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A B S T R A C T   

Human behavior is supported by both goal-directed (model-based) and habitual (model-free) decision-making, 
each differing in its flexibility, accuracy, and computational cost. The arbitration between habitual and goal- 
directed systems is thought to be regulated by a process known as metacontrol. However, how these systems 
emerge and develop remains poorly understood. Recently, we found that while children between 5 and 11 years 
displayed robust signatures of model-based decision-making, which increased during this developmental period, 
there were substantial individual differences in the display of metacontrol. Here, we inspect the neurocognitive 
basis of model-based decision-making and metacontrol in childhood and focus this investigation on executive 
functions, fluid reasoning, and brain structure. A total of 69 participants between the ages of 6–13 completed a 
two-step decision-making task and an extensive behavioral test battery. A subset of 44 participants also 
completed a structural magnetic resonance imaging scan. We find that individual differences in metacontrol are 
specifically associated with performance on an inhibition task and individual differences in thickness of dorso
lateral prefrontal, temporal, and superior-parietal cortices. These brain regions likely reflect the involvement of 
cognitive processes crucial to metacontrol, such as cognitive control and contextual processing.   

1. Introduction 

To engage in optimal decision-making, individuals need to link their 
actions to associated outcomes. Classical learning paradigms propose 

that this challenge is solved by means of two distinct systems that differ 
in their flexibility and computational cost, with one operating habitually 
and the other in a more goal-directed fashion (Boureau et al., 2015; 
Daw, 2018; Daw et al., 2005). Habitual and goal-directed strategies have 
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been formalized in model-free and model-based reinforcement learning 
algorithms (Daw et al., 2005; Dolan & Dayan, 2013; Gläscher et al., 
2010). Whereas the former engenders value-based learning and relies 
predominantly on tying actions to previous rewards, the latter relies on 
using an internalized model of the world, matching the rewards attained 
with the appropriate actions depending on the context (Daw et al., 2011; 
Kool et al., 2016). 

Model-free decision-making is not always adequate but is cognitively 
less costly as it draws on cached values of past actions. On the other 
hand, model-based decision-making is more accurate and costly, as new 
values must continuously be computed (Keramati et al., 2011). 
Furthermore, optimally responding to different environmental de
mands, with the inherent processing limits of human cognition, requires 
dynamic arbitration between the costs and benefits of both 
decision-making systems (Dubois et al., 2022; Lieder and Griffiths, 
2019). For example, for everyday tasks, the efficiency of habitual 
decision-making might be preferred and allows saving of cognitive re
sources, while to be successful in novel or complex scenarios, more 
goal-directed methods may be required. Human decision-making, 
therefore, continuously requires the arbitration of the potential re
wards and costs associated with each action (Bolenz et al., 2019; 
Boureau et al., 2015; Ruel et al., 2021), a process known as metacontrol. 

Prior work found that the display of model-based decision-making 
emerged only in adolescence and increased through adulthood when 
using decision-making tasks originally designed for adults (Decker et al., 
2016; Nussenbaum et al., 2020; Palminteri et al., 2016; Potter et al., 
2017). Recently, it has been shown that children as young as five dis
played model-based decision-making and that its use continuously 
increased throughout development (Smid et al., 2022). Importantly, the 
dynamic deployment of these model-based vs. model-free systems ap
pears to emerge later in life. By manipulating the amount of reward one 
could gain, we previously showed that adults dynamically increase their 
model-based reasoning for bigger rewards (Kool et al., 2017), a process 
termed metacontrol. In contrast to adults, children did not reliably 
display such metacontrol (Smid et al., 2022), but instead showed sub
stantial individual differences. While it is reasonable to assume that 
metacontrol emerges reliably during adolescence (Insel et al., 2017), in 
the current study we focus on examining individual differences in both 
model-based decision-making as well as metacontrol and study what 
supports the emergence of these abilities during childhood. 

Correlational evidence and experimental manipulations suggest that 
working memory and inhibition are relevant to model-based decision- 
making in adults and may underlie this process (Otto et al., 2015; Otto, 
Raio et al., 2013; Potter et al., 2017). For example, a study investing 
cognitive correlates of model-based decision-making measured with the 
Daw task in adults found a relationship between higher model-based 
decision-making and better processing speed and working memory, 
which they interpreted as a better ability to compute more possibilities 
for a model-based system (Schad et al., 2014). Thus, model-based con
trol might be related to individual differences in the ability to manipu
late complex sequence information, hence making it easier for some to 
compute model-based predictions. Further, in a sample of 9–25-year-
olds, it was shown that fluid reasoning was linked to model-based 
decision-making (Potter et al., 2017). It has also previously been sug
gested that inhibitory control, the ability for internally maintained goals 
to overcome prepotent or stimulus-driven responses, is linked to the 
model-based system (Otto et al., 2015). Supporting this, the study found 
that individuals with a higher hallmark of cognitive control, as 
measured with the Stroop and AX-CPT tasks, also displayed more 
model-based decision-making (Otto et al., 2015). In contrast, the neu
rocognitive foundations of efficient metacontrol are much less studied 
(Bolenz et al., 2019; Kool et al., 2017; Kool and Botvinick, 2014). While 
metacontrol appears to be present during adolescence, increases into 
adulthood (Bolenz and Eppinger, 2021), and decreases in older age 
(Bolenz et al., 2019), its cognitive underpinnings are unclear. However, 
it has been proposed that executive functions might be relevant 

(Davidow et al., 2018; Dezfouli and Balleine, 2013; Keramati et al., 
2011, 2016; Lee and Keramati, 2017; Miller et al., 2018; Otto, Gershman 
et al., 2013). Cognitive abilities could be relevant in several ways in the 
successful arbitration between model-free and model-based systems. For 
example, Keramati et al., 2011 suggested that arbitration is determined 
by the value of information and reflects tradeoffs between speed and 
accuracy. On the other hand, the link between cognitive abilities and 
model-based decision-making may be related to a general aspect of in
telligence, referring to the ability to divide complex tasks into larger 
chunks, making them easier to process (Bhandari and Duncan, 2014). To 
illuminate how cognitive abilities in the form of executive functions, 
fluid reasoning, and crystallized intelligence may be related to 
model-based decision-making and its metacontrol, we ran an extensive 
battery of executive function tasks in the current study. 

