distribution of epoch-level
data means that parametric approaches to imputation that assume a standard distribution, such as the
normal distribution, are likely to be inappropriate.

Further, epoch-level accelerometer data collected over the course of a week is characterized by
complex within-person patterns. There are patterns of activity that are dependent on time of day, and
these patterns are generally different on weekends compared to weekdays. Allowing for these patterns on
the epoch-level is a statistical and computational challenge.
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Figure 2. Vector Magnitude is plotted against time for two individuals. In (a), we observe an inactive period on
Saturday and a nonwear period on Monday. In (b), we observe three days, where the first and third days
display sufficient wear-time, but on the second day, the accelerometer was not worn for the most part of the
day, resulting in a sleep-extra period.

Proposed Approaches

Classifying Missingness at the Epoch Level
Resolving the first challenge of identifying missing periods begins by identifying zero-count periods.
Zero-count periods are intervals of time where VM is continuously zero over a specified threshold,
usually set at 20, 60 or 90 minutes, where it can be assumed that the device is removed (Evenson and
Terry 2009). Some authors recommend allowing for a spike tolerance, that is, allowing for an interval of
up to 2 minutes of non-zero VM to account for inadvertent movements of the device, such as the device
being moved across the table (Choi et al. 2011). We adopt the definition used in the PACE-UP trial,
where a 60 minute threshold was used, allowing for a 2-minute spike tolerance. We note that zero-count
periods are sometimes referred to as non-wear in the literature, but we reserve non-wear to refer more
specifically to periods where people are likely to have removed the device.

Zero-count periods include periods where participants are wearing the device, but are staying still.
In order to distinguish these periods, we note that putting on and removing the device requires a sharp
movement, which is detectable as a spike in VM. Empirically, we explored the data and confirmed that
this is the case; VM greater than 600 is typically incurred when the accelerometer is put on or removed.
We classify zero-count periods lasting between one and five hours with VM of at least 600 in the 2-
minute interval before or after the period, as non-wear periods. For example, in Figure 2 panel (a), we
observe on Monday (the bottom graph) a zero-count period indicated in red where the high VM points
immediately before and after indicate that the device was removed, so we classify this as non-wear. In
contrast, on Saturday (the top graph), we observe a zero-count period, indicated in grey, where no high
VM is detected before or after. In this case, it is possible that the participant is still wearing the device,
but staying very still. We classify zero-count periods of up to 3 hours, where no high VM are detected,
as inactive periods, which are not treated as missing.
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Missingness also occurs when people put on the device later in the day than when they are expected
to wake up, or remove the device earlier than when they are expected to go to bed. This is visible by a
very long period zero-count period which would include the time when the participant is expected to be
asleep. For example, in Figure 2 panel (b), the purple area illustrates a case where the participant has not
worn the device until late in the evening. We refer to these extended zero-count periods, lasting longer
than 15 hours, as sleep-extra periods. Based on these observations, we classify zero-count periods into:

• Inactive: a shorter continuous zero-count period, lasting between 1 and 3 hours, where no high VM
is detected (VM does not exceed 600 in the 2 minutes just before/after the zero-count period). This
suggests that accelerometer is still worn by the individual, but they are staying very still. During a
period of 1 to 3 hours, it is plausible that a person is staying still. Inactive periods are not missing
periods.

• Non-wear: a continuous zero-count period (lasting between 1 and 5 hours) where VM exceeds 600
in the 2 minutes just before or after the period. This suggests the accelerometer has been taken
on/off. Further, any zero-count period between 3 and 5 hours is classified as non-wear, since it is
less plausible that a person could stay still for an extended period of time; experience with using
the accelerometer suggests that it is very unlikely that it will register no movement for over 3 hours
if the device is being worn. Non-wear periods are missing periods.

• Sleep: A zero-count period lasting between 5 and 15 hours. Sleep periods are not missing periods.
• Sleep-extra: A zero-count period lasting longer than 15 hours. Such an extended period of sleep

suggests that a person delayed putting on the device in the morning, and/or took it off too early in
the evening. Sleep-extra periods contain missing periods.

Examples of plots displaying Vector Magnitude (VM) against Time for the 7-day period at baseline and
12 months for specific patients are shown in the Appendix Plots of Vector Magnitude at the Epoch-level,
with zero-count periods classified.

Using this classification, days/participants who do not have non-wear or sleep-extra periods are
considered fully observed. Non-wear and sleep-extra periods lead to missing periods that need to be
accounted for in the analysis. For non-wear periods, the start and end times of the missing period are equal
to the start and end times of the non-wear period. However, for sleep-extra periods, which include per-
protocol sleep periods which are not considered missing, the start and/or end times need to be estimated.
If the sleep-extra period for a participant falls on a weekday, the average sleep window for weekdays
is computed by taking weekdays from this participant with completely observed data, and finding the
interval between the average time at which the participant goes to sleep, and the average time at which
the participant wakes up. The missing intervals consist of the sleep-extra period, minus the period which
lies in the average sleep window. If the missing interval falls on a weekend, then, if the other weekend day
is fully observed, the average sleep window of that weekend day is used to compute the missing intervals.
If both weekend days have missingness, the average sleep window is obtained from the weekdays, adding
an empirically-based estimate of the shift in waking times at the weekend compared to weekdays. Since
this was approximately an hour in these data, we rounded it to exactly one hour for convenience.

