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The hippocampus is one of the most studied neuroanatomical structures due to its involvement in attention, 

learning, and memory as well as its atrophy in ageing, neurological, and psychiatric diseases. Hippocampal shape 

changes, however, are complex and cannot be fully characterized by a single summary metric such as hippocam- 

pal volume as determined from MR images. In this work, we propose an automated, geometry-based approach 

for the unfolding, point-wise correspondence, and local analysis of hippocampal shape features such as thickness 

and curvature. Starting from an automated segmentation of hippocampal subfields, we create a 3D tetrahedral 

mesh model as well as a 3D intrinsic coordinate system of the hippocampal body. From this coordinate system, 

we derive local curvature and thickness estimates as well as a 2D sheet for hippocampal unfolding. We evaluate 

the performance of our algorithm with a series of experiments to quantify neurodegenerative changes in Mild 

Cognitive Impairment and Alzheimer’s disease dementia. We find that hippocampal thickness estimates detect 

known differences between clinical groups and can determine the location of these effects on the hippocampal 

sheet. Further, thickness estimates improve classification of clinical groups and cognitively unimpaired controls 

when added as an additional predictor. Comparable results are obtained with different datasets and segmentation 

algorithms. Taken together, we replicate canonical findings on hippocampal volume/shape changes in dementia, 

extend them by gaining insight into their spatial localization on the hippocampal sheet, and provide additional, 

complementary information beyond traditional measures. We provide a new set of sensitive processing and anal- 

ysis tools for the analysis of hippocampal geometry that allows comparisons across studies without relying on 

image registration or requiring manual intervention. 
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. Introduction 

The hippocampus, one of the phylogenetically oldest structures of

he human brain, supports fundamental cognitive processes such as at-

ention ( Goldfarb et al., 2016 ), learning, and memory ( Gabrieli et al.,

997 ; Henke et al., 1997 ; Maguire, 2001 ). Hippocampal damage and

ysfunction have been associated with important neurological and psy-

hiatric conditions such as Alzheimer’s disease (AD) ( Adler et al., 2018 ;

jell et al., 2014 ), epilepsy ( Cendes et al., 1993 ; Jack Jr, 1994 ), or ma-
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or depression ( Videbech and Ravnkilde, 2004 ). Beyond basic research,

ippocampal volume has been proposed as a diagnostic biomarker to

etect early disease changes ( Frisoni et al., 2017 ; Jack Jr et al., 2018 )

nd as an outcome marker for monitoring therapeutic efficacy in clinical

rials ( Cummings (2019) ; Mattsson et al., 2015 ). 

The hippocampal formation is embedded into the medial temporal

obe ( Amaral and Insausti, 1990 ), where it connects to adjacent cortical

reas such as the entorhinal, perirhinal, and parahippocampal cortices

 Insausti et al., 1998 ). The hippocampus itself is not a homogeneous
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tructure, but consists of anatomically and histologically distinct sub-

tructures, including the subiculum, the four cornu ammonis (CA) sub-

elds, and the dentate gyrus ( Duvernoy, 1998 ). While the exact borders

nd subdivisions are still a topic of debate, its macroscopic morphology

an be described as resembling a spiral or Swiss roll, where the subicu-

um and CA subfields 1 to 3 form an outer layer, wrapping the interior

A4 and dentate gyrus. The border between these layers is indicated by

he stratum radiatum, lacunosum, moleculare (SRLM), which is easily

dentified on T2-weighted MR images and often used as an anatomical

andmark in hippocampal segmentation. Along the anterior-posterior or

ongitudinal axis, a division can be made into the head, body, and tail,

ith folding complexity increasing from tail towards the head. Recent

vidence points to a functional dissociation not only for the different

ubfields, but also along the long axis ( Genon et al., 2021 ). 

Structural MRI is the primary means for in-vivo anatomical analysis

f the hippocampus in humans, and advances in MR technology, in par-

icular the development of dedicated imaging sequences and the acqui-

ition at higher field strengths, have led to increased spatial resolution

nd contrast in MR images, which makes the substructures of the hip-

ocampus accessible for human neuroimaging ( Berron et al., 2017 ). In

ontrast to the advancement in measurement methods, analysis meth-

ds have seen less progress to date, even though more sensitive tools

o quantify (local) hippocampal changes promise to identify disease or

herapeutic effects at an earlier stage or with smaller sample sizes. Tradi-

ional analysis approaches create a manual or automated segmentation

f the hippocampus and/or its subfields, and quantify the correspond-

ng regional volumes by means of voxel-counting ( Van Leemput et al.,

009 ; Yushkevich et al., 2009 ). While pragmatic and straightforward,

hese measures are susceptible to partial-volume effects and registra-

ion inaccuracies, and cannot detect subtle feature changes that do not

esult in volume changes. Further, in situations where there is insuf-

cient intensity information / contrast within the image, the segmen-

ations and specifically the boundaries of the subfields will, to a large

xtent, be driven by the deformation of an atlas template rather than

ctual intensity differences, and will, therefore, be less reliable. Finally,

hese methods provide volume estimates per individual subfield and,

herefore, still give high-level summary measures instead of true point-

ise measurements. Geometrical shape models of the hippocampus on

he other hand may provide complementary information beyond voxel-

ased methods, but until now typically focus on the hippocampus as a

hole, and not its substructures ( Achterberg et al., 2014 ). 

Recognizing the need for a more fine-grained analysis,

kstrom et al. (2009) , Zeineh et al. (2000) proposed a procedure

o unfold hippocampal anatomy and localize functional activation onto

 two-dimensional, flat map of the hippocampus, similar to retinotopic

maging and analysis. It is based on a manual segmentation of gray

nd white matter and cerebrospinal fluid in the medial temporal

obe as well as manual demarcations of the boundaries between the

ubregions of the hippocampus. The gray matter segmentation is split

nto layers, each layer is stretched to a planar representation, and

s subsequently recombined with the other layers to give a 2D flat

ap of the hippocampus. Boundaries between hippocampal regions

re then projected onto this map. A common template is created from

veraged individual maps, including the individual subfield boundaries,

o account for individual differences in anatomy. Individual maps as

ell as coregistered functional data are then transformed to match the

emplate by means of a nonlinear warping algorithm. Applications of

his technique have resulted, for example, in insights about the role

f hippocampal subfields in encoding vs. retrieval processes in human

emory ( Zeineh et al., 2003 ) as well as associations of hippocampal

hinning with risk factors for Alzheimer’s disease ( Donix et al., 2013 ). 

The ASHS algorithm ( Yushkevich et al., 2015b ) focuses on localized

hickness estimation and performing group analyses in a common tem-

late space. The algorithm works by warping a template surface of the

hole hippocampus into the space of individual segmentations (using

he diffeomorphic deformation fields generated during the construction
2 
f the template). Hippocampal thickness is then computed for each sur-

ace point by extracting the Voronoi skeleton of the surface, removing

ny branches from the skeleton, and computing the distance from each

oint on the surface to the closest point on the pruned skeleton. This al-

ows for an analysis of point-wise thickness, although not on an unfolded

urface, but on the surface of the population template that resembles the

natomy of the whole hippocampus. 

Recent work on hippocampal unfolding has combined geometrical

odeling with histological validation. DeKraker et al. (2018) manu-

lly traced the hippocampal sulcus and the stratum radiatum, lacuno-

um, moleculare, by which much of the morphology of the hippocam-

us is captured, and then conducted a semi-automated segmentation of

ippocampal grey matter. Boundaries for three dimensions across the

ippocampus were defined at the borders between the cortex and the

ubiculum as well as between the dentate gyrus and the SRLM for the

roximal-distal axis, at the anterior and posterior ends of the hippocam-

us for the longitudinal axis, and at the outer hippocampal surface and

he SRLM for the laminar axis. Laplace’s equation was then solved in

oxel space to determine potential fields along each axis. Based on these

elds, coordinates in 2D space (long axis and proximal-distal axis) were

erived to create an unfolded representation of the hippocampus for

he mapping of hippocampal thickness, myelin content, and subfield la-

els. This work has recently been extended to identify the boundaries of

ippocampal subfields in an automated fashion by using morphological

eatures (such as thickness, curvature, gyrification) and also laminar fea-

ures (based on histology) of the unfolded hippocampus ( DeKraker et al.,

020 ). In its most recent version ( DeKraker et al., 2022 ), the algo-

ithm also incorporates automated segmentation by means of an nnU-

et ( Isensee et al., 2021 ) that was trained with manuallycorrected

ippocampal segmentations from the HCP-1200 Young Adult dataset

 Van Essen et al., 2013 ) and tested on a wider range of datasets. Fur-

her geometry-based analyses using Laplacian methods and tetrahedral

eshes have been performed in the cortex ( Fan et al., 2021 ; Wang et al.,

017 ), but not in the hippocampus until now. 

In summary, previous work has resulted in approaches for the un-

olding of the hippocampus, the imposition of a coordinate system, the

reation of a common anatomical space, and for thickness estimation

nd the mapping of other signals to the unfolded hippocampus. Here,

e present an algorithm that builds upon and extends these previous

evelopments. Our method estimates local hippocampal thickness and

dditional morphological features by means of a sheet representation

nd an intrinsic coordinate system of the hippocampal body. This corre-

ponds to an unfolding of the hippocampus and simultaneous creation

f a reference frame that is consistent across individual hippocampal

eometries. 

The primary innovation of our approach is the application of differ-

ntial geometry operators in a flexible mesh model of the hippocampus.

his means that after segmentation all further operations are performed

ith a triangle (boundary) and tetrahedral mesh, which represents an

natomically adaptive discretization that is no longer dependent on a

igid voxel grid. As a consequence, these models are not constrained to

he voxel grid any longer, and can hence more accurately capture the

ntricate geometry of the hippocampal anatomy. 