Prior work on the neural underpinnings of model-free and model- 
based decision-making has sought to uncover distinct signatures of 
associated prediction errors. Some studies suggest distinct regions for 
model-based decision prediction errors, such as the posterior parietal 
cortex (O’Doherty et al., 2015), the dorsomedial prefrontal cortex (PFC) 
(Doll et al., 2015), and the (dorso) lateral prefrontal cortex (DLPFC) in 
particular (Beierholm et al., 2011; Cremer et al., 2021; Doll et al., 2015; 
Gläscher et al., 2010; Lee et al., 2014; Smittenaar et al., 2013), while 
model-free prediction errors have been mainly localized to the (ventral) 
striatum (Beierholm et al., 2011; Gläscher et al., 2010; O’Doherty et al., 
2015) or the putamen (Doll et al., 2015, but see also Daw et al., 2011; 
Sanfey and Chang, 2008). A potential causal role of the DLPFC in 
model-based decision-making was identified via direct manipulation of 
the DLPFC via TMS, which led to a reduction in model-based deci
sion-making (Smittenaar et al., 2013). 

In contrast, only a few studies have addressed the neural correlates of 
metacontrol concerning switching between decision-making strategies 
(Lee et al., 2014; O’Doherty et al., 2015). For example, O’Doherty et al. 
suggested that the arbitration between model-free and model-based 
systems was encoded by bilateral inferior lateral PFC, the right fronto
polar cortex, and the rostral anterior cingulate cortex (O’Doherty et al., 
2015). Meanwhile, Lee et al. found that the arbitration between habitual 
and goal-directed systems depended on activity in the bilateral lateral 
PFC (Lee et al., 2014). In addition, a study on adolescents found that the 
selective upregulation of cognitive control for trials with greater reward 
in contrast to trials with lesser reward was governed by frontostriatal 
connectivity (Insel et al., 2017). This could lead to a similar relationship 
in the context of stake-based metacontrol used in the current study. 
Taken together, findings from these studies suggest that DLPFC, in 
particular, may be implicated in both model-based decision-making and 
its metacontrol, however, presumably serving different respective 
functions. 

These previous studies investigated the relationships between task- 
related brain activity and decision-making strategies. However, brain 
activity may be highly susceptible to variability (Faisal et al., 2008; Stein 
et al., 2005), with increases in noise being specially observed in devel
opmental populations (MacDonald et al., 2009). In addition, the test- 
retest reliability of individual differences derived from task-related 
fMRI is low (Korucuoglu et al., 2021), while cortical thickness has 
been found to be more robust (Velázquez et al., 2021). While previous 
studies provide insight into the localization of the relevant 
decision-making processes in the brain with the DLPFC being the most 
prominent, structural brain correlates such as cortical thickness may be 
a preferred method to assess how individual differences may relate to 
cognitive functioning, especially in developmental samples (Ducharme 
et al., 2021; Fjell et al., 2015; Karama et al., 2011; Tamnes, Ostby, Fjell 
et al., 2010, Tamnes et al., 2010). 

Cortical measures as obtained via MRI are indirect measures of a 
complex architecture of glia, vasculature, and neurons with dendritic 
and synaptic processes, which may be closely linked to cognition 
(Gogtay et al., 2004; Narr et al., 2007). Supporting this, variation within 
cortical thickness has been previously linked to executive function 
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ability in development (Brito et al., 2017; Krogsrud et al., 2021; Piccolo 
et al., 2019; Squeglia et al., 2013; Tamnes et al., 2010; Wilke et al., 
2003). While cortical thickness patterns vary between individuals and 
have been shown to be linked to genetic variation (Fjell et al., 2015; 
Joshi et al., 2011; Panizzon et al., 2009; Rimol et al., 2010), general 
developmental trends suggest that the cortex thins with age from 
childhood to adulthood, which has been linked to increased synaptic 
pruning during adolescence and early adulthood, with grey matter 
volume peaking in childhood (Giedd et al., 1999; Gogtay et al., 2004; 
Lenroot et al., 2007; Mills et al., 2016; Wierenga et al., 2014). However, 
trajectories of maturational and aging effects vary considerably over the 
cortex, with cortices that are known to myelinate early, such as visual 
and auditory cortices, showing a more linear pattern of aging compared 
to frontal and parietal neocortices, which have a more protracted 
maturational trajectory and continue myelination until adulthood 
(Sowell et al., 2003). In addition, the relationships between structural 
brain development and cognition have been variable (Shaw et al., 2006). 
While some studies show improvements in executive functions and 
decision-making to be related to cortical thinning during childhood, 
(Brito et al., 2017; Kharitonova et al., 2013; Squeglia et al., 2013; 
Tamnes et al., 2010), others have shown the reverse (Schnack et al., 
2015). Further, it has been shown that skill acquisition leads to 
increased thickness in supporting brain regions across the lifespan across 
multiple domains of cognitive function (Draganski et al., 2004; Engvig 
et al., 2010; Maguire et al., 2000; Mechelli et al., 2004) The relationship 
between cortical thickness and cognitive processes is therefore complex 
and subject to both maturation as well as learning and skill acquisition. 

In the current study, we used cortical thickness as a marker of brain 
structure and linked these to model-based decision-making and meta
control. We hypothesized that individual differences in model-based 
decision-making and metacontrol will be reflected in differences in 
brain structure as indicated by cortical thickness measures. To do so, we 
employed two methods of assessing the potential relationship with 
cortical thickness; (1) an exploratory whole-brain analysis and (2) an 
ROI analysis of the bilateral DLPFC to see if age-independent differences 
in brain anatomy in 6–13-year-old children are related to model-based 
decision making and metacontrol. 