We note that this approach to classifying zero-count periods relies on assumptions about the length
of time that people sleep and the length of time that people can be inactive while still wearing
the accelerometer. Investigating the validity of our chosen thresholds is an important area of future
work. These thresholds were proposed for our analysis of studies for physical activity trials in healthy
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populations, but will need to be revised for studies investigating different populations, such as children
or participants with health conditions. Ideally, a validation study in a small subset of data where intervals
are classified based on participants’ self-reports is recommended, but we recognize that this is often
not possible. Sensitivity analyses for the choices of threshold are therefore a more practical avenue to
evaluate the impact of the thresholds.

Having defined missing periods at the epoch-level, we wish to handle missingness with Multiple
Imputation. We describe two approaches to overcoming the second challenge of epoch-level data having
complex distributions: a parametric approach, described in Parametric approach and a non-parametric
approach, described in Non-parametric approach. We introduce some notation to describe the approaches.
We denote by yi,j,k,l the step count for patient i, at measurement period j, on day k and epoch l, and we
denote by yi,j,k,lp:lq the step counts over an interval between epoch lp and epoch lq (inclusive), where
lp < lq . We assume, without loss of generality, that data are recorded in 5-second epochs. We denote by
yobsi,j,k,lp:lq

an interval that is observed, and ymis
i,j,k,lp:lq

an interval that is missing. We denote by yi,j,k,. the
day-level step counts for day k, and ȳi,j,.,. the mean of the daily-level step counts for measurement period
j.

Parametric approach
In the parametric approach to MI, in order to overcome difficulty of epoch-level step count data having
a high proportion of zeros and extreme positive skew, we aggregate the data to the day level. Day-level
step counts still have a positive skew, but this can be handled with a log-transformation to help make the
normality assumption plausible. A parametric approach to MI at the day-level was proposed in Tackney
et al. (2021); we make a crucial adaptation to this approach to incorporate information about missingness
at the epoch-level.

The day-level approach in Tackney et al. (2021) classified step counts as completely observed if
weartime≥ 540, partially observed if 0 < weartime < 540, and missing if weartime = 0. In our adapted
approach, we move away from using a threshold based on weartime and take into account the missing
periods detected at the epoch-level. We consider a daily step count as completely observed if there are no
missing periods. A daily step count is partially observed if there are non-wear or sleep-extra periods, and
completely missing if no data was recorded.

We consider the daily step counts as right-censored data if they are partially observed or missing, and
use Tobit regression to conduct the imputation. Tobit regression requires specification of lower and/or
upper bounds for each observation. For days that are completely observed, the lower and upper bound
are the recorded logged step counts. For days that are completely missing, the lower bound is set to
zero, and the upper bound is a value higher than the highest observed logged daily step count in the data
(e.g., 10.5 on the log scale). For days where some activity is observed, but which have missing periods,
the lower bound is the recorded step count, and we propose a Person-specific upper bound, calculated
as log(yi,j,k,. + 5λi,j,k), where λi,j,k is the number of missing epochs for participant i at measurement
period j for day k. This assumes that the upper bound of total step count would allow up to 1 step each
second (5 steps per epoch) in the missing period. This approach adjusts the upper bound according to
the quantity of missingness detected at the epoch-level. We compare using the person-specific upper
bound to using a Generic upper bound, which sets the upper bound as 10.5 on the log scale. This generic
upper bound was used in Tackney et al. (2021) and serves as a comparison with previously suggested
approaches.
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We assume that the logged daily step counts are jointly normally distributed, possibly dependent on
baseline characteristics such as sex, age and BMI, and further, we assume that the data are MAR. Activity
patterns across days are accounted for through adopting a joint model for the logged daily step counts,
and through the addition of covariates. We impute separately within each trial arm. After imputation, the
log of the daily step counts are exponentiated. The M complete datasets on the step count scale can then
be analysed separately, with estimates combined across imputed datasets using Rubin’s rules.

We note that, if the log transformation does not sufficiently reduce skewness of daily step counts,
imputation via predictive mean matching (PMM) is an alternative approach to Tobit regression which is
more robust to model misspecification (Little 1988).

Non-parametric approach
Secondly, we consider a non-parametric approach to using MI in epoch-level data. Instead of specifying
a parametric statistical model for the distribution of the missing data given the observed data, a non-
parametric approach proceeds by imputing missing periods with observed periods from the same time of
day, from the same participant, but from a different day of the week, where possible.

If it is not possible to impute from the same participant due to the extent of the missingness, the interval
is imputed from a different participant who is as similar as possible according to demographic variables.
A number of factors need to be considered in order to identify a non-self donor. Firstly, demographic
variables that determine the similarity between two participants need to be identified. These variables
are typically auxiliary variables those that help to strengthen the MAR assumption. Secondly, a metric is
needed to measure the strength of the similarity. It may be the case that for some variables, such as sex,
it is preferable to identify a donor that matches perfectly, and for other variables, a metric such as the
Mahalanobis distance is used to find the closest donor.

We assume that imputation is within a treatment arm, and within a specific time interval j. For each
participant i, missing periods are identified and classified. If any missing period is spread between two
days, for example between epoch lp on day k and epoch lq on day k + 1, this is split into two missing
periods, ymis

i,j,k,lp:17280
and ymis

i,j,k+1,1:lq
, where 17280 is the number of 5-second epochs in a day. We

obtain the set of missing intervals Ii for participant i. We denote by | Ii | the size of the set Ii.
Suppose ymis

i,j,k,lp:lq
is the gth missing period in a non-empty set of missing periods for participant i,

Ii, where g ∈ {1, ..., | Ii |}. Imputation proceeds as follows:

• obtain the self-donor pool SDi,g , which consist of observed intervals yobs
i,j,k′,lp:lq