A second innovation is the application of a curvature-aware,

nisotropic Laplace operator, which provides the automated detection of

andmarks on the hippocampal mesh. This obviates the need for manual

elineation of these features. In addition, curvature is also used to align

ippocampal thickness estimates along the medial/lateral axis, since

ippocampal size changes along this dimension can impact correspon-

ence of the coordinate grid across clinical groups, and may confound

hickness estimates if not accounted for. 

Finally, our algorithm requires no manual intervention, has a rela-

ively short runtime ( < 25 mins per hemisphere), is designed to work

ith different automated segmentation algorithms, and is exhaustively

ested and validated in a range of prototypical application scenarios.

pecifically, we conduct an evaluation of our algorithm in two large,
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Fig. 1. Cut-out of an MR image of the hippocampus, with ASHS-derived labels 

for the subfields used for unfolding: (a) subiculum (blue), CA1 (red), CA2 (cyan), 

CA3 (green), (b) same structures as in (a), plus labels for the head (magenta) and 

tail (orange). (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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Fig. 2. Mesh representations of the hippocampal body, using (a) 2D surface 

triangles and (b) 3D tetrahedral volume elements. 

Fig. 3. Identification of boundaries on the hippocampal mesh: (a) first eigen- 

value of the anisotropic Laplace-Beltrami operator, (b) medial/lateral bound- 

aries, (c) anterior/posterior boundaries, (d) interior/exterior boundaries. 
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ndependent samples, additionally investigating the impact of two com-

on automated hippocampal segmentation algorithms. 

We expect that the core features of this approach, the point-wise

orrespondence across the hippocampal sheets (across time, individu-

ls or hemispheres), permit a more precise characterization of changes

n hippocampal size and shape compared to traditional voxel- or atlas-

ased summary measures. Since our algorithm does not depend on po-

entially unreliable boundaries between hippocampal subfields, it per-

its the creation of custom regions of interest as well as the localization

f effects that extend across subfields. Finally, the analysis of geometric

eatures in addition to thickness measures is expected to open up new

venues for characterizing hippocampal shape changes in health and

isease as well as across time. 

. Methods 

In this section, we give a technical description of the proposed al-

orithm and its incorporation into a hippocampal shape and thickness

nalysis pipeline, followed by an overview of the evaluation framework

nd empirical analyses. The hippocampal shape and thickness analy-

is (HIPSTA) package will be available at https://github.com/Deep-MI/

ipsta upon publication. 

.1. Methodology of the hippocampal shape and thickness analysis 

The algorithm builds upon existing hippocampal segmentations on

igh-resolution T2 MR images, i.e. images with approximately 0.5 mm

n-plane resolution and approximately 1.5-2.5 mm slice thickness. The

egmentations can be created in an automated or a manual fashion. In

articular, the method is applicable to both the output of FreeSurfer’s

ippocampal subfields segmentation ( Iglesias et al., 2015 ) as well as the

ippocampal analysis pipeline in ASHS ( Yushkevich et al., 2015b ). In ad-

ition, manual labeling protocols ( Wisse et al., 2017 ; Yushkevich et al.,

015a ) can also provide suitable inputs as long as they provide labels

or the subiculum and the CA substructures of the hippocampus. 

tep 1: Image segmentation and shape definition 

The algorithm employs and combines labels of the presubiculum,

ubiculum, CA1, CA2, and CA3 subfields ( Fig. 1 (a)). Two or more of

hese regions may share the same label; for example, the FreeSurfer seg-

entation does not distinguish between CA2 and CA3, and the ASHS

egmentation has a single label for the presubiculum and subiculum.

A4 and the dentate gyrus are not included as they represent anatomi-

ally distinct structures. If a separate label for the molecular layer, i.e.

he most superficial layer of the hippocampus proper, is present, all vox-

ls of this structure are assigned to the nearest subfield of the hippocam-

al body. Further, if labels for the hippocampal head and tail exist (such

s in Fig. 1 (b)), these will be used to define the anterior and posterior

xtent of the region considered for unfolding; otherwise, the algorithm

ses the most anterior slice with either the CA2 or CA3 label and the
3 
ost posterior slice with CA1 and CA2/CA3 labels to define the ante-

ior and posterior extent, and restricts the segmentation accordingly.

his is a technical restriction, since – at the current (thick-slice) voxel

esolutions – the tail is lacking sufficient anatomical detail and the head

olds sideways onto itself preventing a reliable unfolding. Prior to sur-

ace extraction, small holes or protrusions in the binarized segmentation

re corrected by means of a repeated closure operation (dilation and

rosion). 

tep 2: Mesh generation 

An initial surface representation of the hippocampal body is obtained

ia the marching cube algorithm ( Lorensen and Cline, 1987 ), which pro-

ides a mesh of triangles, represented by edges and vertices (3D point

oordinates, Fig. 2 (a)). Mesh quality is further improved by mild mesh

moothing. The resulting surface mesh is a closed 2D manifold embed-

ed in 3D space (i.e. a boundary representation) and has no representa-

ion of the interior of the hippocampal body. We, therefore, create a 3D

etrahedral mesh model of the full hippocampal body using the GMSH

oftware package ( Geuzaine and Remacle, 2009 ), filling the shell’s in-

erior completely with tetrahedral volumetric elements ( Fig. 2 (b)). We

lso transfer the labels of the hippocampal subfields from the voxel-

ased to the vertex-based representations using nearest neighbor map-

ing and additionally create labels for the boundaries of the hippocam-

al body with the head and tail. 

tep 3: Identification of boundaries 

We next identify boundaries on the hippocampal mesh, which are

eeded to establish parameter functions across the mesh. A total of

hree parameter functions are estimated: between the lateral (distal) and

edial (proximal), the anterior and posterior, and the interior/exterior

oundaries of the hippocampus ( Fig. 3 ). Due to the existing segmen-

https://github.com/Deep-MI/Hipsta
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Fig. 4. Mesh parametrization by solving Laplace equations in the (a) me- 

dial/lateral, (c) anterior/posterior, and (e) interior/exterior directions. Subfig- 

ures (b), (d), (f) show the corresponding levelsets of these functions. 
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Fig. 5. Maps and shape characteristics derived from the mesh parametriza- 

tion: (a) 2D coordinate system on the mid-surface, (b) 3D coordinate system 

and streamlines, (c) thickness estimates overlaid onto the mid-surface (yel- 

low/red colors indicate higher/lower thickness), (d) curvature of the mid- 

surface (cyan/blue colors indicate higher/lower negative curvature, yellow/red 

colors indicate higher/lower positive curvature). (For interpretation of the ref- 

erences to colour in this figure legend, the reader is referred to the web version 

of this article.) 
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ation labels, we already know anterior and posterior boundaries at

he transition of hippocampal body and tail as well as body and head

 Fig. 3 (c)). The medial (presubiculum/entorhinal cortex) and lateral

CA3/CA4) boundary curves are located at the proximal and distal high

urvature regions of the hippocampus and can be smoothly estimated

ia the zero level sets of an appropriate anisotropic surface Laplace-

eltrami eigenfunction (see Appendix A.1 for a detailed description of

his procedure). For this purpose, both the 2D and 3D meshes are cut

pen at the transitions towards the hippocampal head and tail. On the

esulting open cylinder-like surface, we compute the first eigenfunc-

ion of the anisotropic (i.e. curvature-aware) Laplace-Beltrami operator

ndreux et al. (2014) , with Neumann boundary conditions ( Fig. 3 (a)).

nisotropy parameters are chosen such that the zero level sets of the

rst eigenfunction are attracted to the high curvature zones of the hip-

ocampal surface. These are precisely the medial boundary curve 𝐶 𝑚 

etween the presubiculum and the adjacent entorhinal cortex and the

ateral boundary 𝐶 𝑙 between CA3 and CA4, which in turn allow to de-

ne the medial/lateral ( Fig. 3 (b)) and interior/exterior parts ( Fig. 3 (d))

f the hippocampal body. 

tep 4: Mesh parametrization 

Given the boundaries, we can now find a harmonic map to a (degen-

rated) unit cube. This mapping is bijective everywhere, except at the

wo boundary curves 𝐶 𝑙 and 𝐶 𝑚 (as the cube is convex, Rado-Kneser-

hoquet Theorem). The mapping can be computed by solving three

aplace equations (via FEM) with the corresponding boundary condi-

ions (0 and 1 Dirichlet conditions at the opposing boundary surfaces or

dges and Neumann conditions elsewhere). Figs. 4 (a), (c), and (e) show

arametrizations of the tetrahedral mesh by the three Laplace functions

hat run into medial/lateral, anterior/posterior, and interior/exterior di-

ections. Importantly, these functions are defined not only at the surface,

ut also in the volume of the mesh, as indicated by the level-sets of the

unctions ( Figs. 4 (b), (d), and (f)). Jointly, these three functions define

n intrinsic coordinate system for the hippocampal body. 
4 
tep 5: Grid and thickness estimation 

An approximate mid-surface of the hippocampal body can be ob-

ained as the 0.5 level set in the interior/exterior direction, onto which

e prescribe a regular 𝑁 ×𝑀 grid in the remaining two directions

anterior/posterior and medial/lateral; Fig. 5 (a) and 5 (b)). Hippocam-

al thickness is then computed by calculating distances along the inte-

ior/exterior streamlines at each grid point. The mid-surface grid serves

s a reference frame that is anatomically consistent across individual

ippocampi, since it is defined by their intrinsic geometries. By follow-

ng the streamlines, the mid-surface grid can also be carried to the inte-

ior or to the exterior boundaries, giving a 3D grid. These grids can be

sed for point-wise statistical comparison and visualization of features

uch as thickness ( Fig. 5 (c)), curvature ( Fig. 5 (d)), and for the projection

f subfield labels or other volumetric data onto the hippocampal sheet

mid-surface) or its outer surface. 

