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ABSTRACT
The three-dimensional distribution of the Ly𝛼 forest has been extensively used to constrain cosmology through measurements of
the baryon acoustic oscillations (BAO) scale. However, more cosmological information could be extracted from the full shapes
of the Ly𝛼 forest correlations through the Alcock-Paczyński (AP) effect. In this work, we prepare for a cosmological analysis of
the full shape of the Ly𝛼 forest correlations by studying synthetic data of the extended Baryon Oscillation Spectroscopic Survey
(eBOSS). We use a set of one hundred eBOSS synthetic data sets in order to validate such an analysis. These mocks undergo the
same analysis process as the real data. We perform a full-shape analysis on the mean of the correlation functions measured from
the one hundred eBOSS realizations, and find that our model of the Ly𝛼 correlations performs well on current data sets. We
show that we are able to obtain an unbiased full-shape measurement of 𝐷𝑀/𝐷𝐻 (𝑧eff), where 𝐷𝑀 is the transverse comoving
distance, 𝐷𝐻 is the Hubble distance, and 𝑧eff is the effective redshift of the measurement. We test the fit over a range of scales,
and decide to use a minimum separation of 𝑟min = 25 ℎ−1Mpc. We also study and discuss the impact of the main contaminants
affecting Ly𝛼 forest correlations, and give recommendations on how to perform such analysis with real data. While the final
eBOSS Ly𝛼 BAO analysis measured 𝐷𝑀/𝐷𝐻 (𝑧eff = 2.33) with 4% statistical precision, a full-shape fit of the same correlations
could provide a ∼ 2% measurement.
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1 INTRODUCTION

Over the last few decades, probes of the large-scale structure (LSS)
of the Universe have become one of the main tools for studying its
expansion history and the properties of its constituents. Measuring
the scale of the baryon acoustic oscillations (BAO) feature is currently
the most widely used method for extracting cosmological information
from LSS (e.g. Eisenstein et al. 2005; Cole et al. 2005; Beutler et al.
2011; Ross et al. 2015; Alam et al. 2017; Abbott et al. 2019; Alam
et al. 2021; Abbott et al. 2022). BAO produces distinct features in the
two-point statistics of LSS probes, which allows us to disentangle its
signal from the other cosmological, astrophysical, and instrumental
effects present. In BAO analyses, other cosmological information
is effectively ignored by marginalizing over the broadband of the
two-point statistics.

A common way of measuring this extra cosmological information

★ E-mail: cuceu.1@osu.edu

is to instead model the full shape of the correlation function or power
spectrum in order to measure the Alcock-Paczyński (AP) effect and
redshift space distortions (RSD; e.g. Blake et al. 2011; Reid et al.
2012; Beutler et al. 2012; Samushia et al. 2014). However, such
analyses are more difficult than BAO analyses, because accurately
modelling these effects requires a good understanding of the astro-
physical and instrumental contaminants present in the broadband of
two-point statistics. Furthermore, linear theory approaches that may
work well on large scales start to break down due to non-linear growth
on smaller scales. These difficulties have been successfully addressed
in the case of two-point statistics of discrete tracers, leading to nu-
merous full-shape analyses in the literature (e.g. Blake et al. 2011;
Reid et al. 2012; Beutler et al. 2012; Samushia et al. 2014; Satpathy
et al. 2017; Beutler et al. 2017; Gil-Marín et al. 2020; Bautista et al.
2021; Hou et al. 2021; Neveux et al. 2020). On the other hand, in
the case of the three-dimensional (3D) distribution of the Lyman-𝛼
(Ly𝛼) forest, this type of measurement has not yet been performed
(Cuceu et al. 2021).

The Ly𝛼 forest is made up of absorption lines blueward of the
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2 A. Cuceu et al.

Ly𝛼 emission peak in spectra of high-redshift quasars (e.g. Lynds
1971; Rauch 1998). This absorption is caused by neutral hydrogen
in the intergalactic medium between the quasar and us. Due to the
expansion of the Universe, the Ly𝛼 line is progressively redshifted
as the photons travel towards us. This means the distribution of Ly𝛼
absorption can be used to study the structure and evolution of the
Universe. The forest has long been used as a tool for cosmology
through its one-dimensional1 two-point statistics (e.g. McDonald
et al. 2006; Seljak et al. 2005; Viel et al. 2010; Palanque-Delabrouille
et al. 2015, 2020). With the advent of large spectroscopic surveys
such as the Baryon Oscillation Spectroscopic Survey (BOSS) and its
successor, extended BOSS (eBOSS), the 3D distribution of the Ly𝛼
forest has also become a useful source of cosmological information
(Busca et al. 2013; Slosar et al. 2013; Kirkby et al. 2013; Font-Ribera
et al. 2014; Delubac et al. 2015; Bautista et al. 2017; du Mas des
Bourboux et al. 2017; de Sainte Agathe et al. 2019; Blomqvist et al.
2019; du Mas des Bourboux et al. 2020). However, as mentioned
above, it has only been used to measure BAO.

The BOSS and eBOSS Ly𝛼 cosmological analyses have progres-
sively improved our understanding of the different processes that
contribute to the auto-correlation function of Ly𝛼 transmitted flux,
and its cross-correlation with the quasar distribution. The first physi-
cal model of the two correlations was introduced with the BOSS data
release (DR) 12 analyses (Bautista et al. 2017; du Mas des Bour-
boux et al. 2017). The main effects that had to be understood were
the distortion caused by fitting the quasar continuum (see Bautista
et al. 2017; Pérez-Ràfols et al. 2018 for the modern treatment and
Slosar et al. 2011; Font-Ribera et al. 2012; Blomqvist et al. 2015
for further discussion of the effect), the contamination due to metal
absorption in the forest (Pieri et al. 2010, 2014), and the contam-
ination due to high column density (HCD) absorbers (Font-Ribera
et al. 2012; Font-Ribera & Miralda-Escudé 2012). Starting with the
eBOSS DR14 analyses, Ly𝛼 absorption in the Ly𝛽 region (blueward
of the Ly𝛽 peak) was also used, first through its correlation with Ly𝛼
absorption in the Ly𝛼 region (de Sainte Agathe et al. 2019), and then
through its cross-correlation with quasars (Blomqvist et al. 2019).
The model of the Ly𝛼 correlation functions has been progressively
improved through these analyses, and we now may be in a position
where we can perform a full-shape analysis. The goal of this article
is to test this. In particular, we want to study the performance of this
model when it comes to fitting the full-shape of the eBOSS DR16
Ly𝛼 forest correlation functions.

As mentioned above, a common way of extracting cosmological
information from the full shape of two-point statistics is to measure
the AP effect and RSD. The AP effect arises due to the fiducial
cosmology used to transform redshifts and angles into comoving
coordinates. Any differences between this fiducial cosmology and
the true cosmology will introduce an extra anisotropy in the auto-
and cross-correlations (Alcock & Paczyński 1979). Assuming we
can accurately model other sources of anisotropy (e.g. RSD, HCDs,
metals, distortion due to continuum fitting), the remaining anisotropy
can be used to constrain the background cosmological model. This
method is already used in analyses of the BAO, but these only use a
small range of scales around the BAO peak. Cuceu et al. (2021) have
shown that measuring the AP effect using the full shape is a promising
avenue for extracting more cosmological information from the Ly𝛼
forest. RSD measurements themselves are also generally used to
measure the growth rate of cosmic structure, but for the Ly𝛼 auto-
correlation this is degenerate with an unknown RSD bias parameter

1 The one dimension here is along the line-of-sight.

(McDonald 2003; Slosar et al. 2011; Givans & Hirata 2020; Chen
et al. 2021). Cuceu et al. (2021) did show that it is possible to measure
the growth rate from the quasar RSD parameter in a joint analysis
of the Ly𝛼 auto-correlation and its cross-correlation with quasars.
However, this would not be a significant measurement with eBOSS.
Therefore, in this work we only focus on the AP information, and
leave RSD measurements for future work using larger surveys such
as the Dark Energy Spectroscopic Instrument (DESI Collaboration
et al. 2016).

Our objective in this work is to analyse the full shape of the Ly𝛼
forest correlation functions in simulated data in order to understand
how well current models perform relative to the expected precision of
the eBOSS DR16 data. This analysis is meant as a first step towards
a full-shape analysis of the eBOSS Ly𝛼 3D correlation functions.
The full-shape measurement using real eBOSS data is presented in a
separate article (Cuceu et al. 2023).

This article is structured as follows. In Section 2, we introduce our
framework, which includes a description of the mock data sets, the
analysis process for computing the 3D correlation functions, and the
modelling of the correlations. We show the results of our analysis
in Section 3, and discuss their implications for a full-shape analysis
using real data in Section 4. We summarize and conclude in Section 5.

2 FRAMEWORK

We begin with an overview of the framework we use to validate a
full-shape analysis of the Ly𝛼 forest 3D correlation functions. We use
the set of one hundred eBOSS mock data sets produced by du Mas
des Bourboux et al. (2020), which were created using the method
introduced by Farr et al. (2020). We describe these mock data sets in
Section 2.1, and the measurement of the transmitted flux correlations
in Section 2.2. The analysis methodology we use is similar to the one
used in past BAO analyses of Ly𝛼 BOSS and eBOSS data. The only
differences appear at the step of fitting the correlation functions.
Instead of only fitting for the BAO peak position, we fit the full shape
of the correlations in order to extract the AP parameter. This is based
on the method introduced in Cuceu et al. (2021). We describe our
modelling framework in Section 2.3.

2.1 Synthetic data-sets

In order to test the model of the Ly𝛼 correlation functions, we use
the set of one hundred mock data sets introduced in du Mas des
Bourboux et al. (2020). These mocks were produced for the BAO
analysis of the Ly𝛼 eBOSS DR16 data set. Each mock is based
on a Gaussian random field generated with the CoLoRe2 package
(Ramírez-Pérez et al. 2022). The Gaussian field is transformed into a
log-normal density field, which is Poisson sampled based on an input
number density and bias in order to obtain a set of quasar sources.
CoLoRe then computes line-of-sight skewers by interpolating the
initial Gaussian field and the radial velocity field3 from each quasar
to the centre of the box.

The skewers generated by CoLoRe require significant post-
processing in order to turn them into realistic simulations of the
Ly𝛼 forest. This is performed by the LyaCoLoRe4 package (Farr
et al. 2020). In order to create the large boxes needed to simulate

2 https://github.com/damonge/CoLoRe
3 Computed using the gradient of the Newtonian potential.
4 https://github.com/igmhub/LyaCoLoRe
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AP from Ly𝛼 correlations in synthetic data 3

an all-sky light-cone to 𝑧 = 3.7 (∼ 10 ℎ−1Gpc in this case), the
CoLoRe grid is limited by memory and computational constraints to
a resolution of ∼ 2.4 ℎ−1Mpc (for the 49063 grid used here). How-
ever, one of the contributions to the covariance of 3D correlations
(and consequently of BAO uncertainties) is related to the amount of
small-scale fluctuations in the Ly𝛼 forest (McDonald & Eisenstein
2007), often characterized by the one-dimensional power spectrum,
or 𝑃1D. In order to simulate spectra with a realistic 𝑃1D, LyaCoLoRe
adds an extra 1D Gaussian field to each line-of-sight. After that, the
field undergoes a log-normal transformation, and the output is used
to compute the optical depth field (𝜏) using the fluctuating Gunn-
Peterson approximation (FGPA; Bi & Davidsen 1997; Croft et al.
1998). Redshift-space distortions (RSD) are introduced by convolv-
ing the real-space optical depth field with a kernel based on the
peculiar velocity field. Finally, the transmitted flux in redshift-space
(𝑠) is given by 𝐹 (𝑠) = exp [−𝜏(𝑠)]. For more details on this process,
and how it is tuned to produce realistic forests, see Farr et al. (2020).

