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Abstract—Previous attempts to predict stock price from limit
order book (LOB) data are mostly based on deep convolu-
tional neural networks. Although convolutions offer efficiency
by restricting their operations to local interactions, it is at
the cost of potentially missing out on the detection of long-
range dependencies. Recent studies address this problem by
employing additional recurrent or attention layers that increase
computational complexity. In this work, we propose Axial-LOB, a
novel fully-attentional deep learning architecture for predicting
price movements of stocks from LOB data. By utilizing gated
position-sensitive axial attention layers our architecture is able
to construct feature maps that incorporate global interactions,
while significantly reducing the size of the parameter space.
Unlike previous works, Axial-LOB does not rely on hand-crafted
convolutional kernels and hence has stable performance under
input permutations and the capacity to incorporate additional
LOB features. The effectiveness of Axial-LOB is demonstrated on
a large benchmark dataset, containing time series representations
of millions of high-frequency trading events, where our model
establishes a new state of the art, achieving an excellent direc-
tional classification performance at all tested prediction horizons.

Index Terms—Deep Learning, Axial Attention, High-
Frequency Trading, Limit Order Book Data

I. INTRODUCTION

Recent advances in processing power and wider access
to market data have allowed machine learning techniques
[1], including deep learning (DL) architectures [2], to be
effectively applied to financial data prediction. In particular,
research in high-frequency trading (HFT) has benefited greatly
from the wider availability of highly granular microstructure
data [3], [4]. Despite these large volumes of data, however, the
main challenges remain, namely that financial time series are
characterized by complex dynamics, non-stationarity, and very
low signal to noise ratios, making them notoriously difficult to
forecast. Traditional methods such as ARIMA [5] and VAR [6]
attempt to cope with this problem by relying on carefully hand-
engineered features. Modern data-driven techniques, on the
other hand, take a more agnostic approach, with deep learning
models being able to learn the underlying mechanisms driving
high-frequency trends and uncover predictive features directly
from data.

Convolutional neural networks (CNNs) have been the most
heavily exploited DL architectures in this context, due to their

generalization ability and high efficiency, achieved through
parameter sharing. For example, the works of [7], [8] demon-
strate their effectiveness to predict stock price movements
from LOB data using only a few convolutional layers. By
design, however, CNNs can only aggregate information within
a local region, which prevents them from modelling long-
range dependencies. Several architectures have been recently
developed to address this limitation in the context of high-
frequency trading. DeepLOB [9] combines convolutional lay-
ers with a long short-term memory network (LSTM), with
an additional attention mechanism in [10], to model long-
range interactions. Another line of work uses atrous (dilated)
convolutions [11] to extend the receptive field by inserting
holes between the kernel elements. However, these techniques
introduce additional problems: stacking CNNs with LSTMs in-
creases complexity and processing times, while dilated kernels
throw away information by skipping over some input elements.
It should also be noted that previous works extract useful
feature maps from limit order books (LOBs) by carefully
tuning all parts of the convolutional network, including the
shape of kernels, strides, and the number of filters at each
layer, which introduces extra hyperparameters and makes the
model highly dependent on the ordering of the input features.

In this work, we use a recently-proposed attentional archi-
tecture [12], that does not require such hand-crafted spatial
convolutions, as the basis for Axial-LOB, a new model for
the prediction of stock price movements from LOB data.
In order to learn long-range dependencies, Axial-LOB uses
axial attention layers that factorize the standard 2D attention
mechanism into two 1D self-attention blocks (Fig. 1), allowing
the recovery of the global receptive field in a computationally
efficient manner. Additionally, gated positional embeddings
are used within the attention mechanisms, which enable the
model to utilize and control the amount of position-dependent
interactions. The effectiveness of Axial-LOB is demonstrated
on the publicly available benchmark LOB dataset known as
FI-2010. Experimental results show that Axial-LOB achieves
excellent directional classification performance in relation to
mid-price movements. It sets a new state of the art for all
prediction horizons, improving over the best prior work. More-
over, it has a much lower model complexity and demonstrates
stable performance under permutations of the input data.
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Fig. 1. The Axial-LOB model architecture. Heatmaps show changes in prices and volumes on the bid and ask sides of the limit order book. The gated axial
attention block is the main component of the architecture, implementing two consecutive gated axial attention operations (along width and height axes). For
a more detailed look at the gated attention mechanism, refer to Fig. 3. The 1x1 convolutions are used to manage model complexity via channel-wise pooling.