, where k 6= k′.
• If | SDi,g |> 4, sample M times with replacement from SDi,g with equal sampling probabilities,

to obtain M imputed intervals.
• If | SDi,g |≤ 4, we obtain a non-self donor from the pool of participants who do not have missing

periods that overlap with the gth missing period of patient i. From this pool of participants, we
match perfectly on selected discrete covariates and compute the Mahalanobis distance between
patient i and other participants in the non-self donor pool for covariates selected to provide
approximate matching on. Here, we match exactly on sex and approximately on BMI and age.
If imputing at 12 Months, the average step count at baseline and average weartime at baseline
can additionally be included in the Mahalanobis distance. We note that imputation is conducted
within a specific measurement period, so even if baseline characteristics are used to compute a
Mahalanobis distance, data used in the imputation is from 12 Months. We then compute sampling
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weights for each participant in the donor pool by taking the inverse of the Mahalanobis distance for
that participant as a fraction of the sum of inverses of Mahalanobis distances from all participants
in the donor pool. One donor is selected using these sampling weights. From this selected donor i′,
seven observed intervals ymis

i′,j,k,lp:lq
for k ∈ {1, ..., 7} are identified. By sampling from these seven

intervals with replacement (since these donors have no missing data at that measurement period),
M imputed intervals are obtained.

There may be participants with almost no data, in which case we may wish to impose a minimum
threshold for performing the non-parametric imputation described above, since there would be
insufficient data to compute the participant’s sleep-window and to identify the intervals that need to
be imputed. If this threshold is not met, we instead impute the entire week from the pool of donors who
have complete data for the whole week.

In the analysis of the PACE-UP trial, we require participants to have at least five days of wear time
< 300 minutes. While this does not occur at baseline (participants needed to provide at least five days
with wear time of at least 540 minutes at baseline to be included in the study), it did occur at 12 Months.
Here, we discard data from this participant and impute the entire week with the pool of donors who
provide complete data 12 Months. Matching perfectly on sex, we obtain sampling weights, based on
inverse of the Mahalanobis distances for age, BMI, average step count at baseline and average weartime
at baseline of patient i and the participants in the donor pool. We selectM donors using sampling weights.
For each M , we randomly select 5 weekdays with replacement and 2 weekend days with replacement to
impute the missing week.

After all intervals in all non-empty intervals Ii are imputed, M complete epoch-level datasets are
formed. Analyses can be implemented on each of these complete datasets, and the results combined with
mean daily step count and variance from M datasets with Rubin’s rules.

We note that the non-parametric approach requires decisions to be made about a number of
factors, including: the minimum size of the self-donor pool to allow imputation via self-donation; the
demographic variables to match on for non-self donation; the choice of whether to match perfectly or via
a distance metric; and the threshold on wear time for full-week imputation. In our setting, we chose to
impute with non-self donors if there are 4 or less intervals in the self-donor pool. In choosing 4 as our
threshold, we took into account a number of factors. A higher threshold would result in non-self donation
occuring more frequently, which would increase the variability of the imputed values. A lower threshold
would result in many repeated imputed values, since we require 10 imputations. We recommend that
these choices are investigated more formally in a series of sensitivity analyses.

In studies where sample sizes are small, the non-parametric approach may still be feasible if
measurement periods are sufficiently long to allow for imputation primarily by self-donation. Where
sample sizes are small and the measurement period is short, the non-parametric approach will be
inappropriate, but such a setting is unlikely in clinical trials designed to study efficacy (i.e. Phase IIb
or Phase III trials).

A simplified schematic is shown Figure 3. R Code for the non-parametric approach and an associated
Vignette is provided in Supplementary Materials.
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Classify all zero-VM runs into active, inactive,  nonwear, sleep, sleep-extra.
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Figure 3. Schematic for donor-based approach

Simulation Studies
We conducted simulation studies to establish statistical properties of the proposed approaches to handling
missing data at the epoch-level. In the first simulation, we consider the setting where there is data from
one measurement period, and we wish to estimate the mean step count. In the second simulation, we
consider a more complex and more common setting, where there is a treatment effect of interest, and
there are two measurement periods - at baseline and after the intervention. The baseline step count is
used as an adjustment variable in the treatment effect estimation.

Simulation 1: One measurement period
The first simulation aims to compare the statistical properties of parametric and non-parametric methods
in estimating the mean and standard error of average weekly step count at one measurement period.

Step count data on the epoch-level have complex distributions that are difficult to characterize using
a parametric model; devising a data generating model which adequately captures this complexity is
difficult. Therefore, in our simulations, we take the approach of using bootstrap resamples from the
subset of the patients in the PACE-UP trial who have complete data, inducing missingness in the data,
and comparing different approaches to handling the missingness. By taking the subset of participants
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who have complete data as the basis of the simulation and subsequently inducing missing data patterns,
we ensure that we can obtain the true value of the average weekly step count. There were 473 patients
at 12 Months who have completely observed data in the PACE-UP trial (164 in the control group, 162
in the postal group and 147 in the nurse group). In each repetition of the simulation study, we obtain
a bootstrap sample where 120 patients in each treatment group are sampled without replacement. This
creates a sample of 360 patients with complete data. Ensuring that we sample without replacement is
important, since having exact copies of patients in a dataset would put the non-parametric approach at an
advantage since it uses donor pools from other patients.

We then generate missingness under the following two scenarios:

• Scenario A: For a randomly selected 45% of these 360 patients, sleep-extra periods and/or nonwear
periods are induced in the following way: we randomly select a patient from the PACE-UP trial
who has incomplete data at 12 Months, and induce sleep-extra and/or nonwear periods according
to the randomly selected patient’s missingness pattern; we set the VM to zero during this time and
add the high VM observed from the selected missingness pattern at the start and end of the period.
This ensures that missingness is generated in a way that is representative of what is observed in a
real life setting.