tep 6: Alignment and statistics 

After the determination of individual hippocampal thickness, we pre-

are the data for statistical analysis with an additional postprocessing

tep, a curvature-based alignment procedure. This step is motivated by

he notion that anatomical changes in the hippocampus in aging or dis-

ase may not only encompass a reduction in thickness, i.e. in the inte-

ior/exterior dimension, but also shrinkage in the medial/lateral or the

nterior/posterior directions. For this reason, we employ a curvature-

ased spatial alignment procedure to correct for potential shifts of the

oordinate system. Assuming that the overall shape of the hippocampus

as characterized by its curvature – remains intact, individual curva-

ure estimates (averaged across the anterior/posterior dimension) are

ligned by means of an interpolation procedure so that their maxima

nd minima are located at the same locations along the medial/lateral

xis ( Wrobel, 2018 ; see Appendix A.2 for details). The resulting shifting

arameters are then applied to the individual thickness estimates. As a

esult of this procedure, the localized thickness estimates are compara-

le across individuals and groups, which is a prerequisite for subsequent

oint-wise statistical analysis. A comparison of the evaluation of aligned

s. non-aligned thickness estimates is provided in Section A.4.2 in the

ppendix. Fig. 6 shows curvature and thickness profiles across the me-

ial/lateral axis of the hippocampus. These profiles give a concise rep-

esentation of where differences in curvature and thickness are present,
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Fig. 6. Curvature and thickness profiles in the left (lh) and right (rh) hemisphere, averaged across the medial/lateral axis of the hippocampus. Colors indicate 

diagnostic groups, taken from the DELCODE / ASHS dataset: cognitively unimpaired controls (green), mild cognitive impairment (blue), dementia (red). Panels show 

(a) original curvature, (b) aligned curvature, (c) original thickness, (d) aligned thickness. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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Fig. 7. Correspondence between the mid-surface of a left hippocampus and a 

2D flat map; the 𝑥 axis follows the hippocampal sheet from medial (subiculum) 

to lateral (CA3), the 𝑦 axis runs from posterior to anterior, and the 𝑧 axis is 

always perpendicular to the hippocampal sheet, pointing towards superior in 

medial regions (such as the subiculum) and towards inferior in lateral regions 

(such as CA3). Panels (a) and (b) show labels for the subiculum (blue), CA1 

(red), CA2 (cyan), and CA3 (green). Panels (c) and (d) show thickness estimates 

both for the mid-surface and the 2D grid, with thickness increasing from red to 

yellow. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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n particular since effects do not vary much along the longitudinal axis.

anels (a) and (c) show the original, non-aligned curvature and thick-

ess, respectively, and panels (b) and (d) show the curvature and thick-

ess after alignment. The overall pattern is similar, but the registered

ata are more aligned across groups. 

.2. Morphometric features of the hippocampal shape and thickness 

nalysis 

The hippocampal shape and thickness analysis provides a set of uni-

nd multivariate morphometric features, including both spatially local-

zed as well as summary measures. The primary outcome are local thick-

ess estimates, defined as the distance measured along the streamlines

n the interior/exterior direction of the hippocampal shape model. For

ur experiments and analyses, we typically use a 40 × 20 coordinate grid

n the medial/lateral and anterior/posterior directions, but in principle,

rbitrary resolutions are possible. The values obtained at the grid points

an then be visualized on either the hippocampal mid-surface, or on a

ectangular plane, i.e. a 2D image such as in Fig. 7 . Thickness, however,

s just one instance of length-based measurements, since these measure-

ents need not necessarily follow the interior/exterior direction, but

an be done in the anterior/posterior and medial/lateral dimensions as

ell. This would give the spatial extent of the hippocampus in these

imensions. Further, distance measurements need not necessarily fol-

ow the streamlines at all, but can also be taken along the surface of

he mesh, which provides circumference measures rather than thick-

ess measures. For all of the above measurements, both uni- and mul-

ivariate versions exist, providing either a concise summary measure or

etailed localization information, depending on the goal of the analy-

is. While all length-based measurements are one-dimensional quanti-

ies, the shape model also allows to derive two- or three-dimensional

uantities, such as the areas of a set of hippocampal slices at different

ocations ( Fig. 8 (a) and (b)), or a model-based estimate of hippocampal

olume, as opposed to a crude voxel-based measure. Also, two or more

easures derived from the shape model can be combined into compos-
5 
te measures that may reveal additional morphometric changes, such as

he ratio between inner and outer surface area, or the shape index, i.e.

he ratio between circumference and surface area, or the surface area

nd volume. Lastly, the shape model also provides a means for mapping

f data from other modalities - such as fMRI or PET signals - to the hip-

ocampal mid-surface. In addition, while all of the above measures rely

n length, area, or volume information, hippocampal geometry can also
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Fig. 8. Slices through the hippocampus. Panels (a) and (b) show left and right 

thickness measurements at one particular location on the longitudinal axis. Pan- 

els (c) and (d) show shapes of the inner, outer, and mid-surface (group averages 

for cognitively unimpaired controls, mild cognitive impairment, and dementia 

groups from the DELCODE / ASHS dataset). 

Table 1 

Demographic and clinical characteristics for the analysis samples from the 

DELCODE and ADNI studies. Abbreviations: CU = cognitively unimpaired con- 

trols, MCI = Mild Cognitive Impairment, DAT = dementia of the Alzheimer 

type. 

age [years] Mean( ± SD) proportion female n 

DELCODE CU 69.4 ( ± 5.36) 0.58 221 

MCI 73.0 ( ± 5.68) 0.49 154 

DAT 74.8 ( ± 6.46) 0.60 93 

Total 71.6 ( ± 6.12) 0.54 468 

ADNI CU 73.0 ( ± 7.22) 0.59 560 

MCI 73.8 ( ± 7.88) 0.43 426 

DAT 76.0 ( ± 8.85) 0.42 168 

Total 73.7 ( ± 7.78) 0.51 1154 
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e characterized by its curvature, and changes in curvature may as well

e indicative of shape changes across time or in health vs. disease ( Fig. 8

c) and (d)). Therefore, we also provide estimates of mean curvature at

very coordinate of the hippocampal sheet ( Fig. 5 (d)) and as summary

easures along a given axis of the hippocampus ( Fig. 6 (a) and (b)). 

.3. Evaluation of the hippocampal shape and thickness analysis 

We evaluate the performance of our algorithm with a series of ex-

eriments and analyses in the domain of neurodegenerative changes in

ild Cognitive Impairment (MCI) and dementia of the Alzheimer type

DAT) as compared to cognitively unimpaired (CU) controls. For this

urpose, we use two datasets in combination with two image prepro-

essing algorithms. Our primary dataset for the evaluation originates

rom the DZNE-Longitudinal Cognitive Impairment and Dementia Study

DELCODE) study ( Jessen et al., 2018 ). DELCODE is an ongoing, longi-

udinal multicentric imaging study in Alzheimer’s disease, with an em-

hasis on its early, preclinical stages. At each DELCODE site, the local

nstitutional review boards approved the study protocol, and the ethics

ommittees issued local ethics approval. The study protocol followed

he ethics principles for human experimentation in accordance with the

eclaration of Helsinki. All participants in the study provided written

nformed consent. From this dataset, we used 3T, high-resolution (0.5

0.5 × 1.5 𝑚𝑚 

3 ) T2-weighted images in conjunction with standard T1-

eighted images. Details of the demographic and clinical characteristics

f the analysis samples are given in Table 1 . 

The second dataset used for evaluation was obtained

rom the Alzheimer’s Disease Neuroimaging Initiative (ADNI;
6 
ttps://adni.loni.usc.edu ) database. ADNI is an ongoing multicen-

ric, longitudinal imaging study on Alzheimer’s disease and its

rodromal syndrome, Mild Cognitive Impairment ( Jack Jr et al., 2008 ;

ueller et al., 2005 ). All participants provided written informed

onsent according to the Declaration of Helsinki and the study was ap-

roved by the institutional review board at each participating site. We

ncluded all cases for which high-resolution hippocampal T2-weighted

mages in combination with the corresponding T1-weighted images

ere available. Although acquisition parameters are heterogeneous in

he ADNI study (e.g. due to scanner differences), all T2 images were

cquired at 3T, had a resolution of (0.4 × 0.4 × 2.0 𝑚𝑚 

3 ) or higher,

nd covered the whole hippocampus. Only a single time-point per

articipant was retained if longitudinal measurements were available.

gain, details of the demographic and clinical characteristics of the

nalysis samples are given in Table 1 . 

All images were processed with the ASHS software package

 Yushkevich et al., 2015b ), version 2.0.0, and the Penn ABC-3T ASHS

tlas for T2-weighted MRI ( Xie et al., 2023 ), to create segmentations

f the hippocampus and its subfields. Both the high-resolution, hip-

ocampal T2 image and the standard T1 image were processed. For

ur analyses, we retained the labels for the subiculum, CA1, CA2, and

A3 (note that the presubiculum is not included as a separate label

n the ASHS segmentation, and that the subiculum in the ASHS seg-

entation overlaps with both the presubiculum and the subiculum in

he FreeSurfer segmentation). All masks in the DELCODE/ASHS dataset

ere visually inspected for segmentation errors and manual edits were

erformed, where necessary and possible, to correct such errors (see

ppendix A.4.1 for details). In addition, to evaluate the impact of image

reprocessing strategy, we also used Freesurfer’s hippocampal subfields

egmentation ( Iglesias et al., 2015 ) as implemented in Freesurfer 7.1.1,

gain utilizing the high-resolution T2 and the standard T1 image. La-

els for the presubiculum, subiculum, CA1, CA2/3, and the molecular

ayer were used within this study. For both, the ASHS and Freesurfer re-

ults, we then apply our algorithm, including the curvature alignment,

o compute thickness and further geometrical features of the hippocam-

us. Details about QC procedures and processing results are given in

ppendix A.4.1 . For comparison, we also evaluate the results of the Hip-

Unfold algorithm ( https://github.com/khanlab/hippunfold ; DeKraker

t al., 2018, 2020 ). We used the singularity container for HippUnfold

ersion 1.2, and processed the high-resolution hippocampal T2 image

n conjunction with the standard T1 image for template registration. 