In sum, this study aimed to investigate the neurocognitive un
derpinnings of model-based decision-making and metacontrol in chil
dren aged 6–13. Based on previous literature, we hypothesized that 
better executive function ability (working memory, inhibition, cognitive 
flexibility), as well as fluid reasoning, would be positively related to 
model-based decision-making in the current study. We also hypothe
sized that metacontrol may be specifically linked to inhibitory control 
and cognitive flexibility, as it relies on flexible and dynamic arbitration 
of different decision-making strategies depending on the environment. 
In terms of structural brain measures, we expected that individual dif
ferences in both model-based decision-making and metacontrol would 
be linked to individual differences in cortical thickness in the DLPFC, 
without making a prediction of directionality. For our exploratory 
whole-brain analysis, we expected that if there was a strong relationship 
between executive functions and model-based decision-making and 
metacontrol, cortical thickness of areas that were previously linked to 
executive function ability such as the DLPFC, the anterior cingulate 
cortex, and the superior parietal lobe, may be implicated. To test these 
hypotheses, we related model-based decision-making and metacontrol 
to performance on an extensive task battery comprising several domains 
of executive functions and fluid reasoning. While we found no behav
ioral or structural relationships with model-based decision-making, 
metacontrol was significantly related to individual differences in inhi
bition and whole-brain cortical thickness of the entorhinal cortex, the 
superior parietal cortex, and the bilateral DLPFC in an ROI analysis. 

2. Methods 

2.1. Participants 

Based on the age-related effect of model-based decision-making 
across the full sample in a previous study (Smid et al., 2022), we ran a 
power analysis in G*Power (Faul et al., 2007). The current study would 
need a sample size of N = 53 to reach 90% power (with ɑ = 0.05, cor
relation rH1 = 0.39, correlation rH0 = 0). A total of 69 (35 female) 
participants, with a mean age of 8.99 years (SD = 1.57), and an age 
range from 6.19 to 12.61 years, were recruited from 20 schools in the 
Greater London area. Participants were excluded from taking part in the 
MRI if our safety protocol was not satisfied (e.g., metal in the body; 
claustrophobia). Following this protocol, 6 participants were not able to 
attempt the MRI scan due to MRI exclusion criteria (too uncomfortable 
to go into the MRI). In addition, 2 participants were not able to attempt 
the MRI scan due to a scanner technical issue on the day. Fifty-nine 
participants attempted an MRI scan, but for 9 participants the scan 
was terminated due to discomfort in the scanner. Of the 52 participants 
who completed the structural scan, 6 had to be excluded due to excessive 
movement. This resulted in a final MRI sample consisting of 44 (25 fe
male) participants with a mean age of 9.37 years (SD = 1.53) and an age 
range of 6.19 – 12.61 years. The UCL ethics committee approved the 
study (Protocol number: 12271/001). In accordance with this, written 
consent was obtained from both parents and children after a description 
of the study was provided. Behavioral statistics were run in R and 
behavioral responses were recorded with Matlab for the two-step 
sequential decision-making task, as well as the Cognitive Flexibility 
task. All other tasks were run in EPrime. Data collection was conducted 
in person on Windows (Lenovo) laptops. Participants took part in a 
larger intervention study that included data collection on three separate 
occasions. The current data set was collected at the first testing time 
point. 

3. Model-based and model-free measures of decision making 

Participants completed a sequential decision-making task that 
allowed the dissociation of different decision-making strategies (Kool 
et al., 2016, 2017). This task was adapted for a developmental sample 
and was previously conducted with children of a similar age range (Smid 
et al., 2022). The images and narrative of the task were previously 
adapted for developmental populations (Decker et al., 2016). 

Participants were told they were space explorers and that their 
mission was to collect as much treasure as possible from the two planets 
(red and purple) they could travel to. Each planet had one alien who 
gave the participants treasure when they visited their planet. Trials 
consisted of two stages. Participants saw a pair of spaceships in the first 
stage and had to choose one spaceship to travel to a planet. There were 
four spaceships in total, and spaceships were always displayed in the 
same pairs, of which one spaceship always went to the red planet, and 
one spaceship always went to the purple planet (see Fig. 1a). In the 
second stage, participants had to collect treasure from the aliens on the 
planet. The amount of treasure that could be collected from each planet 
ranged between 0 and 9 treasure pieces and changed independently 
throughout the game (see Fig. 1b). Such drifting reward rates have been 
shown to promote learning and continuous monitoring of rewards won 
at each planet, in essence allowing a model-based system to capitalize on 
faster changes in rewards compared to the traditional two-step task 
(Kool et al., 2016; Smid et al., 2022). 

In this task, the difference between a model-based agent and a 
model-free agent is that a model-based agent can generalize between the 
spaceships that go to the same planet in each pair, whereas the model- 
free agent cannot. For example, if the dark blue and the orange space
ship go to the red planet, then a model-based agent should assign the 
same value to both spaceships. Thus, if a model-based agent chooses the 
orange spaceship and receives a reward that is higher than expected on 
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the red planet, the value of choosing both the dark blue and the orange 
spaceship increases, while for a purely model-free agent, only the value 
of the orange spaceship increases. In short, the model-based agent 
generalizes reward experiences from one first-stage state (one pair of 
spaceships) to the other (other pair of spaceships) because they both 
lead to the same goal (the planet), whereas a model-free agent does not 
(Doll et al., 2015; Kool et al., 2016). 

3.1. Metacontrol via stakes manipulation 

Low and high-stake trials were introduced to test whether our par
ticipants dynamically arbitrate between employing model-free and 
model-based systems depending on the rewards available. During the 
trials, participants received rewards in the form of pieces of blue space 
treasure. On a low-stake trial, the pieces of treasure won directly 
translated to the number of points won on that trial, e.g., four pieces of 
blue treasure would have a value of four points (see Fig. 1c). In contrast, 
during a high-stake trial, rewards were multiplied by five, e.g., four 
pieces of treasure would increase in value to 20 points. To make this 
difference between the stakes more salient for the children, on high- 
stake trials, the treasure turned from blue to gold treasure after a 
short delay and displayed the number "5" in red on top of the gold 
treasure pieces, as opposed to “1” on the blue treasure for the low-stake 
trials (see Fig. 1d). High- and low-stake trials were at an approximate 
50/50 ratio and occurred randomly. 