• Scenario B: In addition to inducing sleep-extra and/or nonwear periods in 45% of patients, we
randomly deleted the entire week’s step-count data for a randomly selected 2% of patients.

We then consider the following methods of handling the incomplete data:

• Available Case Analysis: As a benchmark, we analyse the data as if it were the observed data,
making no attempt to handle the missingness;

• Minimum Weartime Approach: Participants who provide at least 1 day of at least 540 minutes of
weartime at 12 months are included. The daily step count for any day with less than 540 minutes
is set to missing. The average of the non-missing days are computed at baseline and at 12 months.

• Non-parametric Multiple Imputation, as described in Non-parametric approach, where age, sex
and BMI are used as matching variables to sample non-self donors. We set M = 10;

• Parametric Multiple Imputation, with person-specific and generic upper bounds, as described in
Parametric approach. We include BMI, sex and age as covariates in the imputation model, and set
M = 10.

The estimands of interest are the mean and standard error of the average weekly step count at 12
months. We fit the following regression model for each trial arm separately (control, postal, and nurse):

ȳi,1,.,. = β0 + εi, (1)

where we assume that ei ∼ N(0, σ2), and obtain the estimate and standard error of β0.
The approaches to handling missing data are assessed by comparing bias in the estimate of the mean,

and increase in standard error compared to the true value obtained when data are complete.
We run 100 repetitions. Multiple Imputation using Tobit regression is conducted in STATA and all

other aspects of the simulation are conducted in R. We note that MI using Tobit regression is currently
not implemented by R packages for MI such as jomo or mice.
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Results Results of the simulation with Scenario A, where 45% of participants have nonwear and/or
sleep extra, are shown in Figure 4. The top panels display the estimates of the mean within each arm. We
note that the true value has an MC error associated with it, since a new subsample of complete data is
generated in each repetition of the simulation. We observe that available case leads to a downward bias
of over 200 steps in all arms. This is expected as the available case assumes that the data with induced
missingness is complete. The minimum weartime approach leads to a slight downward bias. The non-
parametric approach leads to estimates that are closest to the true value; they are within MC error, but it
appears that there is a small downward bias. Both parametric approaches - with the generic and specific
upper bound - lead to upward bias, with the generic upper bound in particular leading to an upward bias
of over 300 steps in all arms.

The bottom panels of Figure 4 shows the estimate of the standard error. The available case approach
leads to a slight decrease in SE which is likely due to the fact that the dataset with missingness nonwear
and/or sleep extra has a lower mean, and its standard error is generally lower. The minimum weartime
approach also leads to a slight decrease in SE. For the non-parametric approach, we observe that the
standard error is within the MC error of the true standard error, but appears to be slightly smaller. This is
due to the slight downward bias in the estimates of the mean in the non-parametric approach. Finally, we
observe that the parametric approaches lead to comparatively larger increases in SE, particularly when a
generic upper bound is used.
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Figure 4. Results for Simulation 1: One measurement period, Scenario A. Results are shown by arm. For
each method, estimates for the mean step count are shown in the top panels, and estimates for the standard
error of the mean, are shown in the bottom panels. The error bars indicate ±1.96× MC error. Sample size is
120 per arm.

In Supplementary File 1, we provide central processing unit (CPU) times for running different missing
data methods in this simulation.

Results of the simulation with Scenario B, where 45% of participants have nonwear and/or sleep extra
and an additional 2% of patients have no data for the entire week, are shown in Figure 5. The conclusions
are similar to those given for Scenario A, except for one difference. When there are entire weeks that have
no data, the available case leads to estimates of the standard error that are much larger than in Scenario
A, since there the 2% of patients with no data lead to much greater variability.
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Figure 5. Results for Simulation for one measurement period: Scenario B. Results are shown by arm. For
each method, estimates for the mean step count are shown in the top panels, and estimates for the standard
error of the mean, are shown in the bottom panels. The error bars indicate ±1.96× MC error. Sample size is
120 per arm.

Simulation 2: Two measurement periods
The second simulation explores the setting where there is a treatment effect of interest. Data is collected
at two measurement periods - baseline and follow-up - and there is missingness in the follow-up data. The
aim is to assess the MI approaches in estimating the regression coefficients of a model which regresses the
average step count at follow-up on the average step count at baseline and treatment arm. We also compare
the MI approaches in estimating the correlation between the average step count between baseline and
follow-up within each arm.

In this simulation, we obtain data from the 310 patients in the PACE-UP trial, who have complete
data at both baseline and 12 months (104 in the control group, 105 in the postal group and 101 in the
nurse group). Similarly to the previous simulation, in each repetition of the simulation study, we obtain
a bootstrap sample where 85 patients in each treatment group are sampled without replacement. This
creates a sample of 255 patients with perfect data for each repetition of the simulation.
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We then generate missingness under the following two scenarios:

• Scenario A: for a randomly selected 45% of these 255 patients, sleep-extra periods and/or nonwear
periods are induced in the 12-Month data only by randomly selecting a patient from the PACE-
UP trial who has incomplete data at 12 Months, and induce sleep-extra and/or nonwear periods
according to their missingness pattern.

• Scenario B: In addition to inducing sleep-extra and/or nonwear periods in 45% of patients, a
randomly select 2% of patients provide no data at 12 Months.