II. BACKGROUND & RELATED WORK

A. Limit Order Book

A limit order book (LOB) is a collection of all outstanding
limit (price-conditional) orders submitted by market partici-
pants. The LOB is arranged into two opposing sides, each
with multiple price levels: the ask-side, with orders submitted
by traders wishing to sell, and the bid-side, composed of all
buy orders. Fig. 2 shows a simplified visualization of two
snapshots of a limit order book. The red (green) rectangles in
the diagram represent sell (buy) orders, and their placement
within the book depends on the price level specified when
submitting a particular order. The lowest price level among
all sell orders is known as best ask and is denoted by p1a,
while the equivalent on the bid side (best bid) corresponds to
the highest buy order, denoted by p1b . The two diagrams of
Fig. 2 show what happens when a market buy order (order to
buy at the best available price) is submitted at time t+1 with
volume equal to 300. The bottom two price levels on the ask
side are completely filled (since their cumulative volume at
time t is equal to the size of the incoming market order) and,
as a result, the best ask and the mid-price increase.
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Fig. 2. Time evolution of a limit order book from t to t + 1. After the
arrival of a market buy order at t+1, the first two levels on the ask side are
completely filled and, as a result, the best ask and the mid-price move up.

Although it is not possible to trade exactly at the mid-
price, traders treat it as a proxy for a market value of a
stock. There are other important considerations, such as market
impact, order sizing and transaction costs, that high-frequency
traders need to take into account when submitting their orders.
However, the focus of this work is on the central component of
this process: correctly predicting the direction of future mid-
price that, in turn, allows traders to design profitable strategies
based on signals indicating what action should be taken next.

B. Multi-Head Self-Attention
To set the stage, we first discuss the self-attention mecha-

nism, introduced by [13] to enable parallelizability in sequen-
tial tasks. Axial attention, the key operation within Axial-LOB,
is an instance of this concept and is discussed in the next
section. The ability of self-attention to directly encode long-
range dependencies in data has allowed transformer models to
achieve state-of-the-art performance in many areas, including
natural language processing, speech and vision. It has also
been used in [14], in the form of a multi-head attention (MHA)
layer, for forecasting LOB price changes, as an extension to
the methodology developed by [15].

For an input feature map x ∈ RCin×H×W with number of
input channels Cin, height H , and width W , the output of a
self-attention layer at each position is given by

yij =

H∑
h=1

W∑
w=1

softmax(qTijkhw)vhw, (1)

where q =WQx, k =WKx, and v =WV x are the query, key,
and value linear projections of the input x, computed using
learnable matrices WQ,WK ,WV ∈ RCin×Cout . We notice
from (1) that, unlike convolution, the self-attention mechanism
utilizes the whole feature map to capture non-local context by
pooling values v using global affinities given by the output of
the softmax operation.

We can extend this computation to multi-head attention to
capture information from multiple representation subspaces,

MHA = Concatenate(head1, · · · , headH)WO, (2)



where the single-head attention of (1) is computed
H times in parallel using different projection matrices
Wh

Q,W
h
K ,W

h
V ,∀h ∈ {1, ...,H}, and the final output is ob-

tained by concatenating results from each head and linearly
projecting with a learnable matrix WO. It has to be noted,
however, that self-attention, in its original form, is very expen-
sive to compute, having complexity O(h2w2), which makes
it infeasible to apply to high-dimensional inputs.

C. Axial Attention

To tackle the high computational cost of the naı̈ve attention
mechanism, one could simply apply local constraints, as
proposed by [16], [17]. However, this work limits the receptive
field of the model in a way that is similar to convolutions.
As a key part of the Axial-LOB architecture we instead adopt
axial attention [12], which allows us to operate with the global
receptive field, while at the same time being computationally
efficient. Axial attention factorizes the standard 2D attention
into two separate 1D attention modules, a first one that attends
to positions along the width axis followed by a second one
that pools values along the height axis, as illustrated in Fig. 1.
This sequential operation captures global interactions while
reducing the computational complexity to O(hwm), where m
corresponds to all input features.