Our primary goal in the following analyses is to illustrate our algo-

ithm in a typical application scenario, to replicate well-known clinical

roup differences, and to evaluate whether or not the proposed tools

rovide additional sensitivity beyond the traditional, voxel-based mea-

urements of hippocampal volume for distinguishing between clinical,

ubclinical, and cognitively unimpaired groups. While our algorithm

lso allows for other analyses such as the investigation of associations

ith cognitive measures or CSF or peripheral biomarkers, these are be-

ond the scope of this methods-oriented work. 

. Results 

.1. Hippocampal volume 

We first examine group differences in ASHS-derived estimates of bi-

ateral hippocampal volume as a benchmark for the subsequent thick-

ess analyses. In a regression analysis with clinical group as the pre-

ictor of interest, and age, gender, and total intracranial volume as re-

ressors of no interest, both the MCI and DAT groups show significant

olume reductions in comparison to the control group (MCI < controls:

 = 8 . 23 , 𝑝 < . 001 ; DAT < controls: 𝑡 = 13 . 44 , 𝑝 < . 001 ). The group dif-

erences for total hippocampal volume are also reflected at the more

etailed level of individual hippocampal subfields ( Table 2 ). The over-

ll pattern of larger volume losses in the DAT group than the MCI group

emains the same, but group differences appear to be more pronounced

https://adni.loni.usc.edu
https://github.com/khanlab/hippunfold
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Fig. 9. Evaluation of group differences in hippocampal thickness, based on an ASHS segmentation in the DELCODE sample. Left: mean localized hippocampal 

thickness estimates for the left and right hemisphere in the DAT, MCI, and control groups. Right: statistical evaluation of thickness differences between the controls 

and the MCI and DAT groups. Orange/blue colors indicate regions that are significant after FDR2-correction for multiple comparisons. Black lines indicate, from 

medial to lateral, boundaries between the subiculum, CA1, CA2, and CA3. (For interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 

Table 2 

Statistical evaluation of group differences 

for ASHS-derived estimates of selected hip- 

pocampal subfield volumes, controlling for 

age, sex, and total intracranial volume. 

𝑡 𝑝 

Subiculum DAT < CU 9 . 64 < 0 . 001 
MCI < CU 5 . 16 < 0 . 001 

CA1 DAT < CU 11 . 22 < 0 . 001 
MCI > CU 6 . 27 < 0 . 001 

CA2 DAT < CU 6 . 18 < 0 . 001 
MCI > CU 2 . 21 0 . 027 

CA3 DAT < CU 2 . 69 0 . 007 
MCI > CU 0 . 78 0 . 437 
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Table 3 

Peak coordinates and statistics for the evaluation of aligned 

thickness estimates. For all analyses, clinical group was used 

as predictor of interest, and age and sex as covariates of no 

interest. 

x y 𝑡 𝑝 𝑝 𝐹𝐷𝑅 2 

DAT < CU left 19 21 9.09 < 0 . 001 < 0 . 001 
DAT < CU right 20 21 9.53 < 0 . 001 < 0 . 001 
MCI < CU left 18 5 6.60 < 0 . 001 < 0 . 001 
MCI < CU right 20 21 5.44 < 0 . 001 < 0 . 001 

Table 4 

Statistical evaluation of group differences for 

summary measures of hippocampal extent and 

thickness. For all analyses, clinical group was 

used as predictor of interest, and age and sex 

as covariates of no interest. 

𝑡 𝑝 

Length (x) DAT < CU 8.91 < 0 . 001 
MCI < CU 4.74 < 0 . 001 

Length (y) DAT < CU 1.01 0.311 

MCI < CU −0 . 08 0.939 

Length (z) DAT < CU 8.95 < 0 . 001 
MCI < CU 5.13 < 0 . 001 
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d  
owards the medial end of the hippocampus, i.e. rather in the subiculum

r CA1 than in CA2 or CA3. 

.2. Hippocampal thickness 

We next evaluate our algorithm with respect to the spatial distribu-

ion of localized thickness estimates and its ability to reveal differences

etween clinical groups. Fig. 9 shows raw hippocampal thickness in the

AT, MCI, and control groups and the result of a regression model with

he predictors group, age, and gender that was fit at each vertex. Hip-

ocampal thickness primarily varies along the medial-lateral axis, and

ighest values are observed in CA1 and the subiculum. The differences

n thickness estimates between the diagnostic groups reflect and add

ore detail to the general pattern of group differences observed for total

ippocampal volume and the volumes of hippocampal subfields: higher

eductions in thickness as compared to the control group are observed

n the DAT group than in the MCI group, and both remain significant

fter correction for multiple comparisons ( Fig. 9 and Table 3 ). Although

ide-spread, these differences are not uniform across the hippocampal

ody, but vary along its extent, primarily across the medial-lateral axis,

nd less across the anterior-posterior axis, with most pronounced differ-

nces being observed at the border between CA1 and the subiculum. 

.3. Hippocampal geometry 

A straightforward extension of the proposed thickness measurements

s to measure distance not only in the 𝑧 direction, but also in the 𝑥 and
7 
 coordinate directions. For clarity, we will refer to these two mea-

urements as measures of extent , whereas we reserve the term thick-

ess to measurements in the 𝑧 direction exclusively. Table 4 shows the

tatistical evaluation of group differences for geometry-based summary

easures of hippocampal extent and thickness, averaged across hemi-

pheres. For the MCI and DAT groups, reductions in extent compared

o controls are observed in the medial-lateral ( 𝑥 ), but not the anterior-

osterior ( 𝑦 ) direction. For both groups, reductions are also present for

he mean hippocampal thickness ( 𝑧 ) summary measure, as could be

xpected based on the previously observed reductions in the localized

hickness estimates (cf. Fig. 9 ). 

Curvature is a geometric measure complementary to length-based

easurements. Here, we evaluate its potential to reveal additional shape

haracteristics beyond hippocampal thickness. Fig. 10 shows localized

ean curvature estimates in the left and right hemisphere for the three

iagnostic groups. The overall pattern is similar across groups, with a
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Fig. 10. Evaluation of group differences in curvature, based on an ASHS segmentation in the DELCODE sample. Left: localized curvature estimates for the left and 

right hemisphere in the DAT, MCI, and control groups. Right: statistical evaluation of curvature differences between the controls and the MCI and DAT groups. 

Orange/blue colors indicate regions that are significant after FDR2-correction for multiple comparisons. Black lines indicate, from medial to lateral, boundaries 

between the subiculum, CA1, CA2, and CA3. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 

Table 5 

Statistical evaluation of group differences for 

hippocampal circumference estimates, inte- 

rior/exterior ratio, surface area, shape index 

(circumference/area). For all analyses, clinical 

group was used as predictor of interest, and age 

and sex as covariates of no interest. 

𝑡 𝑝 

Circumference DAT < CU 9.18 < 0 . 001 
MCI < CU 4.88 < 0 . 001 

Interior/exterior 

ratio 

DAT < CU −0 . 18 0.856 

MCI < CU 0.57 0.571 

Surface area DAT < CU 7.46 < 0 . 001 
MCI < CU 3.27 0 . 001 

Shape index DAT < CU −1 . 40 0.163 

MCI < CU 0.06 0.951 
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Table 6 

Classification performance (AUC ± CI) and 𝑝 -values of the 

likelihood ratio (LR) test for hippocampal volume and hip- 

pocampal thickness. 

volume volume & thickness LR test 

DAT vs. CU 0 . 88 ± 0 . 05 0 . 90 ± 0 . 05 < 0 . 001 
MCI vs. CU 0 . 73 ± 0 . 04 0 . 75 ± 0 . 06 0.007 
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ronounced bend towards the lateral end of the hippocampus, and a less

ronounced one towards its medial end. A statistical comparison shows

urvature differences between the DAT and CU as well as the MCI and

U groups, primarily in the left hemisphere, with a more pronounced

urvature increase in medial regions. 

Even beyond localized hippocampal thickness and curvature, the

eometry-based representation of the hippocampus allows to derive ad-

itional measures such as a) the circumference, defined as the sum

f inner/outer lengths, b) the ratio of these lengths, called the inte-

ior/exterior ratio, c) the surface area, and d) the 2D shape index,

hich is the ratio of circumference and surface area. Here, we explore

f these measures can explain differences in hippocampal shape in ad-

ition to volume, thickness, and curvature. We observe group differ-

nces between the DAT and MCI groups and the control group, respec-

ively, for hippocampal circumference and surface area, but not for in-

erior/exterior ratio, nor for the shape index ( Table 5 ). 