The following approaches are used to handle the missing data:

• Minimum Weartime Approach: Participants who provide at least 1 day of at least 540 minutes of
weartime at 12 Months are included. The daily step count for any day with less than 540 minutes
is set to missing. The average of the non-missing days are computed at baseline and at 12 months.

• Non-parametric Multiple Imputation, as described in Non-parametric approach. We use BMI, sex,
age, average step count at baseline and average weartime at baseline as matching variables where
a non-self donor is needed. We set M = 10;

• Parametric Multiple Imputation, with specific and generic upper bounds, as described in Parametric
approach. We include BMI, sex, age and average step count at baseline as covariates in the
imputation model. We set M = 10.

The estimands of interest are the coefficients and standard errors of the following regression model:

ȳi,1,.,. = β0 + β1ȳi,0,.,. + β2I(armi = postal) + β3I(armi = nurse) + εi, (2)

where I(·) denotes the indicator function. We assume that ei ∼ N(0, σ2).
We assess bias in the estimates of the regression coefficients and increase in the standard error

compared to the true value obtained when data are complete. An additional estimand is the correlation of
average step count across the week between Baseline and 12 months for each arm. Although Equation
(2) assumes that these correlations are equal across arms, we wish to examine how well the approaches
to missing data are able to preserve the correlation within each arm, as correlation is expected to be
attenuated.

We run 100 repetitions. Multiple Imputation using Tobit regression is conducted in STATA and all
other aspects of the simulation are conducted in R.

Results Results for simulation with Scenario A, where 45% of participants have nonwear and/or sleep-
extra, are displayed in Figures 6 and 7. In Figure 6, the correlation between the average step count
between Baseline and 12 Months are displayed for each arm. We observe that the true correlation is
lower in the treatment groups compared to the control group, which is unsurprising in the presence of a
treatment effect. We observe that the correlation is attenuated the least compared to the true value for the
non-parametric approach. Using generic upper bound leads to greater attenuation than the specific upper
bound when using a parametric approach. The correlations for the minimum weartime approach appears
to be comparable to that of the parametric approach with the person-specific upper bound.
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Figure 6. Results for Simulation 2: Two measurement periods, Scenario A. Results are shown by arm. For
each method, estimates for correlation between baseline and 12 month average step count is displayed for
M = 1. The error bars indicate ±1.96× MC error. Sample size is 85 per arm.

In Figure 7, results for estimates of the mean and standard error of the effects of the regression
model in Equation (2) are shown for Scenario A. The estimates for the intercept produced by the non-
parametric and minimum weartime approach are within MC error of the true values; the non-parametric
approaches lead to slightly higher estimates. The parametric approaches result in an upward bias of the
intercept. For the effect of average stepcount at baseline, the parametric approach with specific upper
bound leads to the least biased estimate. The non-parametric approach and minimum weartime approach
are downward biased, and the parametric approach with generic upper bound leads to a large upward
bias. Of particular interest are the effects of treatment (postal and nurse), which are both estimated well
by the non-parametric approach and the parametric approach with specific upper bound. The minimum
weartime approach leads to a slightly lower estimate, and the parametric approach with generic upper
bound leads to a slightly larger value of estimated effect. Across all coefficients, we observe that the
non-parametric approach and minimum weartime approach lead to the smallest standard errors, and the
parametric approach with person-specific upper bounds leads to smaller standard errors than the generic
upper bounds. Overall, we observe that the non-parametric and parametric approach with person-specific
upper bounds provide estimates of the treatment effect that are least biased, and the non-parametric
approach is additionally provides a smaller standard error.
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Figure 7. Results for Simulation 2: two measurement periods, Scenario A. Results are shown by arm. For
each method, regression coefficients and standard errors for Equation (2) are displayed. The error bars
indicate ±1.96× MC error. Sample size is 85 per arm.

Results for simulation with Scenario B, where 45% of participants have nonwear and/or sleep-extra
at 12 Months, and an additional 2% of patients have no data at at 12 Months, are displayed in Figures 8
and 9. In Figure 8, the correlation between the average step count between Baseline and 12 Months are
displayed for each arm. We observe that the correlation for the non-parametric approach and parametric
approach with specific upper bound have a similar level of attenuation for the control and nurse groups;
the non-parametric approach leads to slightly more attenuation in the postal group. The parametric
approach with the generic approach leads to a greater amount of attenuation compared to the other
imputation approaches. The minimum weartime approach appears to retain the correlation better than
other approaches in this setting. Compared to Scenario A, the non-parametric approach appears slightly
less effective at preserving the correlation between baseline and 12 months when there are participants
with the entire week missing.
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Figure 8. Results for Simulation 2: two measurement periods, Scenario B. Results are shown by arm. For
each method, estimates for correlation between baseline and 12 month average step count is displayed for
M = 1. The error bars indicate ±1.96× MC error. Sample size is 85 per arm.

In Figure 9, results for estimates of the mean and standard error of the effects of the regression model
in Equation (2) are shown for Scenario B. All approaches except the minimum weartime approach lead to
upward bias in the estimate of the intercept; the non-parametric approach and parametric approach with
specific upper bound lead to a similar amount of bias. For the effect of average stepcount at baseline, the
parametric approach with specific upper bound leads to estimates that are closest to the true values. The
non-parametric approach and minimum weartime approach lead to a downward bias, while the parametric
approach with generic upper bound leads to a large upward bias. The effects of treatment (postal and
nurse) are estimated with least bias for the non-parametric approach. The minimum weartime approach
leads to a downward bias, while the parametric approach with generic upper bound leads to slightly larger
values of estimated effect. We again observe that the that the non-parametric approach and minimum
weartime approach lead to the smallest standard errors, and the parametric approach with person-specific
upper bounds leads to smaller standard errors than the generic upper bounds. Thus, focusing specifically
on the effects of treatment, we observe that the non-parametric approach leads to estimates that are least
biased and with smallest standard error.
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Figure 9. Results for Simulation 2: two measurement periods, Scenario B. Results are shown by arm. For
each method, regression coefficients and standard errors for Equation (2) are displayed. The error bars
indicate ±1.96× MC error. Sample size is 85 per arm.