Metacontrol was calculated as a difference score in the degree of 
model-based decision-making during the low- and high-stake trials. The 
degree of model-based decision-making was measured via a weighting 
parameter, whereby a value closer to 1 indicated more model-based 
control, and a value closer to 0 as more model-free control. Using a 
model with two weighing parameters, one for each stake condition, we 
measured the difference in the values between the two parameters. A 

positive value indicated greater model-based decision-making for high- 
stake trials, and a negative value indicated greater model-based deci
sion-making for low-stake trials. A higher positive value reflects better 
metacontrol. For further details on the task, the instruction phase, and 
the computational model, see Smid et al. (2022). 

We examined participants’ understanding of the task by asking them 
to report the deterministic transition structure of the spaceships to the 
planets after the preparation phase. Understanding of the task structure 
was high, with 96% of the participants correctly reporting the task 
structure. Missed trials were excluded from the analysis as participants 
did not receive rewards on these trials and, therefore, could not learn 
from them. Participants were excluded if they missed more than 30% of 
the trials (Smid et al., 2022). On average, children missed only 0.05% of 
the trials, and the highest percentage of trials missed was 17%. There
fore, no participants were excluded from the analysis. 

To assess the relationship between model-based decision-making and 
metacontrol with age, we fit the dual-systems reinforcement learning 
model to every participant, and the best-fitting parameters were 
extracted. Next, we linked these individual best-fitting parameters to 
age. 

3.2. Cognitive task battery 

An extensive battery of tasks was used to assess a range of executive 
functions and fluid reasoning and crystallized intelligence (Table 1). 
This table reflects the main domains for each task, the task name, and 
the abbreviation for the final included measure in brackets. For the 
majority of the tasks, trials were either neutral (i.e., congruent trials, 
stay trials, or go trials) or experimental (incongruent trials, switch trials, 
or stop trials). The final measures for these tasks capture a difference in 
performance between the neutral and the experimental trials. For 
example, the Flanker (Inhib) measure reflects a difference score that 

Fig. 1. Task Design. a) Schematic of the transition structure with arrows displaying deterministic transitions; if a participant chose the dark blue or the orange 
spaceship, they would always transition to the red planet. b) At the planets, participants received rewards in the form of space treasure ranging between 0 and 9 
pieces according to the drifting reward rate per planet. c) At the start of the trial, participants saw the stake amplifier, which either showed "1x" for low-stake trials or 
"5x" for high-stake trials. Next, they saw a pair of spaceships and chose one, after which they transitioned to either the red or the purple planet, where they had the 
opportunity to win pieces of treasure. During low-stake trials, pieces of treasure were displayed in blue with a red "1" on every piece, and participants received points 
equal to the number of treasure pieces shown. d) During high-stake trials, the blue treasure was displayed first and then, after a delay, turned into gold treasure with a 
red "5" on top of it, and the number of points received was multiplied by five. Images from (Decker et al., 2016). 
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measures the speed and accuracy of the incongruent trials and the 
congruent trials, where a higher value indicates greater processing costs 
for the incongruent compared to the congruent trials. In short, if this 
value is positive participants performed worse on the incongruent trials. 
Additional details regarding the different tasks can be found on the 
accompanying GitHub page. 

3.3. MRI acquisition and cortical thickness measurements 

High-resolution T1-weighted images were obtained using a Siemens 
3.0 Tesla Prisma scanner located at the Birkbeck-UCL Centre for Neu
roimaging (BUCNI) equipped with a 32-channel whole-head coil. Im
ages were acquired with the sequence tfl3d1_16ns with a flip angle of 9◦. 
Echo Time was set to 0.00298, and Repetition Time to 2.3. A total of 208 
slices with a voxel size of 1x1x1 mm3 were collected, and the acquisition 
matrix ranged over 256 × 256. To limit head motion, children were 
requested to keep their heads as still as possible and foam inserts were 
placed between the head and head coil to ensure the head was snug in 
the coil. Visual stimuli were projected onto a screen in the magnet boar 
that could be viewed via a mirror attached to the head coil. Participants 
watched cartoons without sound during the acquisition of the structural 
scan. 

Structural MRI images were processed with FreeSurfer (Version 
6.0.0; http://surfer.nmr.mgh.harvard.edu (Fischl et al., 2002), a soft
ware that can label and segment cortex and white matter. After con
verting the Dicom files to Nifti using dcm2niix, scans were run through 
FreeSurfer. Then, all scans were visually inspected for quality, and the 

segmentation was manually corrected in FreeSurfer if not successful. 
Four independent validators analyzed the scans, and one final validator 
performed a final inspection of all scans. After corrections, scans were 
re-segmented using FreeSurfer, until, upon visual inspection, the seg
mentation quality was adequate, or if it did not reach the final level of 
acceptance, excluded. Using this method, 44 MRI scans were included, 
while one scan was left out of further analysis due to excessive move
ment and poor segmentation. Given the extensive and robust evidence of 
the causal involvement of DLPFC in model-based decision-making 
(Beierholm et al., 2011; Cremer et al., 2021; Doll et al., 2015; Gläscher 
et al., 2010; Lee et al., 2014; Smittenaar et al., 2013), region of interest 
(ROI) analyses focused exclusively on this area. To create a DLPFC ROI, 
the Desikan-Killiany atlas was used (Desikan et al., 2006), which is 
relevant for this age group (Ghosh et al., 2010; Wierenga et al., 2014). 

After preprocessing, sulcal and gyral features across individual sub
jects were aligned by morphing each subject’s brain to an average 
spherical representation that accurately matches cortical thickness 
measurements across participants, while minimizing metric distortion. 
For whole-brain analysis, thickness data were smoothed using a 10 mm 
Gaussian kernel before statistical analysis. Selecting a surface-based 
kernel reduces measurement noise but preserves the capacity for 
anatomical localization, as it respects cortical topological features 
(Bernhardt, Klimecki et al., 2014; Lerch and Evans, 2005). To create the 
Region of Interest (ROI) of the DLPFC, the Desikan-Killiany atlas was 
used (Desikan et al., 2006). This atlas allows the automatic division of 
the cortex into standard gyral-based neuroanatomical regions. This atlas 
divides the cortex into 34 cortical ROIs in each of the individual hemi
spheres. We extracted the individual cortical thickness of the ROI that 
most closely matches the DLPFC in the Desikan-Killiany atlas (ROIs 28 
(left) and 64 (right); the Rostral middle frontal cortex) for the ROI 
analysis. 