.4. Classification 

We next evaluate whether hippocampal thickness has an incremen-

al explanatory value for the classification of the MCI and DAT groups

s. cognitively unimpaired controls. Specifically, we evaluate if the ad-

ition of hippocampal thickness information improves the performance

area under the curve, AUC) of a logistic regression model that con-

ains hippocampal volume as the only other predictor. Statistical sig-
8 
ificance of improvements is assessed using the likelihood ratio test.

able 6 shows that classification performance is higher for the DAT

roup than for the MCI group. Furthermore, the addition of thickness

nformation improves the performance for both groups – even when

sing only mean hippocampal thickness as a broad summary measure

indicating the complementary information in these measurements.

n contrast to hippocampal thickness, the geometry-based measures do

ot provide incremental explanatory value beyond hippocampal volume

see Section A.4.3 in the Appendix). 

.5. Replication with different datasets and segmentation algorithms 

Finally, we evaluate the ability of the algorithm to handle differ-

nt datasets and different image segmentation algorithms. Specifically,

e attempt to replicate the main results using FreeSurfer’s hippocam-

al subfields segmentation algorithm ( Fig. 11 (a) and 11 (d)). Further, we

lso exchange the dataset and re-run the analysis for the ADNI subset

ith both the FreeSurfer ( Fig. 11 (b) and 11 (e)) and the ASHS ( Fig. 11 (c)

nd 11 (f)) segmentation algorithm. The overall pattern of results is sim-

lar across algorithms and datasets, and consistent with the main results

btained from the DELCODE data and ASHS segmentation: the high-

st thickness values are observed in the subiculum, with little varia-

ion along the anterior-posterior axis. For all analyses, these estimates

how decreases for the MCI and DAT groups as compared to the con-

rol group, with more pronounced decreases in the DAT than in the MCI

roup. The statistical evaluation shows that these differences are signifi-

ant primarily in the subiculum and CA1. The most lateral regions of the

ippocampus show, in contrast, an increase in thickness, at least for the

reeSurfer analyses. A supplemental analysis with a purely image-based

hickness estimation algorithm ( Section A.3 in the Appendix) indicates

hat these are likely already present in the segmentation images and not

ntroduced as an artifact of the proposed thickness estimation method.
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Fig. 11. Localized thickness per diagnostic group and statistical evaluation of group differences for different datasets and segmentation algorithms. Left: DELCODE 

/ FreeSurfer, middle: ADNI / FreeSurfer, right: ADNI / ASHS. Note, that the ASHS and FreeSurfer results cannot be compared directly due to differences in the 

underlying segmentation protocols. 

Table 7 

Classification performance (AUC ± CI) and 𝑝 -values of the likelihood ra- 

tio (LR) test for hippocampal volume and hippocampal thickness using 

different datasets and segmentation algorithms. 

volume volume + thickness LR test 

DELCODE / 

FreeSurfer 

DAT vs. CU 0 . 88 ± 0 . 07 0 . 89 ± 0 . 06 0.184 

MCI vs. CU 0 . 75 ± 0 . 07 0 . 76 ± 0 . 07 0.024 

ADNI / 

FreeSurfer 

DAT vs. CU 0 . 87 ± 0 . 04 0 . 87 ± 0 . 03 0.104 

MCI vs. CU 0 . 61 ± 0 . 04 0 . 61 ± 0 . 07 0.131 

ADNI / 

ASHS 

DAT vs. CU 0 . 84 ± 0 . 06 0 . 86 ± 0 . 05 0.005 

MCI vs. CU 0 . 62 ± 0 . 05 0 . 62 ± 0 . 05 0.197 
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n contrast to the main results in the DELCODE / ASHS data, an anal-

sis of the incremental validity of the hippocampal thickness estimates

hows an added value only for MCI vs. CU classification in the DELCODE

 FreeSurfer data and for the DAT vs. CU classification in the ADNI /

SHS data ( Table 7 ). 

Fig. 12 depicts the results of the HippUnfold algorithm on the DEL-

ODE dataset. For better comparison with the above results in the hip-

ocampal body, we here restrict the comparison to this region. How-

ver, since the HippUnfold algorithm not only unfolds the body, but the

omplete hippocampus, we also show the full extent of the unfolding in

ppendix A.4.4 . We observe that thickness is highest in the most lateral

egions in all groups. The statistical evaluation highlights that thickness

ecreases are primarily present in posterior regions of the hippocam-

us in the DAT group, and to a lesser extent in the MCI group. Further,

hickness increases appear to be present in CA1, CA2 and the subicu-

um. Similar results are obtained for an analysis of the ADNI dataset

see Section A.4.5 in the Appendix). 

. Discussion 

In this work, we have presented an approach for the unfolding of the

ippocampus, for the creation of a common space and coordinate system

cross individuals, for thickness estimation, and the extraction of shape

eatures. We have further conducted an extensive empirical analysis to
9 
valuate the proposed algorithm in a range of prototypical application

cenarios. 

Our main results can be summarized as follows: first, in compari-

on with traditional volumetric estimates, localized thickness estimates

rovide additional information in their ability to pinpoint the location

f effects onto the hippocampal sheet. In this regard, we observed that

hickness differences were most pronounced at the border between CA1

nd the subiculum. While this is in line with our observations of greater

olumetric differences in the subiculum and CA1 than in CA2 or CA3,

ur method adds spatial detail to this observation. We take this as an in-

ication of the utility of our algorithm. Hippocampal thickness estimates

lso provide additional, complementary information in their ability to

ugment existing analyses. This is evident from the improvement in clas-

ification performance when thickness was added as an additional pre-

ictor. In that sense, hippocampal thickness captures information that

s not redundant with or included in traditional estimates. Therefore,

he incremental value beyond traditional analysis strategies is another

ndication of the utility. Second, hippocampal thickness differentiates

etween clinical groups consistent with traditional, volume-based es-

imates. Specifically, we have been able to replicate group differences

etween the DAT and MCI groups and the control group, respectively,

or hippocampal thickness, with larger differences for the DAT vs. CU

omparison than for the MCI vs. CU comparison. The reproducibility

f these known effects points to the validity of our algorithm. Third,

ur proposed method for the analysis of hippocampal thickness works

cross different datasets and can be used with different segmentation al-

orithms. Specifically, we obtain similar, although not identical, results

or the ADNI and DELCODE data as well as for the FreeSurfer and ASHS

egmentation tools. With regard to group differences and spatial distri-

utions of effects, the main results hold for all combinations of datasets

nd segmentation algorithms, emphasizing the generalizability of our

lgorithm. 

We have observed a set of notable results that deserve further discus-

ion: first, the vertex-wise results indicate that there are indeed effects

hat extend beyond the boundaries of a single subfield and/or do not

over a single subfield entirely. This makes the detection of these effects

ith traditional region-based approaches difficult. It also underlines the
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Fig. 12. Evaluation of group differences in hippocampal thickness, based on the HippUnfold algorithm in DELCODE. The figures have been cropped approximately to 

the hippocampal body region. Left: mean localized hippocampal thickness estimates for the left and right hemisphere in the DAT, MCI, and cognitively unimpaired 

control groups. Right: statistical evaluation of thickness differences between the controls and the MCI and DAT groups. Orange/blue colors indicate regions that are 

significant after FDR2-correction for multiple comparisons. Black lines indicate subfield boundaries between CA4, CA3, CA2, CA1, and subiculum, from lateral to 

medial. Note, that there is no correspondence between coordinates for the HippUnfold algorithm and the algorithm proposed in this paper. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 
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mportance of localized methods that are independent of potentially un-

eliable boundaries between hippocampal subfields and instead permit

he detection and localization of effects extending across subfield bound-

ries. Further, localized approaches, such as ours, permit even targeted

nalyses with custom region of interest definitions that can focus on a

edicated hypothesis. 

Second, the analysis of geometric features beyond thickness has

emonstrated that traditional shape metrics such as shape index or inte-

ior/exterior ratio, which are based on global shape characteristics, are

imited in revealing group differences. This underlines the need for novel

nd detailed shape descriptors such as localized hippocampal thickness.

t the same time, significant group differences in measures such as lat-

ral/medial extent, curvature, circumference, or surface area illustrate

hat anatomical changes of the hippocampus in MCI and Alzheimer’s

isease dementia are multi-dimensional, and cannot be solely captured

y a single summary metric such as volume. Whether or not these mea-

ures can improve existing analyses remains an open question, given that

e did not observe incremental explanatory value beyond hippocampal

olume in our analyses. However, this does not rule out that they could

e relevant in other application contexts (e.g., other diseases). 

Third, differences and commonalities between datasets and segmen-

ation algorithms have likely had an impact on the results of our al-

orithm. While a comparison was not the primary focus of this study,

e note that ADNI is a larger and more heterogeneous study than DEL-

ODE, with a higher number of sites and a greater heterogeneity with

egard to, for example, imaging devices and acquisition regimes. The

wo studies also have different demographics and clinical characteris-

ics. This suggests that a direct comparison can only be made with cau-

ion. In spite of these differences, the results for the ADNI vs. DELCODE

amples appear to be relatively similar, and remaining differences ap-

ear to be driven rather by the underlying segmentation algorithm and

orresponding region definition. Differences in overall thickness, for ex-

mple, can be expected due to the inclusion of the molecular layer in

he FreeSurfer segmentations, but not in the ASHS or HippUnfold seg-

entations. Nevertheless, the overall picture is that comparable results

an be expected for the thickness estimation, but need to be interpreted

ith reference to the underlying segmentation algorithm. 