In the simulations for one measurement period, we observed a very strong advantage for the non-
parametric approach compared to other approaches. When there is data from two measurement periods,
we still observe that the treatment effects are estimated best by the non-parametric approach; the
estimates are least biased, and standard errors are much smaller than those produced by the parametric
approach. For the estimates of the intercept and effect of the average baseline stepcount, there is no clear
advantage of the non-parametric approach, particularly when whole-week imputation is required. Due to
the relatively small sample size used in the simulation, we note that the pool of non-self donors becomes
limited to a small number of patients for the non-parametric approach, which may hinder slightly its
performance in this setting.

Application to the PACE-UP trial
We now apply the proposed approaches to handling missingness to an analysis of the PACE-UP trial.
In the previous section, missingness was induced in the simulated datasets; we now demonstrate the
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applicability of the proposed approaches to a genuine trial dataset with real instances of missingness.
Table 1 illustrates the breakdown of the total 1023 participants (338 in usual care, 339 in the postal
group and 346 in the nurse group) into the types of missingness observed. We classify participants by
whether they have completely observed data, non-wear periods only, sleep-extra only, or both non-wear
and sleep-extra. Participants may also have more than 5 days with weartime < 540 minutes, in which
case the entire week is imputed in the non-parametric approach. These participants are excluded in the
minimum weartime approach. We also illustrate the proportion of participants that have zero days with
wear time < 540 minutes, between 1 and 5 days (inclusive), and greater than 5 days. There is a greater
amount of missingness at 12 months compared to baseline.

Baseline 12 MonthsType of missingness
Completely observed 554 (54.2%) 473 (46.2%)

Non-wear only 361 (35.3%) 287 (28.1%)
Sleep-extra only 51 (4.99%) 104 (10.2%)

Non-wear and sleep-extra 57 (5.57%) 94 (9.19%)
Whole week imputation 0 (0%) 65 (6.35%)

Number of days with weartime <540 minutes
0 696 (68.0%) 562 (54.9%)

Between 1 and 5 327 (32.0%) 396 (38.7%)
Greater than 5 0 (0%) 65 (6.35%)

Total 1023
Table 1. The number of patients with each of the missing types and their percentages are shown for PACE-UP
trial data at Baseline and 12 Months. Note: there are no cases of whole week imputation or days of weartime
< 540 minutes at baseline by design, via trial inclusion criteria.

We analyse the data using a linear model which regresses the average step count at 12 months on the
average step count at baseline, arm, and primary care practice:

ȳi,2,.,. = β0 + β1ȳi,0,.,. + β2I (armi = postal)
+ β3I (armi = nurse) + β4P2i + β5P3i + ..+ β9P7i + εi,

(3)

where P2, P3, ..., P7 are dummy variables for the primary care practice that the participant is
registered at. We assume that ei ∼ N(0, σ2).

We note that this is a simpler analysis compared to the primary analysis of the PACE-UP trial, where
additional covariates (sex and age group) were included, and a clustering effect was included to account
for household, since a small number of participants were in couples. We have removed some of the
complexities of the original analysis in order to focus on the comparison between different approaches
to handle the missing data.

The following methods of handling missing data are considered:

• Minimum Weartime Approach: Participants who provide at least 1 day of at least 540 minutes of
weartime at 12 Months are included. The daily step count for any day with less than 540 minutes
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is set to missing. The average of the non-missing days are computed at baseline and at 12 months.
We use the weartime calculated by the Actilife software.

• Non-parametric Multiple Imputation, as described in Non-parametric approach. Imputation is
conducted firstly in the baseline dataset, separately in the three treatment arms. We use BMI,
sex and age as matching variables where a non-self donor is needed. The average of the imputed
baseline average stepcounts are computed, which is then used for the imputation at 12 Months,
which is again conducted separately in the three treatment arms. At 12 Months, we use BMI, sex,
age, average step count at baseline and average weartime at baseline as matching variables where
a non-self donor is needed.

• Parametric Multiple Imputation, with specific and generic upper bounds, as described in Parametric
approach. The seven days at baseline, and seven days at 12 Months are modelled as jointly normally
distributed, conditional on covariates BMI, sex, age. Imputation is performed separately in each
arm.

Results for the estimated effects effects and their estimated confidence intervals produced by each
method are displayed in Figure 10. The means and standard errors of the effects are displayed in Table 2.
The confidence intervals across the methods overlap, but we observe noticeable differences in the point
estimates and standard errors which reveal the potential impact that missing data assumptions can have
on the results of the primary analysis.
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Figure 10. Results for the analysis of the PACE-UP trial. For each method of handling missing data, the 95%
confidence intervals for the effects for the regression model in Equation 3 is displayed. The 95% confidence
intervals for the effects of practices are shown in Figure 14 in the Appendix.