D. Gated Positional Embeddings

Axial-LOB incorporates a further extension to the concept
of axial attention, that of gated positional embeddings. These
were proposed in [18], as an extension of the work of [19],
which enhances axial attention by incorporating learned rela-
tive positional encodings into the attentional affinities. These
extra bias terms, in essence, provide the model with a dynamic
prior on which parts of the receptive field are most relevant,

yij =

H∑
h=1

softmax(qTijkhj+q
T
ijr

q
hj+k

T
hjr

k
hj)(vhj+r

v
hj), (3)

where rq, rk, rv ∈ RH×H are the learnable positional en-
codings for queries, keys, and values, respectively. Since (3)
describes position-sensitive axial attention applied only along
the height axis, to obtain the global receptive field, the same
operation is also carried out along the width axis.

As mentioned, we use an extension of (3), proposed in [18],
which uses additional gating mechanisms. However, our Axial-
LOB model, instead of applying gates to both the value vector
and its positional encoding, controls only the information flow
from the positional bias terms, as visualised in Fig. 3 and
described using the following expression

yij =

H∑
h=1

softmax(qTijkhj + gqbq + gkbk)(vhj + gvbv), (4)

where bq = qTijr
q
hj , bk = kThjr

k
hj , bv = rvhj and gq, gk, gv

are the gating mechanisms, which are learnable parameters.
The intuition behind this design choice is analogous to that

Fig. 3. The gated axial attention mechanism sits at the center of the Axial-
LOB model and is where the bulk of the computation happens. The influence
of the positional encodings (brown) is controlled by the gates (blue).

proposed by [18]. More specifically, it may be difficult to learn
accurate positional bias representations from highly noisy
financial data. Therefore, in such circumstances, it becomes
advantageous to control, through the use of gates, the level
of influence that these positional encodings have on the
computation of long-range context.

III. METHODOLOGY

A. Axial-LOB Architecture

The architecture of our proposed Axial-LOB model is
shown in Fig. 1. Note that we do not use any technical
indicators as part of the feature set; the input contains only
historical observations from the limit order book, including
price and volume at each level on both bid and ask sides of the
book. More specifically, we use the 40 most recent snapshots
of the LOB, made up of ten price levels and the corresponding
volumes for each side of the book. Therefore, each input to
the network can be described as a single-channel image X ∈
RH×W×1, where the height dimension H represents evolution
in time and the width dimension W corresponds to the input
features. To be more concrete, X = [p

(i)
a , v

(i)
a , p

(i)
b , v

(i)
b ]10i=1,

where p(i)a , v
(i)
a , p

(i)
b , v

(i)
b ∈ R40×1 denote the time evolution of

ask price, ask volume, bid price, and bid volume, respectively,
at the i-th LOB level.

The main building component of the proposed model,
shown in Fig. 1, is the gated axial attention block, which
consists of two layers, each containing two multi-head axial
attention modules with gated positional encodings, the first
module acting along the width (feature) dimension, directly
followed by the second, which operates along the height
(time) dimension. We use 1x1 convolutions, followed by
batch normalization and ReLU activation before and after
these consecutive attention operations to adjust the number of
channels in the intermediate layers of the network. It should be
emphasized that these do not perform any spatial convolutions



and are used instead as a way to manage model complexity, by
implementing feature map pooling. The number of attention
heads in each module and the channel size at each layer are
selected during hyperparameter optimization. Additionally, in
each layer, the attention maps produced by the top branch are
added to the residual connection of the lower branch. Next,
adaptive average pooling is applied to feature maps produced
by the gated axial attention block and the output is transformed
by the fully-connected layer to produce a logit value for each
class. Finally, logits are passed through a softmax layer to
obtain class probabilities.

B. FI-2010 Benchmark Dataset & Target Calculation

The FI-2010 dataset [20] is a large publicly available
benchmark dataset containing high-frequency updates from
limit order books of five stocks operating in the Nasdaq Nordic
stock market. It is made up of ten consecutive days of trading
with price and volume information for the first ten levels
on each side of the LOB. FI-2010 is often described as the
MNIST or ImageNet of high-frequency trading and previous
studies (for example [9]) have made extensive use of this
dataset. It should be noted that we do not utilize any of the
hand-crafted features included in the FI-2010 dataset and that
we restrict all LOB updates to normal trading hours.