Beyond the Ly𝛼 forest transmitted flux fraction, LyaCoLoRe also
simulates high column density (HCD) absorbers, as well as absorp-
tion by other Lyman lines and metals. HCDs are sampled from the
Gaussian density field using an input bias and number density based
on literature results. After that, each HCD is allocated a column
density given a column density distribution from the literature. In
contrast, the other absorption lines are produced using a rescaled
version of the Ly𝛼 optical depth, which is then mapped to a different
observed wavelength based on the rest-frame wavelength of the ab-
sorber. In the case of higher Lyman lines, the scaling factors are tuned
based on the oscillator strengths of each transition (Iršič et al. 2013;
Farr et al. 2020), with the scaling factor of Ly𝛽 being 0.1901. For
metal absorbers, the scaling factors are tuned in order to reproduce
the level of contamination in the data (Farr et al. 2020; du Mas des
Bourboux et al. 2020). A list of the main metal absorbers along with
their relative strength can be found in Table 2 of Farr et al. (2020).
These contaminants (HCDs, metal lines, and higher-order hydrogen
lines) are then added to the simulated Ly𝛼 forest transmitted flux
fraction.

Each quasar is assigned a random magnitude using an input quasar
luminosity function based on Palanque-Delabrouille et al. (2016).
This is used to generate an unabsorbed continuum for each quasar by
adding a set of emission lines on top of a broken power law (du Mas
des Bourboux et al. 2020). Random redshift errors are drawn from
a Gaussian distribution with a standard deviation 𝜎𝑧 = 400 km s−1.
The specsim package (Kirkby et al. 2016) is then used to simulate
the eBOSS spectral resolution, the pixelization of the spectra, and
instrumental noise (du Mas des Bourboux et al. 2020).

While these synthetic data sets were created for BAO studies, in
this article we use them to study full-shape analyses. As described
above, the major contaminants that are known to affect Ly𝛼 forest
correlations are being modelled in these mocks. This will allow us to
test the performance of our model, and how full-shape analyses are
affected by these contaminants. However, one of the main concerns
when attempting to use the full-shape of correlation functions for
cosmology is the ability to accurately model the non-linear effects
on small scales. While we will be able to test some of these using the
mocks described above, some ingredients are missing. These include
the fact that the small-scale quasar clustering is overestimated (Youles
et al. 2022), and missing IGM effects such as pressure smoothing
and the impact of UV radiation on the ionization fraction. We will
discuss these issues and the applicability of our results in more detail
in Section 4.

2.2 From spectra to correlation functions

Once the simulated eBOSS spectra are produced, they undergo the
same analysis process as the real data, in order to measure the 3D
auto-correlation of Ly𝛼 transmitted flux, and its cross-correlation
with the quasar distribution. This is described in detail in du Mas des
Bourboux et al. (2020). Here, we only give a brief overview of this
process, as all the results in this article5 come from the same mock
correlation functions computed for the eBOSS Ly𝛼 BAO analysis.

The first step in the analysis process is to compute the flux trans-
mission fluctuation, 𝛿𝑞 (𝜆), of each quasar 𝑞, based on the observed
flux, 𝑓𝑞 (𝜆):

𝛿𝑞 (𝜆) =
𝑓𝑞 (𝜆)

𝐹̄ (𝜆)𝐶𝑞 (𝜆)
− 1, (1)

where 𝐹̄ (𝜆) is the global mean transmission, and 𝐶𝑞 (𝜆) is the un-
absorbed quasar continuum. In general, the true quasar continuum is
unknown, and therefore, the data is used to jointly fit for the product
𝐹̄ (𝜆)𝐶𝑞 (𝜆). This fit also necessarily includes density modes of the
size of the forest and larger, which biases 𝛿𝑞 towards zero for each for-
est. Even though pixels from the same forest are not cross-correlated,
this will still bias pixel correlations in nearby forests, resulting in a
distortion of the correlation functions.

The distortion of the correlation function can be removed by build-
ing a projection, 𝜂𝑞

𝑖 𝑗
, such that:∑︁

𝑗

𝜂
𝑞

𝑖 𝑗
𝛿𝑚𝑞 (𝜆 𝑗 ) =

∑︁
𝑗

𝜂
𝑞

𝑖 𝑗
𝛿𝑡𝑞 (𝜆 𝑗 ), (2)

where 𝛿𝑚𝑞 and 𝛿𝑡𝑞 are the measured and true flux fluctuations, 𝑗

indexes forest pixels before the projection, and 𝑖 indexes the projected
forest pixels. Therefore, the left-hand side of Equation (2) is applied
to the measured flux fluctuation field, while the right-hand side is
forward modelled in the correlations, as described in Section 2.3.
A detailed description of this projection and how it is built can be
found in Bautista et al. (2017), and Appendix B of Pérez-Ràfols et al.
(2018).

Forests that contain HCDs with column densities log 𝑁Hi > 20.36

are given special treatment. Firstly, the regions where the HCD re-
duces the transmission by more than 20% are masked. Secondly, the
absorption wings are corrected using a Voigt profile (du Mas des
Bourboux et al. 2020; Noterdaeme et al. 2012). HCDs with column
densities log 𝑁Hi < 20.3 remain in the data, and their effect has to
be included in the model of the correlations (Section 2.3).

The correlation functions were computed on a grid in comoving
coordinates. For two tracers, 𝑖 and 𝑗 , at redshifts 𝑧𝑖 and 𝑧 𝑗 , and
separated by an angle Δ𝜃, the comoving separations along and across
the line-of-sight are given by (de Sainte Agathe et al. 2019):

𝑟 | | = [𝐷c (𝑧𝑖) − 𝐷c (𝑧 𝑗 )] cos
Δ𝜃

2
, (3)

𝑟⊥ = [𝐷M (𝑧𝑖) + 𝐷M (𝑧 𝑗 )] sin
Δ𝜃

2
, (4)

where 𝐷M is the transverse comoving distance, 𝐷c (𝑧) =

𝑐
∫ 𝑧

0 𝑑𝑧′/𝐻 (𝑧′) is the radial comoving distance, with 𝐻 (𝑧) as the
Hubble parameter and 𝑐 as the speed of light. In this work, we will
also refer to the (𝑟, 𝜇) parametrization, defined as 𝑟2 = 𝑟2

| | + 𝑟2
⊥ and

5 With the exception of those in Appendix B.
6 This is close to the detection threshold of the DLA detector used when
analysing real data. du Mas des Bourboux et al. (2020) also tested the DLA
detector on the mock spectra in order to validate this approach.
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4 A. Cuceu et al.

Type Name Tracer 1 Tracer 2

Auto Ly𝛼(Ly𝛼)×Ly𝛼(Ly𝛼) Ly𝛼 flux in the Ly𝛼 region Ly𝛼 flux in the Ly𝛼 region
Ly𝛼(Ly𝛼)×Ly𝛼(Ly𝛽) Ly𝛼 flux in the Ly𝛼 region Ly𝛼 flux in the Ly𝛽 region

Cross Ly𝛼(Ly𝛼)×QSO Ly𝛼 flux in the Ly𝛼 region Quasars
Ly𝛼(Ly𝛽)×QSO Ly𝛼 flux in the Ly𝛽 region Quasars

Table 1. The types and names of the four correlation functions we use in this work, along with the tracers used in each of them. Here, we use "flux" to refer to
the transmitted flux fraction. The Ly𝛼 and Ly𝛽 regions are defined by the rest-frame intervals 𝜆RF ∈ [104, 120] nm (situated between the Ly𝛼 and Ly𝛽 peaks)
and 𝜆RF ∈ [92, 102] nm (situated blueward of the Ly𝛽 peak), respectively.

𝜇 = 𝑟 | |/𝑟. du Mas des Bourboux et al. (2020) used a fiducial cos-
mological model7 to compute the two distances, which will result
in an extra anisotropy in the measured correlations if it differs from
the true cosmology. This is the Alcock-Paczyński effect (Alcock &
Paczyński 1979).

The correlation function is first computed independently in each
HEALPix8 pixel (Górski et al. 2005). For the eBOSS footprint, there
are about 880 pixels (nside = 16), with each covering 3.7 × 3.7 =

13.4 deg2. This corresponds to a 250×250 (ℎ−1Mpc)2 patch at 𝑧eff =

2.33. The population of correlations can then be used to compute the
mean and covariance of the correlation function of the entire survey.
When computing the correlation function in one HEALPix pixel,
pairs with forests in neighbouring pixels are still counted. However,
given that we are most sensitive to small scales when measuring
AP, we assume that the correlation function measurements in each
HEALPix pixel are independent for the purposes of computing the
covariance matrix. This method of computing the covariance matrix
of Ly𝛼 forest correlation functions has been validated against other
methods by du Mas des Bourboux et al. (2020).

The process for computing the cross-correlation with the quasar
distribution, and its covariance matrix, is similar to the one used
for the auto-correlation. However, in this case we also distinguish
between Ly𝛼 flux in front of a quasar, which is assigned negative 𝑟 | | ,
and Ly𝛼 flux behind a quasar, which is assigned positive 𝑟 | | . This is
because the cross-correlation is not symmetric under permutations
of the two tracers.

Four types of correlation functions were computed by du Mas
des Bourboux et al. (2020) for the eBOSS DR16 Ly𝛼 BAO anal-
ysis. The first two are the auto-correlation of the Ly𝛼 flux in the
Ly𝛼 region, Ly𝛼(Ly𝛼)×Ly𝛼(Ly𝛼), and its cross-correlation with
Ly𝛼 flux in the Ly𝛽 region, Ly𝛼(Ly𝛼)×Ly𝛼(Ly𝛽). The other two
are cross-correlations between Ly𝛼 forest flux and quasars, and in-
clude the cross-correlation of quasars with Ly𝛼 flux in the Ly𝛼
region: Ly𝛼(Ly𝛼)×QSO, and with Ly𝛼 flux in the Ly𝛽 region:
Ly𝛼(Ly𝛽)×QSO. The Ly𝛼 region is found between the Ly𝛼 and Ly𝛽
peaks, and is defined by the rest-frame interval 𝜆RF ∈ [104, 120] nm.
The Ly𝛽 region is blueward of the Ly𝛽 peak, and is defined by the
rest-frame interval 𝜆RF ∈ [92, 102] nm. This information is summa-
rized in Table 1.

In this work, we will be extensively using the mean and covariance
of the one hundred mock eBOSS correlation functions. We will also
refer to this mean as the stacked correlation function. In order to
compute these, we first collect all individual correlation subsamples
(in HEALPix pixels) from each of the one hundred mocks. The
weighted mean of all correlation subsamples over all one hundred
mocks gives us the stacked correlation, while its covariance is given

7 The fiducial cosmology is based on fits to cosmic microwave background
anisotropy data from the Planck satellite Planck Collaboration et al. (2016);
see Table 2 of du Mas des Bourboux et al. (2020).
8 https://healpix.sourceforge.io

by the covariance of all the subsamples. This stacked correlation was
computed for each of the four correlation types.