This is also true for the comparison with the HippUnfold algorithm,

hich covers the complete Hippocampus and employs a different thick-

ess estimation approach, resulting in only limited correspondence be-

ween the two algorithms. This is primarily due to the different underly-
10 
ng segmentations as well as different boundary definitions. With regard

o the latter, the main difference is in the anterior/posterior dimension,

here the HippUnfold algorithm includes the head and tail, while ours

oes not. Also in the laminar dimension, consistent thickness differences

an be expected due to the inclusion of the molecular layer / SRLM in the

reeSurfer segmentation. In contrast, we assume more similarity with re-

ard to the medial/lateral axis (i.e., proximal/distal boundaries), since

he segmentations in both algorithms extend from the subiculum to CA3

sometimes a small part of CA4 is also included in the HippUnfold seg-

entation). Despite these differences between the algorithms, there are

ome commonalities: Both showed more pronounced differences for the

D group than the MCI group when compared with the CU group, and

oth showed thickness decreases as well as increases in various parts of

he hippocampus. However, the algorithms differ with regard to the lo-

alization of these effects: while our algorithm primarily detects thick-

ess decreases in the MCI and AD groups in the subiculum/CA1 area

long the anterior-posterior axis, the HippUnfold algorithm localizes

hese effects primarily along the whole medial-lateral axis and in the

osterior part of the hippocampus. We also note a lesser amount of ap-

arent increases in hippocampal thickness in our algorithm, and that

ifferences between clinical groups appear to align more with subfield

oundaries. It is difficult to speculate about the causes the observed dif-

erences. The HippUnfold algorithm and our algorithm are similar, and

oth share the same principal idea of applying differential geometry op-

rators to MR images. Leaving the obvious difference of the inclusion of

ead and tail in the HippUnfold algorithm aside, there are differences in

he underlying segmentations, in the post-processing of the segmenta-

ions, the creation of meshes, and also the unfolding procedure itself. For

hese reasons, differences between the two methods are to be expected.

Finally, the results of the classification analyses turned out to be

ixed, especially when considering datasets and segmentations other

han the DELCODE / ASHS combination. In particular for the ADNI /

reeSurfer, hippocampal thickness did not have an incremental predic-

ive value beyond hippocampal volume for the classification between

ither the DAT or MCI groups and the control group. One potential ex-

lanation is the use of averaged hippocampal thickness as a summary

easure, which neglects the regional specificity of thickness differences.

nother explanation, at least for the DAT vs. controls classification, is

he potential presence of ceiling effects; that is, an excellent discrimina-

ion between these groups can already be achieved with hippocampal

olume alone, without much room for improvement. 
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A particularly noteworthy observation was that surprising thickness

ncreases appeared to be present in some regions of the hippocampus

or some dataset and segmentation algorithm combinations. We con-

ucted an additional experiment with a purely image-based thickness

stimation algorithm (as opposed to our geometry-based algorithm) to

etermine if these unexpected effects could be due to our method, the

ippocampal segmentation, or the image data itself ( Appendix A.3 ). We

ake the results as evidence that the increases are either due to the seg-

entation or even reflect actual anatomical differences. The ultimate

ause of the observed effects cannot be determined in the present study.

owever, we speculate that volume and shape changes in Alzheimer’s

isease are more complex than simple uniform shrinkage. For exam-

le, the displacement or shape change of neighboring structures will

ead to shape changes in the hippocampus, causing a deformation of

his structure. Even if the general pattern, as indicated by both volume

nd thickness estimates, is still characterized by an overall decrease in

olume and thickness, this does not rule out that there are locally het-

rogeneous effects, which can even take the form of local increase. We

rgue that if viewed as a deformation process, hippocampal shape anal-

sis will particularly benefit from advanced methods that have sufficient

ensitivity to reveal such subtle changes. 

The curvature-based alignment of hippocampal thickness is intended

o compensate for differences in the lateral-medial extent of the hip-

ocampus that may bias the correspondence of coordinates across clini-

al groups. Since in its current form it is based on an average of curvature

long the anterior-posterior dimension, this may not be fully accounting

or overall shape differences. The proposed algorithm can in principle be

sed for alignment at each longitudinal coordinate. However, this has

o be weighted against a potential increase of noise in the non-averaged

urvature estimates. 

We note, that the quality of the results depends on the data charac-

eristics and the segmentation algorithm, i.e. some datasets and segmen-

ations may be better suited than others for an analysis using our algo-

ithm. Here, we specifically observed challenges with the ADNI data in

onjunction with the ASHS segmentations. We speculate that this is for

hree reasons: first, ADNI data are characterized by highly anisotropic

oxels ( 2 mm maximum edge length). This makes the segmentations

ore prone for discontinuities, which increases the likelihood of holes or

ridges. Second, ASHS does not internally upsample like the FreeSurfer

egmentation method. This leads to anisotropic segmentations for ASHS,

hereas the FreeSurfer segmentation outputs have 0 . 33 mm isotropic

oxels, which eventually allow for smoother segmentations. Finally, for

he ADNI/ASHS analysis, and in contrast to the other analyses, no ex-

licit labels for the hippocampal head were available, which means that

he boundary between hippocampal head and body needs to be esti-

ated heuristically. 

A few limitations of our approach are also worth mentioning. In its

urrent form, the algorithm is limited to an analysis of the hippocam-

al body, and does not include regions of the hippocampal head and

ail. This is because automated segmentations and contemporary voxel-

esolutions currently either do not provide sufficient detail such as in the

ail of the hippocampus, or do not provide a segmentation that is easily

uited for unfolding, such as in the hippocampal head (due to folding

f the hippocampal head onto itself). However, if this changes with e.g.

mproved segmentation algorithms or improved resolution and contrast

n MR images, our algorithm could be extended to include these regions

s well. A second limitation is that our algorithm depends on the qual-

ty of the hippocampal sub-segmentations provided by e.g. FreeSurfer

r ASHS. We observed that around 5% of those segmentations contain

opological defects, such as holes, and cannot be processed with our al-

orithm (it will terminate and report an error). Manual correction of the

egmentations can – in most cases – fix those errors, if needed. It should

lso be acknowledged that some variance may also be introduced by the

utting planes that separate the hippocampal body from the head and

ail. Also the placement of the mid-surfaces within the hippocampus can

ary, depending on the construction of the 3D coordinate system. How-
11 
ver, this does not necessarily impact the computation of the thickness

stimates much, since these follow the streamlines through the coordi-

ate system in the direction orthogonal to the mid-surface. Finally, the

utomated processing can fail, especially if the basic structure of the

ippocampal body is not intact in the segmentation inputs. We, there-

ore, provide QC images and detailed error messages in case of failures,

o support the user. We, however, expect that for reasonable segmen-

ation quality, no manual intervention is needed for proper function of

he algorithm. 

The proposed algorithm offers several further analysis options that

ave not been evaluated in the present work. One example is the map-

ing of other signals such as PET or fMRI data onto the hippocampal

heet, which allows a precise localization and group comparison, as

ell as a straightforward correlation of these signals with hippocam-

al thickness data. Beyond that, an extension of the algorithm to re-

ions beyond the hippocampus is possible: whenever boundaries can

e defined and a 2D grid gives a reasonable characterization of the

articular brain structure, our methodology is principally applicable

o neighboring structures such as the entorhinal cortex as well, either

n conjunction with the hippocampus, or as a separate entity. In ad-

ition, regions in the hippocampal head and tail could be included in

he unfolding algorithm whenever advanced MR acquisition protocols

ideally with isotropic voxel resolution – give enough detail and a

lear separation between the folding in these regions. Due to the simi-

ar folding structure in these regions, we speculate that the curvature-

ware anisotropic Laplace-Beltrami operator will be useful for identify-

ng anatomical landmarks in these regions as well. Another future ex-

ension concerns the incorporation of an equivolumetric approach for

hickness estimation which can be fitted directly into the thickness di-

ection: In fact, Leprince et al. (2015) start with a Laplacian-based level-

et definition (i.e. the function that we also estimate) and extend it via

n advection approach. An advantage of this approach would be a com-

ensation for curvature in creating a 3D coordinate system; it would,

owever, primarily affect the spacing and distances of layers within that

oordinate system, but not change the thickness estimates that are the

ain variable of interest in the current work. 

In this work, we have presented a novel algorithm to create a sheet

epresentation and an intrinsic coordinate system of the hippocampal

ody. Our approach permits an unfolding of the hippocampus and the

reation of a reference frame that is consistent across individual cases.

his gives a point-wise correspondence of the hippocampal sheet across

emispheres and individuals. In addition to measures of hippocampal

hickness, our approach allows for the analysis of geometric features

hat give additional information about hippocampal shape changes. Fi-

ally, in a series of evaluations, our algorithm has demonstrated its clini-

al utility, validity, and generalizability beyond traditional, voxel-based

easurements of hippocampal volume. 
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ppendix 

1. Anisotropic Laplace level sets 

The Laplace-Beltrami operator (LBO) Δ has been used widely

or mesh/signal processing Lévy (2006) ; Reuter et al. (2009) ;
12 
etzler et al. (2013) and shape analysis (initiated by our work on

ShapeDNA ” Reuter et al. (2006) , with applications in neuroimaging

achinger et al. (2015) ). The anisotropic Laplace-Beltrami operator

 𝛼LBO) is an extension that models a directional dependency of the un-

erlying diffusion process: 

𝐴 𝑓 = 𝑑𝑖𝑣 ( 𝐴 (∇ 𝑓 )) (A.1)

ith the divergence ( 𝑑𝑖𝑣 ), the gradient ( ∇ ) and a 2 × 2 matrix 𝐴 acting on

he tangent vectors (with the identity representing the isotropic case).

nspired by Andreux et al. (2014) who incorporate (extrinsic) surface

urvature via the 𝛼LBO into shape segmentation, we model anisotropy

n a similar way, yet for solving the generalized eigenvalue problem. 