The objective of the Axial-LOB model is to predict future
movements of the mid-price, as introduced and illustrated by
Fig. 2, and defined using the following form

p(t) =
p1a(t) + p1b(t)

2
, (5)

with the aim of classifying mid-price movement into going up,
staying approximately stationary (with respect to a threshold
α discussed below), or going down. We note that since events
are measured in tick time, not clock time, the interval between
consecutive events can vary from a fraction of a second to
seconds. In addition, since financial data are highly noisy, a
smoothed version of the future mid-price is in practice used,
which corresponds to the mean of the next k mid-prices,
computed as follows,

m+
k (t) =

1

k

k∑
i=0

p(t+ i), (6)

where k is the prediction horizon, which can also be thought of
as the length of the denoising window, and we conduct exper-
iments using five different values of k = (10, 20, 30, 50, 100).
The direction of the price movement is then computed as the
proportional change of the smoothed future mid-price with
respect to the mid-price observed at t:

dk(t) =
m+

k (t)− p(t)
p(t)

. (7)

Finally, to obtain the target labels, the price direction dk(t) is
compared with a threshold α. We use α = 0.002, in order for
our results to be comparable to the work of others (benchmark
models of Section III-D, which also used this value), and label

Fig. 4. Class distribution at each prediction horizon k. As the horizon
increases, the labels get more evenly distributed, lowering the class imbalance.

the price direction as ’up’ if dk(t) > α, ’down’ if dk(t) < −α
and all other cases as the ’stationary’ class. We are aware of
other more sophisticated techniques for computing future price
direction, but we use the formula in (7) to establish a fair
comparison with the previous studies.

C. Training & Model Calibration

The ten-day FI-2010 dataset is split into training and test
segments, where the first seven trading days are used to train
the model, and the remaining three days are used as the out-
of-sample test data. Additionally, we set aside the last 20%
of the training segment as a separate validation set to tune
model hyperparameters using 100 iterations of random grid
search. Since the FI-2010 dataset was constructed using high-
frequency (millisecond basis) intraday trading events observed
exclusively between 10:30 and 18:00 on each specific day,
there exists a relatively large gap between the training and the
testing segments, preventing any label leakage. For a more
detailed description of the dataset construction, the reader is
referred to [20].

The Axial-LOB network is trained via mini-batch stochastic
gradient descent (SGD) by minimising the cross-entropy loss
between the predicted class probabilities and the ground truth
label,

LCE = −
C∑

c=1

yc × log

(
exp(xc)∑C
i=1 exp(xi)

)
, (8)

where x is the input to the softmax operator, y is the target
label, and the summation is applied over all three classes
denoted as C. The total loss is then obtained by computing
an average of the losses over all training examples. We use
momentum [21], a batch size of 64, and train the network
for 100 epochs. Training of the gating elements is delayed
until epoch 5 since this makes their convergence faster and
more stable. The learning rate is adjusted at each step using
a cosine annealing schedule [22] that lowers the initial rate as
the training progresses using the learning rate multiplier,



LRdecay =
1

2
×
(
1 + cos

(
π × Tcur

Ttotal

))
, (9)

where Tcur is the current optimizer step and Ttotal corresponds
to the total number of training steps over which the cosine
decay function is applied. Additionally, to tackle problems
related to overfitting, we implement early stopping, where the
training of the model is terminated when the validation loss
does not improve for 10 consecutive epochs. All experiments
are conducted on a single NVIDIA Tesla P100 16GB GPU
with 55GB of RAM memory.

D. Benchmark Models

We compare a wide set of benchmarks to our Axial-
LOB model: (1) the CNN-based model of [7], composed
of several convolutional and fully connected layers with
temporally aware normalization of the LOB data; (2) an
attention-augmented bilinear network (B(TABL)) [15] with
one hidden layer, a bilinear projection layer enhanced by a
temporal attention mechanism; (3) an architecture as in (2),
but with two hidden layers (C(TABL)) [15]; (4) a deep neural
network with several spatial convolutional layers combined
with an Inception Module and followed by LSTM (DeepLOB)
[9]; (5) an encoder-decoder architecture (DeepLOB-Seq2Seq)
[10], which uses DeepLOB in the encoder block to extract
representative features then fed into a simple sequence-to-
sequence decoder; and (6) a high-performance extension of
the architecture of (5), where the decoder block is imple-
mented using an attention mechanism (DeepLOB-Attention)
[10], which represents the previous state of the art.