We show the four stacked correlations in Figure 1, compressed
into four 𝜇 bins each. Besides the BAO peak at ∼ 100 ℎ−1Mpc,
the other features are due to metal contamination. This is why they
are present in the wedges closer to the line-of-sight and absent from
the ones across the line-of-sight. The most prominent of these is the
blended metal peak due to SiII(1190) and SiII(1193), which are at
comoving separations of 𝑟 | | = 64 ℎ−1Mpc and 𝑟 | | = 56 ℎ−1Mpc,
respectively. In the auto-correlation, the SiIII(1207) peak can also
be seen at 𝑟 | | = 21 ℎ−1Mpc. Finally, a fourth metal peak due to
SiII(1260) is present at 𝑟 | | = 111 ℎ−1Mpc, however, it is not visible
due to its proximity to the BAO peak.

2.3 Modelling the correlations

Our model for the Ly𝛼 forest auto-correlation (Ly𝛼×Ly𝛼) and its
cross-correlation with quasars (Ly𝛼×QSO) closely follows that used
by the eBOSS collaboration for the BAO analysis of the SDSS DR16
data (du Mas des Bourboux et al. 2020). The main difference is that
we use scale parameters to model the full shape of the correlation,
instead of restricting their application to scales around the BAO
peak. Our model is based on an isotropic template power spectrum,
𝑃fid (𝑘), which is split into a peak (or wiggles) component, 𝑃p

fid (𝑘),
and a smooth (or no-wiggles) component, 𝑃s

fid (𝑘), following Kirkby
et al. (2013). As shown in Cuceu et al. (2021), this allows us to
separate the information we obtain from the BAO peak from that
obtained from the rest of the correlation. All the following steps in
the analysis are done with both 𝑃

p
fid (𝑘) and 𝑃s

fid (𝑘), in parallel. We
use the Vega package to perform this analysis.9

The Ly𝛼 auto and cross power spectra are given by:

𝑃auto (𝑘, 𝜇𝑘 , 𝑧) = 𝑏′2Ly𝛼 (1 + 𝛽′Ly𝛼𝜇
2
𝑘
)2 𝐺 (𝑘, 𝜇𝑘)𝐹sm (𝑘, 𝜇𝑘)𝑃fid (𝑘),

(5)

𝑃cross (𝑘, 𝜇𝑘 , 𝑧) = 𝑏′Ly𝛼 (1 + 𝛽′Ly𝛼𝜇
2
𝑘
) 𝐺 (𝑘, 𝜇𝑘)𝐹sm (𝑘, 𝜇𝑘)

× 𝑏QSO (1 + 𝛽QSO𝜇2
𝑘
) 𝐹NL (𝑘, 𝜇𝑘)𝑃fid (𝑘), (6)

where 𝑏′Ly𝛼 and 𝛽′Ly𝛼 are the effective Ly𝛼 bias and RSD parameter,
and 𝑏QSO and 𝛽QSO are the quasar linear bias and RSD parameter.
𝐺 (𝑘, 𝜇𝑘) = sinc(𝑘 | |𝑅 | |/2) sinc(𝑘⊥𝑅⊥/2) accounts for the binning
of the correlation function, with 𝑅 | | and 𝑅⊥ the radial and transverse
bin widths, respectively.

The Ly𝛼 absorption is given by a combination of contributions
from the diffuse IGM and from high column density (HCD) systems.
Both trace the underlying density field, but HCDs correspond to
regions with significantly higher clustering. Here, we define HCDs
as systems with neutral hydrogen column density above 1017.2cm−2,
which means they include both Lyman limit systems and damped

9 https://github.com/andreicuceu/vega
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Figure 1. Stacked correlation functions computed from one hundred eBOSS DR16 mocks, compressed into four 𝜇 = 𝑟| |/𝑟 bins. The top panels show the
auto-correlation of Ly𝛼 forest transmitted flux within the Ly𝛼 region on the left and between the Ly𝛼 and Ly𝛽 regions on the right. The bottom plots show
the cross-correlation between Ly𝛼 forest transmitted flux in the Ly𝛼 region (left) and Ly𝛽 region (right) and the quasar distribution. The lines represent the
joint best fit model of all four correlations. The error-bars are plotted for all points, but except at large separations, they are too small to see. The shaded bands
represent the uncertainties from one eBOSS realization.

Ly𝛼 (DLA) systems. As described in Section 2.2, large HCDs are
detected and masked. However, those with widths smaller than ∼ 14
ℎ−1Mpc cannot be detected and remain in the data. These remaining
HCDs lead to a broadening effect along the line of sight. Font-Ribera
& Miralda-Escudé (2012) showed that this can be modelled through
an extra 𝑘 | | dependent term in the effective bias and RSD parameters.
This is given by:

𝑏′Ly𝛼 = 𝑏Ly𝛼 + 𝑏HCD𝐹HCD (𝑘 | | ), (7)

𝑏′Ly𝛼𝛽
′
Ly𝛼 = 𝑏Ly𝛼𝛽Ly𝛼 + 𝑏HCD𝛽HCD𝐹HCD (𝑘 | | ), (8)

where 𝑏Ly𝛼 and 𝛽Ly𝛼 are the linear bias and RSD parameters associ-
ated with the IGM and 𝑏HCD and 𝛽HCD are the linear bias and RSD
parameters associated with HCDs. Following Rogers et al. (2018)
and de Sainte Agathe et al. (2019), we model 𝐹HCD (𝑘 | | ) as an ex-
ponential: 𝐹HCD = exp(−𝐿HCD𝑘 | | ). The parameter 𝐿HCD can be
interpreted as the typical length scale of unmasked HCDs (de Sainte
Agathe et al. 2019), and is fixed to 𝐿HCD = 10 ℎ−1Mpc. We test the
impact of this choice in Section 3.3.

The 𝐹NL term models the quasar non-linear velocities and statisti-
cal quasar redshift error. Following Percival & White (2009), we test
two different models for this term, one that introduces a Lorentzian

damping, and one with Gaussian damping. They are given by:

𝐹2
NL,Lorentz = [1 + (𝑘 | |𝜎𝑣)2]−1, (9)

𝐹2
NL,Gauss = exp

[
− 1

2
(𝑘 | |𝜎𝑣)2

]
, (10)

where 𝜎𝑣 is a free parameter. Given that the synthetic data is created
with Gaussian redshift errors, the Gaussian damping model is more
appropriate for modelling the mocks. However, when modelling the
real data, the Lorentz damping model is used (du Mas des Bourboux
et al. 2017, 2020). This is because the quasar redshift errors generally
have long tails that are not well modelled by a simple Gaussian (e.g.
Lyke et al. 2020). Therefore, for the purposes of this analysis, we will
test both models.

We also introduce Gaussian anisotropic smoothing, 𝐹sm (𝑘, 𝜇𝑘),
to account for the low-resolution of the CoLoRe grid, following Farr
et al. (2020). This smoothing model has two free parameters, 𝜎| |
and 𝜎⊥, which describe the smoothing along and across the line-
of-sight, respectively. They are expected to have values of ∼ 2.4
ℎ−1Mpc, corresponding to the resolution of the CoLoRe grid.

In order to turn model power spectra into correlation functions, we
follow the process described in Kirkby et al. (2013). This involves
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6 A. Cuceu et al.

a multipole decomposition, followed by a Hankel transform10 to
turn each power spectrum multipole into the corresponding correla-
tion function multipole, and finally the reconstruction of the two-
dimensional correlation function from the individual multipoles.
Following past Ly𝛼 BAO analyses, we use multipole values up to
ℓ = 6. The main components of the theoretical model are the Ly𝛼
transmitted flux correlations: 𝜉Ly𝛼×Ly𝛼 for the auto-correlation, and
𝜉Ly𝛼×QSO for the cross-correlation with quasars. They are computed
from the two power spectra in Equations (5) and (6), respectively.

We also model the contamination due to metal absorption, us-
ing the same models as for the Ly𝛼 auto and cross-correlation. We
compute models for the correlations between each metal line and
Ly𝛼 (𝜉Ly𝛼×𝑚), and among all metal pairs (𝜉𝑚1×𝑚2 ) for the auto-
correlation, and between each metal line and quasars (𝜉QSO×𝑚) for
the cross-correlation. This is described in more detail in Appendix A.
Each metal line has its own bias and RSD parameter (𝑏𝑚, 𝛽𝑚). The
same Ly𝛼 and QSO (𝑏, 𝛽) parameters above are also used for the
cross-correlations between metals and Ly𝛼 and quasars. In this case,
we neglect the HCD effects for the Ly𝛼 parameters. Following past
Ly𝛼 BAO analyses, we fix the metal 𝛽 parameters to 0.5 (Bautista
et al. 2017; du Mas des Bourboux et al. 2020).

The full model correlations are then given by:

𝜉𝑡auto = 𝜉Ly𝛼×Ly𝛼 +
∑︁
𝑚

𝜉Ly𝛼×𝑚 +
∑︁

𝑚1 ,𝑚2

𝜉𝑚1×𝑚2 , (11)

𝜉𝑡cross = 𝜉Ly𝛼×QSO +
∑︁
𝑚

𝜉QSO×𝑚, (12)

where the sums are performed over the four metal lines introduced
in Section 2.2. The distortion due to quasar continuum errors is
modelled using distortion matrices that multiply the results of Equa-
tions (11) and (12). See Appendix A and du Mas des Bourboux et al.
(2020) for more details.

As described at the start of this section, we perform all these
steps using both isotropic power spectrum components, 𝑃p

fid (𝑘) and
𝑃s

fid (𝑘), in parallel. Therefore, we compute the projected correlation
function for both the peak component, 𝜉p, and the smooth component,
𝜉s. The two model correlations are then combined into the final
theoretical model, allowing for their comoving coordinates to vary:

𝜉 (𝑟 | | , 𝑟⊥) = 𝜉s (𝑞s
| |𝑟 | | , 𝑞

s
⊥𝑟⊥) + 𝜉p (𝑞p

| |𝑟 | | , 𝑞
p
⊥𝑟⊥), (13)

where 𝑟 | | and 𝑟⊥ are comoving separations along and across the
line-of-sight, respectively. These separations are rescaled using the
scale parameters (𝑞p

| | , 𝑞
p
⊥) for the peak, and (𝑞s

| | , 𝑞
s
⊥) for the smooth

component. The two peak scale parameters are equivalent to the (𝛼 | | ,
𝛼⊥) parameters used in BAO analyses.

In the case of the cross-correlation, we also allow for a systematic
shift in the 𝑟 | | coordinate of the cross-correlation through a nuisance
parameter, Δ𝑟 | | . This means the coordinate transform is given by
𝑟 | | −→ 𝑞 | | (𝑟 | | +Δ𝑟 | | ). We introduce this parameter in order to find if it
has any impact on the scale parameters of interest, which could lead
to a potential bias when performing the analysis on real data, as it
was found to be non-zero in past Ly𝛼 BAO analyses (e.g. Blomqvist
et al. 2019; du Mas des Bourboux et al. 2020).
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Figure 2. Models of the Ly𝛼 forest auto-correlation function in a shell in
isotropic separation 𝑟 , shown as a function of the cosine of the line-of-
sight angle, 𝜇. The top panel shows the effect of changing the value of 𝜙,
the parameter measuring the Alcock-Paczyński effect, while the bottom plot
shows the effect of changing the value of the Ly𝛼 RSD parameter, 𝛽Ly𝛼.
This shows that the two effects (AP and RSD) lead to different changes in the
correlation as a function of 𝜇, which explains why they are not degenerate.