Cortical thickness data were analyzed using the SurfStat toolbox for 
Matlab [https://www.math.mcgill.ca/keith/surfstat, (de Waal et al., 
2022; Worsley et al., 2009). Cortex-wide linear models were used to 
assess the effects of age, sex, model-based decision-making, and meta
control on thickness at each vertex. Findings from the surface-based 
analyses were controlled for multiple comparisons using random field 
theory (Bernhardt, Klimecki et al., 2014; Bernhardt, Smallwood et al., 
2014; Steinbeis et al., 2012; Worsley et al., 2009). This reduced the 
chance of reporting a family-wise error (FWE). The cluster-defining 
threshold was set to p < .01 and the FWE to p < .05. Mediation anal
ysis was conducted in Python using the Pingouin package (Vallat, 2018). 

4. Results 

4.1. Markers of model-based decision-making and metacontrol 

To assess whether children were sufficiently engaged with and able 
to perform the task, we compared their performance to chance level. 
Task performance was calculated as each individual’s corrected reward 
rate, which reflected the average number of points a participant earned 
per trial, corrected for each participant’s possible rewards based on the 
drifting reward rates (Fig. 1b). Scores lower than zero indicate perfor
mance worse than chance, and scores higher than zero indicate better 
than chance performance. The mean corrected reward for children was 
higher than chance (t(68) = 5.10, d = .61, p < .001, 95% CIs [. 
[0.015034]), and performance was positively correlated with age (r =
[T 0.27p =[T 0.02395% CIs [.[0.0448]). This suggests that the children 
were able to perform the task and that performance improved 
throughout childhood. 

Model-based decision-making was positively correlated to age 
(r = 0.25, p =[T 0.036see Fig. 2a), and metacontrol was not (r = 0.07, 
p =[T 0.549see Fig. 2b). There was also no stakes effect for children as a 
group (t(132.81) = − 1.14, p = .255, see Fig. 2c). Neither model-based 
decision-making (t(65.18) = − 1.20, d = − 0.29, p = .236), nor meta
control (t(60.81) = 1.44, d = 0.35, p = .155) differed between sex. Our 

Table 1 
Executive Function and Intelligence tasks.  

Domain Task Main measure and label 

Inhibition SSRT Stop-Signal Reaction Time (SSRT) coded 
inversely: higher values indicate better 
inhibitory control (SSRT) 

Stroop Difference between incongruent and 
congruent trials in composite scores of speed 
and accuracy (a higher value indicates 
greater processing costs during incongruent 
compared to congruent trials; Stroop) 

Flanker (Inhib) Difference between incongruent and 
congruent trials in composite scores of speed 
and accuracy (a higher value indicates worse 
performance during incongruent compared 
to congruent trials; Flanker) 

AX-CPT Difference between the AY and BX trials (PBI 
Index), where a positive value reflected a 
higher processing cost on AY trials, 
indicating more proactive control, and a 
negative value reflected higher processing 
cost on BX trials, indicating more reactive 
control; (AX-CPT) 

Cognitive 
Flexibility 

Task-switching Difference between switch and stay trials in 
composite scores of speed and accuracy (a 
higher value indicates greater processing 
costs during switch compared to stay trials; 
CogFlex) 

Flanker (Switch) Difference between switch and stay trials in 
composite scores of speed and accuracy (a 
higher value indicates greater processing 
costs during switch compared to stay trials; 
Flanker_Switch) 

Working 
Memory 

Corsi Block 
tapping 

The highest number of correctly repeated 
consecutive repetitions referred to here as 
working memory span (WM_Span) 

N-back Composite scores for both the 1-back and 2- 
back conditions. A higher score indicates 
better working memory performance for 
each condition. (WM_1back, WM_2back). 

Intelligence Fluid reasoning Age-standardized measure of fluid reasoning 
(WASI_Matrix) 

Crystallized 
intelligence 

Age-standardized measure of crystallized 
intelligence (WASI_Vocab)  

C.R. Smid et al.                                                                                                                                                                                                                                 



Developmental Cognitive Neuroscience 62 (2023) 101269

6

findings in the current paper thus replicate our previous computational 
findings in a new sample in childhood (Smid et al., 2022). For additional 
information on behavioral markers of model-based decision-making and 
metacontrol can be found on the accompanying GitHub page 
[https://github.com/ClaireSmid/Neurocognitive_Basis_Metacontrol]. 

4.2. Model-based decision making, metacontrol, and executive functions 

Next, we assessed the relationships between executive functions, 
model-based decision-making, and metacontrol using simple bivariate 
correlations (Fig. 3a). 

Model-based decision-making was positively correlated with work
ing memory span (r = 0.25, 95% CI [0.01, 0.46], p = .039), indicating 
that a higher working memory span was correlated to a higher display of 
model-based decision-making. Model-based decision-making was also 
negatively correlated to the cognitive flexibility task-switching measure 
(r = − 0.30, 95% CI [− 0.50, − 0.07], p = .011), which indicates that it 
was related to lower processing costs during the switch trials, see 
Table 1. 

Metacontrol was positively correlated to the Stroop measure 
(r = 0.24, 95% CI [− 0.004, 0.45], p = .046), indicating that higher 
processing costs on the incongruent trials on the Stroop task may be 
related to better metacontrol. Metacontrol was positively correlated 
with the Flanker measure (r = 0.42, 95% CI [0.21, 0.60], p < .001). 

To adjust for multiple comparisons, significance was next adjusted 
using the Bonferroni procedure for family-wise control (21 tests, 
threshold at p = .0023). Whereas model-based decision-making did not 
remain significantly correlated with any measures after correction, 
metacontrol remained positively correlated with the Flanker measure. 

Thus, greater metacontrol was related to worse performance in incon
gruent relative to congruent trials on the Flanker task (Fig. 3b). 