Coefficient Estimated Means and Standard Errors
Minimum Weartime Non-parametric Parametric Specific Parametric Generic

Intercept 1599.65 (288.05) 2110.96 (284.29) 1804.87 (305.98) 1949.72 (362.10)
Baseline Steps 0.75 ( 0.03) 0.72 ( 0.03) 0.76 ( 0.03) 0.73 ( 0.03)
Postal Group 666.69 (166.00) 666.49 (163.12) 710.55 (169.37) 775.10 (203.06)
Nurse Group 681.35 (165.05) 678.65 (160.16) 803.41 (170.95) 878.96 (188.94)
P2 -831.83 (266.32) -658.93 (255.24) -581.28 (282.59) -422.90 (321.30)
P3 -287.51 (256.00) -446.34 (248.35) -395.47 (269.78) -312.76 (293.50)
P4 -658.03 (280.20) -511.25 (269.67) -369.16 (293.85) -348.26 (327.41)
P5 35.25 (248.72) 184.13 (240.16) 194.49 (258.25) 337.40 (299.67)
P6 78.29 (265.13) 136.54 (257.50) 165.02 (291.26) 325.56 (316.06)
P7 -65.11 (332.66) 110.05 (324.23) -18.34 (341.61) 12.28 (379.22)

Table 2. Results for the analysis of the PACE-UP trial. For each method of handling missing data, the
estimated means (with standard errors in parentheses) are shown for the effects for the regression model in
Equation 3 is displayed. Note that the Practices have been included to reflect the design of the study, but their
coefficients should not be the focus of the interpretation.
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In the point estimates, we find patterns that are similar to what we observed in Simulation 2: Two
measurement periods. For the intercept, the minimum weartime approach leads to the smallest estimate,
and the non-parametric approach leads to the highest estimate. When comparing the coefficients for
the average baseline stepcount, it should be noted that the values of the average baseline stepcounts are
computed using the imputed values at baseline for the non-parametric and parametric approaches, so
their values are different across approaches. In the effects for treatment, we observe that the minimum
weartime and non-parametric approach leads to the smallest point estimates, and the parametric
approaches lead to the largest estimates.

Across all coefficients, we find that the standard errors are smallest for the non-parametric and
minimum weartime approaches; the non-parametric approach leads to slightly smaller standard errors.
The parametric approaches produce larger standard errors; the generic upper bound, in particular, leads
to the largest standard errors. These observations are consistent with what we found in the simulation
studies.

Figure 15 in the Appendix displays boxplots comparing the raw values with the imputed values
for M = 1 for each treatment group at baseline. We display the boxplots separately by the extent of
missingness, classifying participating as having zero days with weartime < 540 minutes or between
1 and 5 days with weartime < 540 minutes. We observe that the non-parametric approach leads to a
slightly larger values compared to the raw values, the parametric approach with specific upper bound
leads to slightly higher values than that. The parametric approach with generic upper bound, which does
not use the epoch-level information on missingness, leads to the highest imputed values. In Figure 16,
we observe the equivalent boxplots for 12 Months, where there is an additional column for participants
where the entire week is missing. These participants are excluded in the minimum weartime approach. In
this column, we find that distributions have more skewness. In particular, the non-parametric approach,
which imputes the whole week with non-self donors, leads to very small variability in imputed values
compared to the parametric approaches.

The original analysis of the PACE-UP trial reported an estimated effect of the postal intervention
of 642 (with standard error 160) and effect of the nurse intervention of 677 (with standard error
of 159) when using a minimum weartime approach (Harris et al. 2017). Their imputation analysis
which includes participants with missing data at 12 Months uses a day-level imputation model with
the following variables: treatment group, baseline steps, gender, age, practice, and month of baseline
accelerometry. This analysis produced an estimated effect of the postal intervention of 638 (with
standard error 160) and effect of the nurse intervention of 679 (with standard error of 159). While a
precise comparison with our re-analysis cannot be made since the analysis models differ, we note that
the estimates for the effects of treatment produced by the epoch-level non-parametric approach are most
similar to those produced in the original study.

The purpose of this analysis is to compare the impact of the differing approaches to missing data on the
model results. We have therefore kept the analysis and imputation models relatively simple, and assume
that the data are MAR given the observed data. A full analysis should include sensitivity analyses to the
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MAR assumption. This would involve careful consideration of appropriate departures from the MAR
assumption. For example, one might consider the following scenarios:

• If participants take the accelerometer off too early in the evening, or put it on late in the morning,
it may be because they are at home and not being particularly active. Under this assumption, we
would impute values that are lower than that assumed under MAR.

• If participants did not provide sufficient wear time for more than 5 days a week (which would lead
to whole-week imputation in the non-parametric approach), this may be because the participant is
less active than usual during the week and does not feel motivated to wear the device. Under this
assumption, we would impute values that are lower than that assumed under MAR.

• Some participants may remove the device while they are exercising as they find it uncomfortable
to wear. In this case, it is possible that values above that assumed under MAR should be imputed.
However, identifying periods where participants removed the device for this reason is difficult to
discern without information from, for example, activity reports from participants.

Further, in addition to considering departures from the MAR assumption, a full analysis should take
into account additional auxiliary variables in the imputation model, such as weather variables, which
have shown to be predictive of daily step count and also of whether daily step count is missing (Tackney
et al. 2021).

Discussion
This paper described the challenges of applying MI to epoch-level accelerometer data; namely,
the difficulty in identifying and classifying missingness, and the complicated nature of epoch-level
distributions. Possible methods of overcoming these challenges are presented. Firstly, a novel approach
to classifying epoch-level zero-count periods into inactive, nonwear, sleep and sleep-extra periods is
presented, which carefully teases out differences between per-protocol instances of no activity, short
periods of inactivity which are not missing data, and periods where missing data is incurred due to
participants removing the device. These missing periods can be handled with either parametric and non-
parametric Multiple Imputation. In the parametric approach, step counts on the day-level are imputed
using epoch-level information on the missing periods per day to determine a person-specific upper bound
for Tobit regression. In the non-parametric approach, missing periods are replaced by self- or non-self
donors.