2.4 Modelling the Alcock-Paczyński effect

In order to isolate the Alcock-Paczyński effect, we transform the scale
parameter system, following Cuceu et al. (2021):

𝜙(𝑧) ≡ 𝑞⊥ (𝑧)
𝑞 | | (𝑧)

and 𝛼(𝑧) ≡
√︃
𝑞⊥ (𝑧)𝑞 | | (𝑧), (14)

where 𝜙 is the anisotropic parameter, and 𝛼 is the isotropic scale
parameter. Cuceu et al. (2021) showed that a measurement of 𝜙 is
equivalent to a measurement of the AP parameter𝐷𝑀 (𝑧)𝐻 (𝑧). As we
have two sets of (𝑞 | | ,𝑞⊥) parameters, we also have two sets of (𝜙, 𝛼)
parameters, for the peak and the smooth component, respectively. The
two peak scale parameters have already been tested and measured
in BAO analyses. Therefore, our goal here is to use the simulated
data sets described above to study measurements of the anisotropic
parameter of the smooth component, 𝜙s.

The two main types of analyses we will perform are described
in Table 2. In the first one, which we will refer to as the "split
AP measurement", we fit two distinct 𝜙 parameters for the peak
and smooth components separately. In the second one, called "full
AP measurement", we fit one 𝜙 parameter to the full shape of the
correlations. When performing this analysis on real data, we want
to use the full AP measurement, because it coherently extracts the
desired information. The split AP measurement can be used as a
consistency check of the method or data. However, it is also useful in
the current work, because 𝜙s quantifies the gain in information over
a standard BAO-only analysis.

In the top panel of Figure 2, we show the impact of changing 𝜙 on
the correlation function compressed in a shell in isotropic separation
and plotted as a function of 𝜇. We choose the smallest separation
shell, 25 < 𝑟 < 45 ℎ−1Mpc, in order to best illustrate the anisotropy
pattern we aim to recover when fitting the AP effect. The bottom
panel of Figure 2 shows the impact of changing the Ly𝛼 forest RSD

10 Performed using the FFTLog algorithm (Hamilton 2000). We use the ver-
sion implemented in the mcfit package (https://github.com/eelregit/mcfit).
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parameter 𝛽Ly𝛼, which also affects the anisotropy of the correlation.
This figure shows that AP and RSD produce different anisotropy
patterns as a function of 𝜇, which means a 2D measurement of the
correlation (i.e., in 𝑟 | | , 𝑟⊥ or 𝑟, 𝜇) can be used to disentangle the two
effects.

The isotropic scale parameter from the smooth component,𝛼s, also
contains some cosmological information due to the scale of matter-
radiation equality. However, as described in Cuceu et al. (2021),
it is not clear how to extract this information given that the effect
is very similar to that produced by the Ly𝛼 bias, and likely to be
heavily impacted by contaminants. Furthermore, Cuceu et al. (2021)
found that the constraint on the isotropic scale from the peak, 𝛼p,
is much tighter than the one from the smooth component. This is
in contrast to 𝜙, where the constraint from the broadband is the
one that dominates (see Figure 2 of Cuceu et al. 2021). Finally,
Gerardi et al. (2023) recently performed simplified forecasts of a
direct cosmological analysis of the Ly𝛼 forest correlation functions
and found that the information extracted can be traced back to the
Alcock-Paczyński effect and redshift space distortions. Therefore, for
the purposes of this analysis, we will treat 𝛼s as a nuisance parameter,
and marginalize over it.

In Table 3, we give a description of all the free parameters in
our standard analysis, along with their priors. We follow past BAO
analyses, and assign a Gaussian prior to the RSD parameter of HCDs,
based on measurements of DLA clustering (Pérez-Ràfols et al. 2018).

We plot the joint best fit model using the split AP analysis configu-
ration in Figure 1. We fit the correlation functions between 𝑟min = 25
ℎ−1Mpc and 𝑟max = 180 ℎ−1Mpc following the analysis in Section
3.2.11 This model works surprisingly well given the extreme circum-
stances of this test. While the fit statistics clearly indicate the model
is not good enough for fitting the stack of 100 eBOSS mocks (the fit
probability is ∼ 10−11), the contrast with the eBOSS uncertainties,
shown as shaded bands, visually indicates that our model could be
good enough for the statistical precision achievable with current data
sets. We will show this using the stack of correlations in Section 3.1
and by analysing individual eBOSS mocks in Section 3.4.

3 RESULTS

A large part of the validation of our analysis will focus on studying
full-shape fits using a stack of the Ly𝛼 forest correlation functions
from the eBOSS mocks. Fitting the stack of the mock correlations is
much less computationally expensive compared to separately fitting
all one hundred mock correlations. Therefore, this method is advan-
tageous when we want to test the performance of our model or study
different versions of the analysis. This is because it allows us to study
the trends necessary without as much of an emphasis on the effect of
noise. Our main goal in this section is to test if the current modelling
approach for the Ly𝛼 forest correlation functions is appropriate for
full-shape analyses of the eBOSS data. In order to achieve this, we
want to gain an understanding of the relation between the statistical
precision we expect using the eBOSS data and the systematic bias.
We also want to investigate modelling choices such as using one ver-
sus two anisotropic parameters, the relative contributions of the auto
and cross-correlations, and how our modelling of the contaminants
affects our measurements.

11 Note that we still fit for the bias parameter of the SiIII(1207) line, even
though that metal peak is outside our fitted range. This is because its con-
tamination is spread all along the line-of-sight by the distortion matrix, and
therefore we have to marginalize over it.

3.1 Analysis of stacked correlations

As we have four different correlations, we categorise them into
the two auto-correlations of Ly𝛼 flux, Ly𝛼(Ly𝛼)×Ly𝛼(Ly𝛼) and
Ly𝛼(Ly𝛼)×Ly𝛼(Ly𝛽), and the two cross-correlations with quasars,
Ly𝛼(Ly𝛼)×QSO and Ly𝛼(Ly𝛽)×QSO. This is because the modelling
of the two auto-correlations is identical (and similarly for the two
cross-correlations) as we treat the Ly𝛼 flux in the Ly𝛽 region the
same as the Ly𝛼 flux in the Ly𝛼 region. In the case of the two
cross-correlations, the full system of parameters is degenerate. This
degeneracy can only be broken when performing a joint analysis of
the auto and cross-correlations, because the auto-correlation helps
constrain the Ly𝛼 bias and RSD parameters. Therefore, we fix the
bias and RSD parameter of quasars (𝑏QSO, 𝛽QSO) to a fiducial value
when fitting the cross-correlation alone.12 Note that due to correla-
tions between the AP effect and RSD, this may lead the uncertainty in
𝜙 to be underestimated. However, we will not use these 𝜙 constraints
from the cross-correlation to make any decision or recommenda-
tion in this article. We only compute and show them in order to
check consistency and for completeness. Also note that, in general,
the parameter constraints from the stack of the correlations will not
be the same as the mean of the constraints from individual mocks.
This is due to the non-linear dependence of the likelihood on the
parameters. However, the stacked correlations are useful for testing
the performance of our model.

We assume there is no cross-covariance between any of the four
correlations, as du Mas des Bourboux et al. (2020) showed that
these are negligible. We use a Gaussian likelihood, and compute
posterior distributions using the Vega package for modelling and the
PolyChord13 package for sampling (Handley et al. 2015a,b). When
running PolyChord, we initialize a number of live points equal to
25 times the number of parameters, and set the length of the slice
sampling chains to be of order of the number of parameters.

In Figure 3, we show the results for 𝜙𝑠 , 𝜙𝑝 , and 𝛼𝑝 from the
joint fit of the two auto-correlations alone, the two-cross correlations
alone, and the combination of all four correlations, using the split
AP analysis. These fits use a minimum separation 𝑟 > 𝑟min = 25
ℎ−1Mpc following the analysis in Section 3.2. We find good agree-
ment between the scale parameters measured from the auto- and
cross-correlations.

We use the same cosmological model that was used to construct
the mocks to also compute comoving coordinates and the power spec-
trum template.14 Therefore, we expect to recover unity for all (𝜙, 𝛼)
parameters. We do recover the expected 𝜙 values from both the auto
and cross-correlation, using both the peak and smooth components
independently. The fact that we are able to constrain 𝜙s means it is
not degenerate with any of the other effects that introduce their own
anisotropies. For a discussion of these effects see Section 3.3, and
for plots of correlations between 𝜙s and important nuisance param-
eters see Appendix E. Finally, Figure 3 shows that we are indeed
able to perform an unbiased analysis of the full-shape of Ly𝛼 forest
correlations for mocks with known contaminants.

For the isotropic scale of the peak, 𝛼p, the result from the cross is
consistent with unity. However, the result from the auto-correlation is
higher, leading to the combined constraint being ∼ 0.22% larger than
unity. While this appears as a ∼ 2𝜎 systematic bias in the analysis
on the stack of 100 eBOSS mocks, it is a small fraction (∼ 0.2𝜎) of

12 The fiducial value is based on the joint constraint of all four correlations.
13 https://github.com/PolyChord/PolyChordLite
14 See Appendix B for tests with different fiducial cosmologies.
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Analysis type Parameters Description Cosmological Information

Split AP
measurement

𝜙p Peak anisotropy AP from BAO
𝜙s Broadband anisotropy AP from broadband
𝛼p Peak isotropic scale BAO scale
𝛼s Broadband isotropic scale Marginalized out

Full AP
measurement

𝜙 𝑓 Full-shape anisotropy AP from full correlation
𝛼p Peak isotropic scale BAO scale
𝛼s Broadband isotropic scale Marginalized out

Table 2. The two types of analysis we perform in this work, along with the scale parameters we measure in each of them and their description.
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Figure 3. Contour plots of the constraints on scale parameters from the stack of 100 eBOSS mock correlations. The result from the two auto-correlations of Ly𝛼
flux, Ly𝛼(Ly𝛼)×Ly𝛼(Ly𝛼) and Ly𝛼(Ly𝛼)×Ly𝛼(Ly𝛽), is denoted as "Auto", and the one from the two cross-correlations with quasars, Ly𝛼(Ly𝛼)×QSO and
Ly𝛼(Ly𝛽)×QSO, is denoted as "Cross". All scale parameters are expected to be unity, given that the same cosmology was used to construct the mocks and to
analyse the data. We also show the expected eBOSS constraint for comparison, but note that the 1𝜎 2D contours are all larger than the bounds of the plots here.
We find that we are able to recover an unbiased measurement of the AP parameter from the full shape of the Ly𝛼 forest correlations.

the expected eBOSS statistical uncertainty. We will return to discuss
this deviation in Sections 3.4 and 4.