4.3. Cortical thickness and model-based decision making and metacontrol 

Overall mean cortical thickness significantly decreased with age for 
the sample (T(42) = − 2.34, p = .024). There was no significant differ
ence in the mean cortical thickness between male and female partici
pants (F1,42) = .21, p = .647). We assessed the relationship between 
individual differences in model-based decision-making, metacontrol, 
and cortical thickness. We ran cortex-wide linear models correcting for 
age and sex and corrected the p-values with FWE and thresholded for 
significance at p < .01. We also ran a cortical thickness ROI analysis 
using the bilateral DLPFC. 

No relationship was found between cortical thickness and indices of 
model-based decision-making at the whole-brain level. For metacontrol, 
two clusters survived whole-brain correction (see Fig. 4). Participants 
with higher metacontrol showed greater cortical thickness in the left 
temporal lobe encompassing the fusiform gyrus, entorhinal cortex, and 
parahippocampal gyrus, as well as the right parietal lobe, including the 
postcentral gyrus and superior parietal cortex, as determined using the 
Desikan-Killiany atlas (Desikan et al., 2006). 

4.4. DLPFC ROI analysis 

As previous studies have found potential causal links between model- 
based decision-making and metacontrol and DLPFC (Smittenaar et al., 
2013), we also assessed the relationship between cortical thickness in 
DLPFC bilaterally (Fig. 5a). We ran the ROI analysis with the residual 

Fig. 2. Computational results for model-based decision making and metacontrol. (a) model-based decision making significantly increased with age, (b) while 
metacontrol did not increase over age, but metacontrol shows substantial individual differences. (c) there was no significant difference in the amount of model-based 
decision-making over the low- and high-stake trials. 
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cortical thickness of the DLPFC after controlling for age. As we did not 
find sex-related differences, we did not control for sex. While we did not 
find a relationship between thickness in DLPFC and model-based deci
sion-making (p > .09), metacontrol was significantly related to both 
cortical thickness in left and right DLPFC (T(42) = 2.61, p =

[TS82 0.012 T(42) = 3.00, p = .005 respectively; see Fig. 5b and c). 
These correlations survived Bonferroni correction (threshold at 
p = .0125). Thus, higher metacontrol was significantly correlated to 
increased cortical thickness in the bilateral DLPFC for 6–12-year-old 
children. 

4.5. A potentially mediating effect of flanker on metacontrol and cortical 
thickness 

Finally, we investigated whether the Flanker measure mediated the 
relationship between cortical thickness of the bilateral DLPFC and 
metacontrol. To assess this, we performed a mediation analysis with the 
Flanker measure as the potential mediating pathway between cortical 
thickness and metacontrol. For neither the left (indirect: beta = 0.11, se 
= 0.09, p = .200, 95% CI [− 0.02, 0.24], see Fig. 6a), nor the right 
DLPFC (indirect: beta = 0.14, se = 0.13, p = .284, 95% CI [− 0.10, 0.43], 
see Fig. 6b) was there a mediating effect of Flanker on metacontrol. 

Fig. 3. Figures depicting the relationship be
tween model-based decision-making, metacon
trol, executive functions, fluid reasoning, and 
crystallized intelligence. (a) correlation plot of 
model-based decision-making and metacontrol, 
executive functions, fluid reasoning, and crys
tallized intelligence measures. For a list of the 
measures and their acronyms, see Table 1. The 
numbers on the plot indicate Pearson’s r values. 
(b) scatterplot with a linear line indicating the 
relationship between metacontrol and the 
Flanker processing costs.   
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We also assessed whether model fit of the whole-brain cortical 
thickness analysis was improved by adding Flanker as a term, however, 
it did not improve the model fit. 

5. Discussion 

The current study set out to investigate the neurocognitive basis of 
model-based decision-making and metacontrol in 6–13-year-old chil
dren. To this end, we assessed the relationship of an extensive battery of 
executive functions, fluid reasoning, and crystallized intelligence as well 
as brain structure, and related these to indices of model-based decision- 
making and metacontrol. While we find that model-based decision- 

making did not show any specific relationships with the executive 
function task battery or cortical thickness measures, metacontrol 
showed a specific relationship with performance on an inhibition mea
sure and cortical thickness in temporal, superior parietal, and prefrontal 
brain regions. 

We report a relationship between metacontrol and performance on 
the Flanker task. Specifically, we found that better metacontrol was 
related to worse performance in the incongruent trials than in the 
congruent trials on the Flanker task. Previous work has shown that the 
preferential allocation of cognitive resources is in part driven by fron
tostriatal connectivity (Insel et al., 2017) and that considerations of 
allocating cognitive effort are, in turn, linked to indices of cognitive 
control (Kool et al., 2017, 2018; Kool and Botvinick, 2014). As such, our 
findings appear contradictory to this, where greater metacontrol is 
linked to less inhibitory control. An alternative explanation is that our 
measure of inhibition might sensitively index the avoidance of effort, as 
reflected by worse performance on difficult trials. Given that metacon
trol entails the reward-sensitive allocation of cognitive effort, such a 
relationship would make sense. Thus, metacontrol may reflect the 
ability to engage in successful effort avoidance, an ability that undergoes 
substantial changes in middle childhood (Niebaum et al., 2019; Nie
baum et al., 2020). As higher-order processes, both model-based deci
sion-making and metacontrol are executed because of the concerted 
functioning of a multitude of cognitive and motivational processes that 
undergo different developmental trajectories. As a result, we believe it is 
unlikely for the same set of processes to account for individual differ
ences across all age groups in equal measure. Future work is required to 
examine this in closer detail. 

While it is difficult to say with certainty that worse performance on 
an inhibition task reflects the avoidance of effort, several pieces of evi
dence support such an interpretation. First, it has been shown that 
children as young as 6 years are indeed sensitive to cognitive effort and 
make choices (Chevalier, 2018; Ganesan and Steinbeis, 2021). Second, a 
similar relationship, albeit not significant, can be seen with performance 
on the Stroop task in the present study. Thus, children with higher 

Fig. 4. Significant whole-brain clusters of cortical thickness associated with 
individual differences in metacontrol corrected by age and sex (thresholded 
at p < .01). 