The first eigenfunction with smallest (non-zero) eigenvalue of the

egular LBO (with Neumann boundary condition in case of a bound-

ry) provides the smoothest embedding of a geometric shape onto the

eal line as it minimizes the Dirichlet energy. For eigenfunctions 𝑓 𝑖 the

irichlet energy resolves to the eigenvalue 𝜆𝑖 : 

[ 𝑓 𝑖 ] ∶ = ∫Ω ∥ ∇ 𝑓 𝑖 ∥2 𝑑𝜎 = − ∫Ω 𝑓 𝑖 Δ𝑓 𝑖 𝑑𝜎

= 𝜆𝑖 ∫Ω 𝑓 𝑖 𝑓 𝑖 𝑑𝜎 = 𝜆𝑖 . (A.2) 

In the isotropic case on a cylinder shell (with longer circumfer-

nce than heights, similar to our hippocampal shapes) the first LBO

igenspace with Neumann boundary condition is two dimensional and

he corresponding orthonormal basis are sin and cos (90 ◦ rotated). This

asis can be rotated arbitrarily around the cylinder shell. Using a cur-

ature dependent anisotropic LBO, we can encourage the zero level sets

f the first eigenfunction to settle on high (negative) curvature regions.

his can be achieved by preferring or inhibiting diffusion along specific

urvature directions. We set the coefficients of the diagonal anisotropy

atrix (defined in the orthonormal basis ( 𝑣 𝑚 , 𝑣 𝑀 

) of the min and max

urvature directions) to: 

 𝛼 = 𝑑𝑖𝑎𝑔 
(
𝑒𝑥𝑝 (− 𝛼0 |𝜅𝑀 

|) , 𝑒𝑥𝑝 (− 𝛼1 |𝜅𝑚 |) 
)

(A.3)

here 𝜅𝑚 and 𝜅𝑀 

are the min and max curvature values. The opera-

or is thus isotropic in planar regions. The 𝛼 values control the level of

nisotropy separately for the regions where the absolute max or min

urvature is large. We set 𝛼0 = 0 , to obtain isotropic diffusion also in

egions with large positive curvature. A large positive 𝛼1 will strongly

ncourage zero level sets to localize at the desired negative curvature

egions. Intuitively, modifying the diffusion of the operator is similar to

odifying the metric (e.g. shrinking distances in specific directions) and

sing the regular LBO. Here, specifically, one can think of pinching the

pposite boundaries of the cylinder shell towards each other, shrinking

he height at high negative curvature areas. Due to the embedding the-

rem, zero level sets, where gradients are largest, will localize in those

reas to minimize the Dirichlet energy. 

The algorithm to compute curvature (min, max curvature and di-

ections) can be found, e.g., in Alliez et al. (2003) . The implementa-

ion of the (anisotropic) Laplace operator is based on our FEM imple-

entation Reuter et al. (2009, 2006) . The linear FEM approach can

e directly extended to tetrahedra meshes. Doing so will provide the

ame stiffness matrix as described for the mesh Laplace operator in

.g. Wang et al. (2017) , however, with a different mass matrix. Our

EM mass matrix has the same sparsity pattern as the stiffness ma-

rix and correctly represents the inner product of piecewise linear func-

ions on the tetrahedral mesh. Similar to the 2D triangle case, the di-

gonal mesh Laplace mass matrix is a simplified version of the FEM

ass matrix, obtained by lumping (summing) all elements to the di-

gonal. Another advantage of the FEM approach is its straight-forward

xtension to higher-order approximations with improved convergence

roperties (see e.g. Strang and Fix (2008) ). We make our implemen-

ation of the discrete differential geometry operators for triangles and

etrahedral meshes, together with the FEM solvers, freely available as

he Laplace Python (LaPy) library at https://github.com/Deep-MI/LaPy

https://doi.org/10.13039/501100005224
https://adni.loni.usc.edu
https://doi.org/10.13039/100007333
https://doi.org/10.13039/100000049
https://github.com/Deep-MI/LaPy
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Fig. A1. Surrogate algorithm for image-based thickness estimation. Shown are 

hippocampal subfield labels from a FreeSurfer segmentation (purple: presubicu- 

lum, blue: subiculum, red: CA1, green: CA2/3) in a representative coronal slice. 

For the CA2/3 label, also its medial axis is shown (light green). Red and blue 

dots indicate outer and inner points on the contour line around the CA2/3 re- 

gion. Grey dots indicate 10 equidistant points on a polynomial curve fitted to 

the medial axis. Thickness is measured between the red and blue points (except 

for those on the border between CA1 and CA2) that are closest to each grey dot. 

(For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 

Fig. A2. Image-based thickness estimates (mean and 95% confidence interval) 

for the three diagnostic groups in a FreeSurfer segmentation of the left hip- 

pocampus in the ADNI sample, also indicating subtle thickening in the DAT 

group in lateral regions (i.e., CA3). 
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A
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w  
also as pip and conda packages). LaPy provides highly efficient vec-

orized algorithms, making heavy use of sparse matrices and sparse

EM solvers. Our code for the hippocampal shape analysis (available

t https://github.com/Deep- MI/hippocampal- shape- tools upon publi-

ation) requires LaPy as a dependency. 

2. Curvature-based spatial alignment procedure 

Here we provide a brief description of the curvature-based spatial

lignment procedure that is used to correct for potential shifts of the

oordinate system. The alignment procedure is taken from the field of

unctional data analysis, which deals with the analysis of signals (e.g.,

urves, surfaces) that vary over a continuum (often space or time).

cross cases, such data is often characterized by amplitude variations

s well as shifts in phase, which is also what we observe for the cur-

ature profiles along the medial/lateral dimension. While both sources

f variability can be interesting on their own, their joint presence con-

ounds the interpretation of the signal. This can, however, be alleviated

y an alignment, or registration, of the individual curves. The registra-

ion algorithm employs functional principal components analysis, which

epresents the signal in terms of a limited set of basis functions. In our

cenario, this results in the estimation of a curvature template, which

epresents the dominant mode of variation across cases, as a first step.

tep two is the estimation of a smooth warping function that maps the

bserved signals to the template. These two steps are repeated in an

lternating manner until convergence of the algorithm. 

3. Supplementary experiments 

We conducted an additional experiment to gain more insight into the

nexpected thickness increases in the CA2/3 regions that were observed

cross analyses ( Section 3.5 ) and to rule out the possibility that these

ffects are introduced as an artifact of the proposed thickness estima-

ion method. For this purpose, we devised a simplified thickness esti-

ation algorithm that solely operates in image space (on a single slice)

nd does not depend on a mesh model of the hippocampus ( Fig. A1 ).

pecifically, we extract the label for the CA2/3 region in a representa-

ive coronal slice and identify its medial axis. Next, we fit a polynomial

f degree 2 to the medial axis and divide it into 30 segments of equal

ength (proportional sampling). To test if the distance of the sampling

oints has an influence, in a second analysis we use a varying number

f segments with identical length (equidistant sampling). In both cases,

or each segment, we find the two closest points on the inner and outer

ontours around the CA2/3 region (the points on the border between

A2 and CA1 are excluded). The distances between each pair of closest

ontour points are taken as crude image-based thickness estimates. 

Figure A2 shows the simplified hippocampal thickness estimates for

he two processing variants: for equidistant sampling, we find that there

re less sample points on the medial axis in the DAT group than in

he MCI or control groups, reflecting the reductions of length in the

edial/lateral dimension as observed in our previous analyses of ge-

metrical length measures across the hippocampal body ( Section 3.3 ).

or proportional sampling, all groups have the same number of sample

oints by definition (albeit with different spacing). Both processing vari-

nts also show thickness differences between groups: consistent with our

revious analyses ( Section 3.5 ), reductions in thickness are primarily ob-

erved towards the medial end of the region under consideration, i.e. at

he border between CA2 and CA1. For some parts of the CA2/3 region, in

articular its tip, the analyses also show thickness increases in the DAT

roup as compared to the MCI group and the group of cognitively unim-

aired controls, similar to our previous observation. Importantly, this is

he case for both the proportional sampling and, although to a lesser

xtent, the equidistant sampling. These results suggest that a) the unex-

ected thickness increases are observed independently of the proposed,

eometry-based thickness estimation algorithm, and b) that they are not,
13 
r at least not exclusively, due to differences in the medial/lateral ex-

ent of the hippocampus, and potentially ensuing differences in spatial

ampling across anatomical subregions of the hippocampus. 

4. Supplementary analyses 

4.1. Details and examples for QC procedures 

A-priori anatomical QC by means of visual inspection and classifi-

ation ( ”good ”, ”fair ”, and ”poor ”) of the segmentations has been per-

ormed for the ASHS segmentations in the DELCODE study, which is

ur main analysis sample (in fact, partly for this reason). In total, there

ere 379 (81%) good, 32 (6.8%) fair, and 57 (12.2%) poor cases. A

reak-down of these numbers by diagnostic group showed that there

ere more lower-quality segmentations with disease progression: CU

https://github.com/Deep-MI/hippocampal-shape-tools
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Fig. A3. Examples of segmentation errors. A: insufficient coverage of the hip- 

pocampus by the high-resolution T2 scan. B: incorrect voxel dimensions (long 

edges in the inferior-superior direction instead of the anterior-posterior direc- 

tion. C: Gap between CA1 (blue) and and CA2 (white). D: Connection between 

segmentations of the Subiculum (orange) and CA3 (purple). (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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Fig. A4. Examples of geometrical errors. A+B: holes, C+D: bridges, E+F: pro- 

trusions, G+H: boundary issues. Images on the left (A, C, E, G) are prior to 

correction, images on the right (B, D, F, H) after correction. 
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𝑥  

i  
.5%, MCI 19.5% and DAT 23.1% poor quality cases, which would be

andidates for exclusion in an applied study. We, however, retain these

ases in our analysis, as we are not primarily interested in generating

ew insights into AD pathology in this methods-oriented study and poor

egmentation quality is not always directly connected to failure of the

eometric method. 