While for the BAO peak parameters, 𝛼p and 𝜙p the constraints
obtained from the auto and cross-correlations are very similar, this is
not the case for 𝜙s, where the measurement from the auto-correlation
is ∼ 30% tighter than that from the cross-correlation. This is in line
with the forecasts by Cuceu et al. (2021). We also find that adding the
correlations of Ly𝛼 flux in the Ly𝛽 forest shrinks the 𝜙s constraint by
16% for the auto-correlation and by 10% for the cross-correlation. In
Figure 3 we only focus on the parameters of interest for cosmology.
However, unlike BAO parameters, 𝜙s does have correlations with

some nuisance parameters, the most important being 𝑏Ly𝛼, 𝛽Ly𝛼
and 𝑏HCD. We show these in Appendix E.

In Figure 4, we compare the split AP measurement with the full AP
measurement, based on the joint analysis of all four stacked correla-
tions. We show 1D marginalised posteriors of 𝜙 measurements from
the peak and smooth components (𝜙p and 𝜙s) and the measurement
from the full shape (𝜙 𝑓 ). We find that the measurements from the
peak and smooth components are consistent with each other, with the
smooth component providing a constraint that is ∼ 32% tighter than
the constraint from the peak component. Note that we do not expect
the 𝜙p and 𝜙s measurements to be the same, even though they both

MNRAS 000, 1–17 (2022)



AP from Ly𝛼 correlations in synthetic data 9

Parameters Description Prior
𝜙, 𝛼 Scale parameters (see Table 2) 𝑈 (0.01, 2.0)
𝑏Ly𝛼 Ly𝛼 linear bias 𝑈 (−2.0, 0.0)
𝑏QSO QSO linear bias 𝑈 (0.0, 10.0)

𝛽Ly𝛼, 𝛽QSO RSD parameters of Ly𝛼 and QSOs 𝑈 (0.0, 5.0)
𝑏HCD HCD linear bias 𝑈 (−0.2, 0.0)
𝛽HCD RSD parameter for HCDs N(0.5, 0.22 )

𝜎𝑣 [ ℎ−1Mpc] Smoothing for redshift errors and
QSO non-linear velocities 𝑈 (0.0, 15.0)

Δ𝑟| | [ ℎ−1Mpc] Shift due to QSO redshift errors 𝑈 (−3.0, 3.0)
𝑏SiII(1190) Linear bias of metal absorber 𝑈 (−0.02, 0.0)
𝑏SiII(1193) Linear bias of metal absorber 𝑈 (−0.02, 0.0)
𝑏SiIII(1207) Linear bias of metal absorber 𝑈 (−0.02, 0.0)
𝑏SiII(1260) Linear bias of metal absorber 𝑈 (−0.02, 0.0)

𝜎| | [ ℎ−1Mpc] Smoothing along the line-of-sight 𝑈 (0.0, 10.0)
𝜎⊥ [ ℎ−1Mpc] Smoothing across the line-of-sight 𝑈 (0.0, 10.0)

Table 3. List of the free parameters in our model, along with their description
and priors. 𝑈 (min,max) represents a flat prior within that interval, while
N(𝜇, 𝜎2 ) represents a Gaussian prior.
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Figure 4. Marginalized posterior distributions of the anisotropic scale param-
eter 𝜙, from a joint analysis of all four Ly𝛼 stacked correlation functions. We
compare 𝜙 constraints independently measured from the peak and smooth
components (denoted as 𝜙p and 𝜙s), with constraints measured from the
full-shape of the correlations (denoted 𝜙 𝑓 ). All measurements are consistent
with the cosmology used to create and analyse the mocks, given by 𝜙 = 1.

measure the same effect. This is because they use different parts of
the data, resulting in two mostly independent measurements. This is
confirmed by the lack of correlation between the two parameters, as
shown by their 2D posteriors in Figure 3.

The measurement of 𝜙 𝑓 is remarkably consistent (to within 0.1𝜎)
with the expected 𝜙 = 1. Overall, measuring 𝜙 from the full-shape of
the correlations leads to a ∼ 41% improvement in the 1𝜎 constraints
compared to the BAO-only analysis. These numbers will depend on
the range of scales we include in our fits, so we next turn our attention
to studying the effects of the minimum scale cut we employ.
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Figure 5. Comparison of the expected statistical constraint on 𝜙 from eBOSS
(𝜎𝜙) and the systematic bias (Δ𝜙) as a function of minimum separation
fitted, 𝑟min. The 𝜙 parameter here is fitted from the full shapes of all four
Ly𝛼 correlation functions (𝜙 𝑓 ). The systematic bias is obtained from the
difference between the best fit value on the stack of 100 mocks and the true
value in the mocks. The statistical constraint is obtained by rescaling the
constraint from the stack of mocks to one eBOSS realization. Based on this
figure, we choose 𝑟min = 25 ℎ−1Mpc in our baseline analysis.

3.2 Statistical and systematic errors

The results we have shown so far are already quite promising, with
𝜙𝑠 and 𝜙 𝑓 measurements that are consistent with the true cosmology
of the mocks (𝜙 = 1). The next step is to quantify this statement.
To achieve this, we aim to study how the statistical precision and
possible systematic biases depend on the minimum scale included in
our analysis. Including more data (especially at small separations) can
significantly improve our constraining power (Cuceu et al. 2021), but
it may also introduce systematic biases due to imperfect modelling
(of e.g. non-linear effects, HCDs, etc.). Therefore, our goal is to find
a balance between these two. The key variable in this analysis is the
minimum separation scale included in the fit, 𝑟min.

In order to quantify the systematic bias of our 𝜙 measurements, we
compute the difference between the best fit value of 𝜙 from the stacked
correlations and the true value in the mocks, i.e., Δ𝜙 = 𝜙best − 1.
While we do have the size of the statistical constraints from the
stack of the correlations, we want to compare Δ𝜙 with the expected
constraints from one eBOSS realization. Therefore, we rescale the
statistical uncertainty in the fit of the stack by a factor of 10 (given the
100 mocks used to compute the stack) to obtain the expected eBOSS
constraint, 𝜎𝜙 .

We compare the statistical constraint and the systematic error on
𝜙 for different values of 𝑟min in Figure 5. We use the full AP setup
and show results for 𝜙 𝑓 from the joint analysis of all four correlation
functions. The error-bars on the systematic errors are given by the
1𝜎 statistical constraints of each measurement, which represents the
constraining power of the stack of the one hundred mocks.

As expected, 𝜎𝜙 grows significantly as we cut more data (larger
𝑟min), with values ranging from 1.6% to 2.7%. The systematic bias
starts high for 𝑟min = 10 ℎ−1Mpc (0.7%), but becomes consistent
with zero by 𝑟min = 25 ℎ−1Mpc. Note that we initially performed this
test in 𝑟min steps of 10 ℎ−1Mpc, but chose to compute the 𝑟min = 25
ℎ−1Mpc point after seeing the initial trends. We also performed the
same analysis on 𝜙s, using the split AP approach, and found similar
results (systematic bias consistent with zero for 𝑟min ≥ 25 ℎ−1Mpc).

These results confirm that we are able to obtain unbiased mea-
surements of 𝜙 using the full shapes of the Ly𝛼 forest correlation
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functions in analyses using 𝑟min ≥ 25 ℎ−1Mpc. Therefore, through-
out the rest of this work, we will be using 𝑟min = 25 ℎ−1Mpc as
our baseline analysis. We also studied the impact of other types of
scale cuts, as described in Appendix C. Based on that, we decided
to follow BAO analyses and use a maximum scale of 𝑟max = 180
ℎ−1Mpc, and not impose any anisotropic cuts.

3.3 Modelling of contaminants

The results we have seen so far indicate that our current modelling
of the relevant contaminants in the Ly𝛼 forest correlations is good
enough to recover unbiased full-shape measurements of the AP effect
with eBOSS. Before moving to the study of analyses on individual
eBOSS mocks, we wish to take a closer look at the individual com-
ponents of our model. In particular, we want to understand how our
measurements are affected by these individual models, and how sen-
sitive we are to different analyses choices. Of particular interest for
AP are those effects that introduce their own anisotropies.

The most important effect we have to account for is that of the
distortion due to continuum fitting. This effect is modelled by intro-
ducing a projection (Equation 2; Bautista et al. 2017) which removes
the affected modes in both our data and our models. These distor-
tions are limited to large scales in the power spectrum (low values of
𝑘 ∥ ), but affect the correlation function on all scales (Blomqvist et al.
2015; Bautista et al. 2017). Given the comparison in Figure 1 be-
tween the stacked correlations and the best fit model, combined with
the fact that we can recover unbiased values of 𝜙s and 𝜙 𝑓 (Figure 4),
we conclude that our modelling of this distortion is accurate enough
for current datasets.

While large high column density (HCD) absorbers are masked
in the input spectra, those with a typical width smaller than ∼ 14
ℎ−1Mpc remain (de Sainte Agathe et al. 2019; du Mas des Bourboux
et al. 2020). The current model of this effect (Equations 7 and 8) fol-
lows the description introduced by Font-Ribera & Miralda-Escudé
(2012), combined with an exponential shape for the 𝐹HCD (𝑘 | | ) func-
tion (based on the analysis by Rogers et al. 2018). Note that this
shape assumes a model for the column density distribution function
of HCDs based on observations (Noterdaeme et al. 2009; Prochaska
et al. 2010; Noterdaeme et al. 2012; Zafar et al. 2013), which are
very limited for column densities log 𝑁Hi < 20. This model takes
into account the joint contribution of IGM and HCD absorption
at the level of two-point functions (which includes the Ly𝛼 and
HCD auto-correlations and their cross-correlation). However, Font-
Ribera & Miralda-Escudé (2012) found that the three-point function,
⟨𝛿Ly𝛼𝛿HCD𝛿Ly𝛼⟩, also has a significant contribution. Furthermore,
the process of masking the larger HCDs could also bias our corre-
lation measurements, because we are preferentially masking regions
with high clustering. These two potential sources of systematic bias
have been long known (Slosar et al. 2011; Font-Ribera & Miralda-
Escudé 2012). However, so far they have not had a significant impact.
This appears to still be the case with full-shape analyses of eBOSS,
taking 𝑟min = 25 ℎ−1Mpc. However, they could be contributing to
the bias we observe for 𝑟min < 25 ℎ−1Mpc. We have also tested the
impact of marginalizing over the 𝐿HCD parameter (instead of fixing it
to 10 ℎ−1Mpc), and found that it has no impact on 𝜙s measurements.

Contamination due to metal absorption results in clear extra fea-
tures in the Ly𝛼 correlation functions along the line-of-sight. These
features correspond to correlations at vanishing separation between
metal absorption and either Ly𝛼 absorption (auto) or quasars (cross).
These correlations get assigned to the wrong bins in comoving co-
ordinates because we interpret everything as Ly𝛼 absorption. This
is a simple enough process that we can replicate it in the model

through the metal matrix formalism described in Appendix A. How-
ever, it means that correlations that used to be at small separations
are now spread across the correlation along the line-of-sight. This
could result in potential systematic biases, as imperfect modelling of
the small scales can now have an impact even on large scales. The
results shown above do not indicate this is a problem for eBOSS.

We also note that unlike HCDs, metals were added to these mocks
using a re-scaled version of the Ly𝛼 optical depth. In reality, metal
absorption is associated with the circum- and intra-galactic medium
more than the IGM (Pérez-Ràfols et al. 2022). Therefore, these mocks
only provide a rough approximation for the clustering of metals.
This is especially relevant in the case of metal RSD, as the model
has metal RSD parameters fixed to 𝛽m = 0.5, following du Mas
des Bourboux et al. (2020). Synthetic data sets with more realistic
metal prescriptions are needed to fully understand their impact on
AP measurements.