Fig. 5. Cortical thickness of the bilateral DLPFC and metacontrol. (a) the ROI for the DLPFC used in the current study is based on the Desikan-Killiany atlas. (b) 
scatterplot of the relation between metacontrol and residual cortical thickness of the left DLPFC (c) and right DLPFC after correcting for age. 
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metacontrol might have displayed similar sensitivity to task-related 
effort, something that is presumably measured better by tasks that 
have both high and low-effort components (i.e. incongruent and 
congruent trials), as opposed to measuring executive performance per se 
(Lieder and Griffiths, 2019; Niebaum et al., 2019; Niebaum et al., 2020; 
Ruel et al., 2021). Lastly, as we did not find strong relationships between 
improved other executive functions and metacontrol, this could indicate 
that metacontrol may not be supported by executive functions as we 
measured them in our current study, namely in the three subdomains of 
working memory, cognitive flexibility, and inhibition. The current re
sults suggest that selective monitoring of effort and reward associated 
with specific actions in response to the environment is involved, and 
that, linking metacontrol to successful contextual monitoring and effort 
avoidance on other tasks could provide evidence for this theory. 

In an exploratory whole-brain analysis, we found that individual 
differences in metacontrol were significantly related to two distinct 
clusters, one in the left temporal lobe and one in the right superior pa
rietal cortex. The temporal lobe cluster spanned areas involved with 
memory (Druzgal and D’Esposito, 2001; Jessen et al., 2006; Mion et al., 
2010; Rodrigue and Raz, 2004), as well as contextual learning (Aminoff 
et al., 2007; Coutureau and di Scala, 2009; Peng and Burwell, 2021). The 
superior parietal lobe cluster spanned areas that have previously been 
linked to working memory (Koenigs et al., 2009), cognitive control 
(Loose et al., 2017), and planning (Randerath et al., 2017). Thus, these 
clusters span brain regions previously implicated in cognitive abilities 
relevant to metacontrol. Contextual-based learning is relevant as met
acontrol in the current study represents the ability to increase compu
tationally effortful performance when beneficial selectively. In addition, 
the previous link between the superior parietal cortex with cognitive 
control and planning is relevant, as active prioritization of when to 
employ model-based decision-making across contexts relies on being 
able to control when to use which decision-making strategy and selec
tively switching between them based on context. Using an ROI analysis, 
we found that the cortical thickness of the bilateral DLPFC was posi
tively related to increased metacontrol, a brain region that has previ
ously been found to be involved in cognitive control and 
computationally effortful decision-making strategies (Beierholm et al., 
2011; Cremer et al., 2021; Doll et al., 2015; Gläscher et al., 2010; Lee 
et al., 2014; O’Doherty et al., 2015; Smittenaar et al., 2013). Attempts to 
integrate behavioral and neural measures to account for metacontrol 
suggest that these account for distinct portions of variance and consti
tute unique effects. Further work will be required to delineate the 
computational function of these brain regions in the context of actual 
task performance. 

Given the previous evidence of a relationship between model-based 
decision-making and executive functions, fluid reasoning, and crystal
lized intelligence (Otto et al., 2015, 2017; Otto et al., 2013; Potter et al., 
2017), the absence of such links in the present sample was surprising. 

Indeed, we hypothesized that the same executive functions that have 
been linked to model-based decision-making and metacontrol in adult
hood would support this in childhood. At the very least, this finding 
suggests that the relationship between model-based decision-making 
and performance on executive function tasks is not straightforward, 
particularly in the absence of information on how effortful and moti
vating children might have found the executive function tasks. Sur
prisingly, and similarly to the behavioral analyses, neither whole-brain 
nor ROI analyses point to any specific relationships with model-based 
decision-making in our study. We collected similar measures as used 
in prior work, reporting significant relationships with model-based 
decision-making, such as working memory, fluid reasoning, and cogni
tive control. Differences between prior studies (Potter et al., 2017; Otto 
et al., 2013; Otto et al., 2015) and our findings presumably relate to 
differences in measures and samples. In the current study, the absence of 
a wide age range makes it more speculative over whether the same or 
different processes underpin model-based decision-making and meta
control at different developmental time points. A critical difference 
between the current and previous studies relates to the task used to 
measure model-based decision-making. Previous studies relied on the 
traditional two-step task which uses stochastic transitions and, 
compared to the presently used two-step task with a deterministic task 
structure, was complex and cognitively more demanding. In essence, it is 
simpler to employ model-based decision-making on the current task, and 
a higher degree of model-based decision-making is, in turn, coupled with 
larger rewards (Kool et al., 2016, 2017). It may well be that prior 
findings of associations with model-based decision-making and perfor
mance on cognitively taxing tasks might be related to task complexity, as 
opposed to true underlying relationships. It should also be noted that 
correlating task performance indicates associations at the individual 
difference level and, not necessarily, whether these processes are used in 
the context of complex decision-making tasks. 

Prior work has described human brain development as a non-linear 
process, both structurally and functionally, with regional fluctuations 
in thickness and density during childhood and adolescence (Giedd et al., 
1999; Gogtay et al., 2004; Johnson, 2001; Lenroot et al., 2007; Mills 
et al., 2016; Sowell et al., 2003; Thatcher, 1992). While developmental 
trajectories in cortical thickness measures from childhood to adulthood 
show a loss of thickness and density with age, linked to increased syn
aptic pruning during adolescence and early adulthood, the speed of 
cortical thinning and the regionality can differ between individuals, 
potentially mediated by genetic and environmental factors (Fjell et al., 
2015; Joshi et al., 2011; Panizzon et al., 2009; Rimol et al., 2010; Shaw 
et al., 2006). Previous studies have linked greater cortical thinning in 
development to better executive function ability (Piccolo et al., 2019; 
Squeglia et al., 2013) and to intelligence (Karama et al., 2011; Narr 
et al., 2007). Crucially, longitudinal studies have demonstrated that the 
trajectory of changes in cortical thickness, rather than the absolute 

Fig. 6. Mediation analysis of the effect of inhibition on the relationship between DLPFC cortical thickness and metacontrol. (a) Mediation model for the left DLPFC, 
(b) and the right DLPFC. Cortical thickness entered into the mediation analysis was the residual cortical thickness after correcting for age. Asterisks indicate sig
nificance (p < .05 *, p < .01 **, p < .001 ***). 
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thickness at any time point, appears to be most closely related to 
cognitive outcomes (Fjell et al., 2015; Giedd et al., 1999; Mills et al., 
2016; Shaw et al., 2006; Wierenga et al., 2014). The absence of longi
tudinal data precludes the ability to speak to how brain development 
might have shaped individual differences in metacontrol. It is known 
that prefrontal cortical brain regions are among the latest to mature 
(Bethlehem et al., 2022; Gogtay et al., 2004; Sowell et al., 2003) and 
thus we conclude that late-developing brain regions like DLPFC, in 
concert with parietal and temporal regions, appear to contribute to 
higher order cognitive decision-making processes like metacontrol 
during childhood. 