These approaches were compared using simulations where zero-count periods are generated using
missingness patterns observed in the dataset. Simulation studies conducted in the literature to date often
induce missingness in hour-long chunks, which does not reflect the complexities of how missingness
arises in practice in the accelerometer setting. The simulations showed the merits of using the epoch-
level information in MI. In the setting where the average step count for each treatment group is estimated
for one measurement period, the non-parametric approach leads to estimates with the least bias and
highest precision. The parametric approach with the specific upper bound leads to less bias and more
precision than the parametric approach with the generic upper bound. Where data has been collected over
two measurement periods and the analysis model regresses the average step count at 12 Months on the
average step count at baseline and treatment group, the non-parametric approach and parametric approach
with specific upper bound have a more comparable performance, but the non-parametric approach leads
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to least biased point estimates for the treatment effects while maintaining a small standard error. By
considering settings where there is data for just one measurement period as well as two measurement
periods, these findings are relevant to cross-sectional as well as longitudinal analyses of accelerometer
data.

We performed a re-analysis of the 2017 PACE-UP trial, where the results for a simplified analysis
model using the minimum weartime approach, the non-parametric approach, and parametric approaches
with specific and generic upper bounds are compared. While the approach to missingness does not overall
change conclusions of the study, they point to potentially important implications for results. In particular,
we observe that estimated effects of treatment are slightly higher for the parametric approaches, and the
standard errors are larger for the parametric approaches, mirroring results from the simulations. In the
original analysis of the PACE-UP trial, Harris et al. (2017) conduct sensitivity analyses on the impact
of using different thresholds on weartime for defining missingness (for example, requiring a minimum
of 600 minutes of wear time for a complete day, compared to 540 minutes in the main analyses). Our
analysis additionally reveals the impact of taking an epoch-level perspective on missing data.

There are a number of important avenues for further work. Firstly, as discussed in Application
to the PACE-UP trial, sensitivity analyses for the MAR assumption are an important consideration
in the context of these epoch-level approaches to MI. As participants may be likely to remove their
accelerometer during inactive periods, considering the implication of the data being MNAR is important.
Secondly, it is worth exploring potential adaptations to the non-parametric approach to improve its
performance in the setting where there are entire weeks of data missing. Our simulations studies
indicate that replacing entire weeks of data with non-self donors appears to reduce the performance
of this approach, potentially because the number of available donors are insufficient in this setting.
A hybrid approach which imputes non-wear and sleep-extra non-parametrically and takes advantage
of the parametric approach for entire missing weeks would be a potential solution. Thirdly, we have
considered the setting where whole-week imputation occurs only at 12 Months, which was the case in
the PACE-UP trial. In other studies, there may be participants with missing weeks at baseline included in
the study, in which case, donors for whole-week imputation at baseline may be determined by physical
activity characteristics obtained at 12 Months. For an extended analysis of the PACE-UP trial including
outcomes at 3 Months and 3 Years in addition to baseline and 12 Months, an approach to identifying
suitable donors in this more complex setting with multiple measurement periods will need to be identified.

Applying these methods for handling missing data in large observational studies will be
computationally intensive, as there may be thousands of individuals and months or years of data
from each individual. In these settings, it would be sensible to split up the measurement periods
into sections, so that the classification algorithm is implemented within each section separately. The
imputation process can be completed with parallelization to reduce computational time.

While our study has focused on accelerometer studies, there is a growing need to consider missingness
at a finer epoch-level for a number of health outcomes in trials, particularly as continuous monitoring
participants through digital devices become more common (Dagher et al. 2020). For example, studies
that remotely monitor vital signs of people with dementia use a number of sensor and wearable devices
that track data in fine intervals of time (David et al. 2021). In applications to other devices, there are key
differences to consider in the classification algorithm. For example, wearables that measure additional
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outcomes such as heartrate would be able distinguish between inactivity and missing data, and waterproof
wearables should, in principle, not lead to non-wear due to showering or swimming. The multiple
imputation approaches will be broadly applicable, regardless of the type of device used. Adapting the
classification algorithm to extend its applicability for other digital devices is an important direction for
future research.”
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Appendix

Plots of Vector Magnitude at the Epoch-level

Figure 11. An example of 7 days of accelerometer data, where Vector Magnitude at the epoch-level is plotted
against time. No missing data is detected.
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Figure 12. An example of 7 days of accelerometer data, where Vector Magnitude at the epoch-level is plotted
against time. Sleep-extra is detected between Wednesday and Thursday.
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Figure 13. An example of 7 days of accelerometer data, where Vector Magnitude at the epoch-level is plotted
against time. Non-wear periods are detected on Monday and Tuesday.
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PACE-UP trial analysis: Further Results
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Figure 14. Results for the analysis of the PACE-UP trial. For each method of handling missing data, the 95%
confidence intervals for the effects of practices are displayed.
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Figure 15. Boxplots compare the raw value with the imputed values at baseline under the non-parametric and
parametric approaches when there are zero days with weartime < 540 minutes (left panel) and between 1 and
5 days with weartime < 540 minutes (right panel). Results are shown by treatment arm.
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Figure 16. Boxplots compare the raw value with the imputed values at 12 Months under the non-parametric
and parametric approaches when there are zero days with weartime < 540 minutes (left panel) and between 1
and 5 days with weartime < 540 minutes (middle panel) and more than 5 days with weartime < 540 minutes
(right panel). Results are shown by treatment group.
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