For the other analyses and datasets, where no full QC was performed,

e conducted a closer inspection of failure cases for both the main and

he auxiliary analyses. This encompasses (A) failure analyses of the seg-

entation algorithms ( ”segmentation errors ”), and (B) an analysis of

ases where the thickness algorithm did not complete successfully ( ”ge-

metry errors ”). In total, we have observed failure rates of 5.8% in

he DELCODE/ASHS, 5.6% in the DELCODE/FreeSurfer, 16.1% in the

DNI/ASHS, and 5.3% in the ADNI/FreeSurfer analyses. In the follow-

ng, we report, unless noted otherwise, details on segmentation (A) and

eometrical (B) errors for the ADNI/ASHS analysis. We have observed

imilar errors also in the DELCODE/ASHS, DELCODE/FreeSurfer, and

DNI/FreeSurfer analyses. However, since the overall failure rates were

uch lower in these analyses, we did not do a detailed quantitative com-

arison as for the more problematic ADNI/ASHS analysis. 

(A) A major cause of failures are segmentation errors as shown in

ig. A3 . Absolute segmentation failures (i.e., no output produced) were

bserved only rarely (only 90/1154 cases for ADNI/ASHS, none for the

ther analyses). Low-quality segmentations were observed more fre-

uently than fundamental failures: Similar to the DELCODE/ASHS vi-

ual inspection results above, we observe such a poor segmentation qual-

ty in 12.5% of the ADNI/ASHS cases, that no reasonable results could

e expected from the application of our algorithm. 

(B) Besides segmentation errors, the thickness estimation algorithm

an fail or produce irregular output also because of errors that occur at

 later stage ( ”geometrical errors ”, Fig. A4 ). Here, we observed three

lasses of errors that prevent a successful completion of the algorithm:

) mesh errors (holes, bridges, protrusions): holes can be present in the

esh due to undersegmentation (missing voxels). Bridges can be present

ue to oversegmentation (e.g., anatomically implausible connections

etween CA3 and CA1 or the subiculum). Protrusions represent shape

rregularities that can be due to either under- or oversegmenation; b)

oundary errors: these are failures to correctly identify the boundaries

f the mesh, either towards the head or tail, or at the medial and lateral
14 
nds. The latter could lead to improper placement of the mid-surface,

hich might not reach deep into each and every bend of the mesh. For

oisy meshes this smooth LBO solution, however, could even have a reg-

larizing effect; c) random errors make up the final class of geometrical

rrors with an unclear cause. In the ADNI/ASHS analysis, mesh errors

ere observed in 5.9% of the cases, boundary errors were observed in

.4% of the cases, and random errors in 5.7% of the cases. 

To prevent and mitigate processing errors, we have implemented a

et of measures in our algorithm to support the user. Specifically, we

rovide QC plots of the hippocampal surface and automatic identifica-

ion of cases with holes, bridges, and protrusions, as well as boundary

nd mid-surface placement issues. If such issues are present, a specific

rror message is issued that describes the problem and ways to mitigate

t (such as choosing different processing parameters). 

4.2. Comparison of aligned vs. non-aligned thickness estimates 

We conducted an additional analysis to evaluate the impact of cur-

ature alignment on the hippocampal thickness results. Fig. A5 shows,

or both hemispheres and the three diagnostic groups, the amount of

hifting that is applied to individual 𝑥 coordinates. Specifically, the fig-

re shows onto which new coordinate the original values are mapped.

 comparison with a line through the origin and unit slope (depicted in

lack) shows that shifting is most pronounced in the middle, i.e. around

 = 20 . For the largest part of the medial-lateral dimension, the shifting

s in the medial direction, although a reversal can be observed at the
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Fig. A5. Descriptive analysis of shifting parameters for the curvature-based 

alignment. The 𝑥 axis shows original coordinates, and the 𝑦 axis shows the 

shifted positions of these coordinates. For reference, a straight line with zero 

intercept and unit slope indicates positions in case of no shifting. 

Table A1 

Classification performance (AUC ± CI) and 𝑝 -values of the like- 

lihood ratio (LR) test for hippocampal volume and geometrical 

measures. 

volume volume & circumference LR test 

DAT vs. CU 0 . 90 ± 0 . 04 0 . 90 ± 0 . 04 0.300 

MCI vs. CU 0 . 73 ± 0 . 06 0 . 73 ± 0 . 06 0.084 

volume volume & int./ext.ratio LR test 

DAT vs. CU 0 . 90 ± 0 . 04 0 . 90 ± 0 . 04 0.567 

MCI vs. CU 0 . 73 ± 0 . 06 0 . 73 ± 0 . 06 0.721 

volume volume & surface area LR test 

DAT vs. CU 0 . 88 ± 0 . 05 0 . 88 ± 0 . 05 0.972 

MCI vs. CU 0 . 73 ± 0 . 06 0 . 73 ± 0 . 06 0.602 

volume volume & shape index LR test 

DAT vs. CU 0 . 88 ± 0 . 05 0 . 88 ± 0 . 05 0.453 

MCI vs. CU 0 . 73 ± 0 . 06 0 . 73 ± 0 . 06 0.271 
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Fig. A6. Thickness estimates and evaluation of group differences for non- 

aligned data, based on the ASHS segmentation in the DELCODE sample. Top: 

mean localized hippocampal thickness estimates for the left and right hemi- 

sphere in the DAT, MCI, and control groups. Bottom: statistical evaluation of 

thickness differences between the DAT, MCI, and controls groups. Orange/blue 

colors indicate regions that are significant after FDR2-correction for multiple 

comparisons. Black lines indicate subfield boundaries between CA2/3, CA1, 

subiculum, and presubiculum, from lateral to medial. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web ver- 

sion of this article.) 
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edial end of the hippocampus. The amount of shifting is, on average,

o more than 3 coordinates. The least amount of shifting is applied to

he CU group, followed by the MCI and DAT groups. These observations

re comparable in the left and right hemisphere. 

Fig. A6 shows thickness estimates and the statistical evaluation of

roup differences for non-aligned data, and is intended to be compared

ith Fig. 9 , which shows aligned data. The overall appearance of the two

gures is similar, both with regard to the spatial localization of thickness

stimates and the magnitude of differences between, and both generally

upport the interpretation of more pronounced thickness differences for

he 𝐷𝐴𝑇 vs. 𝐶𝑈 comparison than for the 𝑀 𝐶𝐼 vs. 𝐶𝑈 comparison.

he effect of shifting is relatively subtle; one notable difference between

he aligned and non-aligned results is that for non-aligned data, appar-

nt thickness increases in the DAT and MCI groups are observed in the

ubiculum and CA1 regions. We hypothesize that these are an artefact of

hrinkage in the medial-lateral dimension in the DAT and MCI groups,

hich is not accounted for in the non-aligned data. 

4.3. Incremental explanatory value of geometry-based measures 

We evaluated whether geometrical measures (circumference, inte-

ior/exterior ratio, surface area, and shape index) provide incremental

xplanatory value for the classification of the MCI and DAT groups vs.

ognitively unimpaired controls. As in the main part of the manuscript,

e evaluate if the addition of geometrical measures improves the per-

ormance (area under the curve, AUC) of a logistic regression model

hat contains hippocampal volume as the only other predictor. Statisti-

al significance of improvements is assessed using the likelihood ratio

est. Table A1 shows that in contrast to hippocampal thickness, none of
15 
he geometrical measures improves the classification beyond hippocam-

al volume. 

4.4. HippUnfold results in the DELCODE dataset 

Here we present a supplement to the analysis of the HippUn-

old results in the DELCODE dataset. While Section 3.5 showed a

ropped version for better comparison with the proposed algorithm,

ig. A7 shows the non-cropped, full extent of the unfolded hip-

ocampus. In addition to the effects in the hippocampal body, we

ow observe thickness reductions in the head in the DAT group as

ompared to the CU group, and an extension of a posterior clus-

er of thickness reductions in the DAT and MCI groups towards the

ail. 

4.5. HippUnfold results in the ADNI dataset 

We conducted an additional analysis to evaluate whether or not the

ippUnfold results generalize across datasets. Fig. A8 shows the results of

n application of the HippUnfold algorithm in the ADNI data. We observe

hat thickness is highest in the most lateral regions in all groups. The sta-

istical evaluation shows that thickness decreases in the DAT group, and

o a lesser in the MCI group, are primarily present in posterior regions

f the hippocampus. Further, thickness increases appear to be present
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Fig. A7. Evaluation of group differences in hippocampal thickness, based on 

HippUnfold algorithm in the DELCODE sample. Top: mean localized hippocam- 

pal thickness estimates for the left and right hemisphere in the DAT, MCI, and 

control groups. Bottom: statistical evaluation of thickness differences between 

the DAT, MCI, and controls groups. Orange/blue colors indicate regions that are 

significant after FDR2-correction for multiple comparisons. Black lines indicate 

subfield boundaries between CA4, CA3, CA2, CA1, and subiculum, from lateral 

to medial. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

Fig. A8. Evaluation of group differences in hippocampal thickness, based on 

HippUnfold algorithm in the ADNI sample. Top: mean localized hippocampal 

thickness estimates for the left and right hemisphere in the DAT, MCI, and con- 

trol groups. Bottom: statistical evaluation of thickness differences between the 

DAT, MCI, and controls groups. Orange/blue colors indicate regions that are 

significant after FDR2-correction for multiple comparisons. Black lines indicate 

subfield boundaries between CA4, CA3, CA2, CA1, and subiculum, from lateral 

to medial. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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n more anterior regions covering CA1, CA2 and the subiculum. Alto-

ether, the results closely resemble the results that were obtained for

he DELCODE dataset. 
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