Quasar redshift errors can be a significant source of uncertainty
and also potentially bias both BAO and AP measurements (Youles
et al. 2022). For the auto-correlation, quasar redshifts are only used
to define the rest-frame wavelength range when computing the con-
tinuum. Therefore, redshift errors result in extra spectral diversity,
which increases the noise in the measurement of the flux transmis-
sion field (du Mas des Bourboux et al. 2020). On the other hand, the
cross-correlation is smeared along the line-of-sight, and a potential
systematic offset between negative and positive 𝑟 | | is introduced. We
model the first effect using either a Gaussian or a Lorentzian model
with a free parameter, as described in Section 2.3. The second effect
is modelled through an extra free parameter, Δ𝑟 | | , to account for a
potential offset. Furthermore, the Gaussian or Lorentzian models are
also meant to model the non-linear quasar velocities which give rise
to the Finger-of-God effect. The mocks used here do contain statis-
tical redshift errors, modelled as a Gaussian, and the Finger-of-God
effect. As analyses on real data have preferred the Lorentzian model,
we tested both of them. However, we found no significant shift in any
of the scale parameters of interest (𝛼p, 𝜙p, 𝜙s).

In Figure 6, we compare the baseline results on 𝜙 with results
where we remove the model for each of these contaminants in turn.
This means that the contaminants are still present in the measured
correlations, but we do not model them. These results are computed
from a joint analysis of all four Ly𝛼 stacked correlation functions. We
also show the baseline result rescaled to correspond to one eBOSS
realization. We study three cases: one where we remove the HCD
model, one where we do not model metals, and one where we do not
model quasar redshift errors. All three introduce some systematic bias
in the measurement of 𝜙s, with the largest resulting from the removal
of the HCD model, leading to a ∼ 1% shift. On the other hand, for
𝜙p, only the removal of the metal modelling results in a significant
bias. This figure shows the relative importance of including each of
these contaminants in the model. However, note that even the largest
bias (with no HCD modelling at all) represents a shift of only ∼ 0.5𝜎
of the expected statistical constraint for eBOSS.

3.4 Analysis of individual mock realizations

We now turn our attention to analysing individual eBOSS mocks. The
analysis of the stacked correlations has been useful for understanding
how well our model performs in the context of a full-shape analysis.
We found that, using a minimum separation 𝑟min = 25 ℎ−1Mpc,
we are able to obtain unbiased measurements of the anisotropic
scale parameter from the full shape of the correlations. However, as
mentioned above, parameter constraints from the stack of mocks are
not, in general, the same as mean constraints from individual mock
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Figure 6. Posterior distributions of the anisotropic scale parameter, 𝜙, from
the peak and smooth components, respectively. We compare the baseline
result, where we model all contaminants following eBOSS (du Mas des Bour-
boux et al. 2020), with results where we do not model each one of the contami-
nants in turn. The three results here are obtained by either removing the HCD
modelling, the modelling of the metals or the model for quasar non-linear
velocities. In each of these cases, not modelling the relevant contaminant
introduces a systematic bias in our results. For 𝜙s, the most significant shift
appears when removing the model for HCDs.

analyses. Therefore, we now wish to test if our conclusions above are
also accurate when analysing individual eBOSS mocks.

The results shown so far have been obtained by using a sampler
to compute full posterior distributions. However, this becomes too
computationally expensive for a full set of 100 mocks.15 Therefore,
in this section, we compute the best fit values of the parameters
using a minimizer16. We estimate the statistical uncertainty in this
result using the second derivative in parameter space around the
best fit point, assuming a Gaussian likelihood. This allows us to
obtain rough estimates of population statistics from the set of mocks.
However, note that both the best fits and the constraints obtained
using this method are ultimately just an approximation, because we
are not properly marginalizing over the nuisance parameters (see
Cuceu et al. 2020). We only use this method here because a more
complex and accurate method (i.e. sampling) is not practical. We
discuss this in more detail in Appendix D.

Our modelling of individual eBOSS mock correlations closely
follows the model we used for the stack of correlations, as introduced
in Section 2.3. We run the iminuit minimizer on each of the one
hundred mocks. This provides us with both the best fit value of
each parameter and with its Gaussian uncertainty. We compute two
versions of the results, using both the split AP analysis with 𝜙p and
𝜙s, and the full AP analysis with 𝜙 𝑓 .

We show histograms of the best fit values of the scale parameters

15 Running the sampler for a joint analysis of all four Ly𝛼 correlations with
all the contaminants requires ∼ 2 − 3 × 103 CPU hours, which leads to a
rough estimate of ∼ 2 − 3 × 105 CPU hours to analyse all 100 mocks.
16 We use the iminuit package (Dembinski et al. 2021) for minimization.
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Figure 7. Histograms of the best fit values of scale parameters obtained by
minimizing the 𝜒2 over all parameters in each of the 100 eBOSS mocks. The
red dashed lines represent the mean of the populations, while the dashed-
black lines show the expected values of the scale parameters (unity). The
top plots show fits of 𝜙p (left) and 𝜙s (right). These show that we are able
to obtain unbiased measurement of 𝜙 from the full shape of the Ly𝛼 forest
correlations, which is confirmed by the bottom right plot, showing results for
𝜙 𝑓 . The bottom left plot shows results from fits of the BAO isotropic scale
parameter 𝛼p. The mean of the population in this case is slightly higher (by
∼ 0.25𝜎) than the expected value.

in Figure 7. The top plots show results for 𝜙p and 𝜙s, both of which
are consistent with the expected value of unity. The means of the
populations are 𝜇𝜙p = 1.0028 and 𝜇𝜙s = 1.0013, corresponding to
shifts from unity of ∼ 0.06𝜎 and ∼ 0.05𝜎, respectively.17 These
results reinforce the conclusions from Section 3.1: we are indeed
able to recover unbiased measurements of the AP effect using the
full shapes of the correlations.

The bottom row of Figure 7 shows results for the isotropic BAO
scale (𝛼p) and the full-shape anisotropic parameter (𝜙 𝑓 ). The means
of the populations in this case are 𝜇𝛼p = 1.0024 and 𝜇𝜙 𝑓

= 1.0024,
corresponding with shifts from unity of ∼ 0.23𝜎 and ∼ 0.11𝜎,
respectively. While these shifts are more significant compared to the
ones from 𝜙p and 𝜙s, they are still relatively small, in line with the
results from Section 3.1.

4 DISCUSSION

In this work, we have used a set of one hundred eBOSS Ly𝛼 forest
mocks to study how well we could perform a full-shape analysis of the
eBOSS DR16 Ly𝛼 correlation functions. We found that we are able
to recover unbiased measurements of the anisotropic scale parameter,
𝜙, from a joint analysis of the full shapes of the four Ly𝛼 correlations
when using a minimum separation of 𝑟min = 25 ℎ−1Mpc. The only
significant systematic biases on 𝜙 were found when either we did not

17 The 𝜎 values here are based on the expected eBOSS uncertainty given
by the standard deviation of these histograms. This is also consistent with the
scaled uncertainty from the stack of mocks.
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model one of the major contaminants (Section 3.3), or we included
scales smaller than 25 ℎ−1Mpc (Section 3.2).

We did find an apparent bias of 0.22% − 0.24% in the isotropic
scale of the peak component, 𝛼p, both when analysing the stack of
one hundred mocks (Section 3.1) and when analysing them individ-
ually (Section 3.4). This corresponds to a ∼ 0.21𝜎 − 0.25𝜎 bias for
eBOSS.18 du Mas des Bourboux et al. (2020) also found a systematic
shift of similar magnitude for the BAO parameters, using the same
correlation function measurements with a different parametrization.
In the same publication, du Mas des Bourboux et al. (2020) mea-
sured BAO using real data, and tested the robustness of the result by
adding broadband polynomials meant to marginalize over any un-
accounted broadband systematic effects. They found no significant
shift in the BAO parameters when performing this test. Therefore,
they concluded the BAO results are robust. Such a test cannot be
replicated in the context of a full-shape analysis, because the broad-
band polynomials would erase the information in 𝜙s. However, our
model allows the separate fit of BAO (𝛼p and 𝜙p) and broadband (𝜙s)
information. Therefore, when analysing real data, we can benchmark
our BAO result using the results of the eBOSS BAO analysis.

In Section 3.3, we have discussed the impact of the major contam-
inants that are modelled in the mock data and shown the importance
of modelling them accurately. However, we have only touched on the
effects that we model and observe in the mock data. While these rep-
resent the most important known contaminants for the Ly𝛼 forest 3D
correlations (which is why they are modelled in the mock data), they
are not the only possible sources of systematic uncertainty. Here we
wish to discuss some other possible sources of contamination, how
they have been treated in the past, and also to give recommendations
on which of them warrant attention when performing this analysis
on real data.

The mock data used in this work is based on a Gaussian density
field with quasars randomly sampled using its log-normal transfor-
mation. While this is a good enough approximation on large scales,
it does not correctly reproduce the quasar clustering on small scales
(Farr et al. 2020). This makes it difficult to accurately test the model
on small scales, especially for the cross-correlation. The problem
is also exacerbated by the fact that both the distortion due to con-
tinuum fitting and the metal contamination take effects that are at
small scales and spread them to larger scales along the line-of-sight.
Incorrect modelling of the small scales can thus have an impact on
all scales, so this analysis would benefit from more realistic mocks
to test this effect. However, as these are not currently available, we
have to leave such a study for future work.

For the analysis of the Ly𝛼 auto-correlation from real data, an em-
pirical model based on the work by Arinyo-i-Prats et al. (2015) is used
to fit small-scale non-linearities.19 This model has five free parame-
ters whose values were measured using hydro-simulations. However,
no equivalent model exists for the cross-correlation. A possible ap-
proximation would be to use the same model for the cross-correlation
as well, but it is not clear if the same parameter values would still
work, and this would not account for quasar non-linearities (FoG).
Recently, Givans et al. (2022) used high-resolution hydrodynamic
simulations to study how well current models perform on small scales
in both the Ly𝛼 power spectrum and the cross-spectrum of Ly𝛼 with
massive halos. For Ly𝛼, they found that the model by Arinyo-i-Prats

18 Note that the eBOSS uncertainty used for these values are based on esti-
mates from this work, not the real measurement.
19 We do not use this model here because the small-scale forest-related non-
linearities are not included in the mocks.

et al. (2015) performs very well up to wavenumbers much larger
than those included here. On the other hand, for the cross-spectrum,
they found that the standard Lorentzian damping combined with the
Arinyo-i-Prats et al. (2015) model cannot accurately fit the small-
scale power. Therefore, for the cross-correlation, they recommend
using scales larger than 30 ℎ−1Mpc when fitting it with linear the-
ory. However, they did not include the effect of redshift errors, which
suppresses power on these small scales, making deviations from lin-
ear theory less important. Therefore, in an analysis of real data, it
may be worth testing scale cuts for the cross-correlation of both
25 ℎ−1Mpc, as proposed here, and of 30 ℎ−1Mpc, as proposed by
Givans et al. (2022).