IV. RESULTS

A. Performance on the FI-2010 Dataset

The classification performance of Axial-LOB is compared
to that of the benchmark algorithms of Section III-D using
precision, recall, and F1 score, with the last of these being our
main metric as we observe from Fig. 4 that the FI-2010 dataset
is imbalanced, especially at short-term prediction horizons,
and follow [20], who for this reason suggest to focus on F1
score, when conducting model comparisons, on the basis that
it combines precision and recall and is robust when dealing
with imbalanced class distributions. The experimental results
are presented as the left boxplot in Fig. 5. We evaluate our
model using five independent trials due to the stochastic nature
of the optimizer and report the means in Table I.

It can be seen that the Axial-LOB architecture achieves a
new state-of-the-art classification performance at all prediction
horizons, delivering the highest precision, recall, and F1 score
among all benchmark algorithms, beating at each horizon its
closest competitor with a statistical significance of < 5%.
We note that the performance gap between our model and
the other algorithms is relatively small at short prediction
horizons (k = 10 and k = 20), but becomes wider for
bigger values of k, with the left plot of Fig. 5 showing a
generally upward trend in model performance as the prediction
horizon increases, with the shortest horizon (k = 10) being

TABLE I
PERFORMANCE COMPARISON BETWEEN OUR AXIAL-LOB MODEL AND

THE BENCHMARK ALGORITHMS ON THE FI-2010 DATASET.

Model Precision (%) Recall (%) F1 (%)
Prediction Horizon k = 10

CNN 50.98 65.54 55.21
B(TABL) 68.04 71.21 69.20
C(TABL) 76.95 78.44 77.63
DeepLOB 84.00 84.47 83.40
DeepLOB-Seq2Seq 81.65 82.58 81.51
DeepLOB-Attention 82.50 83.28 82.37
Axial-LOB 84.93 85.43 85.14

Prediction Horizon k = 20
CNN 54.79 67.38 59.17
B(TABL) 63.14 62.25 62.22
C(TABL) 67.18 66.94 66.93
DeepLOB 74.06 74.85 72.82
DeepLOB-Seq2Seq 73.12 74.38 72.99
DeepLOB-Attention 74.31 75.25 73.73
Axial-LOB 76.32 76.98 75.78

Prediction Horizon k = 30
CNN 66.52 67.98 65.72
B(TABL) 70.13 69.76 67.08
C(TABL) 72.90 71.88 69.34
DeepLOB 76.00 76.36 75.33
DeepLOB-Seq2Seq 75.86 76.41 75.75
DeepLOB-Attention 77.32 77.59 76.94
Axial-LOB 80.54 80.69 80.08

Prediction Horizon k = 50
CNN 55.58 67.12 59.44
B(TABL) 74.58 73.09 73.64
C(TABL) 79.05 77.04 78.44
DeepLOB 80.38 80.51 80.35
DeepLOB-Seq2Seq 77.96 78.10 77.99
DeepLOB-Attention 79.51 79.49 79.38
Axial-LOB 83.31 83.38 83.27

Prediction Horizon k = 100
CNN 65.51 64.87 65.05
B(TABL) 70.08 68.59 69.14
C(TABL) 75.55 73.54 74.94
DeepLOB 76.85 76.72 76.76
DeepLOB-Seq2Seq 79.31 79.09 79.16
DeepLOB-Attention 81.62 81.45 81.49
Axial-LOB 86.04 85.92 85.93

an exception that could be explained by the assumption that
predicting price moves in the near future is an easier task. This
trend suggests that Axial-LOB may perform better when there
is less imbalance in the class distribution, as observed in Fig. 4.
However, as mentioned previously, the prediction horizon can
also be thought of as the length of the denoising window
used to calculate the target, so an alternative interpretation
of the trend could be that there is less noise in the labels at
larger prediction horizons, making the difference between up,
down and stationary classes more significant, with the model’s
performance increasing as a result.

Finally, it is worth pointing out that the Axial-LOB archi-
tecture is able to achieve its excellent performance using a
relatively low model complexity. Table II compares the size of
the parameter spaces of Axial-LOB and the benchmark mod-
els; we note that our network, with a number of parameters
of the same order of magnitude as the smallest architectures
(B(TABL) & C(TABL)), is able to outperform the DeepLOB
family of models that have the highest complexity.