While we did not find strong relationships between metacontrol and 
executive functions in the current study, we did find a significant rela
tionship with effort avoidance on the Flanker task. Previous studies 
investigating effort avoidance in middle childhood have suggested that 
the contextual monitoring of environmental demands and the adaptive 
response to changes in effort in absence of reward is an ability that 
undergoes developmental changes in middle childhood (Chevalier, 
2018; Niebaum et al., 2019; Niebaum et al., 2020). From ages 5–12 
years, children become progressively more able to indicate awareness of 
changes in demand in the environment, and more able to respond to 
them. In this study, we find that higher metacontrol, or the ability to 
selectively increase model-based decision-making for the highest 
rewarding trials, is also linked to effort avoidance on the Flanker task, by 
prioritizing effort for the easier congruent trials rather than the more 
difficult incongruent trials. It has been shown that both the DLPFC and 
the anterior cingulate cortex are particularly sensitive to cognitive effort 
computations (Chong et al., 2017). Previous research has also linked 
improved demand awareness and the ability to respond adaptively to 
maturation in the (lateral) prefrontal cortex and the dorsal anterior 
cingulate (Chong et al., 2017; Niebaum et al., 2019; Niebaum et al., 
2020). Thus, the metacontrol measure, in contrast to the model-based 
decision-making measure, may be reflecting the successful monitoring 
of task demands as well as the ability to act on these shifts in the envi
ronment. Rather, the model-based decision-making measure on its own 
does not reflect this adaptive response to the environment, and instead, 
reflects how much participants utilize the internal structure of the task 
when planning their next decision. In the exploratory whole-brain 
analysis, we found significant clusters in the parahippocampal cortex 
and superior parietal cortex, areas that have been linked to contextual 
learning and planning, which provide support for this hypothesis 
(Aminoff et al., 2007; Coutureau and di Scala, 2009; Peng and Burwell, 
2021; Randerath et al., 2017). We hypothesize that metacontrol revolves 
around the flexible and adaptive arbitration of cost-benefit calculations, 
reflecting proactive control around decision-making. This ability would 
in turn be linked to successful effort avoidance when there is no benefit 
to engaging in increased effort (Niebaum et al., 2019; Niebaum et al., 
2020). The ability to display effort avoidance and selective engagement 
of effort for more reward has previously been shown to undergo changes 
during middle childhood, and to be linked to cortical maturation, 
particularly in prefrontal areas (Niebaum et al., 2019; Niebaum et al., 
2020). Therefore, we believe that this is reflected in the relationship 
between increased cortical thickness in the DLPFC in the ROI analysis, as 
well as areas in the superior parietal cortex and temporal lobe which 
have previously been linked to contextual learning and memory. Future 
work should include tasks sensitive to measuring effort avoidance to 
further support this hypothesis. 

This study has several limitations. While the MRI sample used in the 
current study (N = 44) is relatively large compared to typical develop
mental neuroimaging studies, it has been recently suggested that sam
pling errors could drive significant associations and that robust effects 
will require sample sizes of the order of hundreds or thousands of par
ticipants depending on the phenotype in question (Marek et al., 2022). 
Thus, the current study may have an underpowered sample, and the 
results should be interpreted with caution. In the ROI analysis in the 
present study, the significant association with cortical thickness in an a 

priori region of interest lends greater credence to the results, as this area 
was defined based on previous literature and not via a non-independent 
cluster. It also must be noted that all our measures are correlational. 
Future research on model-based decision-making and metacontrol in 
development may wish to adopt experimental manipulations (i.e., 
dual-task paradigms), ideally in a longitudinal setting, to draw stronger 
inferences, particularly about the role of executive functions. In addi
tion, a longitudinal study, as opposed to the current cross-sectional 
study, would allow inference of how intra-individual variability in 
performance on executive function and decision-making tasks would 
allow insight into how these may be related (Cañigueral et al., 2022). In 
addition, further research into the development of effort avoidance in 
relation to metacontrol would allow clarification on which processes 
support the adaptive prioritization and selective application of effort in 
development. A previous study found that connectivity between the 
striatum and the prefrontal cortex mediated the display of titration of 
cognitive performance according to environmental demands in adoles
cents; finding that the connectivity selectively increases during high 
stakes and with age across adolescence (Insel et al., 2017). Thus, the late 
development of corticostriatal connectivity may be a key development 
related to improvements in metacontrol via optimal goal-directed 
behavior. Finally, the findings in the current study are limited to 
anatomical findings and therefore cannot speak to functional processes. 
Future work using multimodal imaging of structural and functional 
brain indices could further illuminate their interrelationship and our 
understanding of their respective and combined functional role. 

In sum, the current study set out to investigate the underlying neu
rocognitive basis of model-based decision-making and metacontrol. We 
could not replicate previously reported relationships between model- 
based decision-making and executive functions, nor any links with 
markers of brain structure. However, we found that metacontrol was 
linked to worse performance on inhibition trials and to increased 
cortical thickness in the temporal and superior parietal lobe and the 
DLPFC. Metacontrol reflects the optimal use of limited cognitive re
sources, and our findings suggest that during childhood, this is sup
ported by several brain regions linked to contextual learning and 
cognitive control. Further, our results suggest that the relationship be
tween model-based decision-making and other cognitive functions is 
presumably task-dependent. More extensive investigation with a larger 
battery of tests, bigger samples, and a better characterization of task- 
specific associations with goals and effort should illuminate how so
phisticated value-based decision-making strategies change during 
development. 
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