Comparing results from the auto and cross-correlations could be a
good way of testing for systematic biases due to imperfect modelling
of the small scales. This is because the two are driven by different ef-
fects, with the cross-correlation affected more by redshift errors and
quasars, which cluster very strongly and have large non-linear pecu-
liar velocities, and the auto-correlation driven by the IGM absorption
(gas pressure effects, thermal broadening, etc.). Furthermore, for the
cross-correlation, testing both the Gaussian and Lorentzian damping
models would be a good consistency check for the analysis on real
data.

While preparing this manuscript, a new study by Youles et al.
(2022) found that large redshift errors can introduce spurious cor-
relations along the line-of-sight in both the Ly𝛼 auto and cross-
correlation with quasars. Such an effect could lead to systematic
biases when performing a full-shape analysis such as the one studied
here. Therefore, future work is needed to study its impact on full-
shape analyses, and to potentially find ways to account for it (e.g. by
forward modelling the effect).

An effect that is not included in the mock data is that of BAO broad-
ening due to non-linear growth. However, this effect is relatively well
understood and modelled in BAO analyses (see Kirkby et al. 2013 for
a detailed discussion). Therefore, as long as it is correctly modelled
when fitting the real data, we do not consider it a potential issue for a
full-shape analysis. The effect of quasar radiation, also known as the
transverse proximity effect, is another important source of contam-
ination for the cross-correlation, because it increases the ionization
fraction in the gas surrounding the quasar, leading to a decrease in
Ly𝛼 absorption. However, this effect has been successfully mod-
elled (Font-Ribera et al. 2013), and this model has been included
in previous BAO analyses. As this only affects the cross-correlation,
comparing results from the auto- and cross-correlation should also
be useful here.

The metal contamination introduced in the synthetic data used here
only includes the effect of the lines that are close in wavelength to the
Ly𝛼 peak. This type of contamination is mostly given by the cross-
correlation between these absorptions lines and either Ly𝛼 absorp-
tion (for the auto-correlation) or quasars (for the cross-correlation).
However, in BOSS and eBOSS BAO analyses, the contamination
due to CIV absorption was also modelled. At the relevant comoving
coordinates used here, this is dominated by the auto-correlation of
CIV absorption, and therefore only affects the Ly𝛼 auto-correlation.
It is generally modelled in the same way as the other metal lines, as
described in Section 2.3. It has its own free bias parameter. However,
this parameter has only been marginally detected, with a significance
less than 3𝜎 (du Mas des Bourboux et al. 2020). Therefore, the im-
pact of this contamination is minimal. Nevertheless, we recommend
that it be modelled and marginalized over in a full-shape analysis on
real data, similarly to Ly𝛼 BAO analyses.

Fluctuations of the ionizing UV background introduce a scale
dependence to the Ly𝛼 bias and RSD parameters (Pontzen 2014;
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Gontcho A Gontcho et al. 2014). This scale dependence was modelled
in the Ly𝛼 BAO analyses using BOSS DR12 and eBOSS DR14
(Bautista et al. 2017; de Sainte Agathe et al. 2019; Blomqvist et al.
2019), following the framework introduced by Gontcho A Gontcho
et al. (2014). However, the effect was not detected at a significant
level (only ∼ 2𝜎), and modelling it did not have an impact on the
BAO fits. This indicates that it is probably not of significant concern
for a full-shape analysis, but its impact on 𝜙 measurements should
be tested when performing this analysis on real data.

In conclusion, the two effects that likely require more attention
are the spurious correlations due to redshift errors (identified by
Youles et al. 2022), and the small scale non-linear effects in the cross-
correlation. The other effects discussed here have been studied before,
and modelled at some level in past Ly𝛼 BAO analysis. They were not
prioritized by the eBOSS collaboration when creating mocks because
they were not found to play an important role in past BAO analyses.
However, this may not be true for full-shape analyses. Therefore, an
important part of the first full-shape analysis on real data will be to
determine if the current models for these secondary effects have an
impact on measurements of 𝜙s. If they are found to have an impact, it
will motivate the development of more accurate mocks in the future.

5 SUMMARY

The Lyman-𝛼 (Ly𝛼) forest provides one of the best tracers of large
scale structure (LSS) at high redshifts (2 < 𝑧 < 4). However, 3D
correlations of the forest have so far only been used to measure
the baryon acoustic oscillations (BAO) scale. Recently, Cuceu et al.
(2021) showed that a measurement of the Alcock-Paczyński (AP)
effect from the full shapes of Ly𝛼 forest correlation functions can lead
to significant improvements in cosmological constraints compared to
BAO-only measurements. In this work, we use synthetic data of the
extended Baryon Oscillation Spectroscopic Survey (eBOSS) in order
to test such an analysis.

We model the Ly𝛼 auto-correlation, and its cross-correlation with
quasars, using a similar approach to that used in past Ly𝛼 BAO anal-
yses (Kirkby et al. 2013; Bautista et al. 2017; du Mas des Bourboux
et al. 2017, 2020), as described in Section 2.3. The only difference
appears from the fact that we use scale parameters to fit the full
shapes of the correlations. Our parametrization of the scale parame-
ters splits them into an isotropic scale parameter, 𝛼, and a parameter
for the anisotropy, 𝜙, corresponding to a measurement of the AP
effect (Cuceu et al. 2021). As we decompose the template power
spectrum into a peak component and a smooth component, we have
the option of using separate scale parameters for each. We use two se-
tups for the analysis, as described in Table 2. In the first, we decouple
the peak and smooth components by fitting two distinct 𝜙 parameters
(𝜙p and 𝜙s), while in the second we fit only one 𝜙 parameter (𝜙 𝑓 )
for the full shapes of the correlations.

We begin our study by analysing stacked correlation functions from
the one hundred mock data sets (see Figure 1), in Section 3.1. We
perform a joint analysis of all four correlations, as shown in Figures 3
and 4. We find that the results from the two Ly𝛼 auto-correlations are
consistent with the results from the two cross-correlations. Further-
more, we find that we are able to recover unbiased measurements of
𝜙 from the full shapes of the correlations, for both types of analysis
described above.

In Section 3.2, we study joint analyses of all four stacked corre-
lations using a range of scale cuts. In particular, we focus on the
minimum scale used, 𝑟min. We run the full AP analysis using 𝑟min
values from 10 ℎ−1Mpc to 50 ℎ−1Mpc, as shown in Figure 5. We

then compare the systematic bias of 𝜙 𝑓 measurements, given by the
difference between the best fit value and the expected value in the
mocks (𝜙 = 1), with an estimate of the expected statistical constraint
from eBOSS. We find that we are able to obtain unbiased measure-
ments of 𝜙 𝑓 for 𝑟min ≥ 25 ℎ−1Mpc. Therefore, we use 𝑟min = 25
ℎ−1Mpc for the other parts of the analysis.

In Section 3.3, we discuss the main contaminants present in the
Ly𝛼 forest correlation functions. We also test a few different setups
for the analysis, but find that as long as the main contaminants are
modelled correctly, there is no significant bias in full-shape 𝜙 mea-
surements. We show the relative impact of not modelling each main
contaminant in Figure 6.

We study full-shape analyses on the individual correlations in
Section 3.4. We used approximate results from a minimizer instead
of running a sampler on each of the one hundred mocks, due to
computational constraints (see Appendix D for a comparison between
the two). We show histograms of the best fit parameter values in
Figure 7. Our results here reinforce the earlier conclusions. The
means of these distributions are consistent with the values expected
from the mocks, 𝜙 = 1. This again indicates that we are able to obtain
unbiased measurements of 𝜙, using the full shapes of the correlations.

Finally, in Section 4 we discuss the implications of our results and
give recommendations for how such an analysis should be performed
on real data from eBOSS. As we have shown, the most important
contaminants are well modelled and do not have a significant impact
on 𝜙 measurements for 𝑟min ≥ 25 ℎ−1Mpc. Therefore, we focus on
discussing the effects that are not modelled in the synthetic data, and
what tests can be done on the real data in order to gauge their impact.
Most of these are quite well understood, have already been modelled
and tested in past Ly𝛼 BAO analyses, and were not found to have a
significant impact. However, these tests should also be replicated in
the context of a full-shape analysis.

An eBOSS full-shape analysis, as studied here, could improve AP
constraints by as much as a factor of two compared to a BAO-only
analysis. We have performed this measurement in a follow-up work
presented in Cuceu et al. (2023). While our focus here has been on
the information extracted through the AP effect, our validation of
full-shape measurements could also prove important to other sources
of information present in the broadband of Ly𝛼 forest correlations.
These include growth of structure measurements using redshift space
distortions (Cuceu et al. 2021), and fluctuations in the ionising UV
background (e.g. Long & Hirata 2023).
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where (𝑖, 𝑗) ∈ 𝐴 refers to separations computed using the assigned
redshifts (assuming only Ly𝛼 absorption), and (𝑖, 𝑗) ∈ 𝐵 refers to
separations computed using the true redshifts of each tracer. The
weights, 𝑤𝑖 , are given by the inverse variance of 𝛿𝑞 (see du Mas
des Bourboux et al. 2020), and 𝑊𝐴 =

∑
(𝑖, 𝑗 ) ∈𝐴 𝑤𝑖𝑤 𝑗 . Note that

we drop the quasar specification from our notation, as the sums are
understood to be over all pixels in each comoving separation bin.

In order to model the distortion due to continuum fitting errors,
we need to apply the projection 𝜂

𝑞

𝑖 𝑗
to the modelled flux fluctuation

𝛿𝑡𝑞 (Equation 2). This is done by using 𝜂
𝑞

𝑖 𝑗
to construct a distortion

matrix that is applied to the theoretical model correlations, 𝜉𝑡auto and
𝜉𝑡cross to give the projected correlation function:

𝜉𝐴 =
∑︁
𝐵

𝐷𝐴𝐵𝜉
𝑡
𝐵, (A3)

where 𝐴 is a bin of the data and 𝐵 is a bin of the model. The distortion
matrices for the auto and cross-correlations are given by:

𝐷auto
𝐴𝐵

= 𝑊−1
𝐴

∑︁
𝑖 𝑗∈𝐴

𝑤𝑖𝑤 𝑗

∑︁
𝑖′ 𝑗′∈𝐵

𝜂𝑖𝑖′𝜂 𝑗 𝑗′ , (A4)

𝐷cross
𝐴𝐵

= 𝑊−1
𝐴

∑︁
𝑖 𝑗∈𝐴

𝑤𝑖𝑤 𝑗

∑︁
𝑖′ 𝑗∈𝐵

𝜂𝑖𝑖′ . (A5)

See Bautista et al. (2017) and Pérez-Ràfols et al. (2018) for more
details.

APPENDIX B: IMPACT OF FIDUCIAL COSMOLOGY

Our method requires the use of a fiducial cosmology, both for defin-
ing the comoving coordinate grid on which the correlations are com-
puted, and for the template power spectrum that is used to construct
the theoretical model for the Ly𝛼 correlations. This fiducial cos-
mology is based on cosmic microwave background anisotropy data
from the Planck satellite (Planck Collaboration et al. 2016). In this
appendix, we test the impact of this choice of fiducial cosmology.