Fig. 5. (Left) Boxplot with results from all independent runs of the Axial-LOB model at each prediction horizon k. Colors correspond to different evaluation
metrics. (Right) Boxplot showing the change in F1 score for our Axial-LOB model (green) and the CNN-based DeepLOB-Attention (blue) at each prediction
horizon k under random input feature permutations. Axial-LOB does not rely on a pre-defined order of the input features, delivering a stable performance.

TABLE II
COMPARISON OF MODEL COMPLEXITIES (EXPRESSED AS THE NUMBER OF

PARAMETERS) BETWEEN AXIAL-LOB AND THE BENCHMARKS.

Model # of model parameters
CNN 17,635
B(TABL) 5,844
C(TABL) 11,344
DeepLOB 142,435
DeepLOB-Seq2Seq 176,419
DeepLOB-Attention 177,699
Axial-LOB 9,615

B. Performance under Input Permutation

Results of Table I show that Axial-LOB outperforms all
the CNN-based architectures, including the previous state
of the art, DeepLOB-Attention, which applies the attention
mechanism to features extracted from data using carefully
hand-crafted spatial convolutional filters. DeepLOB-Attention
network operates in sequential steps, first summarizing infor-
mation from price-volume pairs at each LOB level and then
aggregating information across multiple levels. In order to
effectively scan through the input data, this approach requires
that the shapes of convolutional filters and strides match
a pre-defined input layout. In contrast, Axial-LOB builds
attentional affinities directly from raw LOB data, which allows
the model to remain agnostic with respect to the order of
the input features. This proposition is tested by selecting
one set of starting weights but carrying out five independent
experimental trials, each using a different random permutation
of the input features, with a single input at time t defined as
xt = [f

(1)
t , f

(2)
t , . . . , f

(i)
t , . . . , f

(40)
t ], where f i denotes price

or volume at any of the first ten limit order book levels.
Note that this is in contrast to the data structure of Section
III-A, where the input was composed of price-volume pairs in
ascending LOB-level order.

Table III reports the means and standard deviations of the
changes in F1 score, for Axial-LOB and the previous state
of the art, DeepLOB-Attention. Results are also presented
as a boxplot in the right section of Fig. 5. The CNN-based
DeepLOB-Attention model displays a relatively large drop in
F1 score, more noticeable as the prediction horizon increases,
while the performance of our Axial-LOB model remains
relatively stable. This is because, unlike the CNN-based ar-
chitectures, Axial-LOB does not rely on a pre-defined order
of features that has to match the shape of the convolutional
kernels and strides employed by those models. Therefore,
results suggest that our model can work equally well with
different input permutations and so has the capacity to more
easily incorporate additional LOB features without the need
to redesign the network architecture.

TABLE III
MEANS AND STANDARD DEVIATIONS OF THE CHANGES TO F1 SCORE

UNDER INPUT PERMUTATION.

Prediction Horizon Axial-LOB DeepLOB-Attention
k = 10 −0.94± 0.22 −2.53± 0.49
k = 20 −0.56± 0.33 −2.48± 0.44
k = 30 −1.05± 0.30 −3.09± 0.50
k = 50 −0.68± 0.36 −4.01± 0.86
k = 100 −0.37± 0.35 −4.81± 0.83

V. CONCLUSIONS

This work has introduced the Axial-LOB model, used to
predict mid-price movements of stocks using limit order book
data. The proposed deep-learning architecture is based on a
gated position-sensitive axial attention mechanism that allows
our model to efficiently operate with the global receptive field.
To our knowledge, this is the first application of axial attention
to financial data. Results demonstrate that Axial-LOB achieves
excellent classification performance on the FI-2010 dataset,



outperforming all benchmark algorithms and establishing a
new state of the art, while in addition using a much lower
model complexity. Unlike previous CNN-based deep learning
approaches to stock prediction from LOB data, our architecture
does not require any hand-crafted spatial convolutional ker-
nels, thus delivering stable performance under different input
feature permutations.

In future work, we plan to further test the robustness and
generalization ability of the Axial-LOB model using a larger
high-frequency dataset. Another interesting research direction
would be to extend the current model architecture by adding a
decoder block that would simultaneously generate predictions
for all horizons.
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