We recompute the Ly𝛼 auto and cross-correlations of one of the
mocks using two different values of the matter density parameter,Ω𝑚.
The two values are Ω𝑚 = 0.27 and Ω𝑚 = 0.36. We then perform our
standard analysis and measure 𝛼p and 𝜙 𝑓 , but we use different power
spectrum templates to keep the fiducial Ω𝑚 value consistent in each
analysis. In order to compare the results, we compute the relevant
combinations of distances as derived parameters. Following Cuceu
et al. (2021), measurements of 𝜙 and 𝛼p correspond to:

AP: 𝜙(𝑧) = 𝐷M (𝑧)𝐻 (𝑧)
[𝐷M (𝑧)𝐻 (𝑧)]fid

, (B1)

BAO: 𝛼p (𝑧) =

√√√
𝐷M (𝑧)𝐷H (𝑧)/𝑟2

d
[𝐷M (𝑧)𝐷H (𝑧)/𝑟2

d]fid
, (B2)

where 𝐷𝐻 = 𝑐/𝐻 and 𝑟𝑑 is the size of the sound horizon at the end
of the drag epoch. Based on these equations and the relevant fiducial
distances for each value of Ω𝑚, we transform 𝜙 𝑓 into 𝐷𝑀/𝐷𝐻 , and
𝛼p into 𝐷𝑀𝐷𝐻/𝑟2

𝑑
.

We compare the results for the large and small values of Ω𝑚 with
the one obtained from our standard analysis (using Ω𝑚 = 0.315) in
Figure B1. All three results give consistent measurements, however,
they are not identical. This can be attributed to the fact that pixel
pairs are distributed to different bins in the correlation when using
different values of Ω𝑚, because the comoving distances change. This
will have an impact on the measured parameters, especially for BAO,
where small changes in the correlation measurements (consistent
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Figure B1. Posterior distributions of the combination of distances we measure
for different Ω𝑚 values used in the fiducial cosmology. The combination
𝐷𝑀/𝐷𝐻 corresponds to 𝜙 𝑓 , while 𝐷𝑀𝐷𝐻/𝑟2

𝑑
corresponds to 𝛼p. This

shows that we measure consistent distances even when using a very different
fiducial cosmology.

with the expected noise) can produce large changes in the shape of
the posterior (e.g. Cuceu et al. 2020). Furthermore, when changing
the fiducial Ω𝑚, the smallest scale that we fit will be different for the
same 𝑟min. For example, the smaller value of Ω𝑚 leads to smaller
scales being assigned larger comoving separations. This is why the
size of the constraints increases as Ω𝑚 increases.20 Nevertheless, all
three results are consistent with each other even for these extreme
values of Ω𝑚.

APPENDIX C: OTHER SCALE CUTS

In Section 3.2 we have focused on the minimum scale fitted, 𝑟min.
However, we also have to choose the largest scale we fit for, 𝑟max.
Furthermore, as our measurement is two-dimensional, we could also
impose different scale cuts along or across the line-of-sight. We tested
different versions of this analysis, which we summarize here.

We show the impact of changing the largest separation included in
our fit, 𝑟max, in Figure C1. We perform the same type of comparison
as we did for 𝑟min in Figure 5. The scales we tested range from
140 ℎ−1Mpc to 200 ℎ−1Mpc. We find that measurements of 𝜙 𝑓

are unbiased for all the 𝑟max values we have tried. Furthermore,
the improvement in the constraint as we include more data is very
weak. Therefore, following eBOSS, we decided to choose 𝑟max = 180
ℎ−1Mpc in our standard analysis.

As most of the contaminants of the Ly𝛼 forest correlation functions
have their largest impact along the line-of-sight, we also decided to

20 This also means that our choice of 𝑟min = 25 ℎ−1Mpc is based on the
Planck cosmology. Therefore, the analysis should be re-done, and a new
minimum scale chosen, if we had reason to believe the real cosmology was
very different from the one inferred by Planck.

MNRAS 000, 1–17 (2022)
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Figure C1. Comparison of the expected statistical constraint on 𝜙 from
eBOSS (𝜎𝜙) and the systematic bias (Δ𝜙) as a function of maximum scale
fitted, 𝑟max. The 𝜙 parameter here is fitted from the full shapes of all four
Ly𝛼 correlation functions (𝜙 𝑓 ). The systematic bias is obtained from the
difference between the best fit value on the stack of 100 mocks and the true
value in the mocks. The statistical constraint is obtained by rescaling the
constraint from the stack of mocks to one eBOSS realization.
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Figure C2. Same as Figure C1, but as a function of the minimum scale across
the line-of-sight, 𝑟min

⊥ . We are progressively cutting the columns along the
line-of-sight, where the impact of the contaminants is highest. The systematic
error on 𝜙 is increasing as we cut more data, which indicates that we are
not able to accurately constrain the nuisance parameters that account for the
contaminants when ignoring the information along the line-of-sight.

test a cut in 𝑟min
⊥ . This is the smallest transverse scale that we fit, and

values 𝑟min
⊥ > 0 ℎ−1Mpc mean that we are removing the columns in

the correlation that lie along the line-of-sight. The systematic error
and expected statistical constraint on 𝜙 𝑓 for different values of 𝑟min

⊥
are show in Figure C2. We find that removing the first correlation
column along the line-of-sight (𝑟min

⊥ = 4 ℎ−1Mpc) still results in an
unbiased measurement. However, removing more data after that starts
to introduce a significant systematic bias.21 This could be explained
by the fact that removing the columns along the line-of-sight is de-
grading our ability to fit the parameters that control the contaminants
(e.g. HCDs and metals). Even though these contaminants have their

21 Note that we are plotting the absolute value of Δ𝜙. Therefore, the trend
of increasing systematic bias in Figure C2 does not mean the bias is all in the
same direction.

strongest impact along the line-of-sight, they have a small impact
on the correlation even at large transverse separations. Therefore, it
is still important to model them accurately. Given these results, we
chose to not impose any cut in 𝑟min

⊥ .

APPENDIX D: POPULATION CONSTRAINTS

As described in Section 3.4, when running the analysis on each of
the one hundred mocks, we are restricted to using a minimizer due to
computational constraints. This means that the reported constraints
on the measured parameters are just estimates due to two reasons.
Firstly, they assume the posterior is Gaussian around the best fitting
value. Secondly, the best fit for the parameters of interest (𝜙 𝑓 , 𝛼p)
is found without properly marginalizing over the nuisance param-
eters.22 While these approximations might be correct for the BAO
parameters due to their lack of correlations with the nuisance parame-
ters (Cuceu et al. 2020), 𝜙s definitely has such correlations (Appendix
E). Therefore, in order to study accurate parameter constraints from
the population of mocks, we need to use a sampler.

For the purposes of this appendix, we ran the sampler on corre-
lations computed only using the Ly𝛼 region (no Ly𝛽 region) from
uncontaminated synthetic data sets. These mocks do not include
the effects of HCDs, metal absorption or redshift errors (they are
also described in du Mas des Bourboux et al. 2020). Therefore, the
parameter space is much smaller, allowing for the computation of
the full posterior distributions using a sampler. We performed the
joint analysis of the auto and cross-correlations for all one hundred
uncontaminated mocks.

In Figure C3, we show histograms of the constraints on 𝛼p, 𝜙p,
and 𝜙s from the population of one hundred mocks. The main result
is the one given by the sampler, in blue. We also plot the standard
deviation of the best fitting values for each of the parameters over the
population of mocks. This shows that the variance of the parameter
values obtained from the one hundred realizations is consistent with
the measured uncertainty in individual realizations, which means the
uncertainties are properly accounted for.

We also compare results from the sampler with the estimates from
the minimizer in Figure C3. While they roughly agree for the BAO
parameters (𝛼p and 𝜙p), this is not the case for 𝜙s. The two give
different constraints, as shown by the difference between the red
and blue histograms. This is not surprising given the assumptions
involved in the fitter constraints. However, the variance of the 𝜙s
best fits is also different between the two (the red and blue vertical
lines). This means that marginalization over the nuisance parameters
is important in this case.23

While this has been a rough test due to computational constraints,
most of the parameters that 𝜙s is correlated with are still present in
uncontaminated mocks (𝑏Ly𝛼, 𝛽Ly𝛼 and 𝛽QSO). The main omission
is 𝑏HCD. Therefore, it would be interesting to perform this analysis
with the effect of HCDs modelled in the mocks. Alternatively, future
studies should perform the analysis on the fully contaminated mocks
if there is access to enough computational resources.

22 The best fit value of 𝜙s reported by the minimizer is conditional on the
best fitting values of all the nuisance parameters. However, in the Bayesian
framework, the quantity we are interested in is the value of 𝜙s conditional
on the posterior distributions of the nuisance parameters. Only in the second
case is the uncertainty due to these parameters properly taken into account.
23 In a frequentist framework, a possible solution for this would be to use these
results to compute non-Gaussian Δ𝜒2 values in order to set more accurate
confidence intervals on 𝜙s.
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Figure C3. Histograms of the 68% constraints on 𝛼p, 𝜙p and 𝜙s when fitting the correlations measured from one hundred uncontaminated eBOSS mocks. We
compare results from a fitter which assume a Gaussian posterior, with results from a sampler where we compute the full posterior distributions. The vertical lines
represent the standard deviation of the best fitting results for each parameter over the one hundred mocks. We show that when using the sampler, the variance of
the population best fits is consistent with the individual constraints for all three parameters.

APPENDIX E: PARAMETER CORRELATIONS

The advantage of BAO analyses is that they measure a well-defined
feature in the correlation function. BAO scale parameters rarely have
any significant correlations with the nuisance parameters, which
means they are much more robust to different analysis choices when
it comes to modelling contaminants. On the other hand, full-shape
analyses rely on the ability to accurately model correlation func-
tions over all the scales of interest. We have already shown in Figure
6 what biases are introduced when not modelling certain contami-
nants. In this appendix, we go into more detail on the sensitivity of
𝜙s measurements to other nuisance parameters.

In Figure E1 we show the posterior distributions of the main pa-
rameters that are correlated with 𝜙s. The two posteriors are from
the fit to the two Ly𝛼 auto-correlations, and from the joint fit of all
four correlations. The cross-correlations between Ly𝛼 and quasars
cannot be included in such a comparison because the full system
of parameters is degenerate.24 The most important correlations are
between 𝜙s and the Ly𝛼 bias and RSD parameters, 𝑏Ly𝛼 and 𝛽Ly𝛼.
These two are highly correlated between themselves and with the
HCD bias, 𝑏HCD. The Ly𝛼 auto-correlation provides most of the
information on these parameters. On the other hand, the information
on 𝛽QSO comes from the Ly𝛼-QSO cross-correlation. However, a
measurement of 𝛽Ly𝛼 (from the auto) is necessary to constrain it due
to their degeneracy in the model of the cross-correlation. While we
treat 𝛽QSO as a nuisance parameter in this work, future studies could
also attempt to extract a measurement of the growth rate of structure
from it.

This paper has been typeset from a TEX/LATEX file prepared by the author.

24 See Section 3.1 above and Section 4 of Cuceu et al. (2021)
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Figure E1. Posterior distributions obtained from fitting the mean of correlation functions computed from one hundred eBOSS mocks. We show results for the
joint analysis of the two Ly𝛼 auto-correlations, and for the joint analysis of all four correlations. We only plot the parameters that have correlations with 𝜙s, in
order to show its sensitivity to the values of these parameters.
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